1
|
Cassali GD, Nakagaki KYR, Salvi M, dos Reys MP, Rocha MAN, de Campos CB, Ferreira E, Rodrigues ACB, dos Reis DC, Damasceno KA, Estrela-Lima A. Canine, Feline, and Murine Mammary Tumors as a Model for Translational Research in Breast Cancer. Vet Sci 2025; 12:189. [PMID: 40005948 PMCID: PMC11860833 DOI: 10.3390/vetsci12020189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/06/2025] [Accepted: 02/17/2025] [Indexed: 02/27/2025] Open
Abstract
In veterinary medicine, mammary tumors are the most common neoplasms in female dogs and the third most frequent in cats, representing a significant challenge. Efforts have been directed toward adopting standardized diagnostic criteria to better understand tumor behavior and progression in these species. Meanwhile, the use of animal models has substantially advanced the understanding of comparative mammary carcinogenesis. These models provide critical insights into factors responsible for the disease in humans, with the expectation that such factors can be identified and controlled. In this context, this review presents a work based mainly on articles published by a research group specializing in mammary pathology (Laboratory of Comparative Pathology-Department of General Pathology-ICB/UFMG) and its collaborators, complementing their results with literature findings. The publications were categorized into animal research, experimental research, and human research. These studies addressed topics such as diagnosis, prognostic and predictive factors, tumor microenvironment, inflammation associated with tumors, treatment approaches, and factors influencing tumor growth. The conceptual network analysis underscores the importance of in vivo breast cancer models, both experimental and spontaneous, for understanding tumor progression mechanisms and therapeutic responses, offering valuable contributions to veterinary and human oncology.
Collapse
Affiliation(s)
- Geovanni Dantas Cassali
- Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil
| | - Karen Yumi Ribeiro Nakagaki
- Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil
| | - Marisa Salvi
- Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil
| | - Marina Possa dos Reys
- Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil
| | - Marcos André Nino Rocha
- Escola de Medicina Veterinária e Zootecnia, Universidade Federal da Bahia, Salvador 40170-110, Bahia, Brazil
| | | | - Enio Ferreira
- Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil
| | | | - Diego Carlos dos Reis
- Division of Molecular Pathology, The Institute of Cancer Research, London SW7 3RP, UK
| | | | - Alessandra Estrela-Lima
- Escola de Medicina Veterinária e Zootecnia, Universidade Federal da Bahia, Salvador 40170-110, Bahia, Brazil
| |
Collapse
|
2
|
Carvès S, Birsen R, Avouac J. Persistent remission of severe rheumatoid arthritis associated with myelodysplastic syndrome upon treatment with lenalidomide. Joint Bone Spine 2024; 91:105693. [PMID: 38246576 DOI: 10.1016/j.jbspin.2024.105693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/17/2023] [Accepted: 01/01/2024] [Indexed: 01/23/2024]
Affiliation(s)
- Sandrine Carvès
- Rheumatology Department, Hôpital Cochin, AP-HP, Paris, France
| | - Rudy Birsen
- Hematology Department, Hôpital Cochin, AP-HP, Paris, France
| | - Jérôme Avouac
- Rheumatology Department, Hôpital Cochin, AP-HP, Paris, France.
| |
Collapse
|
3
|
Castiglione F, Nardini C, Onofri E, Pedicini M, Tieri P. Explainable Drug Repurposing Approach From Biased Random Walks. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2023; 20:1009-1019. [PMID: 35839194 DOI: 10.1109/tcbb.2022.3191392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Drug repurposing is a highly active research area, aiming at finding novel uses for drugs that have been previously developed for other therapeutic purposes. Despite the flourishing of methodologies, success is still partial, and different approaches offer, each, peculiar advantages. In this composite landscape, we present a novel methodology focusing on an efficient mathematical procedure based on gene similarity scores and biased random walks which rely on robust drug-gene-disease association data sets. The recommendation mechanism is further unveiled by means of the Markov chain underlying the random walk process, hence providing explainability about how findings are suggested. Performances evaluation and the analysis of a case study on rheumatoid arthritis show that our approach is accurate in providing useful recommendations and is computationally efficient, compared to the state of the art of drug repurposing approaches.
Collapse
|
4
|
Bansal R, Park H, Taborda CC, Gordillo C, Mapara MY, Assal A, Uhlemann AC, Reshef R. Antibiotic Exposure, Not Alloreactivity, Is the Major Driver of Microbiome Changes in Hematopoietic Cell Transplantation. Transplant Cell Ther 2022; 28:135-144. [PMID: 34958974 PMCID: PMC8923982 DOI: 10.1016/j.jtct.2021.12.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 12/17/2021] [Accepted: 12/19/2021] [Indexed: 12/31/2022]
Abstract
Both autologous hematopoietic cell transplantation (auto-HCT) and allogeneic hematopoietic cell transplantation (allo-HCT) are associated with significant alterations in the intestinal microbiome. The relative contributions of antibiotic use and alloreactivity to microbiome dynamics have not yet been elucidated, however. There is a lack of data on the kinetics of microbiome changes beyond 30 days post-transplantation and how they might differ between different transplantation modalities. A direct comparison of the differential effects of auto-HCT and allo-HCT on the microbiome may shed light on these dynamics. This study was conducted to compare intestinal microbial diversity between auto-HCT recipients and allo-HCT recipients from pre-transplantation to 100 days post-transplantation, and to examine the effect of antibiotics, transplant type (auto versus allo), and conditioning regimens on the dynamics of microbiome recovery. We conducted a longitudinal analysis of changes in the intestinal microbiome in 35 patients undergoing HCT (17 auto-HCT, 18 allo-HCT) at 4 time points: pre-conditioning and 14, 28, and 100 days post-transplantation. Granular data on antibiotic exposure from day -30 pre-transplantation to day +100 post-transplantation were collected. Pre-transplantation, allo-HCT recipients had lower α-diversity in the intestinal microbiome compared with auto-HCT recipients, which correlated with greater pre-transplantation antibiotic use in allo-HCT recipients. The microbiome diversity declined at days +14 and +28 post-transplantation in both cohorts but generally returned to baseline by day +100. Conditioning regimen intensity did not significantly affect post-transplantation α-diversity. Through differential abundance analysis, we show that commensal bacterial taxa involved with maintenance of gut epithelial integrity and production of short-chain fatty acids were depleted after both auto-HCT and allo-HCT. In our dataset, antibiotic exposure was the major driver of post-transplantation microbiome changes rather than alloreactivity, conditioning intensity, or immunosuppression. Our findings also suggest that interventions to limit microbiome injury, such as limiting the use of broad-spectrum antibiotics, should target the pre-transplantation period and not only the peri-transplantation period.
