1
|
Fan XX, Li RT, Zhu YB, Chen Q, Li XF, Cao TS, Zhao H, Cheng G, Qin CF. An accumulated mutation gained in mosquito cells enhances Zika virus virulence and fitness in mice. J Virol 2024; 98:e0125124. [PMID: 39412258 PMCID: PMC11575407 DOI: 10.1128/jvi.01251-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/18/2024] [Indexed: 11/20/2024] Open
Abstract
Zika virus (ZIKV) remains a significant public health threat worldwide. A number of adaptive mutations have accumulated within the genome of ZIKV during global transmission, some of which have been linked to specific phenotypes. ZIKV maintains an alternating cycle of replication between mosquitoes and vertebrate hosts, but the role of mosquito-specific adaptive mutations in ZIKV has not been well investigated. In this study, we demonstrated that serial passaging of ZIKV in mosquito Aag2 cells led to the emergence of critical amino acid substitutions, including A94V in the prM protein and V153D and H401Y in the E protein. Further characterization via reverse genetics revealed that the H401Y substitution in the E protein did not augment viral replication in mosquitoes but significantly enhanced neurovirulence and lethality compared with those of the wild-type (WT) virus in mice. More importantly, the H401Y mutant maintained its virulence phenotype in mice after propagation in mosquitoes in mosquito-mouse cycle model. In particular, recombinant ZIKV harboring the H401Y substitution showed enhanced competitive fitness over WT ZIKV in various mammalian cells and mouse brains, but not in mosquito cells. Notably, the H401Y substitution in the ZIKV E protein has been detected in recent isolates derived from both mosquitoes and humans in Asia and the Americas. In summary, our findings not only identify a novel virulence determinant of ZIKV but also highlight the complexity of the relationship between the evolution of vector-borne viruses and their clinical outcome in nature. IMPORTANCE Zika virus (ZIKV) is an important arbovirus with a global impact. Experimental evolution by serial passaging of ZIKV in susceptible cells has led to the identification of a panel of critical amino acid substitutions with specific functions. Herein, we identified a mosquito cell-derived substitution, H401Y, in the ZIKV E protein via experimental evolution. The H401Y substitution significantly enhanced viral virulence and fitness in mammal cells and mice. Notably, the H401Y substitution has been detected in recent mosquito and human isolates from regions spanning Asia to the Americas. Our work elucidates unrecognized virulence determinant in the ZIKV genome that warrants urgent attention. Moreover, the findings underscore the critical need for extensive molecular surveillance and rigorous clinical observation to establish the potential impact in natural circulation. These endeavors are crucial for unraveling the potential of mutation to act as a catalyst for future epidemics, thereby preempting the public health challenges it may pose.
Collapse
Affiliation(s)
- Xiao-Xuan Fan
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Rui-Ting Li
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Yi-Bin Zhu
- New Cornerstone Science Laboratory, Tsinghua University-Peking University Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing, China
| | - Qi Chen
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Xiao-Feng Li
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Tian-Shu Cao
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Hui Zhao
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Gong Cheng
- New Cornerstone Science Laboratory, Tsinghua University-Peking University Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing, China
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, China
| | - Cheng-Feng Qin
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
- Research Unit of Discovery and Tracing of Natural Focus Diseases, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
2
|
Wang Z, Wang M, Li Q, Wu Y, Ying T. High-Affinity Fully Human Anti-EpCAM Antibody with Biased IL-2 Exhibits Potent Antitumor Activity. Biomolecules 2024; 14:1399. [PMID: 39595576 PMCID: PMC11591715 DOI: 10.3390/biom14111399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 10/28/2024] [Accepted: 10/31/2024] [Indexed: 11/28/2024] Open
Abstract
Monoclonal antibodies (mAbs) are widely used in cancer therapy but often show limited efficacy for solid tumors. Enhancing anti-tumor activity by fusing cytokines to tumor-targeting mAbs, which specifically activate immune cells within the tumor microenvironment, represents a promising strategy. However, the optimal design and therapeutic efficacy of antibody-cytokine fusion formats remain unclear. The epithelial cell adhesion molecule (EpCAM), frequently overexpressed in a variety of carcinomas, serves as the target for immunotherapies. In this study, we identified a fully human mAb targeting EpCAM, designated as m801, from a previously constructed phage-displayed fully human antibody library. By fusing m801 with an IL-2 variant (IL-2v) in two configurations, m801.2 (2 anti-EpCAM Fab + 1 IL-2v) and m801.3 (1 anti-EpCAM Fab + 1 IL-2v), we identified m801.2 as the lead candidate due to its superior biophysical properties, including high thermal stability, homogeneity, and low aggregation. Furthermore, m801.2 showed strong binding affinity to EpCAM, with KD values of 0.6 nM, and an EpCAM-expressing tumor cell line, comparable to the original IgG m801. Additionally, m801.2 exhibited IL-2 receptor β subunit (IL-2Rβ)-biased binding activity, with a KD of 27.3 nM, resulting in superior effective T cell activation. In an SW480 xenograft mice model, m801.2 significantly inhibited tumor growth and demonstrated high tolerability. These findings suggest a valuable framework for the future design of immunocytokine therapies.
Collapse
Affiliation(s)
- Zhi Wang
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; (Z.W.); (M.W.); (Q.L.)
| | - Mingkai Wang
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; (Z.W.); (M.W.); (Q.L.)
| | - Quanxiao Li
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; (Z.W.); (M.W.); (Q.L.)
| | - Yanling Wu
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; (Z.W.); (M.W.); (Q.L.)
- Shanghai Engineering Research Center for Synthetic Immunology, Shanghai 200032, China
| | - Tianlei Ying
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; (Z.W.); (M.W.); (Q.L.)
- Shanghai Engineering Research Center for Synthetic Immunology, Shanghai 200032, China
| |
Collapse
|
3
|
Liang M, Wang L, Tian X, Wang K, Zhu X, Huang L, Li Q, Ye W, Chen C, Yang H, Wu W, Chen X, Zhu X, Xue Y, Wan W, Wu Y, Lu L, Wang J, Zou H, Ying T, Zhou F. Identification and validation of anti-protein arginine methyltransferase 5 (PRMT5) antibody as a novel biomarker for systemic sclerosis (SSc). Ann Rheum Dis 2024; 83:1144-1155. [PMID: 38684324 PMCID: PMC11420721 DOI: 10.1136/ard-2024-225596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 04/17/2024] [Indexed: 05/02/2024]
Abstract
OBJECTIVES In the complex panorama of autoimmune diseases, the characterisation of pivotal contributing autoantibodies that are involved in disease progression remains challenging. This study aimed to employ a global antibody profiling strategy to identify novel antibodies and investigate their association with systemic sclerosis (SSc). METHODS We implemented this strategy by conducting immunoprecipitation (IP) following on-bead digestion with the sera of patients with SSc or healthy donors, using antigen pools derived from cell lysates. The enriched antigen-antibody complex was proceeded with mass spectrometry (MS)-based quantitative proteomics and over-represented by bioinformatics analysis. The candidate antibodies were then orthogonally validated in two independent groups of patients with SSc. Mice were immunised with the target antigen, which was subsequently evaluated by histological examination and RNA sequencing. RESULTS The IP-MS analysis, followed by validation in patients with SSc, revealed a significant elevation in anti-PRMT5 antibodies among patients with SSc. These antibodies exhibited robust diagnostic accuracy in distinguishing SSc from healthy controls and other autoimmune conditions, including systemic lupus erythematosus and Sjögren's syndrome, with an area under the curve ranging from 0.900 to 0.988. The elevation of anti-PRMT5 antibodies was verified in a subsequent independent group with SSc using an additional method, microarray. Notably, 31.11% of patients with SSc exhibited seropositivity for anti-PRMT5 antibodies. Furthermore, the titres of anti-PRMT5 antibodies demonstrated a correlation with the progression or regression trajectory in SSc. PRMT5 immunisation displayed significant inflammation and fibrosis in both the skin and lungs of mice. This was concomitant with the upregulation of multiple proinflammatory and profibrotic pathways, thereby underscoring a potentially pivotal role of anti-PRMT5 antibodies in SSc. CONCLUSIONS This study has identified anti-PRMT5 antibodies as a novel biomarker for SSc.
Collapse
Affiliation(s)
- Minrui Liang
- Department of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China
- Huashan Rare Disease Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Lingbiao Wang
- Department of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China
- Huashan Rare Disease Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaolong Tian
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS) and Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Shanghai Engineering Research Center for Synthetic Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Kun Wang
- Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaoyi Zhu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS) and Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Shanghai Engineering Research Center for Synthetic Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Linlin Huang
- Department of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China
- Huashan Rare Disease Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Qing Li
- Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wenjing Ye
- Department of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China
- Huashan Rare Disease Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Chen Chen
- Department of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China
- Department of Emergency Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Haihua Yang
- Department of Respiratory and Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Wanqing Wu
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiangjun Chen
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaoxia Zhu
- Department of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China
- Huashan Rare Disease Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Yu Xue
- Department of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China
- Huashan Rare Disease Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Weiguo Wan
- Department of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China
- Huashan Rare Disease Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Yanling Wu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS) and Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Shanghai Engineering Research Center for Synthetic Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Liwei Lu
- Department of Pathology, The University of Hong Kong, Hong Kong, China
| | - Jiucun Wang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, and Human Phenome Institute, Fudan University, Shanghai, China
| | - Hejian Zou
- Department of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China
- Huashan Rare Disease Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Tianlei Ying
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS) and Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Shanghai Engineering Research Center for Synthetic Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Feng Zhou
- Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
4
|
Sankhala RS, Dussupt V, Donofrio G, Gromowski GD, De La Barrera RA, Larocca RA, Mendez-Rivera L, Lee A, Choe M, Zaky W, Mantus G, Jensen JL, Chen WH, Gohain N, Bai H, McCracken MK, Mason RD, Leggat D, Slike BM, Tran U, Jian N, Abbink P, Peterson R, Mendes EA, Freitas de Oliveira Franca R, Calvet GA, Bispo de Filippis AM, McDermott A, Roederer M, Hernandez M, Albertus A, Davidson E, Doranz BJ, Rolland M, Robb ML, Lynch RM, Barouch DH, Jarman RG, Thomas SJ, Modjarrad K, Michael NL, Krebs SJ, Joyce MG. Zika-specific neutralizing antibodies targeting inter-dimer envelope epitopes. Cell Rep 2023; 42:112942. [PMID: 37561630 PMCID: PMC10775418 DOI: 10.1016/j.celrep.2023.112942] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 06/09/2023] [Accepted: 07/21/2023] [Indexed: 08/12/2023] Open
Abstract
Zika virus (ZIKV) is an emerging pathogen that causes devastating congenital defects. The overlapping epidemiology and immunologic cross-reactivity between ZIKV and dengue virus (DENV) pose complex challenges to vaccine design, given the potential for antibody-dependent enhancement of disease. Therefore, classification of ZIKV-specific antibody targets is of notable value. From a ZIKV-infected rhesus macaque, we identify ZIKV-reactive B cells and isolate potent neutralizing monoclonal antibodies (mAbs) with no cross-reactivity to DENV. We group these mAbs into four distinct antigenic groups targeting ZIKV-specific cross-protomer epitopes on the envelope glycoprotein. Co-crystal structures of representative mAbs in complex with ZIKV envelope glycoprotein reveal envelope-dimer epitope and unique dimer-dimer epitope targeting. All four specificities are serologically identified in convalescent humans following ZIKV infection, and representative mAbs from all four groups protect against ZIKV replication in mice. These results provide key insights into ZIKV-specific antigenicity and have implications for ZIKV vaccine, diagnostic, and therapeutic development.
