1
|
Therdyothin A, Phiphopthatsanee N, Isanejad M. The Effect of Omega-3 Fatty Acids on Sarcopenia: Mechanism of Action and Potential Efficacy. Mar Drugs 2023; 21:399. [PMID: 37504930 PMCID: PMC10381755 DOI: 10.3390/md21070399] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/06/2023] [Accepted: 07/11/2023] [Indexed: 07/29/2023] Open
Abstract
Sarcopenia, a progressive disease characterized by a decline in muscle strength, quality, and mass, affects aging population worldwide, leading to increased morbidity and mortality. Besides resistance exercise, various nutritional strategies, including omega-3 polyunsaturated fatty acid (n-3 PUFA) supplementation, have been sought to prevent this condition. This narrative review summarizes the current evidence on the effect and mechanism of n-3 PUFA on musculoskeletal health. Despite conflicting evidence, n-3 PUFA is suggested to benefit muscle mass and volume, with more evident effects with higher supplementation dose (>2 g/day). n-3 PUFA supplementation likely improves handgrip and quadriceps strength in the elderly. Improved muscle functions, measured by walking speed and time-up-to-go test, are also observed, especially with longer duration of supplementation (>6 months), although the changes are small and unlikely to be clinically meaningful. Lastly, n-3 PUFA supplementation may positively affect muscle protein synthesis response to anabolic stimuli, alleviating age-related anabolic resistance. Proposed mechanisms by which n-3 PUFA supplementation improves muscle health include 1. anti-inflammatory properties, 2. augmented expression of mechanistic target of rapamycin complex 1 (mTORC1) pathway, 3. decreased intracellular protein breakdown, 4. improved mitochondrial biogenesis and function, 5. enhanced amino acid transport, and 6. modulation of neuromuscular junction activity. In conclusion, n-3 PUFAs likely improve musculoskeletal health related to sarcopenia, with suggestive effect on muscle mass, strength, physical performance, and muscle protein synthesis. However, the interpretation of the findings is limited by the small number of participants, heterogeneity of supplementation regimens, and different measuring protocols.
Collapse
Affiliation(s)
- Atiporn Therdyothin
- Department of Musculoskeletal Ageing and Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, UK
- Department of Orthopedics, Police General Hospital, Bangkok 10330, Thailand
| | | | - Masoud Isanejad
- Department of Musculoskeletal Ageing and Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, UK
| |
Collapse
|
2
|
Potential Therapeutic Strategies for Skeletal Muscle Atrophy. Antioxidants (Basel) 2022; 12:antiox12010044. [PMID: 36670909 PMCID: PMC9854691 DOI: 10.3390/antiox12010044] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/13/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
The maintenance of muscle homeostasis is vital for life and health. Skeletal muscle atrophy not only seriously reduces people's quality of life and increases morbidity and mortality, but also causes a huge socioeconomic burden. To date, no effective treatment has been developed for skeletal muscle atrophy owing to an incomplete understanding of its molecular mechanisms. Exercise therapy is the most effective treatment for skeletal muscle atrophy. Unfortunately, it is not suitable for all patients, such as fractured patients and bedridden patients with nerve damage. Therefore, understanding the molecular mechanism of skeletal muscle atrophy is crucial for developing new therapies for skeletal muscle atrophy. In this review, PubMed was systematically screened for articles that appeared in the past 5 years about potential therapeutic strategies for skeletal muscle atrophy. Herein, we summarize the roles of inflammation, oxidative stress, ubiquitin-proteasome system, autophagic-lysosomal pathway, caspases, and calpains in skeletal muscle atrophy and systematically expound the potential drug targets and therapeutic progress against skeletal muscle atrophy. This review focuses on current treatments and strategies for skeletal muscle atrophy, including drug treatment (active substances of traditional Chinese medicine, chemical drugs, antioxidants, enzyme and enzyme inhibitors, hormone drugs, etc.), gene therapy, stem cell and exosome therapy (muscle-derived stem cells, non-myogenic stem cells, and exosomes), cytokine therapy, physical therapy (electroacupuncture, electrical stimulation, optogenetic technology, heat therapy, and low-level laser therapy), nutrition support (protein, essential amino acids, creatine, β-hydroxy-β-methylbutyrate, and vitamin D), and other therapies (biomaterial adjuvant therapy, intestinal microbial regulation, and oxygen supplementation). Considering many treatments have been developed for skeletal muscle atrophy, we propose a combination of proper treatments for individual needs, which may yield better treatment outcomes.
Collapse
|
3
|
Long Chain N3-PUFA Decreases ACE2 Protein Levels and Prevents SARS-CoV-2 Cell Entry. Int J Mol Sci 2022; 23:ijms232213825. [PMID: 36430303 PMCID: PMC9695276 DOI: 10.3390/ijms232213825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 10/28/2022] [Accepted: 11/07/2022] [Indexed: 11/12/2022] Open
Abstract
Angiotensin-converting enzyme 2 (ACE2) is a target of interest for both COVID-19 and cardiovascular disease management. Even though lower ACE2 levels may be beneficial in SARS-CoV-2 infectivity, maintaining the ACE1/ACE2 balance is also crucial for cardiovascular health. So far, reports describing conditions capable of altering ACE2 protein levels, especially via dietary components, are limited. In this study, the effects of omega-3 polyunsaturated fatty acids (n3-PUFA) on the protein levels of ACE1 and ACE2 in rodent tissues, human endothelial and kidney cell lines, and human plasma were examined. The ability of n3-PUFA to affect the entry of the SARS-CoV-2 pseudovirus into cells was also tested. Docosahexaenoic acid (DHA), and in some cases eicosapentaenoic acid (EPA), but not α-linoleic acid (ALA), reduced both ACE1 and ACE2 (non-glycosylated p100 and glycosylated p130 forms) in the heart, aorta, and kidneys of obese rats, as well as in human EA.hy926 endothelial and HEK293 kidney cells. Dietary supplementation with either DHA or ALA had no effect on plasma soluble ACE2 levels in humans. However, treatment of HEK293 cells with 80 and 125 µM DHA for 16 h inhibited the entry of the SARS-CoV-2 pseudovirus. These results strongly suggest that DHA treatment may reduce the ability of SARS-CoV-2 to infect cells via a mechanism involving a decrease in the absolute level of ACE2 protein as well as its glycosylation. Our findings warrant further evaluation of long-chain n3-PUFA supplements as a novel option for restricting SARS-CoV-2 infectivity in the general population.