Collapse
Affiliation(s)
- Rajat Bansal
- Blood and Marrow Transplantation and Cell Therapy Program,
Columbia University Irving Medical Center,Division of Hematologic Malignancies and Cellular
Therapeutics, University of Kansas Medical Center
| | - Heekuk Park
- Division of Infectious Diseases, Columbia University Irving
Medical Center
| | - Cristian C Taborda
- Columbia Center for Translational Immunology, Columbia
University Irving Medical Center
| | - Christian Gordillo
- Blood and Marrow Transplantation and Cell Therapy Program,
Columbia University Irving Medical Center,Columbia Center for Translational Immunology, Columbia
University Irving Medical Center
| | - Markus Y Mapara
- Blood and Marrow Transplantation and Cell Therapy Program,
Columbia University Irving Medical Center,Columbia Center for Translational Immunology, Columbia
University Irving Medical Center
| | - Amer Assal
- Blood and Marrow Transplantation and Cell Therapy Program,
Columbia University Irving Medical Center
| | | | - Ran Reshef
- Blood and Marrow Transplantation and Cell Therapy Program, Columbia University Irving Medical Center, New York, New York; Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, New York.
| |
Collapse
|
5
|
Romecín PA, Vinyoles M, López-Millán B, de la Guardia RD, Atucha NM, Querol S, Bueno C, Benitez R, Gonzalez-Rey E, Delgado M, Menéndez P. OUP accepted manuscript. Stem Cells Transl Med 2022; 11:88-96. [PMID: 35641173 PMCID: PMC8895490 DOI: 10.1093/stcltm/szab007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/13/2021] [Indexed: 11/30/2022] Open
Abstract
Mesenchymal stromal stem/cells (MSC) therapies are clinically used in a wide range of disorders based on their robust HLA-independent immunosuppressive and anti-inflammatory properties. However, the mechanisms underlying MSC therapeutic activity remain elusive as demonstrated by the unpredictable therapeutic efficacy of MSC infusions reported in multiple clinical trials. A seminal recent study showed that infused MSCs are actively induced to undergo apoptosis by recipient cytotoxic T cells, a mechanism that triggers in vivo recipient-induced immunomodulation by such apoptotic MSCs, and the need for such recipient cytotoxic cell activity could be replaced by the administration of ex vivo-generated apoptotic MSCs. Moreover, the use of MSC-derived extracellular vesicles (MSC-EVs) is being actively explored as a cell-free therapeutic alternative over the parental MSCs. We hypothesized that the introduction of a “suicide gene” switch into MSCs may offer on-demand in vivo apoptosis of transplanted MSCs. Here, we prompted to investigate the utility of the iCasp9/AP1903 suicide gene system in inducing apoptosis of MSCs. iCasp9/AP1903-induced apoptotic MSCs (MSCiCasp9+) were tested in vitro and in in vivo models of acute colitis. Our data show a very similar and robust immunosuppressive and anti-inflammatory properties of both “parental” alive MSCGFP+ cells and apoptotic MSCiCasp9+ cells in vitro and in vivo regardless of whether apoptosis was induced in vivo or in vitro before administering MSCiCasp9+ lysates. This development of an efficient iCasp9 switch may potentiate the safety of MSC-based therapies in the case of an adverse event and, will also circumvent current logistic technical limitations and biological uncertainties associated to MSC-EVs.
Collapse
Affiliation(s)
- Paola Alejandra Romecín
- Josep Carreras Leukemia Research Institute, Barcelona, Spain
- RICORS-TERAV, ISCIII, Madrid, Spain
- Paola Alejandra Romecin, Josep Carreras Leukemia Research Institute, School of Medicine, University of Barcelona, Carrer Casanova 143, 4º floor, 08036, Barcelona, Spain. Tel: (+34) 93 5572810;
| | | | - Belén López-Millán
- Josep Carreras Leukemia Research Institute, Barcelona, Spain
- RICORS-TERAV, ISCIII, Madrid, Spain
- GENYO, Centro Pfizer-Universidad de Granada-Junta de Andalucía de Genómica e Investigación Oncológica, Granada, Spain
| | - Rafael Diaz de la Guardia
- GENYO, Centro Pfizer-Universidad de Granada-Junta de Andalucía de Genómica e Investigación Oncológica, Granada, Spain
| | - Noemi M Atucha
- Departamento de Fisiologia Humana, Facultad de Medicina, Murcia, Spain
| | - Sergi Querol
- RICORS-TERAV, ISCIII, Madrid, Spain
- Banc de Sang i Teixits, Barcelona, Spain
| | - Clara Bueno
- Josep Carreras Leukemia Research Institute, Barcelona, Spain
- RICORS-TERAV, ISCIII, Madrid, Spain
- CIBERONC, ISCIII, Barcelona, Spain
| | - Raquel Benitez
- Instituto de Parasitologia y Biomedicina López-Neyra (IPBLN-CSIC), Armilla, Granada, Spain
| | - Elena Gonzalez-Rey
- Instituto de Parasitologia y Biomedicina López-Neyra (IPBLN-CSIC), Armilla, Granada, Spain
| | - Mario Delgado
- Instituto de Parasitologia y Biomedicina López-Neyra (IPBLN-CSIC), Armilla, Granada, Spain
| | - Pablo Menéndez
- Josep Carreras Leukemia Research Institute, Barcelona, Spain
- RICORS-TERAV, ISCIII, Madrid, Spain
- CIBERONC, ISCIII, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Corresponding author: Pablo Menéndez, Josep Carreras Leukemia Research Institute, School of Medicine, University of Barcelona, Carrer Casanova 143, 4º floor, 08036, Barcelona, Spain. Tel: (+34) 93 5572810;
| |
Collapse
|
6
|
Heiblig M, Patel BA, Groarke EM, Bourbon E, Sujobert P. Toward a pathophysiology inspired treatment of VEXAS syndrome. Semin Hematol 2021; 58:239-246. [PMID: 34802546 DOI: 10.1053/j.seminhematol.2021.09.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/03/2021] [Indexed: 02/06/2023]
Abstract
VEXAS syndrome has an unmet need for therapeutic interventions. Even if few data exist regarding the treatment of this newly described syndrome, different options can be proposed given the unique pathophysiological consequences of the clonal dominance of UBA1 mutated hematopoietic stem cells. To date, allogeneic transplantation is the only curative option, but many questions remain regarding the selection of eligible patients, the conditioning regimen or management of toxicities that may be unique to VEXAS patients. Alternatively, drugs used in myelodysplastic syndrome such as hypomethylating agents or lenalidomide are interesting candidates, which could theoretically have also an effect on the clone. Another strategy is to target the inflammatory cascade, by inhibiting proinflammatory cytokines (such as TNFα, IL1, IL6) or effector cells, for example with JAK inhibitors. Whatever the choice of treatment for VEXAS patients, supportive care is always needed to be considered to manage frequent complications such as cytopenia, thrombosis and infections. Finally, we discuss the challenges of the design of clinical trials for VEXAS patients, from inclusion criteria to clinical and biological endpoints of activity.