Collapse
Affiliation(s)
- Rajeshwer S Sankhala
- Emerging Infectious Disease Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Vincent Dussupt
- Emerging Infectious Disease Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA; U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Gina Donofrio
- Emerging Infectious Disease Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA; U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Gregory D Gromowski
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Rafael A De La Barrera
- Pilot Bioproduction Facility, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Rafael A Larocca
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Letzibeth Mendez-Rivera
- Emerging Infectious Disease Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA; U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Anna Lee
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA; U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Misook Choe
- Emerging Infectious Disease Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Weam Zaky
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA; U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Grace Mantus
- George Washington University School of Medicine & Health Sciences, Washington, DC, USA
| | - Jaime L Jensen
- Emerging Infectious Disease Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Wei-Hung Chen
- Emerging Infectious Disease Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Neelakshi Gohain
- Emerging Infectious Disease Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Hongjun Bai
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA; U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Michael K McCracken
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | | | - David Leggat
- Vaccine Research Center, NIH, Bethesda, MD 20852, USA
| | - Bonnie M Slike
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA; U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Ursula Tran
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA; U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Ningbo Jian
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA; U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Peter Abbink
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Rebecca Peterson
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Erica Araujo Mendes
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | | | - Guilherme Amaral Calvet
- Oswaldo Cruz Foundation, Evandro Chagas National Institute of Infectious Diseases, Rio de Janeiro, RJ 21040-360, Brazil
| | | | | | | | | | | | | | | | - Morgane Rolland
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA; U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Merlin L Robb
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Rebecca M Lynch
- George Washington University School of Medicine & Health Sciences, Washington, DC, USA
| | - Dan H Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Richard G Jarman
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Stephen J Thomas
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Kayvon Modjarrad
- Emerging Infectious Disease Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Nelson L Michael
- Center of Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Shelly J Krebs
- Emerging Infectious Disease Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA; U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA.
| | - M Gordon Joyce
- Emerging Infectious Disease Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA; U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA.
| |
Collapse
|
5
|
Aziz A, Suleman M, Shah A, Ullah A, Rashid F, Khan S, Iqbal A, Luo S, Xie L, Xie Z. Comparative mutational analysis of the Zika virus genome from different geographical locations and its effect on the efficacy of Zika virus-specific neutralizing antibodies. Front Microbiol 2023; 14:1098323. [PMID: 36910181 PMCID: PMC9992208 DOI: 10.3389/fmicb.2023.1098323] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/03/2023] [Indexed: 02/25/2023] Open
Abstract
The Zika virus (ZIKV), which originated in Africa, has become a significant global health threat. It is an RNA virus that continues to mutate and accumulate multiple mutations in its genome. These genetic changes can impact the virus's ability to infect, cause disease, spread, evade the immune system, and drug resistance. In this study genome-wide analysis of 175 ZIKV isolates deposited at the National Center for Biotechnology Information (NCBI), was carried out. The comprehensive mutational analysis of these isolates was carried out by DNASTAR and Clustal W software, which revealed 257 different substitutions at the proteome level in different proteins when compared to the reference sequence (KX369547.1). The substitutions were capsid (17/257), preM (17/257), envelope (44/257), NS1 (34/257), NS2A (30/257), NS2B (11/257), NS3 (37/257), NS4A (6/257), 2K (1/257), NS4B (15/257), and NS5 (56/257). Based on the coexisting mutational analysis, the MN025403.1 isolate from Guinea was identified as having 111 substitutions in proteins and 6 deletions. The effect of coexisting/reoccurring mutations on the structural stability of each protein was also determined by I-mutant and MUpro online servers. Furthermore, molecular docking and simulation results showed that the coexisting mutations (I317V and E393D) in Domain III (DIII) of the envelope protein enhanced the bonding network with ZIKV-specific neutralizing antibodies. This study, therefore, highlighted the rapid accumulation of different substitutions in various ZIKV proteins circulating in different geographical regions of the world. Surveillance of such mutations in the respective proteins will be helpful in the development of effective ZIKV vaccines and neutralizing antibody engineering.
Collapse
Affiliation(s)
- Abdul Aziz
- Molecular Biology Research Center, School of Life Sciences, Central South University, Changsha, China
| | - Muhammad Suleman
- Centre for Biotechnology and Microbiology, University of Swat, Mingora, Pakistan
| | - Abdullah Shah
- Department of Biotechnology, Shaheed Benazir Bhutto University, Upper Dir, Pakistan
| | - Ata Ullah
- New Cross Hospital, The Royal Wolverhampton NHS Trust, Wolverhampton, United Kingdom
| | - Farooq Rashid
- Division of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
| | - Sikandar Khan
- Department of Biotechnology, Shaheed Benazir Bhutto University, Upper Dir, Pakistan
| | - Arshad Iqbal
- Centre for Biotechnology and Microbiology, University of Swat, Mingora, Pakistan
| | - Sisi Luo
- Department of Biotechnology, Guangxi Veterinary Research Institute, Nanning, China.,Guangxi Key Laboratory of Veterinary Biotechnology, Nanning, China.,Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning, China
| | - Liji Xie
- Department of Biotechnology, Guangxi Veterinary Research Institute, Nanning, China.,Guangxi Key Laboratory of Veterinary Biotechnology, Nanning, China.,Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning, China
| | - Zhixun Xie
- Department of Biotechnology, Guangxi Veterinary Research Institute, Nanning, China.,Guangxi Key Laboratory of Veterinary Biotechnology, Nanning, China.,Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning, China
| |
Collapse
|
6
|
Yang B, Meng R, Feng C, Huang J, Li Q, Wang X, Zhang D. An Antibody Neutralization Determinant on Domain III and the First α-Helical Domain in the Stem-Anchor Region of Tembusu Virus Envelope Protein. THE JOURNAL OF IMMUNOLOGY 2022; 209:684-695. [DOI: 10.4049/jimmunol.2200226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/06/2022] [Indexed: 01/04/2023]
Abstract
Abstract
Previous studies identified three neutralizing epitopes on domains I, II, and III of the Tembusu virus (TMUV) envelope (E). More evidence is needed to understand the molecular basis of Ab-mediated neutralization and protection against TMUV. In this study, we observed a neutralizing mAb, 6C8, that neutralized TMUV infection primarily by inhibiting cell attachment. In immunofluorescence assays, 6C8 recognized the premembrane and E proteins coexpressed in HEK-293T cells, but failed to react with premembrane or E expressed individually. Epitope mapping identified nine E protein residues positioned on BC/EF loops and F/G strands in domain III and the first α-helical domain in the stem region. Further investigation with mutant viruses showed that 6C8 pressure resulted in mutations at residues 330 of BC loop and 409 of the first α-helical domain, although 6C8 only exhibited a moderate neutralizing activity in BHK-21 cells and a weak protective activity in BALB/c mice and Shaoxing duck models. Mutations A330S and T409M conferred high- and low-level 6C8 resistance, respectively, whereas the combination of A330S and T409M mutations conferred moderate-level 6C8 resistance. As a result, a quasispecies comprising three groups of antigenic variants appeared in BHK-21 cell–derived viral stocks after repeated passages of TMUV strain Y in the presence of 6C8 treatment. Taken together, these findings have raised a concern about Ab-induced antigenic variations in vivo, and they have revealed information concerning the conformational structure of the 6C8 epitope and its role in constraint on antigenic variations. The present work contributes to a better understanding of the complexity of the TMUV immunogen.
Collapse
Affiliation(s)
- Baolin Yang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Runze Meng
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Chonglun Feng
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jingjing Huang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Qiong Li
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xiaoyan Wang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Dabing Zhang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
7
|
Merkuleva YA, Shcherbakov DN, Ilyichev AA. Methods to Produce Monoclonal Antibodies for the Prevention and Treatment of Viral Infections. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2022; 48:256-272. [PMID: 35637780 PMCID: PMC9134727 DOI: 10.1134/s1068162022020169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/07/2021] [Accepted: 06/17/2021] [Indexed: 11/23/2022]
Abstract
A viral threat can arise suddenly and quickly turn into a major epidemic or pandemic. In such a case, it is necessary to develop effective means of therapy and prevention in a short time. Vaccine development takes decades, and the use of antiviral compounds is often ineffective and unsafe. A quick response may be the use of convalescent plasma, but a number of difficulties associated with it forced researchers to switch to the development of safer and more effective drugs based on monoclonal antibodies (mAbs). In order to provide protection, such drugs must have a key characteristic-neutralizing properties, i.e., the ability to block viral infection. Currently, there are several approaches to produce mAbs in the researchers' toolkit, however, none of them may serve as a gold standard. Each approach has its own advantages and disadvantages. The choice of the method depends both on the characteristics of the virus and on time constraints and technical challenges. This review provides a comparative analysis of modern methods to produce neutralizing mAbs and describes current trends in the design of antibodies for therapy and prevention of viral diseases.