Collapse
|
4
|
Abstract
The mechanistic target of rapamycin (mTOR) regulates numerous extracellular and intracellular signals involved in the maintenan-ce of cellular homeostasis and cell growth. mTOR also functions as an endogenous inhibitor of autophagy. Under nutrient-rich conditions, mTOR complex 1 (mTORC1) phosphorylates the ULK1 complex, preventing its activation and subsequent autophagosome formation, while inhibition of mTORC1 using either rapamycin or nutrient deprivation induces autophagy. Autophagy and proteasomal proteolysis provide amino acids necessary for protein translation. Although the connection between mTORC1 and autophagy is well characterized, the association of mTORC1 inhibition with proteasome biogenesis and activity has not been fully elucidated yet. Proteasomes are long-lived cellular organelles. Their spatiotemporal rather than homeostatic regulation could be another adaptive cellular mechanism to respond to starvation. Here, we reviewed several published reports and the latest research from our group to examine the connection between mTORC1 and proteasome. We have also investigated and described the effect of mTORC1 inhibition on proteasome activity using purified proteasomes. Since mTORC1 inhibitors are currently evaluated as treatments for several human diseases, a better understanding of the link between mTORC1 activity and proteasome function is of utmost importance.
Collapse
Affiliation(s)
- Seo Hyeong Park
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Won Hoon Choi
- BK21 FOUR Biomedical Science Program, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Min Jae Lee
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Korea
| |
Collapse
|
5
|
Nutrients against Glucocorticoid-Induced Muscle Atrophy. Foods 2022; 11:foods11050687. [PMID: 35267320 PMCID: PMC8909279 DOI: 10.3390/foods11050687] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/15/2022] [Accepted: 02/23/2022] [Indexed: 11/29/2022] Open
Abstract
Glucocorticoid excess is a critical factor contributing to muscle atrophy. Both endogenous and exogenous glucocorticoids negatively affect the preservation of muscle mass and function. To date, the most effective intervention to prevent muscle atrophy is to apply a mechanical load in the form of resistance exercise. However, glucocorticoid-induced skeletal muscle atrophy easily causes fatigue in daily physical activities, such as climbing stairs and walking at a brisk pace, and reduces body movements to cause a decreased ability to perform physical activity. Therefore, providing adequate nutrients in these circumstances is a key factor in limiting muscle wasting and improving muscle mass recovery. The present review will provide an up-to-date review of the effects of various nutrients, including amino acids such as branched-chain amino acids (BCAAs) and β–hydroxy β–methylbutyrate (HMB), fatty acids such as omega-3, and vitamins and their derivates on the prevention and improvement of glucocorticoid-induced muscle atrophy.
Collapse
|
6
|
UCHL1 and Proteasome in Blood Serum in Relation to Dietary Habits, Concentration of Selected Antioxidant Minerals and Total Antioxidant Status among Patients with Alzheimer's Disease. J Clin Med 2022; 11:jcm11020412. [PMID: 35054106 PMCID: PMC8779407 DOI: 10.3390/jcm11020412] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/02/2022] [Accepted: 01/11/2022] [Indexed: 02/04/2023] Open
Abstract
Alzheimer's disease (AD) is an incurable neurodegenerative disease. It is the most common form of dementia among the elderly population. So far, no effective methods of its treatment have been found. Research to better understand the mechanism of pathology may provide new methods for early diagnosis. This, in turn, could enable early intervention that could slow or halt disease progression and improve patients' quality of life. Therefore, minimally invasive markers, including serum-based markers, are being sought to improve the diagnosis of AD. One of the important markers may be the concentration of UCHL1 and the proteasome in the blood serum. Their concentration can be affected by many factors, including eating habits. This study was conducted in 110 patients with early or moderate AD, with a mean age of 78.0 ± 8.1 years. The patients were under the care of the Podlasie Center of Psychogeriatrics and the Department of Neurology (Medical University of Białystok, Poland). The control group consisted of 60 healthy volunteers, matched for gender and age. The concentration of UCHL1 and the 20S proteasome subunit were measured by surface plasmon resonance imaging (SPRI). In addition, a nutritional interview was conducted with patients with AD, which assessed the frequency of consumption of 36 groups of products. In the group of patients with AD, compared to the control group, we showed a significantly higher concentration of UCHL1 (56.05 vs. 7.98 ng/mL) and the proteasome (13.02 vs. 5.72 µg/mL). Moreover, we found a low negative correlation between UCHL1 and the proteasome in the control group, and positive in the AD group. The analysis of eating habits showed that the consumption of selected groups of products may affect the concentration of the tested components, and therefore may have a protective effect on AD.
Collapse
|
7
|
Kim S, Park SH, Choi WH, Lee MJ. Evaluation of Immunoproteasome-Specific Proteolytic Activity Using Fluorogenic Peptide Substrates. Immune Netw 2022; 22:e28. [PMID: 35799704 PMCID: PMC9250865 DOI: 10.4110/in.2022.22.e28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/29/2022] [Accepted: 04/05/2022] [Indexed: 12/01/2022] Open
Abstract
The 26S proteasome irreversibly hydrolyzes polyubiquitylated substrates to maintain protein homeostasis; it also regulates immune responses by generating antigenic peptides. An alternative form of the 26S proteasome is the immunoproteasome, which contains substituted catalytic subunits (β1i/PSMB9, β2i/PSMB10, and β5i/PSMB8) instead of constitutively expressed counterparts (β1/PSMB6, β2/PSMB7, and β5/PSMB5). The immunoproteasome expands the peptide repertoire presented on MHC class I molecules. However, how its activity changes in this context is largely elusive, possibly due to the lack of a standardized methodology to evaluate its specific activity. Here, we describe an assay protocol that measures the immunoproteasome activity of whole-cell lysates using commercially available fluorogenic peptide substrates. Our results showed that the most accurate assessment of immunoproteasome activity could be achieved by combining β5i-targeting substrate Ac-ANW-AMC and immunoproteasome inhibitor ONX-0914. This simple and reliable protocol may contribute to future studies of immunoproteasomes and their pathophysiological roles during viral infection, inflammation, and tumorigenesis.