Collapse
Affiliation(s)
- Maël Heiblig
- Hospices Civils de Lyon. Hôpital Lyon Sud. Service d'hématologie clinique, Lyon, France
| | - Bhavisha A Patel
- Hematology Branch, National Heart, Lung, and Blood Institutes (NHLBI), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Emma M Groarke
- Hematology Branch, National Heart, Lung, and Blood Institutes (NHLBI), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Estelle Bourbon
- Hospices Civils de Lyon. Hôpital Lyon Sud. Service d'hématologie biologique
| | - Pierre Sujobert
- Hospices Civils de Lyon. Hôpital Lyon Sud. Service d'hématologie biologique.
| |
Collapse
|
7
|
Pervaiz N, Kaur H, Parsad D, Kumar R. Immune-modulatory effects of lenalidomide inhibited the progression of lesions in a vitiligo mouse model. Pigment Cell Melanoma Res 2021; 34:918-927. [PMID: 33522688 DOI: 10.1111/pcmr.12962] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 12/30/2020] [Accepted: 01/21/2021] [Indexed: 11/29/2022]
Abstract
Vitiligo, an autoimmune disorder, is associated with altered cytokine levels and T lymphocytes. Lenalidomide modulates immune system components by altering cytokine production and regulating T-cell stimulation. In this study, effect of lenalidomide was checked on the development of vitiligo lesions, level of various cytokines, and T lymphocytes in the mouse model. The vitiligo mouse model was developed by immunizing C57BL/6 mouse with anti-mouse tyrosine-related protein 2. Lenalidomide was orally given to mice daily, and the effect was observed on the development of vitiligo lesions. The level of T lymphocytes in blood was checked by flow cytometry. Serum cytokine levels were checked by enzyme-linked immunosorbent assay. Vitiligo lesions were found significantly smaller in lenalidomide-treated mice models. It significantly decreased the serum levels of IFN-γ, TNF-α, IL-1β, and IL-6 but elevated the levels of IL-4 and IL-10. It non-significantly elevated CD4+ /CD8+ T-cell ratio. Lenalidomide had an inhibitory effect on the development of vitiligo lesions in mice models by suppressing the serum level of pro-inflammatory cytokines and increasing anti-inflammatory cytokine levels. It modulated the immune response in vitiligo mice models toward an anti-inflammatory profile suggesting its use in the management of vitiligo.
Collapse
Affiliation(s)
- Naveed Pervaiz
- Department of Zoology, Panjab University, Chandigarh, India
| | - Harjot Kaur
- Department of Zoology, Panjab University, Chandigarh, India
| | - Davinder Parsad
- Department of Dermatology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Ravinder Kumar
- Department of Zoology, Panjab University, Chandigarh, India
| |
Collapse
|
8
|
Pervaiz N, Kaur H, Parsad D, Kumar R. Immune modulatory effects of lenalidomide on the cultured peripheral blood mononuclear cells from vitiligo patients. Dermatol Ther 2020; 33:e14473. [PMID: 33124184 DOI: 10.1111/dth.14473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/30/2020] [Accepted: 10/23/2020] [Indexed: 11/26/2022]
Abstract
Vitiligo is a depigmentary disease in which epidermal melanocytes are lost. It is considered to be an autoimmune disease. Lenalidomide, an immunomodulatory drug is being employed in the treatment of various autoimmune and inflammatory disorders. In the present manuscript, the effect of lenalidomide on T cells and major cytokines in the cultured peripheral blood mononuclear cells (PBMCs) derived from vitiligo patients was checked. Eight patients with a clinical diagnosis of active vitiligo volunteered for the study. Blood was collected from them and PBMCs were isolated, cultured, and treated with lenalidomide. After 72 hours, PBMCs were harvested and checked for CD8+ and CD4+ T cells by flow cytometry. Further supernatant was collected and the levels of cytokines namely tumor necrosis factor-alpha (TNF-α), interferon-gamma (IFN-γ), interleukin-10 (IL-10), and interleukin-4 (IL-4) were checked using ELISA kits. Lenalidomide nonsignificantly decreased the level of CD8+ T cells but increased CD4+ T cells leading to increased CD4+ /CD8+ T cell ratio. It declined the level of pro-inflammatory cytokines, that is, TNF-α and IFN-γ whereas elevated anti-inflammatory cytokines, that is, IL-10 and IL-4, thus ultimately decreasing the ratio of pro-inflammatory to anti-inflammatory cytokines. Lenalidomide suppressed the proliferation of T lymphocytes and modulated the cytokines secretion toward an anti-inflammatory profile.