Collapse
Affiliation(s)
- Yu. A. Merkuleva
- Vector State Research Center of Virology and Biotechnology, Rospotrebnadzor, World-Class Genomic Research Center for Biological Safety and Technological Independence, Federal Scientific and Technical Program for the Development of Genetic Technologies, 630559 Koltsovo, Novosibirsk oblast Russia
| | - D. N. Shcherbakov
- Vector State Research Center of Virology and Biotechnology, Rospotrebnadzor, World-Class Genomic Research Center for Biological Safety and Technological Independence, Federal Scientific and Technical Program for the Development of Genetic Technologies, 630559 Koltsovo, Novosibirsk oblast Russia
| | - A. A. Ilyichev
- Vector State Research Center of Virology and Biotechnology, Rospotrebnadzor, World-Class Genomic Research Center for Biological Safety and Technological Independence, Federal Scientific and Technical Program for the Development of Genetic Technologies, 630559 Koltsovo, Novosibirsk oblast Russia
| |
Collapse
|
8
|
Antonelli ACB, Almeida VP, de Castro FOF, Silva JM, Pfrimer IAH, Cunha-Neto E, Maranhão AQ, Brígido MM, Resende RO, Bocca AL, Fonseca SG. In silico construction of a multiepitope Zika virus vaccine using immunoinformatics tools. Sci Rep 2022; 12:53. [PMID: 34997041 PMCID: PMC8741764 DOI: 10.1038/s41598-021-03990-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 12/01/2021] [Indexed: 01/02/2023] Open
Abstract
Zika virus (ZIKV) is an arbovirus from the Flaviviridae family and Flavivirus genus. Neurological events have been associated with ZIKV-infected individuals, such as Guillain-Barré syndrome, an autoimmune acute neuropathy that causes nerve demyelination and can induce paralysis. With the increase of ZIKV infection incidence in 2015, malformation and microcephaly cases in newborns have grown considerably, which suggested congenital transmission. Therefore, the development of an effective vaccine against ZIKV became an urgent need. Live attenuated vaccines present some theoretical risks for administration in pregnant women. Thus, we developed an in silico multiepitope vaccine against ZIKV. All structural and non-structural proteins were investigated using immunoinformatics tools designed for the prediction of CD4 + and CD8 + T cell epitopes. We selected 13 CD8 + and 12 CD4 + T cell epitopes considering parameters such as binding affinity to HLA class I and II molecules, promiscuity based on the number of different HLA alleles that bind to the epitopes, and immunogenicity. ZIKV Envelope protein domain III (EDIII) was added to the vaccine construct, creating a hybrid protein domain-multiepitope vaccine. Three high scoring continuous and two discontinuous B cell epitopes were found in EDIII. Aiming to increase the candidate vaccine antigenicity even further, we tested secondary and tertiary structures and physicochemical parameters of the vaccine conjugated to four different protein adjuvants: flagellin, 50S ribosomal protein L7/L12, heparin-binding hemagglutinin, or RS09 synthetic peptide. The addition of the flagellin adjuvant increased the vaccine's predicted antigenicity. In silico predictions revealed that the protein is a probable antigen, non-allergenic and predicted to be stable. The vaccine’s average population coverage is estimated to be 87.86%, which indicates it can be administered worldwide. Peripheral Blood Mononuclear Cells (PBMC) of individuals with previous ZIKV infection were tested for cytokine production in response to the pool of CD4 and CD8 ZIKV peptide selected. CD4 + and CD8 + T cells showed significant production of IFN-γ upon stimulation and IL-2 production was also detected by CD8 + T cells, which indicated the potential of our peptides to be recognized by specific T cells and induce immune response. In conclusion, we developed an in silico universal vaccine predicted to induce broad and high-coverage cellular and humoral immune responses against ZIKV, which can be a good candidate for posterior in vivo validation.
Collapse
Affiliation(s)
- Ana Clara Barbosa Antonelli
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Rua 235 s/n, sala 335, Setor Universitário, Goiânia, GO, 74605-050, Brazil
| | - Vinnycius Pereira Almeida
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Rua 235 s/n, sala 335, Setor Universitário, Goiânia, GO, 74605-050, Brazil
| | - Fernanda Oliveira Feitosa de Castro
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Rua 235 s/n, sala 335, Setor Universitário, Goiânia, GO, 74605-050, Brazil.,Departament of Master in Environmental Sciences and Health, School of Medical, Pharmaceutical and Biomedical Sciences, Pontifical Catholic University of Goiás, Goiânia, Brazil
| | | | - Irmtraut Araci Hoffmann Pfrimer
- Departament of Master in Environmental Sciences and Health, School of Medical, Pharmaceutical and Biomedical Sciences, Pontifical Catholic University of Goiás, Goiânia, Brazil
| | - Edecio Cunha-Neto
- Heart Institute (InCor), School of Medicine, University of São Paulo, São Paulo, Brazil.,Institute for Investigation in Immunology (iii) - National Institute of Science and Technology (INCT), São Paulo, Brazil
| | - Andréa Queiroz Maranhão
- Department of Cell Biology, University of Brasília, Brasília, Brazil.,Institute for Investigation in Immunology (iii) - National Institute of Science and Technology (INCT), São Paulo, Brazil
| | - Marcelo Macedo Brígido
- Department of Cell Biology, University of Brasília, Brasília, Brazil.,Institute for Investigation in Immunology (iii) - National Institute of Science and Technology (INCT), São Paulo, Brazil
| | | | | | - Simone Gonçalves Fonseca
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Rua 235 s/n, sala 335, Setor Universitário, Goiânia, GO, 74605-050, Brazil. .,Institute for Investigation in Immunology (iii) - National Institute of Science and Technology (INCT), São Paulo, Brazil.
| |
Collapse
|
9
|
Analysis of B cell receptor repertoires reveals key signatures of systemic B cell response after SARS-CoV-2 infection. J Virol 2021; 96:e0160021. [PMID: 34878902 PMCID: PMC8865482 DOI: 10.1128/jvi.01600-21] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
A comprehensive study of the B cell response against SARS-CoV-2 could be significant for understanding the immune response and developing therapeutical antibodies and vaccines. To define the dynamics and characteristics of the antibody repertoire following SARS-CoV-2 infection, we analyzed the mRNA transcripts of immunoglobulin heavy chain (IgH) repertoires of 24 peripheral blood samples collected between 3 and 111 days after symptom onset from 10 COVID-19 patients. Massive clonal expansion of naive B cells with limited somatic hypermutation (SHM) was observed in the second week after symptom onset. The proportion of low-SHM IgG clones strongly correlated with spike-specific IgG antibody titers, highlighting the significant activation of naive B cells in response to a novel virus infection. The antibody isotype switching landscape showed a transient IgA surge in the first week after symptom onset, followed by a sustained IgG elevation that lasted for at least 3 months. SARS-CoV-2 infection elicited poly-germ line reactive antibody responses. Interestingly, 17 different IGHV germ line genes recombined with IGHJ6 showed significant clonal expansion. By comparing the IgH repertoires that we sequenced with the 774 reported SARS-CoV-2–reactive monoclonal antibodies (MAbs), 13 shared spike-specific IgH clusters were found. These shared spike-specific IgH clusters are derived from the same lineage of several recently published neutralizing MAbs, including CC12.1, CC12.3, C102, REGN10977, and 4A8. Furthermore, identical spike-specific IgH sequences were found in different COVID-19 patients, suggesting a highly convergent antibody response to SARS-CoV-2. Our analysis based on sequencing antibody repertoires from different individuals revealed key signatures of the systemic B cell response induced by SARS-CoV-2 infection. IMPORTANCE Although the canonical delineation of serum antibody responses following SARS-CoV-2 infection has been well established, the dynamics of antibody repertoire at the mRNA transcriptional level has not been well understood, especially the correlation between serum antibody titers and the antibody mRNA transcripts. In this study, we analyzed the IgH transcripts and characterized the B cell clonal expansion and differentiation, isotype switching, and somatic hypermutation in COVID-19 patients. This study provided insights at the repertoire level for the B cell response after SARS-CoV-2 infection.