Collapse
Affiliation(s)
- Sumin Kim
- Department of Biochemistry & Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Korea
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul 03080, Korea
- BK21 FOUR Biomedical Science Program, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Seo Hyeong Park
- Department of Biochemistry & Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Korea
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul 03080, Korea
- BK21 FOUR Biomedical Science Program, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Won Hoon Choi
- Department of Biochemistry & Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Korea
- BK21 FOUR Biomedical Science Program, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Min Jae Lee
- Department of Biochemistry & Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Korea
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul 03080, Korea
| |
Collapse
|
8
|
Chung SA, Lim JW, Kim H. Docosahexaenoic Acid Inhibits Cytokine Expression by Reducing Reactive Oxygen Species in Pancreatic Stellate Cells. J Cancer Prev 2021; 26:195-206. [PMID: 34703822 PMCID: PMC8511577 DOI: 10.15430/jcp.2021.26.3.195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/25/2021] [Accepted: 09/27/2021] [Indexed: 11/08/2022] Open
Abstract
Pancreatic stellate cells (PSCs) are activated by inflammatory stimuli, such as TNF-α or viral infection. Activated PSCs play a crucial role in the development of chronic pancreatitis. Polyinosinic-polycytidylic acid (poly (I:C)) is structurally similar to double-stranded RNA and mimics viral infection. Docosahexaenoic acid (DHA) exhibits anti-inflammatory activity. It inhibited fibrotic mediators and reduced NF-κB activity in the pancreas of mice with chronic pancreatitis. The present study aimed to investigate whether DHA could suppress cytokine expression in PSCs isolated from rats. Cells were pre-treated with DHA or the antioxidant N-acetylcysteine (NAC) and stimulated with TNF-α or poly (I:C). Treatment with TNF-α or poly (I:C) increased the expression of monocyte chemoattractant protein 1 (MCP-1) and chemokine C-X3-C motif ligand 1 (CX3CL1), which are known chemoattractants, and enhanced intracellular and mitochondrial reactive oxygen species (ROS) production and NF-κB activity, but reduced mitochondrial membrane potential (MMP). Increased intracellular and mitochondrial ROS accumulation, cytokine expression, MMP disruption, and NF-κB activation were all prevented by DHA in TNF-α- or poly (I:C)-treated PSCs. NAC suppressed TNF-α- or poly (I:C)-induced expression of MCP-1 and CX3CL1. In conclusion, DHA inhibits poly (I:C)- or TNF-α-induced cytokine expression and NF-κB activation by reducing intracellular and mitochondrial ROS in PSCs. Consumption of DHA-rich foods may be beneficial in preventing chronic pancreatitis by inhibiting cytokine expression in PSCs.
Collapse
Affiliation(s)
- Sun Ah Chung
- Department of Food and Nutrition, College of Human Ecology, Yonsei University, Seoul, Korea
| | - Joo Weon Lim
- Department of Food and Nutrition, College of Human Ecology, Yonsei University, Seoul, Korea
| | - Hyeyong Kim
- Department of Food and Nutrition, College of Human Ecology, Yonsei University, Seoul, Korea
| |
Collapse
|
9
|
Lee J, Le LTHL, Kim E, Lee MJ. Formation of Non-Nucleoplasmic Proteasome Foci during the Late Stage of Hyperosmotic Stress. Cells 2021; 10:cells10092493. [PMID: 34572142 PMCID: PMC8467775 DOI: 10.3390/cells10092493] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 12/23/2022] Open
Abstract
Cellular stress induces the formation of membraneless protein condensates in both the nucleus and cytoplasm. The nucleocytoplasmic transport of proteins mainly occurs through nuclear pore complexes (NPCs), whose efficiency is affected by various stress conditions. Here, we report that hyperosmotic stress compartmentalizes nuclear 26S proteasomes into dense nuclear foci, independent of signaling cascades. Most of the proteasome foci were detected between the condensed chromatin mass and inner nuclear membrane. The proteasome-positive puncta were not colocalized with other types of nuclear bodies and were reversibly dispersed when cells were returned to the isotonic medium. The structural integrity of 26S proteasomes in the nucleus was slightly affected under the hyperosmotic condition. We also found that these insulator-body-like proteasome foci were possibly formed through disrupted nucleus-to-cytosol transport, which was mediated by the sequestration of NPC components into osmostress-responding stress granules. These data suggest that phase separation in both the nucleus and cytosol may be a major cell survival mechanism during hyperosmotic stress conditions.
Collapse
Affiliation(s)
- Jeeyoung Lee
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Korea; (J.L.); (L.T.H.L.L.); (E.K.)
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul 03080, Korea
| | - Ly Thi Huong Luu Le
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Korea; (J.L.); (L.T.H.L.L.); (E.K.)
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul 03080, Korea
| | - Eunkyoung Kim
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Korea; (J.L.); (L.T.H.L.L.); (E.K.)
| | - Min Jae Lee
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Korea; (J.L.); (L.T.H.L.L.); (E.K.)
