1
|
Zhao D, Wu J, Ma Y, Zhang J, Feng X, Fan Y, Xiong X, Fu W, Li J, Xiong Y. The molecular characteristic analysis of TRIB2 gene and its expressional patterns in Bos grunniens tissue and granulosa cells. Anim Biotechnol 2023; 34:2846-2854. [PMID: 36125800 DOI: 10.1080/10495398.2022.2121716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Tribbles homolog 2 (TRIB2) plays an important role in the follicular development of female mammals. However, its expression and function in the yak (Bos grunniens) are still unclear. In this study, we predicted the molecular characteristics of TRIB2, and revealed its expression pattern in yak (Bos grunniens) tissues and ovarian granulosa cells. We cloned the full length of the yak TRIB2 gene obtained by RT-PCR was 1368 bp and the coding sequence (CDS) was 624 bp, encoding 207 amino acids (AA). Homology analysis showed that the yak TRIB2 is highly conserved among species. TRIB2 was detected to be extensively expressed in seven tissues of the yak liver, spleen, lung, kidney, ovary, oviduct and uterus by qPCR. The expression of TRIB2 mRNA in the ovary during gestation was significantly lower than that in the non-pregnant (p < 0.05). At each stage of follicle development, the TRIB2 mRNA in granulosa cells showed a significant upward trend with the development of follicles. The expression of TRIB2 gradually decreased with the increase of the culture time of the granulosa cells in vitro. In conclusion, these results suggest that TRIB2 may play an important role in the follicular development of yaks.
Collapse
Affiliation(s)
- Dan Zhao
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Chengdu, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu, Sichuan Province, China
- Key Laboratory for Animal Science of National Ethnic Affairs Commission, Chengdu, Sichuan, China
| | - Jiyun Wu
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, China
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yan Ma
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Chengdu, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu, Sichuan Province, China
- Key Laboratory for Animal Science of National Ethnic Affairs Commission, Chengdu, Sichuan, China
| | - Jiyue Zhang
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Chengdu, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu, Sichuan Province, China
- Key Laboratory for Animal Science of National Ethnic Affairs Commission, Chengdu, Sichuan, China
| | - Xinxin Feng
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Chengdu, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu, Sichuan Province, China
- Key Laboratory for Animal Science of National Ethnic Affairs Commission, Chengdu, Sichuan, China
| | - Yiling Fan
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Chengdu, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu, Sichuan Province, China
- Key Laboratory for Animal Science of National Ethnic Affairs Commission, Chengdu, Sichuan, China
| | - Xianrong Xiong
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Chengdu, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu, Sichuan Province, China
- Key Laboratory for Animal Science of National Ethnic Affairs Commission, Chengdu, Sichuan, China
| | - Wei Fu
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Chengdu, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu, Sichuan Province, China
- Key Laboratory for Animal Science of National Ethnic Affairs Commission, Chengdu, Sichuan, China
| | - Jian Li
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Chengdu, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu, Sichuan Province, China
- Key Laboratory for Animal Science of National Ethnic Affairs Commission, Chengdu, Sichuan, China
| | - Yan Xiong
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Chengdu, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu, Sichuan Province, China
- Key Laboratory for Animal Science of National Ethnic Affairs Commission, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Wang K, Liufu S, Yu Z, Xu X, Ai N, Li X, Liu X, Chen B, Zhang Y, Ma H, Yin Y. miR-100-5p Regulates Skeletal Muscle Myogenesis through the Trib2/mTOR/S6K Signaling Pathway. Int J Mol Sci 2023; 24:ijms24108906. [PMID: 37240251 DOI: 10.3390/ijms24108906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
MicroRNAs (miRNAs) are endogenous small non-coding RNAs that play crucial regulatory roles in many biological processes, including the growth and development of skeletal muscle. miRNA-100-5p is often associated with tumor cell proliferation and migration. This study aimed to uncover the regulatory mechanism of miRNA-100-5p in myogenesis. In our study, we found that the miRNA-100-5p expression level was significantly higher in muscle tissue than in other tissues in pigs. Functionally, this study shows that miR-100-5p overexpression significantly promotes the proliferation and inhibits the differentiation of C2C12 myoblasts, whereas miR-100-5p inhibition results in the opposite effects. Bioinformatic analysis predicted that Trib2 has potential binding sites for miR-100-5p at the 3'UTR region. A dual-luciferase assay, qRT-qPCR, and Western blot confirmed that Trib2 is a target gene of miR-100-5p. We further explored the function of Trib2 in myogenesis and found that Trib2 knockdown markedly facilitated proliferation but suppressed the differentiation of C2C12 myoblasts, which is contrary to the effects of miR-100-5p. In addition, co-transfection experiments demonstrated that Trib2 knockdown could attenuate the effects of miR-100-5p inhibition on C2C12 myoblasts differentiation. In terms of the molecular mechanism, miR-100-5p suppressed C2C12 myoblasts differentiation by inactivating the mTOR/S6K signaling pathway. Taken together, our study results indicate that miR-100-5p regulates skeletal muscle myogenesis through the Trib2/mTOR/S6K signaling pathway.