Collapse
|
10
|
Roth KDR, Wenzel EV, Ruschig M, Steinke S, Langreder N, Heine PA, Schneider KT, Ballmann R, Fühner V, Kuhn P, Schirrmann T, Frenzel A, Dübel S, Schubert M, Moreira GMSG, Bertoglio F, Russo G, Hust M. Developing Recombinant Antibodies by Phage Display Against Infectious Diseases and Toxins for Diagnostics and Therapy. Front Cell Infect Microbiol 2021; 11:697876. [PMID: 34307196 PMCID: PMC8294040 DOI: 10.3389/fcimb.2021.697876] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/21/2021] [Indexed: 12/30/2022] Open
Abstract
Antibodies are essential molecules for diagnosis and treatment of diseases caused by pathogens and their toxins. Antibodies were integrated in our medical repertoire against infectious diseases more than hundred years ago by using animal sera to treat tetanus and diphtheria. In these days, most developed therapeutic antibodies target cancer or autoimmune diseases. The COVID-19 pandemic was a reminder about the importance of antibodies for therapy against infectious diseases. While monoclonal antibodies could be generated by hybridoma technology since the 70ies of the former century, nowadays antibody phage display, among other display technologies, is robustly established to discover new human monoclonal antibodies. Phage display is an in vitro technology which confers the potential for generating antibodies from universal libraries against any conceivable molecule of sufficient size and omits the limitations of the immune systems. If convalescent patients or immunized/infected animals are available, it is possible to construct immune phage display libraries to select in vivo affinity-matured antibodies. A further advantage is the availability of the DNA sequence encoding the phage displayed antibody fragment, which is packaged in the phage particles. Therefore, the selected antibody fragments can be rapidly further engineered in any needed antibody format according to the requirements of the final application. In this review, we present an overview of phage display derived recombinant antibodies against bacterial, viral and eukaryotic pathogens, as well as microbial toxins, intended for diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Kristian Daniel Ralph Roth
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Esther Veronika Wenzel
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany.,Abcalis GmbH, Braunschweig, Germany
| | - Maximilian Ruschig
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Stephan Steinke
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Nora Langreder
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Philip Alexander Heine
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Kai-Thomas Schneider
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Rico Ballmann
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Viola Fühner
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | | | | | | | - Stefan Dübel
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany.,Abcalis GmbH, Braunschweig, Germany.,YUMAB GmbH, Braunschweig, Germany
| | - Maren Schubert
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | | | - Federico Bertoglio
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Giulio Russo
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany.,Abcalis GmbH, Braunschweig, Germany
| | - Michael Hust
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany.,YUMAB GmbH, Braunschweig, Germany
| |
Collapse
|
11
|
Hu T, Wu Z, Wu S, Chen S, Cheng A. The key amino acids of E protein involved in early flavivirus infection: viral entry. Virol J 2021; 18:136. [PMID: 34217298 PMCID: PMC8254458 DOI: 10.1186/s12985-021-01611-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/29/2021] [Indexed: 02/11/2023] Open
Abstract
Flaviviruses are enveloped viruses that infect multiple hosts. Envelope proteins are the outermost proteins in the structure of flaviviruses and mediate viral infection. Studies indicate that flaviviruses mainly use envelope proteins to bind to cell attachment receptors and endocytic receptors for the entry step. Here, we present current findings regarding key envelope protein amino acids that participate in the flavivirus early infection process. Among these sites, most are located in special positions of the protein structure, such as the α-helix in the stem region and the hinge region between domains I and II, motifs that potentially affect the interaction between different domains. Some of these sites are located in positions involved in conformational changes in envelope proteins. In summary, we summarize and discuss the key envelope protein residues that affect the entry process of flaviviruses, including the process of their discovery and the mechanisms that affect early infection.
Collapse
Affiliation(s)
- Tao Hu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan, China
| | - Zhen Wu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan, China
| | - Shaoxiong Wu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan, China
| | - Shun Chen
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan, China. .,Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan, China. .,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu, 611130, Sichuan, China.
| | - Anchun Cheng
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan, China. .,Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan, China. .,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
12
|
Zhu X, Yu F, Wu Y, Ying T. Potent germline-like monoclonal antibodies: rapid identification of promising candidates for antibody-based antiviral therapy. Antib Ther 2021; 4:89-98. [PMID: 34104872 PMCID: PMC8178282 DOI: 10.1093/abt/tbab008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/30/2021] [Accepted: 05/14/2021] [Indexed: 11/20/2022] Open
Abstract
In recent years, fully human monoclonal antibodies (mAbs) are making up an increasing share of the pharmaceutical market. However, to improve affinity and efficacy of antibodies, many somatic hypermutations could be introduced during affinity maturation, which cause several issues including safety and efficacy and limit their application in clinic. Here, we propose a special class of human mAbs with limited level of somatic mutations, referred to as germline-like mAbs. Remarkably, germline-like mAbs could have high affinity and potent neutralizing activity in vitro and in various animal models, despite lacking of extensive affinity maturation. Furthermore, the germline nature of these mAbs implies that they exhibit lower immunogenicity and can be elicited relatively fast in vivo compared with highly somatically mutated antibodies. In this review, we summarize germline-like mAbs with strong therapeutic and protection activity against various viruses that caused large-scale outbreaks in the last decade, including influenza virus H7N9, Zika virus, Dengue virus, Middle East respiratory syndrome coronavirus and severe acute respiratory syndrome coronavirus 2. We also illustrate underlying molecular mechanisms of these germline-like antibodies against viral infections from the structural and genetic perspective, thus providing insight into further development as therapeutic agents for the treatment of infectious diseases and implication for rational design of effective vaccines.
Collapse
Affiliation(s)
- Xiaoyi Zhu
- MOE/NHC Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Fei Yu
- College of Life Sciences, Hebei Agricultural University, Baoding 071001, China
| | - Yanling Wu
- MOE/NHC Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Tianlei Ying
- MOE/NHC Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| |
Collapse
|
13
|
Kim SI, Kim S, Shim JM, Lee HJ, Chang SY, Park S, Min JY, Park WB, Oh MD, Kim S, Chung J. Neutralization of Zika virus by E protein domain III-Specific human monoclonal antibody. Biochem Biophys Res Commun 2021; 545:33-39. [PMID: 33535104 DOI: 10.1016/j.bbrc.2021.01.075] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 01/20/2021] [Indexed: 10/22/2022]
Abstract
Zika virus (ZIKV) infection in both infants and adults is associated with neurological complications including, but not limited to, microcephaly and Guillain-Barre syndrome. Antibody therapy can be effective against virus infection. We isolated ZIKV envelope domain III-specific neutralizing antibodies (nAbs) from two convalescent patients with ZIKV infection. One antibody, 2F-8, exhibited potent in vitro neutralizing activity against Asian and American strains of ZIKV. To prevent FcγR-mediated antibody-dependent enhancement, we prepared IgG1 with LALA variation. A single dose of 2F-8 in the context of IgG1 or IgG1-LALA prior to or post lethal ZIKV challenge conferred complete protection in mice.
Collapse
Affiliation(s)
- Sang Il Kim
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea; Cancer Research Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
| | - Sujeong Kim
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea; Department of Biomedical Science, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
| | - Jung Min Shim
- Zoonotic Virus Laboratory, Institut Pasteur Korea, Gyeonggi-do, 13488, Republic of Korea
| | - Hyo Jung Lee
- Zoonotic Virus Laboratory, Institut Pasteur Korea, Gyeonggi-do, 13488, Republic of Korea.
| | - So Young Chang
- Respiratory Virus Laboratory, Institut Pasteur Korea, Gyeonggi-do, 13488, Republic of Korea.
| | - Seoryeong Park
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea; Cancer Research Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
| | - Ji-Young Min
- Respiratory Virus Laboratory, Institut Pasteur Korea, Gyeonggi-do, 13488, Republic of Korea.
| | - Wan Beom Park
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
| | - Myoung-Don Oh
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
| | - Seungtaek Kim
- Zoonotic Virus Laboratory, Institut Pasteur Korea, Gyeonggi-do, 13488, Republic of Korea.
| | - Junho Chung
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea; Cancer Research Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea; Department of Biomedical Science, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
| |
Collapse
|
14
|
Yang R, Liu Q, Pang W, Gao F, Liang H, Zhang W, Lin Y, Li M, Liu Z, Gao GF, Zhang L, Xiao H, Zheng Y, Huang Z, Jin X. Two immunogenic recombinant protein vaccine candidates showed disparate protective efficacy against Zika virus infection in rhesus macaques. Vaccine 2021; 39:915-925. [PMID: 33451779 DOI: 10.1016/j.vaccine.2020.12.077] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 12/22/2020] [Accepted: 12/28/2020] [Indexed: 12/27/2022]
Abstract
Zika virus (ZIKV) infection has caused major public health problems recently. To develop subunit vaccines for ZIKV, we have previously constructed recombinant ZIKV envelope protein domain III (EDIII), and the entire ectodomain (E80, which comprises EDI, EDII and EDIII), as vaccine candidates and showed both of them being immunogenic and protective in murine models. In this follow-up study, we compared these vaccine candidates in non-human primates. Both of them elicited neutralizing antibody responses, but only E80 immunization inhibited ZIKV infection in both peripheral blood and monkey tissues, whereas EDIII increased blood ZIKV RNA through possibly antibody-dependent enhancement. Further investigations revealed that the virion-binding antibody response in E80 immunized monkeys persisted longer and stronger than in EDIII immunized monkeys. These results demonstrate that E80 is superior to EDIII as a vaccine candidate, and that the magnitude, quality and durability of virion-binding neutralizing antibodies are correlates of protection.
Collapse
Affiliation(s)
- Ruoheng Yang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China; Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Qingwei Liu
- Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Wei Pang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Fei Gao
- Comprehensive AIDS Research Center, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Huabin Liang
- Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Wei Zhang
- Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Yalong Lin
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Min Li
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China; Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Zhihua Liu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China; Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - George F Gao
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Linqi Zhang
- Comprehensive AIDS Research Center, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Hui Xiao
- Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Yongtang Zheng
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Zhong Huang
- Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China.
| | - Xia Jin
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China.
| |
Collapse
|
15
|
Silva IBB, da Silva AS, Cunha MS, Cabral AD, de Oliveira KCA, Gaspari ED, Prudencio CR. Zika virus serological diagnosis: commercial tests and monoclonal antibodies as tools. J Venom Anim Toxins Incl Trop Dis 2020; 26:e20200019. [PMID: 33281886 PMCID: PMC7685096 DOI: 10.1590/1678-9199-jvatitd-2020-0019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Zika virus (ZIKV), an emerging arthropod-borne virus (arbovirus) of the Flaviviridae family, is a current issue worldwide, particularly because of the congenital and neurological syndromes associated with infection by this virus. As the initial clinical symptoms of all diseases caused by this group are very similar, clinical diagnosis is difficult. Furthermore, laboratory diagnostic efforts have failed to identify specific and accurate tests for each virus of the Flaviviridae family due to the cross-reactivity of these viruses in serum samples. This situation has resulted in underreporting of the diseases caused by flaviviruses. However, many companies developed commercial diagnostic tests after the recent ZIKV outbreak. Moreover, health regulatory agencies have approved different commercial tests to extend the monitoring of ZIKV infections. Considering that a specific and sensitive diagnostic method for estimating risk and evaluating ZIKV propagation is still needed, this review aims to provide an update of the main commercially approved serological diagnostics test by the US Food and Drug Administration (FDA) and Brazilian National Health Surveillance Agency (ANVISA). Additionally, we present the technologies used for monoclonal antibody production as a tool for the development of diagnostic tests and applications of these antibodies in detecting ZIKV infections worldwide.