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul 03080, Korea
- Correspondence:
| |
Collapse
|
10
|
Yun Y, Lee SY, Choi WH, Park JC, Lee DH, Kim YK, Lee JH, Lee JY, Lee MJ, Kim YH. Proteasome Activity in the Plasma as a Novel Biomarker in Mild Cognitive Impairment with Chronic Tinnitus. J Alzheimers Dis 2021; 78:195-205. [PMID: 32955464 PMCID: PMC7683073 DOI: 10.3233/jad-200728] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Although the existence of proteasomes in human blood, termed circulating proteasomes (c-proteasomes), has been reported previously, their origin and pathophysiological functions remain largely unknown. OBJECTIVE Given that c-proteasome activity was significantly reduced in Alzheimer's disease model mice and relatively high frequency of mild cognitive impairment (MCI) is accompanied by chronic tinnitus in aged patients, we examined whether c-proteasome activity in human plasma was associated with cognitive function in patients with chronic tinnitus. METHODS c-Proteasome activity in the plasma of tinnitus patients (N = 55) was measured with fluorogenic reporter substrate, suc-LLVY-AMC. To assess MCI, the Montreal Cognitive Assessment was conducted with a cut-off score of 22/23. All patients underwent audiological and psychoacoustic analyses. Levels of c-proteasomes, Aβ42, and Aβ40 were measured using ELISA, and their association with c-proteasome activity was evaluated. RESULTS The activity of circulating proteasomes was significantly lower in patients with chronic tinnitus and MCI (p = 0.042), whereas activities of other plasma enzymes showed little correlation. In addition, c-proteasome activity was negatively associated with the level of plasma Aβ and was directly dependent on its own concentration in the plasma of patients with chronic tinnitus. CONCLUSION Our current work provides a new perspective for understanding the potential relationship between circulating proteasomes in the plasma and cognitive dysfunction, suggesting a novel, non-invasive biomarker in the context of MCI diagnosis.
Collapse
Affiliation(s)
- Yejin Yun
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Korea
| | - Sang-Yeon Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, Seoul, Korea
| | - Won Hoon Choi
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Korea
| | - Jong-Chan Park
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Korea.,Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Dong Han Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Konkuk University Medical Center, Seoul, Korea
| | - Yun Kyung Kim
- Center for Neuro-Medicine, Brain Science Institute, Korea Institute of Science and Technology, Seoul, Korea
| | - Jung Hoon Lee
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Korea.,Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Jun-Young Lee
- Department of Psychiatry and Neuroscience Research Institute, Seoul National University College of Medicine, Boramae Medical Center, Seoul, Korea
| | - Min Jae Lee
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Korea.,Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Young Ho Kim
- Department of Otorhinolaryngology, Seoul National University College of Medicine, Boramae Medical Center, Seoul, Korea
| |
Collapse
|
11
|
Isesele PO, Mazurak VC. Regulation of Skeletal Muscle Satellite Cell Differentiation by Omega-3 Polyunsaturated Fatty Acids: A Critical Review. Front Physiol 2021; 12:682091. [PMID: 34149458 PMCID: PMC8209368 DOI: 10.3389/fphys.2021.682091] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 04/30/2021] [Indexed: 12/17/2022] Open
Abstract
Skeletal muscle is composed of multinuclear cells called myofibres, which are formed by the fusion of myoblasts during development. The size of the muscle fiber and mass of skeletal muscle are altered in response to several pathological and physiological conditions. Skeletal muscle regeneration is primarily mediated by muscle stem cells called satellite cells (SCs). In response to injury, these SCs replenish myogenic progenitor cells to form new myofibers to repair damaged muscle. During myogenesis, activated SCs proliferate and differentiate to myoblast and then fuse with one another to form muscle fibers. A reduced number of SCs and an inability to undergo myogenesis may contribute to skeletal muscle disorders such as atrophy, cachexia, and sarcopenia. Myogenic regulatory factors (MRF) are transcription factors that regulate myogenesis and determines whether SCs will be in the quiescent, activated, committed, or differentiated state. Mitochondria oxidative phosphorylation and oxidative stress play a role in the determination of the fate of SCs. The potential activation and function of SCs are also affected by inflammation during skeletal muscle regeneration. Omega-3 polyunsaturated fatty acids (PUFAs) show promise to reduce inflammation, maintain muscle mass during aging, and increase the functional capacity of the muscle. The aim of this critical review is to highlight the role of omega-3 PUFAs on the myogenic differentiation of SCs and pathways affected during the differentiation process, including mitochondrial function and inflammation from the current body of literature.
Collapse
Affiliation(s)
- Peter O Isesele
- Division of Human Nutrition, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, AB, Canada
| | - Vera C Mazurak
- Division of Human Nutrition, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
12
|
Iuchi K, Takai T, Hisatomi H. Cell Death via Lipid Peroxidation and Protein Aggregation Diseases. BIOLOGY 2021; 10:399. [PMID: 34064409 PMCID: PMC8147787 DOI: 10.3390/biology10050399] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/13/2021] [Accepted: 04/29/2021] [Indexed: 12/16/2022]
Abstract
Lipid peroxidation of cellular membranes is a complicated cellular event, and it is both the cause and result of various diseases, such as ischemia-reperfusion injury, neurodegenerative diseases, and atherosclerosis. Lipid peroxidation causes non-apoptotic cell death, which is associated with cell fate determination: survival or cell death. During the radical chain reaction of lipid peroxidation, various oxidized lipid products accumulate in cells, followed by organelle dysfunction and the induction of non-apoptotic cell death. Highly reactive oxidized products from unsaturated fatty acids are detected under pathological conditions. Pathological protein aggregation is the general cause of these diseases. The cellular response to misfolded proteins is well-known as the unfolded protein response (UPR) and it is partially concomitant with the response to lipid peroxidation. Moreover, the association between protein aggregation and non-apoptotic cell death by lipid peroxidation is attracting attention. The link between lipid peroxidation and protein aggregation is a matter of concern in biomedical fields. Here, we focus on lethal protein aggregation in non-apoptotic cell death via lipid peroxidation. We reviewed the roles of protein aggregation in the initiation and execution of non-apoptotic cell death. We also considered the relationship between protein aggregation and oxidized lipid production. We provide an overview of non-apoptotic cell death with a focus on lipid peroxidation for therapeutic targeting during protein aggregation diseases.