Collapse
Affiliation(s)
- Kaiming Wang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Sui Liufu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Zonggang Yu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Xueli Xu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Nini Ai
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Xintong Li
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Xiaolin Liu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Bohe Chen
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Yuebo Zhang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Haiming Ma
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Yulong Yin
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| |
Collapse
|
3
|
Sohn EJ, Kim JH, Oh SO, Kim JY. Regulation of self-renewal in ovarian cancer stem cells by fructose via chaperone-mediated autophagy. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166723. [PMID: 37087023 DOI: 10.1016/j.bbadis.2023.166723] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 04/24/2023]
Abstract
The chaperone-mediated autophagy (CMA) pathway is deregulated in different types of cancers; however, its role in cancer stem cells (CSCs) is unknown yet. Development of ovarian cancer, the most lethal gynecological type of cancer, involves the metastasis of CSCs to the abdominal cavity. This study aims to determine the role of CMA in ovarian CSCs. We found that the transcription factor EB (TFEB) and trehalose, a disaccharide that induces TFEB activation, enhance the expression of octamer-binding transcription factor 4 (OCT4) stem cell and lysosomal-associated membrane protein 2A (LAMP2A) CMA markers. However, trehalose did not increase the level of the LC3II macroautophagy marker in ovarian CSCs. In A2780 and SKOV3 ovarian CSCs, LAMP2A and heat shock protein 70 (HSC70) exhibited higher expression levels than in normal adherent cells. Our results showed that the silencing of the LAMP2A gene resulted in reduced sphere formation and enhanced GLUT5 expression in ovarian CSCs. Moreover, the treatment with fructose reduced sphere formation and enhanced the expression levels of LAMP2A, SOX2, and OCT4 in ovarian CSCs. The KEGG functional analysis revealed that differentially expressed genes were enriched in the ferroptosis pathway in A2780-spheroid (SP) cells after treatment with fructose. In A2780-SP and SKOV3-SP cells, the level of SLC7A11 decreased whereas FTH increased after treatment with fructose. Taken together, our results suggest that CMA is mediated in CSCs via fructose metabolism.
Collapse
Affiliation(s)
- Eun Jung Sohn
- College of Medicine, Pusan National University, Yangsan, Republic of Korea.; Inje University, 197 Injero, Gimhae 50834, Republic of Korea.