Collapse
Affiliation(s)
- Naveed Pervaiz
- Department of Zoology, Panjab University, Chandigarh, India
| | - Harjot Kaur
- Department of Zoology, Panjab University, Chandigarh, India
| | - Davinder Parsad
- Department of Dermatology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Ravinder Kumar
- Department of Zoology, Panjab University, Chandigarh, India
| |
Collapse
|
9
|
Silva I, Pinto R, Mateus V. Preclinical Study in Vivo for New Pharmacological Approaches in Inflammatory Bowel Disease: A Systematic Review of Chronic Model of TNBS-Induced Colitis. J Clin Med 2019; 8:jcm8101574. [PMID: 31581545 PMCID: PMC6832474 DOI: 10.3390/jcm8101574] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 09/19/2019] [Accepted: 09/25/2019] [Indexed: 12/14/2022] Open
Abstract
The preclinical studies in vivo provide means of characterizing physiologic interactions when our understanding of such processes is insufficient to allow replacement with in vitro systems and play a pivotal role in the development of a novel therapeutic drug cure. Chemically induced colitis models are relatively easy and rapid to develop. The 2,4,6-trinitrobenzenesulfonic acid (TNBS) colitis model is one of the main models in the experimental studies of inflammatory bowel disease (IBD) since inflammation induced by TNBS mimics several features of Crohn’s disease. This review aims to summarize the existing literature and discuss different protocols for the induction of chronic model of TNBS-induced colitis. We searched MEDLINE via Pubmed platform for studies published through December 2018, using MeSH terms (Crohn Disease.kw) OR (Inflammatory Bowel Diseases.kw) OR (Colitis, Ulcerative.kw) AND (trinitrobenzenesulfonic acid.kw) AND (disease models, animal.kw) AND (mice.all). The inclusion criteria were original articles, preclinical studies in vivo using mice, chronic model of colitis, and TNBS as the inducer of colitis and articles published in English. Chronic TNBS-induced colitis is made with multiple TNBS intrarectal administrations in an average dose of 1.2 mg using a volume lower than 150 μL in 50% ethanol. The strains mostly used are Balb/c and C57BL/6 with 5–6 weeks. To characterize the preclinical model the parameters more used include body weight, stool consistency and morbidity, inflammatory biomarkers like interferon (IFN)-γ, myeloperoxidase (MPO), tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-10, presence of ulcers, thickness or hyperemia in the colon, and histological evaluation of the inflammation. Experimental chronic colitis is induced by multiple rectal instillations of TNBS increasing doses in ethanol using Balb/c and C57BL/6 mice.
Collapse
Affiliation(s)
- Inês Silva
- H&TRC–Health and Technology Research Center, ESTeSL–Lisbon School of Health Technology, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal;
- iMed.ULisboa, Faculdade de Farmácia, Universidade de Lisboa, 1990-096 Lisboa, Portugal;
| | - Rui Pinto
- iMed.ULisboa, Faculdade de Farmácia, Universidade de Lisboa, 1990-096 Lisboa, Portugal;
- JCS, Dr. Joaquim Chaves, Laboratório de Análises Clínicas, Miraflores, 1495-069 Algés, Portugal
| | - Vanessa Mateus
- H&TRC–Health and Technology Research Center, ESTeSL–Lisbon School of Health Technology, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal;
- iMed.ULisboa, Faculdade de Farmácia, Universidade de Lisboa, 1990-096 Lisboa, Portugal;
- Correspondence: ; Tel.: +351-218-980-400; Fax: +351-218-980-460
| |
Collapse
|
10
|
Yamamoto K, Kitawaki T, Sugimoto N, Fujita H, Kawase Y, Takaori-Kondo A, Kadowaki N. Anti-inflammatory modulation of human myeloid-derived dendritic cell subsets by lenalidomide. Immunol Lett 2019; 211:41-48. [PMID: 31141702 DOI: 10.1016/j.imlet.2019.05.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/07/2019] [Accepted: 05/24/2019] [Indexed: 01/22/2023]
Abstract
Although immunomodulatory drugs (IMiDs) were originally developed as anti-inflammatory drugs, they are effective for multiple myeloma. In order to gain further insights into the immunomodulatory mechanisms of IMiDs for the treatment of inflammatory disorders and myeloma, we investigated the influence of a representative IMiD, lenalidomide, on human primary dendritic cell (DC) subsets: myeloid-derived CD1c+ DCs, CD141+ DCs, and plasmacytoid DCs. Lenalidomide did not affect the viability or expression of costimulatory molecules, but it potently suppressed the production of the key inflammatory cytokines IL-12 and IL-23, and enhanced the production of the anti-inflammatory cytokine IL-10 by CD1c+ DCs. Lenalidomide also suppressed the production of IFN-α by CD141+ DCs but not that by plasmacytoid DCs. Lenalidomide likely targets pathways downstream of the nuclear translocation of the transcription factors nuclear factor κB (NF-κB) and IFN regulatory 5 (IRF5) in CD1c+ DCs. Consistent with the direct immunomodulatory effects on DCs, lenalidomide decreased the capacity of CD1c+ DCs to induce differentiation of naïve CD4+ T cells into effector cells producing immune activating and myeloma-promoting cytokines. This study demonstrated that lenalidomide has anti-inflammatory effects via the modulation of cytokine production by human myeloid-derived DCs. Such effects on DCs may allow for beneficial immunomodulation aiding in the treatment of inflammatory disorders and multiple myeloma.