Collapse
Affiliation(s)
- Isaura Beatriz Borges Silva
- Center of Immunology, Adolfo Lutz Institute, São Paulo, SP, Brazil.,Interunits Graduate Program in Biotechnology, University of São Paulo (USP), São Paulo, SP, Brazil
| | | | | | | | | | - Elizabeth De Gaspari
- Center of Immunology, Adolfo Lutz Institute, São Paulo, SP, Brazil.,Interunits Graduate Program in Biotechnology, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Carlos Roberto Prudencio
- Center of Immunology, Adolfo Lutz Institute, São Paulo, SP, Brazil.,Interunits Graduate Program in Biotechnology, University of São Paulo (USP), São Paulo, SP, Brazil
| |
Collapse
|
16
|
Immunogenicity and Efficacy of Zika Virus Envelope Domain III in DNA, Protein, and ChAdOx1 Adenoviral-Vectored Vaccines. Vaccines (Basel) 2020; 8:vaccines8020307. [PMID: 32560145 PMCID: PMC7350260 DOI: 10.3390/vaccines8020307] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/09/2020] [Accepted: 06/11/2020] [Indexed: 12/14/2022] Open
Abstract
The flavivirus envelope protein domain III (EDIII) was an effective immunogen against dengue virus (DENV) and other related flaviviruses. Whether this can be applied to the Zika virus (ZIKV) vaccinology remains an open question. Here, we tested the efficacy of ZIKV-EDIII against ZIKV infection, using several vaccine platforms that present the antigen in various ways. We provide data demonstrating that mice vaccinated with a ZIKV-EDIII as DNA or protein-based vaccines failed to raise fully neutralizing antibodies and did not control viremia, following a ZIKV challenge, despite eliciting robust antibody responses. Furthermore, we showed that ZIKV-EDIII encoded in replication-deficient Chimpanzee adenovirus (ChAdOx1-EDIII) elicited anti-ZIKV envelope antibodies in vaccinated mice but also provided limited protection against ZIKV in two physiologically different mouse challenge models. Taken together, our data indicate that contrary to what was shown for other flaviviruses like the dengue virus, which has close similarities with ZIKV-EDIII, this antigen might not be a suitable vaccine candidate for the correct induction of protective immune responses against ZIKV.
Collapse
|
17
|
Isolation of Monoclonal Antibodies from Zika Virus-Infected Patient Samples. Methods Mol Biol 2020; 2142:261-288. [PMID: 32367373 PMCID: PMC7197385 DOI: 10.1007/978-1-0716-0581-3_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The combination of sorting antigen-specific memory B cells with determining immunoglobulin (Ig) genes at the single-cell level enables the isolation of monoclonal antibodies (mAbs) in individuals. This method requires a small amount of blood (usually 10 mL) and is rapid (less than 2 weeks to isolate antigen-specific mAbs). Due to the application of antigens as the bait to capture the specific memory B cells, the majority of isolated mAbs are true binders to the antigen, which increases the isolation efficiency. Here, applying this approach, we describe the characterization of mAbs against Zika virus from a convalescent patient sample. From 10 mL whole blood, we sorted 33 Zika envelope (E) protein-interacting single memory B cells. The Ig genes from 15 cells were determined, and 13 mAbs were found that bind to Zika E protein with varied binding affinities.
Collapse
|
18
|
Wang L, Wang R, Wang L, Ben H, Yu L, Gao F, Shi X, Yin C, Zhang F, Xiang Y, Zhang L. Structural Basis for Neutralization and Protection by a Zika Virus-Specific Human Antibody. Cell Rep 2020; 26:3360-3368.e5. [PMID: 30893607 DOI: 10.1016/j.celrep.2019.02.062] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 11/22/2018] [Accepted: 02/13/2019] [Indexed: 12/26/2022] Open
Abstract
We previously reported a human monoclonal antibody, ZK2B10, capable of protection against Zika virus (ZIKV) infection and microcephaly in developing mouse embryos. Here, we report the structural features and mechanism of action of ZK2B10. The crystal structure at a resolution of 2.32 Å revealed that the epitope is located on the lateral ridge of DIII of the envelope glycoprotein. Cryo-EM structure with mature ZIKV showed that the antibody binds to DIIIs around the icosahedral 2-fold, 3-fold, and 5-fold axes, a distinct feature compared to those reported for DIII-specific antibodies. The binding of ZK2B10 to ZIKV has no detectable effect on viral attachment to target cells or on conformational changes of the E glycoprotein in the acidic environment, suggesting that ZK2B10 functions at steps between the formation of the fusion intermediate and membrane fusion. These results provide structural and mechanistic insights into how ZK2B10 mediates protection against ZIKV infection.
Collapse
Affiliation(s)
- Lin Wang
- Beijing Advanced Innovation Center for Structural Biology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Center for Global Health and Infectious Diseases, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Ruoke Wang
- Comprehensive AIDS Research Center, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Advanced Innovation Center for Structural Biology, Center for Global Health and Infectious Diseases, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Lei Wang
- Beijing Advanced Innovation Center for Structural Biology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Center for Global Health and Infectious Diseases, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Haijing Ben
- Comprehensive AIDS Research Center, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Advanced Innovation Center for Structural Biology, Center for Global Health and Infectious Diseases, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Lei Yu
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou 510060, China
| | - Fei Gao
- Comprehensive AIDS Research Center, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Advanced Innovation Center for Structural Biology, Center for Global Health and Infectious Diseases, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Xuanling Shi
- Comprehensive AIDS Research Center, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Advanced Innovation Center for Structural Biology, Center for Global Health and Infectious Diseases, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Chibiao Yin
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou 510060, China
| | - Fuchun Zhang
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou 510060, China
| | - Ye Xiang
- Beijing Advanced Innovation Center for Structural Biology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Center for Global Health and Infectious Diseases, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China.
| | - Linqi Zhang
- Comprehensive AIDS Research Center, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Advanced Innovation Center for Structural Biology, Center for Global Health and Infectious Diseases, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
19
|
Recent advances in "universal" influenza virus antibodies: the rise of a hidden trimeric interface in hemagglutinin globular head. Front Med 2020; 14:149-159. [PMID: 32239416 PMCID: PMC7110985 DOI: 10.1007/s11684-020-0764-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 03/04/2020] [Indexed: 01/05/2023]
Abstract
Influenza causes seasonal outbreaks yearly and unpredictable pandemics with high morbidity and mortality rates. Despite significant efforts to address influenza, it remains a major threat to human public health. This issue is partially due to the lack of antiviral drugs with potent antiviral activity and broad reactivity against all influenza virus strains and the rapid emergence of drug-resistant variants. Moreover, designing a universal influenza vaccine that is sufficiently immunogenic to induce universal antibodies is difficult. Some novel epitopes hidden in the hemagglutinin (HA) trimeric interface have been discovered recently, and a number of antibodies targeting these epitopes have been found to be capable of neutralizing a broad range of influenza isolates. These findings may have important implications for the development of universal influenza vaccines and antiviral drugs. In this review, we focused on the antibodies targeting these newly discovered epitopes in the HA domain of the influenza virus to promote the development of universal anti-influenza antibodies or vaccines and extend the discovery to other viruses with similar conformational changes in envelope proteins.
Collapse
|
20
|
Thammasonthijarern N, Puangmanee W, Sriburin P, Injampa S, Chatchen S, Phumirattanaprapin W, Pipattanaboon C, Ramasoota P, Pitaksajjakul P. Human Heavy Chain Antibody Genes Elicited in Thai Dengue Patients during DENV2 Secondary Infection. Jpn J Infect Dis 2020; 73:140-147. [PMID: 31787738 DOI: 10.7883/yoken.jjid.2019.235] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Dengue is one of the most serious mosquito-borne viral diseases occurring in humans. To combat the complexity of 4 antigenically distinct serotypes, the ideal vaccine for dengue should be able to stimulate cross-neutralizing antibodies. Recently, genetics-based immune responses have been studied to guide vaccine design against several viral pathogens. Despite a recent approval of dengue vaccine, information on genetics-based immune responses against dengue virus (DENV) is still limited. Consequently, we aimed to determine the profiles of immunoglobulin heavy chain genes from DENV2 infected patients. The immunoglobulin heavy chain variable region genes (IGHV) were amplified from peripheral blood mononuclear cells of DENV2 secondary infected patients in the acute, convalescence, and recovery phases. Antibody heavy chain genes were sequenced using next-generation sequencing, and analyzed to identify correlations with neutralizing and enhancing activities of the serum samples. IGHV1-69, 3-23, and 3-30 were frequently discovered in our Thai DENV2 infected patients. Our findings provide new data on the human B cell response during secondary DENV2 infections in Thai dengue patients that offer supportive information for dengue vaccine design and therapeutics development.
Collapse
Affiliation(s)
- Nipa Thammasonthijarern
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University
| | - Wilarat Puangmanee
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University
| | - Pimolpachr Sriburin
- Department of Tropical Pediatrics, Faculty of Tropical Medicine, Mahidol University
| | - Subenya Injampa
- Faculty of Medicine, King Mongkut's Institute of Technology Ladkrabang
| | - Supawat Chatchen
- Department of Tropical Pediatrics, Faculty of Tropical Medicine, Mahidol University
| | | | | | - Pongrama Ramasoota
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University.,Center of Excellence for Antibody Research, Faculty of Tropical Medicine, Mahidol University
| | - Pannamthip Pitaksajjakul
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University.,Center of Excellence for Antibody Research, Faculty of Tropical Medicine, Mahidol University
| |
Collapse
|
21
|
Nascimento EJM, Bonaparte MI, Luo P, Vincent TS, Hu B, George JK, Áñez G, Noriega F, Zheng L, Huleatt JW. Use of a Blockade-of-Binding ELISA and Microneutralization Assay to Evaluate Zika Virus Serostatus in Dengue-Endemic Areas. Am J Trop Med Hyg 2020; 101:708-715. [PMID: 31392955 PMCID: PMC6726926 DOI: 10.4269/ajtmh.19-0270] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Zika virus (ZIKV) serological diagnostics are compromised in areas where dengue viruses (DENV) co-circulate because of their high levels of protein sequence homology. Here, we describe the characterization of a Zika blockade-of-binding ELISA (Zika BOB) and a Zika microneutralization assay (Zika MN) for the detection of ZIKV nonstructural protein 1 (NS1)–specific antibodies and ZIKV neutralizing antibodies, respectively. Zika BOB and Zika MN cutoffs were established as 10 and 100 endpoint titers, respectively, using samples collected pre- and post-virologically confirmed ZIKV infection from subjects living in DENV-endemic areas. Specificity of the assays was equally high, whereas sensitivity of Zika BOB was lower than that of Zika MN, especially in samples collected > 6 months post-infection. Immunosurveillance analysis, using combined results from both Zika BOB and Zika MN, carried out also in DENV-endemic regions in Colombia, Honduras, Mexico, and Puerto Rico before (2013–2014) and after (2017–2018) ZIKV introduction in the Americas suggests unapparent ZIKV seroprevalence rates ranged from 25% to 80% over the specified period of time in the regions investigated.