| | - Jae Ho Kim
- Department of Physiology, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Sec-Ok Oh
- Department of Anatomy, School of Medicine, Yangsan, Republic of Korea; Korea School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Jin-Young Kim
- The School of Korean Medicine Pusan National University, Yangsan 50612, Republic of Korea; Korea Pusan National University, Yangsan, Republic of Korea
| |
Collapse
|
4
|
Murray HC, Osterman C, Bell P, Vinnell L, Curtis MA. Neuropathology in chronic traumatic encephalopathy: a systematic review of comparative post-mortem histology literature. Acta Neuropathol Commun 2022; 10:108. [PMID: 35933388 PMCID: PMC9356428 DOI: 10.1186/s40478-022-01413-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/23/2022] [Indexed: 11/10/2022] Open
Abstract
Chronic traumatic encephalopathy (CTE) is a neurodegenerative disease associated with repetitive head trauma and is characterised by the perivascular accumulation of hyperphosphorylated tau (p-tau) in the depths of cortical sulci. CTE can only be diagnosed postmortem and the cellular mechanisms of disease causation remain to be elucidated. Understanding the full scope of the pathological changes currently identified in CTE is necessary to identify areas requiring further research. This systematic review summarises the current literature on CTE pathology from postmortem human tissue histology studies published until 31 December 2021. Publications were included if they quantitively or qualitatively compared postmortem human tissue pathology in CTE to neuropathologically normal cases or other neurodegenerative diseases such as Alzheimer's disease (AD). Pathological entities investigated included p-tau, beta-amyloid, TDP-43, Lewy bodies, astrogliosis, microgliosis, axonopathy, vascular dysfunction, and cell stress. Of these pathologies, p-tau was the most frequently investigated, with limited reports on other pathological features such as vascular dysfunction, astrogliosis, and microgliosis. Consistent increases in p-tau, TDP-43, microgliosis, axonopathy, and cell stress were reported in CTE cases compared to neuropathologically normal cases. However, there was no clear consensus on how these pathologies compared to AD. The CTE cases used for these studies were predominantly from the VA-BU-CLF brain bank, with American football and boxing as the most frequent sources of repetitive head injury exposure. Overall, this systematic review highlights gaps in the literature and proposes three priorities for future research including: 1. The need for studies of CTE cases with more diverse head injury exposure profiles to understand the consistency of pathology changes between different populations. 2. The need for more studies that compare CTE with normal ageing and AD to further clarify the pathological signature of CTE for diagnostic purposes and to understand the disease process. 3. Further research on non-aggregate pathologies in CTE, such as vascular dysfunction and neuroinflammation. These are some of the least investigated features of CTE pathology despite being implicated in the acute phase response following traumatic head injury.
Collapse
Affiliation(s)
- Helen C. Murray
- Department of Anatomy and Medical Imaging and Centre for Brain Research, Faculty of Medical and Health Science, University of Auckland, Auckland, 1023 New Zealand
| | - Chelsie Osterman
- Department of Anatomy and Medical Imaging and Centre for Brain Research, Faculty of Medical and Health Science, University of Auckland, Auckland, 1023 New Zealand
| | - Paige Bell
- Department of Anatomy and Medical Imaging and Centre for Brain Research, Faculty of Medical and Health Science, University of Auckland, Auckland, 1023 New Zealand
| | - Luca Vinnell
- Department of Anatomy and Medical Imaging and Centre for Brain Research, Faculty of Medical and Health Science, University of Auckland, Auckland, 1023 New Zealand
| | - Maurice A. Curtis
- Department of Anatomy and Medical Imaging and Centre for Brain Research, Faculty of Medical and Health Science, University of Auckland, Auckland, 1023 New Zealand
| |
Collapse
|
5
|
Mai Z, Mi Y, Jiang M, Wan S, Di Q. Expression and Related Mechanisms of miR-100 and TRIB2 in COPD Patients. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:6556208. [PMID: 35494527 PMCID: PMC9050250 DOI: 10.1155/2022/6556208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/28/2022] [Indexed: 11/18/2022]
Abstract
Background Chronic obstructive pulmonary disease (COPD) is one of the most common chronic respiratory diseases in the world. COPD is a general term for a class of lung diseases, including emphysema, chronic bronchitis, and refractory asthma. It is characterized by irreversible airflow obstruction and chronic tracheal inflammation. Objective This study aimed to investigate the expression and related mechanisms of miR-100 and TRIB2 in patients with COPD. Methods We collected the serum of patients admitted to our hospital and healthy volunteers undergoing physical examination at the same time, pulmonary fibroblasts were purchased for the experiments, miR-100 was overexpressed, and TRIB2 expression was inhibited in cells. The miR-100 and TRIB2 expression levels in serum and cells were detected by qRT-PCR and Western blot, cell proliferation and apoptosis were detected by CCK-8 and flow cytometry, and the relationship between miR-100 and TRIB2 was explored by the dual-luciferase report. Results The miR-100 expression in the serum of the COPD group was expressed normally, while the TRIB2 expression was expressed abnormally (p < 0.05). The AUC of serum miR-146a and TRIB2 for COPD diagnosis were 0.965 and 0.954, respectively. Overexpressing miR-100 and inhibiting the TRIB2 expression could decrease cell proliferation and increase apoptosis rate. According to the dual-luciferase report, miR-100 and TRIB2 had a targeted regulatory relationship. Rescue experiments showed that overexpressing TRIB2 could reverse the changes of cell proliferation and apoptosis caused by overexpression of miR-100. Conclusion miR-100 and TRIB2 were expressed abnormally in serum of COPD patients, and miR-100 could inhibit proliferation of pulmonary fibroblasts and promote their apoptosis.