Collapse
Affiliation(s)
- Katsuya Iuchi
- Department of Materials and Life Science, Faculty of Science and Technology, Seikei University, 3-3-1 Kichijojikitamachi, Musashino-shi, Tokyo 180-8633, Japan; (T.T.); (H.H.)
| | | | | |
Collapse
|
13
|
Kim JH, Lee J, Choi WH, Park S, Park SH, Lee JH, Lim SM, Mun JY, Cho HS, Han D, Suh YH, Lee MJ. CHIP-mediated hyperubiquitylation of tau promotes its self-assembly into the insoluble tau filaments. Chem Sci 2021; 12:5599-5610. [PMID: 34168795 PMCID: PMC8179656 DOI: 10.1039/d1sc00586c] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 03/05/2021] [Indexed: 01/08/2023] Open
Abstract
The tau protein is a highly soluble and natively unfolded protein. Under pathological conditions, tau undergoes multiple post-translational modifications (PTMs) and conformational changes to form insoluble filaments, which are the proteinaceous signatures of tauopathies. To dissect the crosstalk among tau PTMs during the aggregation process, we phosphorylated and ubiquitylated recombinant tau in vitro using GSK3β and CHIP, respectively. The resulting phospho-ub-tau contained conventional polyubiquitin chains with lysine 48 linkages, sufficient for proteasomal degradation, whereas unphosphorylated ub-tau species retained only one-three ubiquitin moieties. Mass-spectrometric analysis of in vitro reconstituted phospho-ub-tau revealed seven additional ubiquitylation sites, some of which are known to stabilize tau protofilament stacking in the human brain with tauopathy. When the ubiquitylation reaction was prolonged, phospho-ub-tau transformed into insoluble hyperubiquitylated tau species featuring fibrillar morphology and in vitro seeding activity. We developed a small-molecule inhibitor of CHIP through biophysical screening; this effectively suppressed tau ubiquitylation in vitro and delayed its aggregation in cultured cells including primary cultured neurons. Our biochemical findings point to a "multiple-hit model," where sequential events of tau phosphorylation and hyperubiquitylation function as a key driver of the fibrillization process, thus indicating that targeting tau ubiquitylation may be an effective strategy to alleviate the course of tauopathies.
Collapse
Affiliation(s)
- Ji Hyeon Kim
- Department of Biomedical Sciences, Seoul National University Graduate School Seoul 03080 Korea +82 2-744-4534 +82 2-740-8254
| | - Jeeyoung Lee
- Department of Biomedical Sciences, Seoul National University Graduate School Seoul 03080 Korea +82 2-744-4534 +82 2-740-8254
| | - Won Hoon Choi
- Department of Biomedical Sciences, Seoul National University Graduate School Seoul 03080 Korea +82 2-744-4534 +82 2-740-8254
| | - Seoyoung Park
- Department of Biochemistry & Molecular Biology, Neuroscience Research Institute, Seoul National University College of Medicine Seoul 03080 Korea
| | - Seo Hyeong Park
- Department of Biomedical Sciences, Seoul National University Graduate School Seoul 03080 Korea +82 2-744-4534 +82 2-740-8254
| | - Jung Hoon Lee
- Department of Biochemistry & Molecular Biology, Neuroscience Research Institute, Seoul National University College of Medicine Seoul 03080 Korea
| | - Sang Min Lim
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology Seoul 02792 Korea
| | - Ji Young Mun
- Neural Circuit Research Group, Korea Brain Research Institute Daegu 41062 Korea
| | - Hyun-Soo Cho
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University Seoul 03722 Korea
| | - Dohyun Han
- Proteomics Core Facility, Biomedical Research Institute, Seoul National University Hospital Seoul 03080 Korea
| | - Young Ho Suh
- Department of Biomedical Sciences, Seoul National University Graduate School Seoul 03080 Korea +82 2-744-4534 +82 2-740-8254
- Department of Biochemistry & Molecular Biology, Neuroscience Research Institute, Seoul National University College of Medicine Seoul 03080 Korea
| | - Min Jae Lee
- Department of Biomedical Sciences, Seoul National University Graduate School Seoul 03080 Korea +82 2-744-4534 +82 2-740-8254
- Department of Biochemistry & Molecular Biology, Neuroscience Research Institute, Seoul National University College of Medicine Seoul 03080 Korea
| |
Collapse
|
14
|
Fernando W, Goralski KB, Hoskin DW, Rupasinghe HPV. Metabolism and pharmacokinetics of a novel polyphenol fatty acid ester phloridzin docosahexaenoate in Balb/c female mice. Sci Rep 2020; 10:21391. [PMID: 33288802 PMCID: PMC7721897 DOI: 10.1038/s41598-020-78369-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 11/25/2020] [Indexed: 12/11/2022] Open
Abstract
Flavonoids are known to undergo phase II metabolism and produce metabolites with similar or stronger biological effects compared to the parent flavonoids. However, the limited cellular uptake and bioavailability restrict their clinical use. We synthesized phloridzin docosahexaenoate (PZ-DHA), a novel fatty acid ester of polyphenol, through an acylation reaction with the aim of increasing the cellular availability and stability of the parent biomolecules, phloridzin (PZ) and docosahexaenoic acid (DHA). Here, we report metabolites and pharmacokinetic parameters of PZ-DHA, determined using ultra-high-performance liquid chromatography-electrospray ionization tandem mass spectrometry. PZ-DHA was taken-up by human (MDA-MB-231, MDA-MB-468, and MCF-7) and mouse (4T1) mammary carcinoma and human non-malignant mammary epithelial cells (MCF-10A) in cellular uptake assays. Our results suggested that the acylation improves the cellular uptake of PZ and stability of DHA within cells. In mouse hepatic microsomal assays, two major glucuronides of PZ-DHA, PZ-DHA-4-O-glucuronide and PZ-DHA-4'-O-glucuronide (MW = 923.02 g/mol), were detected. One tri-methylated- (4,4',6'-O-trimethyl-PZ-DHA) (MW = 788.88 g/mol) and one di-sulphated- (PZ-DHA-4,4'-O-disulphide) PZ-DHA metabolite (MW = 906.20 g/mol) were also identified. Intraperitoneal injections of PZ-DHA (100 mg/kg) into Balb/c female mice was rapidly absorbed with a serum Cmax and Tmax of 23.7 µM and 60 min, respectively, and rapidly eliminated (t1/2 = 28.7 min). PZ-DHA and its metabolites are readily distributed throughout the body (Vd = 57 mL) into many organs. We identified in vitro and in vivo metabolites of PZ-DHA, which could be tested for potential use to treat diseases such as cancer in multiple organ systems.