Collapse
Affiliation(s)
| | | | - Ping Luo
- Global Clinical Immunology, Sanofi Pasteur, Swiftwater, Pennsylvania
| | - Timothy S Vincent
- Global Clinical Immunology, Sanofi Pasteur, Swiftwater, Pennsylvania
| | - Branda Hu
- Global Clinical Immunology, Sanofi Pasteur, Swiftwater, Pennsylvania
| | - James K George
- Global Clinical Immunology, Sanofi Pasteur, Swiftwater, Pennsylvania
| | - Germán Áñez
- Global Clinical Sciences, Sanofi Pasteur, Swiftwater, Pennsylvania
| | - Fernando Noriega
- Global Clinical Sciences, Sanofi Pasteur, Swiftwater, Pennsylvania
| | - Lingyi Zheng
- Global Clinical Immunology, Sanofi Pasteur, Swiftwater, Pennsylvania
| | - James W Huleatt
- Global Clinical Immunology, Sanofi Pasteur, Swiftwater, Pennsylvania
| |
Collapse
|
22
|
Niu X, Yan Q, Yao Z, Zhang F, Qu L, Wang C, Wang C, Lei H, Chen C, Liang R, Luo J, Wang Q, Zhao L, Zhang Y, Luo K, Wang L, Wu H, Liu T, Li P, Zheng Z, Tan YJ, Feng L, Zhang Z, Han J, Zhang F, Chen L. Longitudinal analysis of the antibody repertoire of a Zika virus-infected patient revealed dynamic changes in antibody response. Emerg Microbes Infect 2020; 9:111-123. [PMID: 31906823 PMCID: PMC6968589 DOI: 10.1080/22221751.2019.1701953] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The Zika virus (ZIKV) is a mosquito-borne flavivirus that causes neonatal abnormalities and other disorders. Antibodies to the ZIKV envelope (E) protein can block infection. In this study, next-generation sequencing (NGS) of immunoglobulin heavy chain (IgH) mRNA transcripts was combined with single-cell PCR cloning of E-binding monoclonal antibodies for analysing antibody response in a patient from the early stages of infection to more than one year after the clearance of the virus. The patient's IgH repertoire 14 and 64 days after symptom onset showed dramatic dominant clonal expansion but low clonal diversity. IgH repertoire 6 months after disease-free status had few dominant clones but increased diversity. E-binding antibodies appeared abundantly in the repertoire during the early stages of infection but quickly declined after clearance of the virus. Certain VH genes such as VH5-10-1 and VH4-39 appeared to be preferentially enlisted for a rapid antibody response to ZIKV infection. Most of these antibodies require relatively few somatic hypermutations to acquire the ability to bind to the E protein, pointing to a possible mechanism for rapid defence against ZIKV infection. This study provides a unique and holistic view of the dynamic changes and characteristics of the antibody response to ZIKV infection.
Collapse
Affiliation(s)
- Xuefeng Niu
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Qihong Yan
- Guangdong Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, People's Republic of China.,University of Chinese Academy of Science, Beijing, People's Republic of China
| | - Zhipeng Yao
- Guangdong Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, People's Republic of China.,Institute of Physical Science and Information Technology, Anhui University, Hefei, People's Republic of China
| | - Fan Zhang
- Guangdong Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, People's Republic of China.,Institute of Physical Science and Information Technology, Anhui University, Hefei, People's Republic of China
| | - Linbing Qu
- Guangdong Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, People's Republic of China
| | - Chunlin Wang
- HudsonAlpha Institute of Biotechnology, Huntsville, AL, USA
| | - Chengrui Wang
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Hui Lei
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Chaoming Chen
- Guangdong Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, People's Republic of China
| | - Renshan Liang
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Jia Luo
- Guangdong Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, People's Republic of China
| | - Qian Wang
- Guangdong Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, People's Republic of China.,University of Chinese Academy of Science, Beijing, People's Republic of China
| | - Lingzhai Zhao
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Yudi Zhang
- Guangdong Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, People's Republic of China.,University of Chinese Academy of Science, Beijing, People's Republic of China
| | - Kun Luo
- Guangdong Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, People's Republic of China.,University of Chinese Academy of Science, Beijing, People's Republic of China
| | - Longyu Wang
- Guangdong Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, People's Republic of China.,Institute of Physical Science and Information Technology, Anhui University, Hefei, People's Republic of China
| | - Hongkai Wu
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Tingting Liu
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Pingchao Li
- Guangdong Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, People's Republic of China
| | - Zhiqiang Zheng
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University Health System (NUHS), National University of Singapore, Singapore, Singapore
| | - Yee Joo Tan
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University Health System (NUHS), National University of Singapore, Singapore, Singapore
| | - Liqiang Feng
- Guangdong Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, People's Republic of China
| | - Zhenhai Zhang
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Jian Han
- HudsonAlpha Institute of Biotechnology, Huntsville, AL, USA
| | - Fuchun Zhang
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Ling Chen
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China.,Guangdong Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, People's Republic of China
| |
Collapse
|
23
|
Kreer C, Gruell H, Mora T, Walczak AM, Klein F. Exploiting B Cell Receptor Analyses to Inform on HIV-1 Vaccination Strategies. Vaccines (Basel) 2020; 8:vaccines8010013. [PMID: 31906351 PMCID: PMC7157687 DOI: 10.3390/vaccines8010013] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/23/2019] [Accepted: 12/24/2019] [Indexed: 12/22/2022] Open
Abstract
The human antibody repertoire is generated by the recombination of different gene segments as well as by processes of somatic mutation. Together these mechanisms result in a tremendous diversity of antibodies that are able to combat various pathogens including viruses and bacteria, or malignant cells. In this review, we summarize the opportunities and challenges that are associated with the analyses of the B cell receptor repertoire and the antigen-specific B cell response. We will discuss how recent advances have increased our understanding of the antibody response and how repertoire analyses can be exploited to inform on vaccine strategies, particularly against HIV-1.
Collapse
Affiliation(s)
- Christoph Kreer
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; (C.K.); (H.G.)
| | - Henning Gruell
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; (C.K.); (H.G.)
- German Center for Infection Research, Partner Site Bonn-Cologne, 50931 Cologne, Germany
| | - Thierry Mora
- Laboratoire de Physique de l’École Normale Supérieure (PSL University), CNRS, Sorbonne Université, Université de Paris, 75005 Paris, France; (T.M.); (A.M.W.)
| | - Aleksandra M. Walczak
- Laboratoire de Physique de l’École Normale Supérieure (PSL University), CNRS, Sorbonne Université, Université de Paris, 75005 Paris, France; (T.M.); (A.M.W.)
| | - Florian Klein
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; (C.K.); (H.G.)
- German Center for Infection Research, Partner Site Bonn-Cologne, 50931 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
- Correspondence:
| |
Collapse
|
24
|
Gao F, Lin X, He L, Wang R, Wang H, Shi X, Zhang F, Yin C, Zhang L, Zhu J, Yu L. Development of a Potent and Protective Germline-Like Antibody Lineage Against Zika Virus in a Convalescent Human. Front Immunol 2019; 10:2424. [PMID: 31708914 PMCID: PMC6821881 DOI: 10.3389/fimmu.2019.02424] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 09/27/2019] [Indexed: 12/31/2022] Open
Abstract
Zika virus (ZIKV) specific neutralizing antibodies hold great promise for antibody-based interventions and vaccine design against ZIKV infection. However, their development in infected patients remains unclear. Here, we applied next-generation sequencing (NGS) to probe the dynamic development of a potent and protective ZIKV E DIII-specific antibody ZK2B10 isolated from a ZIKV convalescent individual. The unbiased repertoire analysis showed dramatic changes in the usage of antibody variable region germline genes. However, lineage tracing of ZK2B10 revealed limited somatic hypermutation and transient expansion during the 12 months following the onset of symptoms. The NGS-derived, germline-like ZK2B10 somatic variants neutralized ZIKV potently and protected mice from lethal challenge of ZIKV without detectable cross-reactivity with Dengue virus (DENV). Site-directed mutagenesis identified two residues within the λ chain, N31 and S91, that are essential to the functional maturation of ZK2B10. The repertoire and lineage features unveiled here will help elucidate the developmental process and protective potential of E DIII-directed antibodies against ZIKV infection.