Collapse
Affiliation(s)
- Kazuyo Yamamoto
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Toshio Kitawaki
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Naoshi Sugimoto
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8397, Japan
| | - Haruyuki Fujita
- Department of Internal Medicine, Division of Hematology, Rheumatology and Respiratory Medicine, Faculty of Medicine, Kagawa University, Kagawa 761-0793, Japan
| | - Yumi Kawase
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Akifumi Takaori-Kondo
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Norimitsu Kadowaki
- Department of Internal Medicine, Division of Hematology, Rheumatology and Respiratory Medicine, Faculty of Medicine, Kagawa University, Kagawa 761-0793, Japan.
| |
Collapse
|
11
|
Inhibitor eradication in refractory acquired hemophilia with lenalidomide. Ann Hematol 2019; 98:1533-1535. [PMID: 30706086 DOI: 10.1007/s00277-019-03620-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 01/17/2019] [Indexed: 10/27/2022]
|
12
|
Vodusek Z, Feuerstadt P, Brandt LJ. Review article: the pharmacological causes of colon ischaemia. Aliment Pharmacol Ther 2019; 49:51-63. [PMID: 30467871 DOI: 10.1111/apt.15052] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 05/05/2018] [Accepted: 10/18/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND Colon ischaemia is the most common ischaemic disorder of the gastrointestinal system, can affect any segment of the colon, and may present with a range of symptoms. Diagnosis can be challenging due to symptom overlap with other conditions, varied aetiology, and often rapid and self-resolving course. AIM To review comprehensively the literature regarding the pharmacological aetiologies of colonic ischaemia to enhance the understanding of the various mechanisms of disease, presentations, distribution, and outcomes. METHODS A PubMed search for "colon ischaemia" and "ischaemic colitis" alone as well as in combination with various known pharmacologic causes was performed. Only the highest quality and relevant literature was included in this review. The quality of the literature for each association was rated by the authors and a consensus was made when discrepancies were encountered. Only associations that were deemed "moderate" or "strong" were included. RESULTS The literature considering pharmacologically associated colonic ischaemia is diverse, lacks codification and is characterised by numerous case reports and case series. Constipation-inducing drugs, digoxin, hormonal therapies, illicit drugs, immunomodulators, laxatives, and NSAIDs were strongly associated with colonic ischaemia. Antimicrobials, appetite suppressants, chemotherapies, decongestants, diuretics, ergot alkaloids, serotonin agents, statins, and vasopressor agents were moderately associated. CONCLUSIONS Patients presenting with abdominal pain, diarrhoea, or bloody stool need to be evaluated for the possibility of this condition and treated accordingly. Timely diagnosis is necessary to improve patient outcomes. This review aims to increase awareness among clinicians regarding the presentation of pharmacologically induced colonic ischaemia.
Collapse
Affiliation(s)
- Ziga Vodusek
- Frank H. Netter, MD. School of Medicine, Quinnipiac University, North Haven, Connecticut
| | - Paul Feuerstadt
- Gastroenterology Center of Connecticut, Yale University School of Medicine, Hamden, Connecticut
| | - Lawrence J Brandt
- Division of Gastroenterology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, New York
| |
Collapse
|
13
|
Ouyang W, Zhao X, Lu S, Wang Z. Prevalence of monoclonal gammopathy of uncertain significance in chronic myeloid leukemia: A case report. Medicine (Baltimore) 2018; 97:e13103. [PMID: 30383696 PMCID: PMC6221681 DOI: 10.1097/md.0000000000013103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
RATIONALE The abnormal cell types in chronic myeloid leukemia (CML) and monoclonal gammopathy of uncertain (MGUS) are quite different, being myeloid and plasma cells, respectively. The coexistence of CML and MGUS is an uncommon event, which is seldom reported in literature. PATIENT CONCERNS A 52-year-old female was diagnosed with CML in April 2001. From November 2006, the patient started on imatinib mesylate and kept a complete hematologic and cytogenetic response for nearly 11 years. During her follow-up on July 7, 2017, thrombocytopenia (35*109/L) was found. Bone marrow aspiration revealed 6% plasma cell infiltration. Serum immunoelectrophoresis revealed 1.24 g/dL of serum monoclonal (M) protein of IgG-κ type. DIAGNOSIS MGUS was diagnosed because of absence of anemia, hypercalcemia, lytic bone lesions, or renal failure. Immune thrombocytopenia (ITP) was also diagnosed in this patient following the detection of antiplatelet autoantibodies. Complex karyotype and missense mutation in PRDM1 were identified. INTERVENTIONS Because of her obvious decrease of platelets, she started treatment with thalidomide and prednisone. OUTCOMES Three months later, bone marrow aspirate showed disappearance of plasma cells. There developed an abrupt decrease in IgG and the absence of M-spike in serum immunoelectrophoresis. The platelet count kept normal during 1 year follow-up. LESSONS Karyotypic event and gene mutation found in this case may be the initiation of disease transformation. Administration of thalidomide and prednisone proved effective in this patient.
Collapse
|
14
|
Dziubak A, Wójcicka G, Wojtak A, Bełtowski J. Metabolic Effects of Metformin in the Failing Heart. Int J Mol Sci 2018; 19:ijms19102869. [PMID: 30248910 PMCID: PMC6213955 DOI: 10.3390/ijms19102869] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 09/11/2018] [Accepted: 09/17/2018] [Indexed: 01/03/2023] Open
Abstract
Accumulating evidence shows that metformin is an insulin-sensitizing antidiabetic drug widely used in the treatment of type 2 diabetes mellitus (T2DM), which can exert favorable effects on cardiovascular risk and may be safely used in patients with heart failure (HF), and even able to reduce the incidence of HF and to reduce HF mortality. In failing hearts, metformin improves myocardial energy metabolic status through the activation of AMP (adenosine monophosphate)-activated protein kinase (AMPK) and the regulation of lipid and glucose metabolism. By increasing nitric oxide (NO) bioavailability, limiting interstitial fibrosis, reducing the deposition of advanced glycation end-products (AGEs), and inhibiting myocardial cell apoptosis metformin reduces cardiac remodeling and hypertrophy, and thereby preserves left ventricular systolic and diastolic functions. While a lot of preclinical and clinical studies showed the cardiovascular safety of metformin therapy in diabetic patients and HF, to confirm observed benefits, the specific large-scale trials configured for HF development in diabetic patients as a primary endpoints are necessary.