Collapse
Affiliation(s)
- Zhitao Mai
- Department of Respiratory and Critical Care Medicine, Cangzhou Central Hospital, Cangzhou 061001, Hebei, China
| | - Ya Mi
- Hemodialysis Room, Cangzhou Central Hospital, Cangzhou 061001, Hebei, China
| | - Mingming Jiang
- Department of Respiratory and Critical Care Medicine, Cangzhou Central Hospital, Cangzhou 061001, Hebei, China
| | - Shanzhi Wan
- Department of Respiratory and Critical Care Medicine, Cangzhou Central Hospital, Cangzhou 061001, Hebei, China
| | - Qingguo Di
- Department of Respiratory and Critical Care Medicine, Cangzhou Central Hospital, Cangzhou 061001, Hebei, China
| |
Collapse
|
6
|
Liu Z, Zhan A, Fan S, Liao L, Lian W. DNCP induces the differentiation of induced pluripotent stem cells into odontoblasts by activating the Smad/p-Smad and p38/p-p38 signaling pathways. Exp Ther Med 2021; 22:1361. [PMID: 34659507 DOI: 10.3892/etm.2021.10481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 03/11/2021] [Indexed: 11/06/2022] Open
Abstract
In recent years, stem cells have been studied for treating tooth loss. The present study aimed to investigate the roles of dentin non-collagen protein (DNCP)-associated microenvironments in the differentiation of induced pluripotent stem cells (iPSCs) into dentin cells. iPSCs were cultured and identified by examining octamer-binding transcription-factor-4 (Oct-4) and sex-determining region-Y-2 (Sox-2) expression. iPSCs were differentiated by culturing DNCP-associated microenvironments (containing specific growth factors), and they were divided into control, DNCP, DNCP+bone morphogenetic proteins (BMPs) and DNCP+Noggin (a BMP inhibitor) groups. Msh homeobox 1 (Msx-1), dentin sialophosphoprotein (DSPP) and dentin matrix protein 1 (DMP-1) mRNA expression was evaluated using reverse transcription-quantitative PCR. The levels of p38, phosphorylated (p)-p38, Smad and p-Smad were determined by western blotting. Upon treatment with mouse embryonic fibroblasts, iPSCs-dependent embryoid bodies (EBs) were successfully generated. iPSCs exhibited increased Oct-4 and Sox-2 expression. Differentiated iPSCs had higher expression levels of DSPP, DMP-1 and Msx-1 in the DNCP group compared with those in the control group (P<0.05). Noggin treatment significantly downregulated, while BMPs administration significantly increased the expression levels of DSPP, DMP-1 and Msx-1 compared with those of the DNCP group (P<0.05). The ratios of p-p38/p38 and p-Smad/Smad were significantly higher in the DNCP group compared with those in the control group (P<0.05). Noggin and BMPs significantly decreased ratios of p-p38/p38, compared with those of the DNCP group (P<0.05). In conclusion, DNCP induced the differentiation of iPSCs into odontoblasts by activating the Smad/p-Smad and p38/p-p38 signaling pathways.