Collapse
Affiliation(s)
- Fei Gao
- Department of Basic Medical Sciences, Comprehensive AIDS Research Center, Beijing Advanced Innovation Center for Structural Biology, School of Medicine, Tsinghua University, Beijing, China
| | - Xiaohe Lin
- Department of Integrative Structural and Computational Biology, Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States
| | - Linling He
- Department of Integrative Structural and Computational Biology, Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States
| | - Ruoke Wang
- Department of Basic Medical Sciences, Comprehensive AIDS Research Center, Beijing Advanced Innovation Center for Structural Biology, School of Medicine, Tsinghua University, Beijing, China
| | - Han Wang
- Department of Basic Medical Sciences, Comprehensive AIDS Research Center, Beijing Advanced Innovation Center for Structural Biology, School of Medicine, Tsinghua University, Beijing, China
| | - Xuanling Shi
- Department of Basic Medical Sciences, Comprehensive AIDS Research Center, Beijing Advanced Innovation Center for Structural Biology, School of Medicine, Tsinghua University, Beijing, China
| | - Fuchun Zhang
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Chibiao Yin
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Linqi Zhang
- Department of Basic Medical Sciences, Comprehensive AIDS Research Center, Beijing Advanced Innovation Center for Structural Biology, School of Medicine, Tsinghua University, Beijing, China
| | - Jiang Zhu
- Department of Integrative Structural and Computational Biology, Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States
| | - Lei Yu
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
25
|
Rational Design of Zika Virus Subunit Vaccine with Enhanced Efficacy. J Virol 2019; 93:JVI.02187-18. [PMID: 31189716 PMCID: PMC6694833 DOI: 10.1128/jvi.02187-18] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Accepted: 06/10/2019] [Indexed: 01/07/2023] Open
Abstract
Zika virus (ZIKV) infection in pregnant women can lead to fetal deaths and malformations. We have previously reported that ZIKV envelope protein domain III (EDIII) is a subunit vaccine candidate with cross-neutralization activity; however, like many other subunit vaccines, its efficacy is limited. To improve the efficacy of this subunit vaccine, we identified a nonneutralizing epitope on ZIKV EDIII surrounding residue 375, which is buried in the full-length envelope protein but becomes exposed in recombinant EDIII. We then shielded this epitope with an engineered glycan probe. Compared to the wild-type EDIII, the mutant EDIII induced significantly stronger neutralizing antibodies in three mouse strains and also demonstrated significantly improved efficacy by fully protecting mice, particularly pregnant mice and their fetuses, against high-dose lethal ZIKV challenge. Moreover, the mutant EDIII immune sera significantly enhanced the passive protective efficacy by fully protecting mice against lethal ZIKV challenge; this passive protection was positively associated with neutralizing antibody titers. We further showed that the enhanced efficacy of the mutant EDIII was due to the shielding of the immunodominant nonneutralizing epitope surrounding residue 375, which led to immune refocusing on the neutralizing epitopes. Taken together, the results of this study reveal that an intrinsic limitation of subunit vaccines is their artificially exposed immunodominant nonneutralizing epitopes, which can be overcome through glycan shielding. Additionally, the mutant ZIKV protein generated in this study is a promising subunit vaccine candidate with high efficacy in preventing ZIKV infections in mice.IMPORTANCE Viral subunit vaccines generally show low efficacy. In this study, we revealed an intrinsic limitation of subunit vaccine designs: artificially exposed surfaces of subunit vaccines contain epitopes unfavorable for vaccine efficacy. More specifically, we identified an epitope on Zika virus (ZIKV) envelope protein domain III (EDIII) that is buried in the full-length envelope protein but becomes exposed in recombinant EDIII. We further shielded this epitope with a glycan, and the resulting mutant EDIII vaccine demonstrated significantly enhanced efficacy over the wild-type EDIII vaccine in protecting animal models from ZIKV infections. Therefore, the intrinsic limitation of subunit vaccines can be overcome through shielding these artificially exposed unfavorable epitopes. The engineered EDIII vaccine generated in this study is a promising vaccine candidate that can be further developed to battle ZIKV infections.
Collapse
|
26
|
Yang C, Zeng F, Gao X, Zhao S, Li X, Liu S, Li N, Deng C, Zhang B, Gong R. Characterization of two engineered dimeric Zika virus envelope proteins as immunogens for neutralizing antibody selection and vaccine design. J Biol Chem 2019; 294:10638-10648. [PMID: 31138647 DOI: 10.1074/jbc.ra119.007443] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 05/22/2019] [Indexed: 01/07/2023] Open
Abstract
The envelope protein of Zika virus (ZIKV) exists as a dimer on the mature viral surface and is an attractive antiviral target because it mediates viral entry. However, recombinant soluble wild-type ZIKV envelope (wtZE) might preferentially exist as monomer (monZE). Recently, it has been shown that the A264C substitution could promote formation of dimeric ZIKV envelope protein (ZEA264C), requiring further characterization of purified ZEA264C for its potential applications in vaccine development. We also noted that ZEA264C, connected by disulfide bond, might be different from the noncovalent native envelope dimer on the virion surface. Because the antibody Fc fragment exists as dimer and is widely used for fusion protein construction, here we fused wtZE to human immunoglobulin G1 (IgG1) Fc fragment (ZE-Fc) for noncovalent wtZE dimerization. Using a multistep purification procedure, we separated dimeric ZEA264C and ZE-Fc, revealing that they both exhibit typical β-sheet-rich secondary structures and stabilities similar to those of monZE. The binding activities of monZE, ZEA264C, and ZE-Fc to neutralizing antibodies targeting different epitopes indicated that ZEA264C and ZE-Fc could better mimic the native dimeric status, especially in terms of the formation of tertiary and quaternary epitopes. Both ZEA264C and ZE-Fc recognize a ZIKV-sensitive cell line as does monZE, indicating that the two constructs are still functional. Furthermore, a murine immunization assay disclose that ZEA264C and ZE-Fc elicit more neutralizing antibody responses than monZE does. These results suggest that the two immunogen candidates ZEA264C and ZE-Fc have potential utility for neutralizing antibody selection and vaccine design against ZIKV.
Collapse
Affiliation(s)
- Chunpeng Yang
- From the CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China.,University of Chinese Academy of Sciences, Beijing 100049, China, and
| | - Fang Zeng
- From the CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China.,University of Chinese Academy of Sciences, Beijing 100049, China, and
| | - Xinyu Gao
- From the CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China.,University of Chinese Academy of Sciences, Beijing 100049, China, and
| | - Shaojuan Zhao
- From the CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China.,University of Chinese Academy of Sciences, Beijing 100049, China, and
| | - Xuan Li
- From the CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| | - Sheng Liu
- Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Na Li
- From the CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China.,University of Chinese Academy of Sciences, Beijing 100049, China, and
| | - Chenglin Deng
- From the CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| | - Bo Zhang
- From the CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| | - Rui Gong
- From the CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China,
| |
Collapse
|
27
|
Ravichandran S, Hahn M, Belaunzarán-Zamudio PF, Ramos-Castañeda J, Nájera-Cancino G, Caballero-Sosa S, Navarro-Fuentes KR, Ruiz-Palacios G, Golding H, Beigel JH, Khurana S. Differential human antibody repertoires following Zika infection and the implications for serodiagnostics and disease outcome. Nat Commun 2019; 10:1943. [PMID: 31028263 PMCID: PMC6486612 DOI: 10.1038/s41467-019-09914-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 04/08/2019] [Indexed: 12/21/2022] Open
Abstract
Zika virus (ZIKV) outbreak in Americas led to extensive efforts to develop vaccines and ZIKV-specific diagnostics. In the current study, we use whole genome phage display library spanning the entire ZIKV genome (ZIKV-GFPDL) for in-depth immune profiling of IgG and IgM antibody repertoires in serum and urine longitudinal samples from individuals acutely infected with ZIKV. We observe a very diverse IgM immune repertoire encompassing the entire ZIKV polyprotein on day 0 in both serum and urine. ZIKV-specific IgG antibodies increase 10-fold between day 0 and day 7 in serum, but not in urine; these are highly focused on prM/E, NS1 and NS2B. Differential antibody affinity maturation is observed against ZIKV structural E protein compared with nonstructural protein NS1. Serum antibody affinity to ZIKV-E protein inversely correlates with ZIKV disease symptoms. Our study provides insight into unlinked evolution of immune response to ZIKV infection and identified unique targets for ZIKV serodiagnostics.
Collapse
Affiliation(s)
- Supriya Ravichandran
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), FDA, Silver Spring, MD, 20993, USA
| | - Megan Hahn
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), FDA, Silver Spring, MD, 20993, USA
| | - Pablo F Belaunzarán-Zamudio
- Departamento de Infectología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, 14080, Mexico
| | | | | | - Sandra Caballero-Sosa
- Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado, Tapachula, 30740, Chiapas, Mexico
| | | | - Guillermo Ruiz-Palacios
- Comisión Coordinadora de los Institutos Nacionales de Salud y Hospitales de Alta Especialidad, Ministry of Health, Mexico City, 14080, Mexico
| | - Hana Golding
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), FDA, Silver Spring, MD, 20993, USA
| | - John H Beigel
- Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, 21701, USA
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20852, USA
| | - Surender Khurana
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), FDA, Silver Spring, MD, 20993, USA.
| |
Collapse
|
28
|
Yang C, Gong R, de Val N. Development of Neutralizing Antibodies against Zika Virus Based on Its Envelope Protein Structure. Virol Sin 2019; 34:168-174. [PMID: 31020573 PMCID: PMC6513807 DOI: 10.1007/s12250-019-00093-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 01/28/2019] [Indexed: 12/26/2022] Open
Abstract
As we know more about Zika virus (ZIKV), as well as its linkage to birth defects (microcephaly) and autoimmune neurological syndromes, we realize the importance of developing an efficient vaccine against it. Zika virus disease has affected many countries and is becoming a major public health concern. To deal with the infection of ZIKV, plenty of experiments have been done on selection of neutralizing antibodies that can target the envelope (E) protein on the surface of the virion. However, the existence of antibody-dependent enhancement (ADE) effect might limit the use of them as therapeutic candidates. In this review, we classify the neutralizing antibodies against ZIKV based on the epitopes and summarize the resolved structural information on antibody/antigen complex from X-ray crystallography and cryo-electron microscopy (cryo-EM), which might be useful for further development of potent neutralizing antibodies and vaccines toward clinical use.