Collapse
Affiliation(s)
- Aleksandra Dziubak
- Department of Pathophysiology, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland.
| | - Grażyna Wójcicka
- Department of Pathophysiology, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland.
| | - Andrzej Wojtak
- Department of Vascular Surgery, Medical University of Lubin, 20-090 Lublin, Poland.
| | - Jerzy Bełtowski
- Department of Pathophysiology, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland.
| |
Collapse
|
15
|
de la Guardia RD, Lopez-Millan B, Roca-Ho H, Bueno C, Gutiérrez-Agüera F, Fuster JL, Anguita E, Zanetti SR, Vives S, Nomdedeu J, Sackstein R, Lavoie J, Gónzalez-Rey E, Delgado M, Rosu-Myles M, Menendez P. Bone marrow mesenchymal stem/stromal cells from risk-stratified acute myeloid leukemia patients are anti-inflammatory in in vivo preclinical models of hematopoietic reconstitution and severe colitis. Haematologica 2018; 104:e54-e58. [PMID: 30237260 DOI: 10.3324/haematol.2018.196568] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Rafael Diaz de la Guardia
- Josep Carreras Leukemia Research Institute, Department of Biomedicine, School of Medicine, University of Barcelona, Spain
| | - Belen Lopez-Millan
- Josep Carreras Leukemia Research Institute, Department of Biomedicine, School of Medicine, University of Barcelona, Spain
| | - Heleia Roca-Ho
- Josep Carreras Leukemia Research Institute, Department of Biomedicine, School of Medicine, University of Barcelona, Spain
| | - Clara Bueno
- Josep Carreras Leukemia Research Institute, Department of Biomedicine, School of Medicine, University of Barcelona, Spain
| | - Francisco Gutiérrez-Agüera
- Josep Carreras Leukemia Research Institute, Department of Biomedicine, School of Medicine, University of Barcelona, Spain
| | - Jose Luis Fuster
- Sección de Oncohematología Pediátrica, Hospital Virgen de Arrixaca, Murcia, Spain
| | - Eduardo Anguita
- Servicio de Hematología, Hospital Clínico San Carlos, IdISSC, Medicina UCM, Madrid, Spain
| | - Samanta Romina Zanetti
- Josep Carreras Leukemia Research Institute, Department of Biomedicine, School of Medicine, University of Barcelona, Spain
| | - Susana Vives
- Hematology Department, ICO-Hospital Germans Trias i Pujol and Josep Carreras Leukemia Research Institute, Barcelona, Spain
| | - Josep Nomdedeu
- Servicio de Hematología, Hospital de la Santa Creu i Sant Pau and Josep Carreras Leukemia Research Institute, Barcelona, Spain
| | - Robert Sackstein
- Department of Medicine and Program of Excellence in Glycosciences, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jessie Lavoie
- Biologics and Genetic Therapies Directorate, Health Products and Food Branch, Health Canada, Ottawa, ON, Canada
| | - Elena Gónzalez-Rey
- Instituto de Parasitología y Biomedicina López-Neyra, CSIC, Granada, Spain
| | - Mario Delgado
- Instituto de Parasitología y Biomedicina López-Neyra, CSIC, Granada, Spain
| | - Michael Rosu-Myles
- Biologics and Genetic Therapies Directorate, Health Products and Food Branch, Health Canada, Ottawa, ON, Canada
| | - Pablo Menendez
- Josep Carreras Leukemia Research Institute, Department of Biomedicine, School of Medicine, University of Barcelona, Spain .,Instituciò Catalana de Reserca i EstudisAvançats (ICREA), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cancer (CIBER-ONC), Barcelona, Spain
| |
Collapse
|
16
|
Lopez-Millan B, Diaz de la Guardia R, Roca-Ho H, Anguita E, Islam ABMMK, Romero-Moya D, Prieto C, Gutierrez-Agüera F, Bejarano-Garcia JA, Perez-Simon JA, Costales P, Rovira M, Marín P, Menendez S, Iglesias M, Fuster JL, Urbano-Ispizua A, Anjos-Afonso F, Bueno C, Menendez P. IMiDs mobilize acute myeloid leukemia blasts to peripheral blood through downregulation of CXCR4 but fail to potentiate AraC/Idarubicin activity in preclinical models of non del5q/5q- AML. Oncoimmunology 2018; 7:e1477460. [PMID: 30228947 PMCID: PMC6140592 DOI: 10.1080/2162402x.2018.1477460] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 05/10/2018] [Accepted: 05/12/2018] [Indexed: 12/25/2022] Open
Abstract
Treatment for acute myeloid leukemia (AML) remains suboptimal and many patients remain refractory or relapse upon standard chemotherapy based on nucleoside analogs plus anthracyclines. The crosstalk between AML cells and the BM stroma is a major mechanism underlying therapy resistance in AML. Lenalidomide and pomalidomide, a new generation immunomodulatory drugs (IMiDs), possess pleiotropic anti-leukemic properties including potent immune-modulating effects and are commonly used in hematological malignances associated with intrinsic dysfunctional BM such as myelodysplastic syndromes and multiple myeloma. Whether IMiDs may improve the efficacy of current standard treatment in AML remains understudied. Here, we have exploited in vitro and in vivo preclinical AML models to analyze whether IMiDs potentiate the efficacy of AraC/Idarubicin-based standard AML chemotherapy by interfering with the BM stroma-mediated chemoresistance. We report that IMiDs do not exert cytotoxic effects on either non-del5q/5q- AML cells nor BM-MSCs, but they enhance the immunomodulatory properties of BM-MSCs. When combined with AraC/Idarubicin, IMiDs fail to circumvent BM stroma-mediated resistance of non-del5q/5q- AML cells in vitro and in vivo but induce robust extramedullary mobilization of AML cells. When administered as a single agent, lenalidomide specifically mobilizes non-del5q/5q- AML cells, but not healthy CD34+ cells, to peripheral blood (PB) through specific downregulation of CXCR4 in AML blasts. Global gene expression profiling supports a migratory/mobilization gene signature in lenalidomide-treated non-del5q/5q- AML blasts but not in CD34+ cells. Collectively, IMiDs mobilize non-del5q/5q- AML blasts to PB through CXCR4 downregulation, but fail to potentiate AraC/Idarubicin activity in preclinical models of non-del5q/5q- AML.