Collapse
Affiliation(s)
- Zhe Liu
- Department of Prosthodontics, Affiliated Stomatological Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China.,Key Laboratory of Oral Biomedicine of Jiangxi Province, Affiliated Stomatological Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Aiping Zhan
- Department of Prosthodontics, Affiliated Stomatological Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China.,Key Laboratory of Oral Biomedicine of Jiangxi Province, Affiliated Stomatological Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Sumeng Fan
- Department of Prosthodontics, Affiliated Stomatological Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China.,Key Laboratory of Oral Biomedicine of Jiangxi Province, Affiliated Stomatological Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Lan Liao
- Department of Prosthodontics, Affiliated Stomatological Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China.,Key Laboratory of Oral Biomedicine of Jiangxi Province, Affiliated Stomatological Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Wenwei Lian
- Department of Prosthodontics, Affiliated Stomatological Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China.,Key Laboratory of Oral Biomedicine of Jiangxi Province, Affiliated Stomatological Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
7
|
Kim DK, Kim YN, Kim YE, Lee SY, Shin MJ, Do EK, Choi KU, Kim SC, Kim KH, Suh DS, Song P, Kim JH. TRIB2 Stimulates Cancer Stem-Like Properties through Activating the AKT-GSK3β-β-Catenin Signaling Axis. Mol Cells 2021; 44:481-492. [PMID: 34326276 PMCID: PMC8334352 DOI: 10.14348/molcells.2021.0030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/11/2021] [Accepted: 05/28/2021] [Indexed: 12/13/2022] Open
Abstract
Tribbles homolog 2 (TRIB2) is implicated in tumorigenesis and drug resistance in various types of cancers. However, the role of TRIB2 in the regulation of tumorigenesis and drug resistance of cancer stem cells (CSCs) is still elusive. In the present study, we showed increased expression of TRIB2 in spheroid-forming and aldehyde dehydrogenase-positive CSC populations of A2780 epithelial ovarian cancer cells. Short hairpin RNA-mediated silencing of TRIB2 expression attenuates the spheroid-forming, migratory, tumorigenic, and drug-resistant properties of A2780 cells, whereas overexpression of TRIB2 increases the CSC-like characteristics. TRIB2 overexpression induced GSK3β inactivation by augmenting AKT-dependent phosphorylation of GSK3β at Ser9, followed by increasing β-catenin level via reducing the GSK3β-mediated phosphorylation of β-catenin. Treatment of TRIB2-ovexpressed A2780 cells with the phosphoinositide-3-kinase inhibitor LY294002 abrogated TRIB2-stimulated proliferation, migration, drug resistance of A2780 cells. These results suggest a critical role for TRIB2 in the regulation of CSC-like properties by increasing the stability of β-catenin protein via the AKT-GSK3β-dependent pathways.
Collapse
Affiliation(s)
- Dae Kyoung Kim
- Department of Physiology, School of Medicine, Pusan National University, Yangsan 50612, Korea
| | - Yu Na Kim
- Department of Physiology, School of Medicine, Pusan National University, Yangsan 50612, Korea
| | - Ye Eun Kim
- Department of Physiology, School of Medicine, Pusan National University, Yangsan 50612, Korea
| | - Seo Yul Lee
- Department of Physiology, School of Medicine, Pusan National University, Yangsan 50612, Korea
| | - Min Joo Shin
- Department of Physiology, School of Medicine, Pusan National University, Yangsan 50612, Korea
| | - Eun Kyoung Do
- Department of Physiology, School of Medicine, Pusan National University, Yangsan 50612, Korea
| | - Kyung-Un Choi
- Department of Pathology, School of Medicine, Pusan National University, Yangsan 50612, Korea
| | - Seung-Chul Kim
- Department of Obstetrics and Gynecology, School of Medicine, Pusan National University, Yangsan 50612, Korea
| | - Ki-Hyung Kim
- Department of Obstetrics and Gynecology, School of Medicine, Pusan National University, Yangsan 50612, Korea
| | - Dong-Soo Suh
- Department of Obstetrics and Gynecology, School of Medicine, Pusan National University, Yangsan 50612, Korea
| | - Parkyong Song
- Department of Convergence Medicine, School of Medicine, Pusan National University, Yangsan 50612, Korea
| | - Jae Ho Kim
- Department of Physiology, School of Medicine, Pusan National University, Yangsan 50612, Korea
- Research Institute of Convergence Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Korea
| |
Collapse