Collapse
Affiliation(s)
- Wasundara Fernando
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Kerry B Goralski
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada.,Department of Pediatrics, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada.,College of Pharmacy, Dalhousie University, Halifax, NS, Canada.,Division of Hematology/Oncology, IWK Health Centre, Halifax, NS, Canada
| | - David W Hoskin
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada.,Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada.,Department of Surgery, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - H P Vasantha Rupasinghe
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada. .,Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS, Canada.
| |
Collapse
|
15
|
Docosahexaenoic Acid, a Potential Treatment for Sarcopenia, Modulates the Ubiquitin-Proteasome and the Autophagy-Lysosome Systems. Nutrients 2020; 12:nu12092597. [PMID: 32859116 PMCID: PMC7551806 DOI: 10.3390/nu12092597] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/22/2020] [Accepted: 08/24/2020] [Indexed: 12/14/2022] Open
Abstract
One of the characteristic features of aging is the progressive loss of muscle mass, a nosological syndrome called sarcopenia. It is also a pathologic risk factor for many clinically adverse outcomes in older adults. Therefore, delaying the loss of muscle mass, through either boosting muscle protein synthesis or slowing down muscle protein degradation using nutritional supplements could be a compelling strategy to address the needs of the world’s aging population. Here, we review the recently identified properties of docosahexaenoic acid (DHA). It was shown to delay muscle wasting by stimulating intermediate oxidative stress and inhibiting proteasomal degradation of muscle proteins. Both the ubiquitin–proteasome and the autophagy–lysosome systems are modulated by DHA. Collectively, growing evidence indicates that DHA is a potent pharmacological agent that could improve muscle homeostasis. Better understanding of cellular proteolytic systems associated with sarcopenia will allow us to identify novel therapeutic interventions, such as omega-3 polyunsaturated fatty acids, to treat this disease.
Collapse
|
16
|
Lanchais K, Capel F, Tournadre A. Could Omega 3 Fatty Acids Preserve Muscle Health in Rheumatoid Arthritis? Nutrients 2020; 12:E223. [PMID: 31952247 PMCID: PMC7019846 DOI: 10.3390/nu12010223] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/23/2019] [Accepted: 01/10/2020] [Indexed: 12/15/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory disease characterized by a high prevalence of death due to cardiometabolic diseases. As observed during the aging process, several comorbidities, such as cardiovascular disorders (CVD), insulin resistance, metabolic syndrome and sarcopenia, are frequently associated to RA. These abnormalities could be closely linked to alterations in lipid metabolism. Indeed, RA patients exhibit a lipid paradox, defined by reduced levels of total, low-density lipoprotein (LDL) and high-density lipoprotein (HDL) cholesterol whereas the CVD risk is increased. Moreover, the accumulation of toxic lipid mediators (i.e., lipotoxicity) in skeletal muscles can induce mitochondrial dysfunctions and insulin resistance, which are both crucial determinants of CVD and sarcopenia. The prevention or reversion of these biological perturbations in RA patients could contribute to the maintenance of muscle health and thus be protective against the increased risk for cardiometabolic diseases, dysmobility and mortality. Yet, several studies have shown that omega 3 fatty acids (FA) could prevent the development of RA, improve muscle metabolism and limit muscle atrophy in obese and insulin-resistant subjects. Thereby, dietary supplementation with omega 3 FA should be a promising strategy to counteract muscle lipotoxicity and for the prevention of comorbidities in RA patients.
Collapse
Affiliation(s)
- Kassandra Lanchais
- Université Clermont Auvergne, INRAE, Unité de Nutrition Humaine (UNH), 28 Place Henri Dunant—BP 38, UFR Médecine, UMR1019, 63009 Clermont-Ferrand, France; (K.L.); (A.T.)
| | - Frederic Capel
- Université Clermont Auvergne, INRAE, Unité de Nutrition Humaine (UNH), 28 Place Henri Dunant—BP 38, UFR Médecine, UMR1019, 63009 Clermont-Ferrand, France; (K.L.); (A.T.)
| | - Anne Tournadre
- Université Clermont Auvergne, INRAE, Unité de Nutrition Humaine (UNH), 28 Place Henri Dunant—BP 38, UFR Médecine, UMR1019, 63009 Clermont-Ferrand, France; (K.L.); (A.T.)
- CHU de Clermont-Ferrand, Service de rhumatologie, 63003 Clermont-Ferrand, France
| |
Collapse
|
17
|
Kim JH, Kim A, Yun Y, Park S, Lee JH, Lee YS, Lee MJ. Reduced chronic restraint stress in mice overexpressing hyperactive proteasomes in the forebrain. Mol Brain 2020; 13:4. [PMID: 31931843 PMCID: PMC6958796 DOI: 10.1186/s13041-020-0548-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 01/05/2020] [Indexed: 11/27/2022] Open
Abstract
While chronic restraint stress (CRS) results in depression-like behaviors possibly through oxidative stress in the brain, its molecular etiology and the development of therapeutic strategies remain elusive. Since oxidized proteins can be targeted by the ubiquitin-proteasome system, we investigated whether increased proteasome activity might affect the stress response in mice. Transgenic mice, expressing the N-terminally deleted version of α3 subunit (α3ΔN) of the proteasome, which has been shown to generate open-gated mutant proteasomes, in the forebrain were viable and fertile, but showed higher proteasome activity. After being challenged with CRS for 14 d, the mutant mice with hyperactive proteasomes showed significantly less immobility time in the forced swimming test compared with their wild-type littermates, suggesting that the α3ΔN transgenic mice are resistant to CRS. The accumulation of ER stress markers, such as polyubiquitin conjugates and phospho-IRE1α, was also significantly delayed in the hippocampus of the mutants. Notably, α3ΔN mice exhibited little deficits in other behavioral tasks, suggesting that stress resilience is likely due to the degradation of misfolded proteins by the open-gated proteasomes. These data strongly indicate that not only is the proteasome a critical modulator of stress response in vivo but also a possible therapeutic target for reducing chronic stress.