Collapse
Affiliation(s)
- Belen Lopez-Millan
- Department of Biomedicine, Josep Carreras Leukemia Research Institute-Campus Clinic, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Rafael Diaz de la Guardia
- Department of Biomedicine, Josep Carreras Leukemia Research Institute-Campus Clinic, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Heleia Roca-Ho
- Department of Biomedicine, Josep Carreras Leukemia Research Institute-Campus Clinic, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Eduardo Anguita
- Hematology Department, Hospital Clínico San Carlos, IdISSC, Universidad Complutense de Madrid, Madrid, Spain
| | - Abul B M M K Islam
- Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka, Bangladesh
| | - Damia Romero-Moya
- Department of Biomedicine, Josep Carreras Leukemia Research Institute-Campus Clinic, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Cristina Prieto
- Department of Biomedicine, Josep Carreras Leukemia Research Institute-Campus Clinic, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Francisco Gutierrez-Agüera
- Department of Biomedicine, Josep Carreras Leukemia Research Institute-Campus Clinic, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Jose Antonio Bejarano-Garcia
- Hematology department, Universidad de Sevilla, Instituto de Biomedicina de Sevilla (IBiS) Hospital Universitario Virgen del Rocío, CSIC, Seville, Spain.,Hematology Department, Hospital Universitario Virgen del Rocío, Seville, Spain
| | - Jose Antonio Perez-Simon
- Hematology department, Universidad de Sevilla, Instituto de Biomedicina de Sevilla (IBiS) Hospital Universitario Virgen del Rocío, CSIC, Seville, Spain
| | | | - Montse Rovira
- Hematology Department, Hospital Clínico de Barcelona, Barcelona, Spain
| | - Pedro Marín
- Hematology Department, Hospital Clínico de Barcelona, Barcelona, Spain
| | | | - Mar Iglesias
- Pathology Service, Hospital del Mar, Barcelona, Spain
| | - Jose Luis Fuster
- Oncohematology department, Sección de Oncohematología Pediátrica, Hospital Clínico Virgen de Arrixaca, Murcia, Spain
| | - Alvaro Urbano-Ispizua
- Department of Biomedicine, Josep Carreras Leukemia Research Institute-Campus Clinic, School of Medicine, University of Barcelona, Barcelona, Spain.,Hematology Department, Hospital Clínico de Barcelona, Barcelona, Spain.,ISCIII, Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain
| | - Fernando Anjos-Afonso
- Cardiff School of Biosciences, European Cancer Stem Cell Research Institute, Cardiff, UK
| | - Clara Bueno
- Department of Biomedicine, Josep Carreras Leukemia Research Institute-Campus Clinic, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Pablo Menendez
- Department of Biomedicine, Josep Carreras Leukemia Research Institute-Campus Clinic, School of Medicine, University of Barcelona, Barcelona, Spain.,ISCIII, Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain.,Instituciò Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
17
|
A thalidomide–hydroxyurea hybrid increases HbF production in sickle cell mice and reduces the release of proinflammatory cytokines in cultured monocytes. Exp Hematol 2018; 58:35-38. [DOI: 10.1016/j.exphem.2017.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 10/25/2017] [Accepted: 10/27/2017] [Indexed: 01/08/2023]
|
18
|
Evangelatos G, Vlachadami I, Kechagia M, Iliopoulos A. Rituximab and lenalidomide combination treatment for rheumatoid arthritis complicated with myelodysplastic syndrome: A case report. Mediterr J Rheumatol 2017; 28:217-220. [PMID: 32185287 PMCID: PMC7045997 DOI: 10.31138/mjr.28.4.217] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 10/29/2017] [Accepted: 11/10/2017] [Indexed: 02/02/2023] Open
Abstract
Rheumatoid arthritis patients might experience several hematologic complications. The development of myelodysplastic syndrome is not clearly associated with RA, even though it has been described in some patients with pre-existing disease. There are only few data available in the literature concerning the therapeutic approach of such patients. Herein, we report a case of RA complicated with progressive MDS, successfully treated with rituximab and lenalidomide combination therapy.
Collapse
Affiliation(s)
| | - Ioanna Vlachadami
- Department of Pathophysiology, General Hospital of Athens "Laiko", Athens, Greece
| | - Maria Kechagia
- Rheumatology Department, 417 Army Share Fund Hospital (NIMTS), Athens, Greece
| | - Alexios Iliopoulos
- Rheumatology Department, 417 Army Share Fund Hospital (NIMTS), Athens, Greece
| |
Collapse
|
19
|
Liu T, Guo F, Zhu X, He X, Xie L. Thalidomide and its analogues: A review of the potential for immunomodulation of fibrosis diseases and opthalmopathy. Exp Ther Med 2017; 14:5251-5257. [PMID: 29285050 DOI: 10.3892/etm.2017.5209] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 02/14/2017] [Indexed: 12/11/2022] Open
Abstract
The US Food and Drug Administration approved thalidomide and its analogues for the treatment of erythema nodosum leprosum, in spite of the notoriety of reports of severe birth defects in the middle of the last century. As immunomodulatory drugs, thalidomide and its analogues have been used to effectively treat various diseases. In the present review, preclinical data about the effects of thalidomide and its analogues on the immune system are integrated, including the effects of cytokines on transdifferentiation, the anti-inflammatory effect, immune cell function regulation and angiogenesis. The present review also investigates the latest developments of thalidomide as a therapeutic option for the treatment of idiopathic pulmonary fibrosis, skin fibrosis, and ophthalmopathies.