|
8
|
Mayoral-Varo V, Jiménez L, Link W. The Critical Role of TRIB2 in Cancer and Therapy Resistance. Cancers (Basel) 2021; 13:cancers13112701. [PMID: 34070799 PMCID: PMC8198994 DOI: 10.3390/cancers13112701] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 05/24/2021] [Accepted: 05/27/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary The Tribbles proteins are members of CAMK Ser/Thr protein kinase family. They are evolutionary conserved pseudokinases found in most tissues of eukaryotic organisms. This ubiquitously expressed protein family is characterized by containing a catalytically deficient kinase domain which lacks amino acid residues required for the productive interaction with ATP and metal ions. Tribbles proteins exert their biological functions mainly through direct interaction with MAPKK and AKT proteins, therefore regulating important pathways involved in cell proliferation, apoptosis and differentiation. Due to the role of MAPKK and AKT signalling in the context of cancer development, Tribbles proteins have been recently considered as biomarkers of cancer progression. Furthermore, as the atypical pseudokinase domain retains a binding platform for substrates, Tribbles targeting provides an attractive opportunity for drug development. Abstract The Tribbles pseudokinases family consists of TRIB1, TRIB2, TRIB3 and STK40 and, although evolutionarily conserved, they have distinctive characteristics. Tribbles members are expressed in a context and cell compartment-dependent manner. For example, TRIB1 and TRIB2 have potent oncogenic activities in vertebrate cells. Since the identification of Tribbles proteins as modulators of multiple signalling pathways, recent studies have linked their expression with several pathologies, including cancer. Tribbles proteins act as protein adaptors involved in the ubiquitin-proteasome degradation system, as they bridge the gap between substrates and E3 ligases. Between TRIB family members, TRIB2 is the most ancestral member of the family. TRIB2 is involved in protein homeostasis regulation of C/EBPα, β-catenin and TCF4. On the other hand, TRIB2 interacts with MAPKK, AKT and NFkB proteins, involved in cell survival, proliferation and immune response. Here, we review the characteristic features of TRIB2 structure and signalling and its role in many cancer subtypes with an emphasis on TRIB2 function in therapy resistance in melanoma, leukemia and glioblastoma. The strong evidence between TRIB2 expression and chemoresistance provides an attractive opportunity for targeting TRIB2.
Collapse
|
9
|
Fang Y, Zekiy AO, Ghaedrahmati F, Timoshin A, Farzaneh M, Anbiyaiee A, Khoshnam SE. Tribbles homolog 2 (Trib2), a pseudo serine/threonine kinase in tumorigenesis and stem cell fate decisions. Cell Commun Signal 2021; 19:41. [PMID: 33794905 PMCID: PMC8015142 DOI: 10.1186/s12964-021-00725-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/16/2021] [Indexed: 02/08/2023] Open
Abstract
The family of Tribbles proteins play many critical nonenzymatic roles and regulate a wide range of key signaling pathways. Tribbles homolog 2 (Trib2) is a pseudo serine/threonine kinase that functions as a scaffold or adaptor in various physiological and pathological processes. Trib2 can interact with E3 ubiquitin ligases and control protein stability of downstream effectors. This protein is induced by mitogens and enhances the propagation of several cancer cells, including myeloid leukemia, liver, lung, skin, bone, brain, and pancreatic. Thus, Trib2 can be a predictive and valuable biomarker for the diagnosis and treatment of cancer. Recent studies have illustrated that Trib2 plays a major role in cell fate determination of stem cells. Stem cells have the capacity to self-renew and differentiate into specific cell types. Stem cells are important sources for cell-based regenerative medicine and drug screening. Trib2 has been found to increase the self-renewal ability of embryonic stem cells, the reprogramming efficiency of somatic cells, and chondrogenesis. In this review, we will focus on the recent advances of Trib2 function in tumorigenesis and stem cell fate decisions. Video abstract
Collapse
Affiliation(s)
- Yu Fang
- Anyang Center for Chemical and Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, 455000, Henan, People's Republic of China. .,Key Laboratory of New Opto-Electronic Functional Materials of Henan Province, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, 455000, Henan, People's Republic of China.