Collapse
Affiliation(s)
- Chunpeng Yang
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rui Gong
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.
| | - Natalia de Val
- Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc, Frederick, MD, 21701, USA.
| |
Collapse
|
29
|
Tai W, Voronin D, Chen J, Bao W, Kessler DA, Shaz B, Jiang S, Yazdanbakhsh K, Du L. Transfusion-Transmitted Zika Virus Infection in Pregnant Mice Leads to Broad Tissue Tropism With Severe Placental Damage and Fetal Demise. Front Microbiol 2019; 10:29. [PMID: 30728813 PMCID: PMC6351479 DOI: 10.3389/fmicb.2019.00029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 01/09/2019] [Indexed: 01/10/2023] Open
Abstract
Zika virus (ZIKV) infection during pregnancy can cause significant problems, particularly congenital Zika syndrome. Nevertheless, the potential deleterious consequences and associated mechanisms of transfusion-transmitted ZIKV infection on pregnant individuals and their fetuses and babies have not been investigated. Here we examined transmissibility of ZIKV through blood transfusion in ZIKV-susceptible pregnant A129 mice. Our data showed that transfused-transmitted ZIKV at the early infection stage led to significant viremia and broad tissue tropism in the pregnant recipient mice, which were not seen in those transfused with ZIKV-positive (ZIKV+) plasma at later infection stages. Importantly, pregnant mice transfused with early-stage, but not later stages, ZIKV+ plasma also exhibited severe placental infection with vascular damage and apoptosis, fetal infection and fetal damage, accompanied by fetal and pup death. Overall, this study suggests that transfusion-related transmission of ZIKV during initial stage of infection, which harbors high plasma viral titers, can cause serious adverse complications in the pregnant recipients and their fetuses and babies.
Collapse
Affiliation(s)
- Wanbo Tai
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, United States
| | - Denis Voronin
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, United States
| | - Jiawei Chen
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, United States
| | - Weili Bao
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, United States
| | - Debra A Kessler
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, United States
| | - Beth Shaz
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, United States
| | - Shibo Jiang
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, United States.,Key Laboratory of Medical Molecular Virology of MOE/MOH, Fudan University, Shanghai, China
| | - Karina Yazdanbakhsh
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, United States
| | - Lanying Du
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, United States
| |
Collapse
|
30
|
Chen C, Liu Z, Liu L, Xiao Y, Wang J, Jin Q. Broad neutralizing activity of a human monoclonal antibody against H7N9 strains from 2013 to 2017. Emerg Microbes Infect 2018; 7:179. [PMID: 30425238 PMCID: PMC6234208 DOI: 10.1038/s41426-018-0182-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 09/29/2018] [Accepted: 10/08/2018] [Indexed: 02/08/2023]
Abstract
H7N9 influenza virus has been circulating among humans for five epidemic waves since it was first isolated in 2013 in China. The recent increase in H7N9 infections during the fifth outbreak in China has caused concerns of a possible pandemic. In this study, we describe a previously characterized human monoclonal antibody, HNIgGA6, obtained by isolating rearranged heavy-chain and light-chain genes from patients who had recovered from H7N9 infections. HNIgGA6 recognized multiple HAs and neutralized the infectivity of 11 out of the 12 H7N9 strains tested, as well as three emerging HPAI H7N9 isolates. The only resistant strain was A/Shanghai/1/2013 (H7N9-SH1), which carries the avian receptor alleles 186V and 226Q in the sialic acid-binding pocket. The mAb broadly neutralized divergent H7N9 strains from 2013 to 2017 and represents a potential alternative treatment for H7N9 interventions.
Collapse
Affiliation(s)
- Cong Chen
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zuliang Liu
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Liguo Liu
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yan Xiao
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jianmin Wang
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| | - Qi Jin
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China.
| |
Collapse
|
31
|
Qadir A, Riaz M, Saeed M, Shahzad-Ul-Hussan S. Potential targets for therapeutic intervention and structure based vaccine design against Zika virus. Eur J Med Chem 2018; 156:444-460. [PMID: 30015077 DOI: 10.1016/j.ejmech.2018.07.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 06/28/2018] [Accepted: 07/06/2018] [Indexed: 01/01/2023]
Abstract
Continuously increasing number of reports of Zika virus (ZIKV) infections and associated severe clinical manifestations, including autoimmune abnormalities and neurological disorders such as neonatal microcephaly and Guillain-Barré syndrome have created alarming situation in various countries. To date, no specific antiviral therapy or vaccine is available against ZIKV. This review provides a comprehensive insight into the potential therapeutic targets and describes viral epitopes of broadly neutralizing antibodies (bNAbs) in vaccine design perspective. Interactions between ZIKV envelope glycoprotein E and cellular receptors mediate the viral fusion and entry to the target cell. Blocking these interactions by targeting cellular receptors or viral structural proteins mediating these interactions or viral surface glycans can inhibit viral entry to the cell. Similarly, different non-structural proteins of ZIKV and un-translated regions (UTRs) of its RNA play essential roles in viral replication cycle and potentiate for therapeutic interventions. Structure based vaccine design requires identity and structural description of the epitopes of bNAbs. We have described different conserved bNAb epitopes present in the ZIKV envelope as potential targets for structure based vaccine design. This review also highlights successes, unanswered questions and future perspectives in relation to therapeutic and vaccine development against ZIKV.
Collapse
Affiliation(s)
- Amina Qadir
- Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, 54792, Pakistan
| | - Muhammad Riaz
- Department of Chemistry, University of Azad Jammu & Kashmir, Muzaffarabad, Pakistan
| | - Muhammad Saeed
- Department of Chemistry and Chemical Engineering, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, 54792, Pakistan.
| | - Syed Shahzad-Ul-Hussan
- Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, 54792, Pakistan.
| |
Collapse
|
32
|
Kudlacek ST, Premkumar L, Metz SW, Tripathy A, Bobkov AA, Payne AM, Graham S, Brackbill JA, Miley MJ, de Silva AM, Kuhlman B. Physiological temperatures reduce dimerization of dengue and Zika virus recombinant envelope proteins. J Biol Chem 2018; 293:8922-8933. [PMID: 29678884 PMCID: PMC5995514 DOI: 10.1074/jbc.ra118.002658] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/13/2018] [Indexed: 01/01/2023] Open
Abstract
The spread of dengue (DENV) and Zika virus (ZIKV) is a major public health concern. The primary target of antibodies that neutralize DENV and ZIKV is the envelope (E) glycoprotein, and there is interest in using soluble recombinant E (sRecE) proteins as subunit vaccines. However, the most potent neutralizing antibodies against DENV and ZIKV recognize epitopes on the virion surface that span two or more E proteins. Therefore, to create effective DENV and ZIKV vaccines, presentation of these quaternary epitopes may be necessary. The sRecE proteins from DENV and ZIKV crystallize as native-like dimers, but studies in solution suggest that these dimers are marginally stable. To better understand the challenges associated with creating stable sRecE dimers, we characterized the thermostability of sRecE proteins from ZIKV and three DENV serotypes, DENV2-4. All four proteins irreversibly unfolded at moderate temperatures (46-53 °C). At 23 °C and low micromolar concentrations, DENV2 and ZIKV were primarily dimeric, and DENV3-4 were primarily monomeric, whereas at 37 °C, all four proteins were predominantly monomeric. We further show that the dissociation constant for DENV2 dimerization is very temperature-sensitive, ranging from <1 μm at 25 °C to 50 μm at 41 °C, due to a large exothermic enthalpy of binding of -79 kcal/mol. We also found that quaternary epitope antibody binding to DENV2-4 and ZIKV sRecE is reduced at 37 °C. Our observation of reduced sRecE dimerization at physiological temperature highlights the need for stabilizing the dimer as part of its development as a subunit vaccine.
Collapse
Affiliation(s)
- Stephan T Kudlacek
- From the Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599
| | - Lakshmanane Premkumar
- the Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599
| | - Stefan W Metz
- the Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599
| | - Ashutosh Tripathy
- From the Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599
| | - Andrey A Bobkov
- the Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037
| | - Alexander Matthew Payne
- From the Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599
| | - Stephen Graham
- the Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599
| | - James A Brackbill
- the Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, and
| | - Michael J Miley
- the Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, and
| | - Aravinda M de Silva
- the Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599
| | - Brian Kuhlman
- From the Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599,
- the Lineburger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| |
Collapse
|
33
|
Jiang S, Du L. Advances in the research and development of therapeutic antibodies against the Zika virus. Cell Mol Immunol 2018; 16:96-97. [PMID: 29802365 DOI: 10.1038/s41423-018-0043-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 05/02/2018] [Indexed: 01/08/2023] Open
Affiliation(s)
- Shibo Jiang
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, 10065, USA.,Key Laboratory of Medical Molecular Virology, Ministries of Education and Health, Shanghai Medical College and Institute of Medical Microbiology, Fudan University, Shanghai, 200032, China
| | - Lanying Du
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, 10065, USA.
| |
Collapse
|
34
|
Rothan HA, Bidokhti MRM, Byrareddy SN. Current concerns and perspectives on Zika virus co-infection with arboviruses and HIV. J Autoimmun 2018; 89:11-20. [PMID: 29352633 DOI: 10.1016/j.jaut.2018.01.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 12/30/2017] [Accepted: 01/08/2018] [Indexed: 12/21/2022]
Abstract
Dissemination of vector-borne viruses, such as Zika virus (ZIKV), in tropical and sub-tropical regions has a complicated impact on the immunopathogenesis of other endemic viruses such as dengue virus (DENV), chikungunya virus (CHIKV) and human immunodeficiency virus (HIV). The consequences of the possible co-infections with these viruses have specifically shown significant impact on the treatment and vaccination strategies. ZIKV is a mosquito-borne flavivirus from African and Asian lineages that causes neurological complications in infected humans. Many of DENV and CHIKV endemic regions have been experiencing outbreaks of ZIKV infection. Intriguingly, the mosquitoes, Aedes Aegypti and Aedes Albopictus, can simultaneously transmit all the combinations of ZIKV, DENV, and CHIKV to the humans. The co-circulation of these viruses leads to a complicated immune response due to the pre-existence or co-existence of ZIKV infection with DENV and CHIKV infections. The non-vector transmission of ZIKV, especially, via sexual intercourse and placenta represents an additional burden that may hander the treatment strategies of other sexually transmitted diseases such as HIV. Collectively, ZIKV co-circulation and co-infection with other viruses have inevitable impact on the host immune response, diagnosis techniques, and vaccine development strategies for the control of these co-infections.
Collapse
Affiliation(s)
- Hussin A Rothan
- Department of Human Biology, International Medical University, Bukit Jalil, 57000 Kuala Lumpur, Malaysia.
| | - Mehdi R M Bidokhti
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Centre (UNMC), Omaha, NE 68198-5800, USA.
| | - Siddappa N Byrareddy
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Centre (UNMC), Omaha, NE 68198-5800, USA.
| |
Collapse
|