Collapse
Affiliation(s)
- Ting Liu
- Department of Ophthalmology, Daping Hospital and Research Institute of Surgery, The Third Military Medical University, People's Liberation Army, Chongqing 400042, P.R. China
| | - Feng Guo
- Department of Ophthalmology, Daping Hospital and Research Institute of Surgery, The Third Military Medical University, People's Liberation Army, Chongqing 400042, P.R. China
| | - Xiaomin Zhu
- Department of Ophthalmology, Daping Hospital and Research Institute of Surgery, The Third Military Medical University, People's Liberation Army, Chongqing 400042, P.R. China
| | - Xiangge He
- Department of Ophthalmology, Daping Hospital and Research Institute of Surgery, The Third Military Medical University, People's Liberation Army, Chongqing 400042, P.R. China
| | - Lin Xie
- Department of Ophthalmology, Daping Hospital and Research Institute of Surgery, The Third Military Medical University, People's Liberation Army, Chongqing 400042, P.R. China
| |
Collapse
|
20
|
Diaz de la Guardia R, Lopez-Millan B, Lavoie JR, Bueno C, Castaño J, Gómez-Casares M, Vives S, Palomo L, Juan M, Delgado J, Blanco ML, Nomdedeu J, Chaparro A, Fuster JL, Anguita E, Rosu-Myles M, Menéndez P. Detailed Characterization of Mesenchymal Stem/Stromal Cells from a Large Cohort of AML Patients Demonstrates a Definitive Link to Treatment Outcomes. Stem Cell Reports 2017; 8:1573-1586. [PMID: 28528702 PMCID: PMC5470078 DOI: 10.1016/j.stemcr.2017.04.019] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 04/15/2017] [Accepted: 04/18/2017] [Indexed: 01/01/2023] Open
Abstract
Bone marrow mesenchymal stem/stromal cells (BM-MSCs) are key components of the hematopoietic niche thought to have a direct role in leukemia pathogenesis. BM-MSCs from patients with acute myeloid leukemia (AML) have been poorly characterized due to disease heterogeneity. We report a functional, genetic, and immunological characterization of BM-MSC cultures from 46 AML patients, stratified by molecular/cytogenetics into low-risk (LR), intermediate-risk (IR), and high-risk (HR) subgroups. Stable MSC cultures were successfully established and characterized from 40 of 46 AML patients irrespective of the risk subgroup. AML-derived BM-MSCs never harbored tumor-specific cytogenetic/molecular alterations present in blasts, but displayed higher clonogenic potential than healthy donor (HD)-derived BM-MSCs. Although HD- and AML-derived BM-MSCs equally provided chemoprotection to AML cells in vitro, AML-derived BM-MSCs were more immunosuppressive/anti-inflammatory, enhanced suppression of lymphocyte proliferation, and diminished secretion of pro-inflammatory cytokines. Multivariate analysis revealed that the level of interleukin-10 produced by AML-derived BM-MSCs as an independent prognostic factor negatively affected overall survival. Collectively our data show that AML-derived BM-MSCs are not tumor related, but display functional differences contributing to therapy resistance and disease evolution.
Collapse
Affiliation(s)
- Rafael Diaz de la Guardia
- Josep Carreras Leukemia Research Institute, Department of Biomedicine, School of Medicine, Universitat de Barcelona, Casanova 143, Barcelona 08036, Spain; Centro de Investigación Biomédica en Red-Oncología (CIBERONC), ISCIII, Madrid 28031, Spain.
| | - Belen Lopez-Millan
- Josep Carreras Leukemia Research Institute, Department of Biomedicine, School of Medicine, Universitat de Barcelona, Casanova 143, Barcelona 08036, Spain; Centro de Investigación Biomédica en Red-Oncología (CIBERONC), ISCIII, Madrid 28031, Spain
| | - Jessie R Lavoie
- Regulatory Research Division, Centre for Biologics Evaluation, Biologics and Genetic Therapies Directorate, Health Canada, Ottawa, ON K1A 0L2, Canada
| | - Clara Bueno
- Josep Carreras Leukemia Research Institute, Department of Biomedicine, School of Medicine, Universitat de Barcelona, Casanova 143, Barcelona 08036, Spain; Centro de Investigación Biomédica en Red-Oncología (CIBERONC), ISCIII, Madrid 28031, Spain
| | - Julio Castaño
- Josep Carreras Leukemia Research Institute, Department of Biomedicine, School of Medicine, Universitat de Barcelona, Casanova 143, Barcelona 08036, Spain; Centro de Investigación Biomédica en Red-Oncología (CIBERONC), ISCIII, Madrid 28031, Spain
| | - Maite Gómez-Casares
- Servicio de Hematología, Hospital Universitario de Gran Canaria Dr. Negrin, Las Palmas de Gran Canaria 35010, Spain
| | - Susana Vives
- Hematology Department, ICO-Hospital Germans Trias i Pujol, Badalona 08916, Spain; Josep Carreras Leukemia Research Institute, Universitat Autònoma Barcelona, Barcelona 08193, Spain
| | - Laura Palomo
- Hematology Department, ICO-Hospital Germans Trias i Pujol, Badalona 08916, Spain; Josep Carreras Leukemia Research Institute, Universitat Autònoma Barcelona, Barcelona 08193, Spain
| | - Manel Juan
- Servicio de Inmunología, Hospital Clínico de Barcelona, Barcelona 08036, Spain
| | - Julio Delgado
- Centro de Investigación Biomédica en Red-Oncología (CIBERONC), ISCIII, Madrid 28031, Spain; Servicio de Hematología, Hospital Clínico de Barcelona, Barcelona 08036, Spain
| | - Maria L Blanco
- Servicio de Hematología, Hospital de la Santa Creu I Sant Pau, Barcelona 08041, Spain
| | - Josep Nomdedeu
- Servicio de Hematología, Hospital de la Santa Creu I Sant Pau, Barcelona 08041, Spain
| | - Alberto Chaparro
- Hematology Department, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid 28040, Spain
| | - Jose Luis Fuster
- Sección de Oncohematología Pediátrica, Hospital Clínico Virgen de Arrixaca, Murcia 30120, Spain
| | - Eduardo Anguita
- Hematology Department, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid 28040, Spain
| | - Michael Rosu-Myles
- Regulatory Research Division, Centre for Biologics Evaluation, Biologics and Genetic Therapies Directorate, Health Canada, Ottawa, ON K1A 0L2, Canada.
| | - Pablo Menéndez
- Josep Carreras Leukemia Research Institute, Department of Biomedicine, School of Medicine, Universitat de Barcelona, Casanova 143, Barcelona 08036, Spain; Centro de Investigación Biomédica en Red-Oncología (CIBERONC), ISCIII, Madrid 28031, Spain; Instituciò Catalana de Recerca i Estudis Avançats (ICREA), Barcelona 08010, Spain.
| |
Collapse
|