Collapse
Affiliation(s)
- Ji Hyeon Kim
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, 03080, Korea.,Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Ahbin Kim
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, 03080, Korea.,Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Yejin Yun
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, 03080, Korea.,Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Seoyoung Park
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, 03080, Korea.,Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, 03080, Korea.,Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Jung Hoon Lee
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, 03080, Korea.,Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, 03080, Korea.,Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Yong-Seok Lee
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, 03080, Korea. .,Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, Korea. .,Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, 03080, Korea.
| | - Min Jae Lee
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, 03080, Korea. .,Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, 03080, Korea. .,Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, 03080, Korea.
| |
Collapse
|
18
|
Kim E, Park S, Lee JH, Mun JY, Choi WH, Yun Y, Lee J, Kim JH, Kang MJ, Lee MJ. Dual Function of USP14 Deubiquitinase in Cellular Proteasomal Activity and Autophagic Flux. Cell Rep 2019; 24:732-743. [PMID: 30021169 DOI: 10.1016/j.celrep.2018.06.058] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 04/15/2018] [Accepted: 06/14/2018] [Indexed: 12/17/2022] Open
Abstract
The ubiquitin-proteasome system and the autophagy-lysosome system are two major intracellular proteolytic pathways in eukaryotes. Although several biochemical mechanisms underlying the crosstalk between them have been suggested, little is known about the effect of enhanced proteasome activity on autophagic flux. Here, we found that upregulation of proteasome activity, which was achieved through the inhibition of USP14, significantly impaired cellular autophagic flux, especially at the autophagosome-lysosome fusion step. UVRAG appeared to function as a crucial checkpoint for the proper progression of autophagic flux. Although proteasome activation through USP14 inhibition facilitated the clearance of microtubule-associated protein tau (MAPT) and reduced the amount of its oligomeric forms, the same conditions increased the formation of inclusion bodies from nonproteasomal substrates such as huntingtin with long polyglutamine repeats. Our results collectively indicate that USP14 may function as a common denominator in the compensatory negative feedback between the two major proteolytic processes in the cell.
Collapse
Affiliation(s)
- Eunkyoung Kim
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul 03080, Korea
| | - Seoyoung Park
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Jung Hoon Lee
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Ji Young Mun
- Department of Structure and Function of Neural Network, Korea Brain Research Institute, Daegu 41068, Korea
| | - Won Hoon Choi
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul 03080, Korea
| | - Yejin Yun
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul 03080, Korea
| | - Jeeyoung Lee
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul 03080, Korea
| | - Ji Hyeon Kim
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul 03080, Korea
| | - Min-Ji Kang
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea.
| | - Min Jae Lee
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul 03080, Korea; Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Korea.
| |
Collapse
|
19
|
Komiya Y, Kobayashi C, Uchida N, Otsu S, Tanio T, Yokoyama I, Nagasao J, Arihara K. Effect of dietary fish oil intake on ubiquitin ligase expression during muscle atrophy induced by sciatic nerve denervation in mice. Anim Sci J 2019; 90:1018-1025. [PMID: 31132809 DOI: 10.1111/asj.13224] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/03/2019] [Accepted: 04/18/2019] [Indexed: 12/11/2022]
Abstract
Dietary fish oil intake improves muscle atrophy in several atrophy models however the effect on denervation-induced muscle atrophy is not clear. Thus, the aim of this study was to investigate the effects of dietary fish oil intake on muscle atrophy and the expression of muscle atrophy markers induced by sciatic nerve denervation in mice. We performed histological and quantitative mRNA expression analysis of muscle atrophy markers in mice fed with fish oil with sciatic nerve denervation. Histological analysis indicated that dietary fish oil intake slightly prevented the decrease of muscle fiber diameter induced by denervation treatment. In addition, dietary fish oil intake suppressed the MuRF1 (tripartite motif-containing 63) expression up-regulated by denervation treatment, and this was due to decreased tumor necrosis factor-alpha (TNF-α) production in skeletal muscle. We concluded that dietary fish oil intake suppressed MuRF1 expression by decreasing TNF-α production during muscle atrophy induced by sciatic nerve denervation in mice.