| | - Angelina Olegovna Zekiy
- Department of Prosthetic Dentistry, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Farhoodeh Ghaedrahmati
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Amir Anbiyaiee
- Department of Surgery, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, 61357-15794, Ahvaz, Iran
| | - Seyed Esmaeil Khoshnam
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
10
|
Suhito IR, Han Y, Ryu YS, Son H, Kim TH. Autofluorescence-Raman Mapping Integration analysis for ultra-fast label-free monitoring of adipogenic differentiation of stem cells. Biosens Bioelectron 2021; 178:113018. [DOI: 10.1016/j.bios.2021.113018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/04/2021] [Accepted: 01/16/2021] [Indexed: 01/08/2023]
|
11
|
LncRNA XIST promotes the progression of laryngeal squamous cell carcinoma via sponging miR-125b-5p to modulate TRIB2. Biosci Rep 2021; 40:222318. [PMID: 32149330 PMCID: PMC7146034 DOI: 10.1042/bsr20193172] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 12/19/2019] [Accepted: 01/22/2020] [Indexed: 01/11/2023] Open
Abstract
Objective: X inactivate-specific transcript (XIST) is an attractive long noncoding RNA (lncRNA) functioning as an indicator of various human tumors, including laryngeal squamous cell carcinoma (LSCC). The present study was conducted to explore a novel regulatory network of lncRNA XIST in LSCC cells. Materials and methods: Quantitative real-time polymerase chain reaction (QRT-PCR) was used to detect the expression levels of XIST, miR-125b-5p and TRIB2 in LSCC cells and tissues. Cell proliferation, apoptosis, migration and invasion were detected by Cell Counting Kit-8 (CCK-8), flow cytometry and Transwell assays, separately. The relationship among XIST, miR-125b-5p and tribbles homolog 2 (TRIB2) was predicted by starBase v2.0 or TargetScan and confirmed by Dual-luciferase reporter assay. The TRIB2 protein expression was quantified by Western blot assay. Murine xenograft model was utilized to validate the role of XIST in vivo. Results: XIST was notably up-regulated in LSCC tissues and cells, and the high level of XIST was associated with the low survival rate of LSCC patients. XIST knockdown markedly repressed cell proliferation, migration and invasion and promoted the apoptosis of LSCC cells and the effects were antagonized by loss of miR-125b-5p. MiR-125b-5p was a target of XIST in LSCC cells, and it could bind to TRIB2 as well. Moreover, XIST-loss-induced down-regulation of TRIB2 could be significantly reversed by miR-125b-5p knockdown. XIST promoted the growth of LSCC tumor in vivo. Conclusion: LncRNA XIST promoted the malignance of LSCC cells partly through competitively binding to miR-125b-5p, which in turn increased TRIB2 expression.
Collapse
|
12
|
Sohn EJ, Moon HJ, Lim JK, Kim DS, Kim JH. Regulation of the protein stability and transcriptional activity of OCT4 in stem cells. Adv Biol Regul 2020; 79:100777. [PMID: 33451972 DOI: 10.1016/j.jbior.2020.100777] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/15/2020] [Accepted: 12/21/2020] [Indexed: 12/31/2022]
Abstract
OCT4 (also known as Oct3 and Oct3/4), which is encoded by Pou5f1, is expressed in early embryonic cells and plays an important role in early development, pluripotency maintenance, and self-renewal of embryonic stem cells. It also regulates the reprogramming of somatic cells into induced pluripotent stem cells. Several OCT4-binding proteins, including SOX2 and NANOG, reportedly regulate gene transcription in stem cells. An increasing number of evidence suggests that not only gene transcription but also post-translational modifications of OCT4 play a pivotal role in regulating the expression and activity of OCT4. For instance, ubiquitination and sumoylation have been reported to regulate OCT4 protein stability. In addition, the phosphorylation of Ser347 in OCT4 also stabilizes the OCT4 protein level. Recently, we identified KAP1 as an OCT4-binding protein and reported the KAP1-mediated regulation of OCT4 protein stability. KAP1 overexpression led to an increased proliferation of mouse embryonic stem cells and promoted the reprogramming of somatic cells resulting in induced pluripotent stem cells. In this review, we discuss how the protein stability and function of OCT4 are regulated by protein-protein interaction in stem cells.