Collapse
Affiliation(s)
- Yusuke Komiya
- Department of Animal Science, School of Veterinary Medicine, Kitasato University, Towada, Japan
| | - Chiaki Kobayashi
- Department of Animal Science, School of Veterinary Medicine, Kitasato University, Towada, Japan
| | - Naoyasu Uchida
- Department of Animal Science, School of Veterinary Medicine, Kitasato University, Towada, Japan
| | - Shohei Otsu
- Department of Animal Science, School of Veterinary Medicine, Kitasato University, Towada, Japan
| | - Tatsuki Tanio
- Department of Animal Science, School of Veterinary Medicine, Kitasato University, Towada, Japan
| | - Issei Yokoyama
- Department of Animal Science, School of Veterinary Medicine, Kitasato University, Towada, Japan
| | - Jun Nagasao
- Department of Animal Science, School of Veterinary Medicine, Kitasato University, Towada, Japan
| | - Keizo Arihara
- Department of Animal Science, School of Veterinary Medicine, Kitasato University, Towada, Japan
| |
Collapse
|
20
|
Park C, Jeong JW, Lee DS, Yim MJ, Lee JM, Han MH, Kim S, Kim HS, Kim GY, Park EK, Jeon YJ, Cha HJ, Choi YH. Sargassum serratifolium Extract Attenuates Interleukin-1β-Induced Oxidative Stress and Inflammatory Response in Chondrocytes by Suppressing the Activation of NF-κB, p38 MAPK, and PI3K/Akt. Int J Mol Sci 2018; 19:E2308. [PMID: 30087236 PMCID: PMC6121501 DOI: 10.3390/ijms19082308] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 08/01/2018] [Indexed: 01/09/2023] Open
Abstract
Osteoarthritis (OA) is a degenerative joint disease that is characterized by irreversible articular cartilage destruction by inflammatory reaction. Among inflammatory stimuli, interleukin-1β (IL-1β) is known to play a crucial role in OA pathogenesis by stimulating several mediators that contribute to cartilage degradation. Recently, the marine brown alga Sargassum serratifolium has been reported to exhibit antioxidant and anti-inflammatory effects in microglial and human umbilical vein endothelial cell models using lipopolysaccharide and tumor necrosis factor-α, but its beneficial effects on OA have not been investigated. This study aimed to evaluate the anti-osteoarthritic effects of ethanol extract of S. serratifolium (EESS) in SW1353 human chondrocytes and, in parallel, primary rat articular chondrocytes. Our results showed that EESS effectively blocked the generation of reactive oxygen species in IL-1β-treated SW1353 and rat primary chondrocytes, indicating that EESS has a potent antioxidant activity. EESS also attenuated IL-1β-induced production of nitric oxide (NO) and prostaglandin E₂, major inflammatory mediators in these cells, which was associated with the inhibition of inducible NO synthase and cyclooxygenase-2 expression. Moreover, EESS downregulated the level of gene expression of matrix metalloproteinase (MMP)-1, -3 and -13 in SW1353 chondrocytes treated with IL-1β, resulting in their extracellular secretion reduction. In addition, the IL-1β-induced activation of nuclear factor-kappa B (NF-κB) was restored by EESS. Furthermore, EESS reduced the activation of p38 mitogen-activated protein kinase (MAPK) and phosphatidylinositol-3-kinase (PI3K)/Akt signaling pathways upon IL-1β stimulation. These results indicate that EESS has the potential to exhibit antioxidant and anti-inflammatory effects through inactivation of the NF-κB, p38 MAPK, and PI3K/Akt signaling pathways. Collectively, these findings demonstrate that EESS may have the potential for chondroprotection, and extracts of S. serratifolium could potentially be used in the prevention and treatment of OA.
Collapse
Affiliation(s)
- Cheol Park
- Department of Molecular Biology, College of Natural Sciences, Dong-eui University, Busan 47340, Korea.
| | - Jin-Woo Jeong
- Freshwater Bioresources Utilization Bureau, Nakdonggang National Institute of Biological Resources, Sangju 37242, Korea.
| | - Dae-Sung Lee
- National Marine Biodiversity Institute of Korea, Seocheon 33662, Korea.
| | - Mi-Jin Yim
- National Marine Biodiversity Institute of Korea, Seocheon 33662, Korea.
| | - Jeong Min Lee
- National Marine Biodiversity Institute of Korea, Seocheon 33662, Korea.
| | - Min Ho Han
- National Marine Biodiversity Institute of Korea, Seocheon 33662, Korea.
| | - Suhkmann Kim
- Department of Chemistry, College of Natural Sciences, Center for Proteome Biophysics and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea.
| | - Heui-Soo Kim
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 46241, Korea.
| | - Gi-Young Kim
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju 63243, Korea.
| | - Eui Kyun Park
- Department of Oral Pathology and Regenerative Medicine, School of Dentistry, Institute for Hard Tissue and Biotooth Regeneration, Kyungpook National University, Daegu 41940, Korea.
| | - You-Jin Jeon
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju 63243, Korea.
| | - Hee-Jae Cha
- Department of Parasitology and Genetics, College of Medicine, Kosin University, Busan 49267, Korea.
| | - Yung Hyun Choi
- Anti-Aging Research Center and Blue-Bio Industry RIC, Dong-eui University, Busan 47227, Korea.
- Department of Biochemistry, College of Korean Medicine, Dong-eui University, Busan 47227, Korea.
| |
Collapse
|
21
|
Park S, Lee JH, Jeon JH, Lee MJ. Degradation or aggregation: the ramifications of post-translational modifications on tau. BMB Rep 2018; 51:265-273. [PMID: 29661268 PMCID: PMC6033068 DOI: 10.5483/bmbrep.2018.51.6.077] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Indexed: 01/06/2023] Open
Abstract
Tau protein is encoded in the microtubule-associated protein tau (MAPT) gene and contributes to the stability of microtubules in axons. Despite of its basic isoelectric point and high solubility, tau is often found in intraneuronal filamentous inclusions such as paired helical filaments (PHFs), which are the primary constituent of neurofibrillary tangles (NFTs). This pathological feature is the nosological entity termed "tauopathies" which notably include Alzheimer's disease (AD). A proteinaceous signature of all tauopathies is hyperphosphorylation of the accumulated tau, which has been extensively studied as a major pharmacological target for AD therapy. However, in addition to phosphorylation events, tau undergoes a number of diverse posttranslational modifications (PTMs) which appear to be controlled by complex crosstalk. It remains to be elucidated which of the PTMs or their combinations have pro-aggregation or anti-aggregation properties. In this review, we outline the consequences of and communications between several key PTMs of tau, such as acetylation, phosphorylation, and ubiquitination, focusing on their roles in aggregation and degradation. We place emphasis on the structure of tau protofilaments from the human AD brain, which may be good targets to modulate etiological PTMs which cause tau aggregation. [BMB Reports 2018; 51(6): 265-273].
Collapse
Affiliation(s)
- Seoyoung Park
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 03080,
Korea
- Neuroscience Research Institute, Seoul National University College of Medicine, Seoul 03080,
Korea
| | - Jung Hoon Lee
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 03080,
Korea
- Neuroscience Research Institute, Seoul National University College of Medicine, Seoul 03080,
Korea
| | - Jun Hyoung Jeon
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 03080,
Korea
| | - Min Jae Lee
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 03080,
Korea
- Neuroscience Research Institute, Seoul National University College of Medicine, Seoul 03080,
Korea
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul 03080,
Korea
| |
Collapse
|