Collapse
Affiliation(s)
- Eun Jung Sohn
- Medical Research Center for Ischemic Tissue Regeneration, Pusan National University, Yangsan, 50612, Republic of Korea; Department of Physiology, School of Medicine, Pusan National University, Yangsan, 50612, Republic of Korea
| | - Hye Ji Moon
- Medical Research Center for Ischemic Tissue Regeneration, Pusan National University, Yangsan, 50612, Republic of Korea; Department of Physiology, School of Medicine, Pusan National University, Yangsan, 50612, Republic of Korea
| | - Jae Kyong Lim
- Medical Research Center for Ischemic Tissue Regeneration, Pusan National University, Yangsan, 50612, Republic of Korea; Department of Physiology, School of Medicine, Pusan National University, Yangsan, 50612, Republic of Korea
| | - Da Sol Kim
- Medical Research Center for Ischemic Tissue Regeneration, Pusan National University, Yangsan, 50612, Republic of Korea; Department of Physiology, School of Medicine, Pusan National University, Yangsan, 50612, Republic of Korea
| | - Jae Ho Kim
- Medical Research Center for Ischemic Tissue Regeneration, Pusan National University, Yangsan, 50612, Republic of Korea.
| |
Collapse
|
13
|
Warma A, Ndiaye K. Functional effects of Tribbles homolog 2 in bovine ovarian granulosa cells†. Biol Reprod 2020; 102:1177-1190. [PMID: 32159216 DOI: 10.1093/biolre/ioaa030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 12/12/2019] [Accepted: 03/07/2020] [Indexed: 12/19/2022] Open
Abstract
Tribbles homologs (TRIB) 1, 2, and 3 represent atypical members of the serine/threonine kinase superfamily. We previously identified TRIB2 as a differentially expressed gene in granulosa cells (GCs) of bovine preovulatory follicles. The current study aimed to further investigate TRIB2 regulation and study its function in the ovary. GCs were collected from follicles at different developmental stages: small antral follicles (SF), dominant follicles (DF) at day 5 of the estrous cycle, and hCG-induced ovulatory follicles (OFs). RT-qPCR analyses showed greater expression of TRIB2 in GC of DF as compared to OF and a significant downregulation of TRIB2 steady-state mRNA amounts by hCG/LH, starting at 6 h through 24 h post-hCG as compared to 0 h. Specific anti-TRIB2 polyclonal antibodies were generated and western blot analysis confirmed TRIB2 downregulation by hCG at the protein level. In vitro studies showed that FSH stimulates TRIB2 expression in GC. Inhibition of TRIB2 using CRISPR/Cas9 resulted in a significant increase in PCNA expression and an increase in steroidogenic enzyme CYP19A1 expression, while TRIB2 overexpression tended to decrease GC proliferation. TRIB2 inhibition also resulted in a decrease in transcription factors connective tissue growth factor (CTGF) and ankyrin repeat domain-containing protein 1 (ANKRD1) expression, while TRIB2 overexpression increased CTGF and ANKRD1. Additionally, western blot analyses showed reduction in ERK1/2 (MAPK3/1) and p38MAPK (MAPK14) phosphorylation levels following TRIB2 inhibition, while TRIB2 overexpression increased p-ERK1/2 and p-p38MAPK. These results provide evidence that TRIB2 modulates MAPK signaling in GC and that TRIB2 could act as a regulator of GC proliferation and function, which could affect steroidogenesis during follicular development.
Collapse
Affiliation(s)
- Aly Warma
- Département de Biomédecine Vétérinaire, Faculté de Médecine Vétérinaire, Centre de Recherche en Reproduction et Fertilité (CRRF), Université de Montréal, St-Hyacinthe, Québec, Canada
| | - Kalidou Ndiaye
- Département de Biomédecine Vétérinaire, Faculté de Médecine Vétérinaire, Centre de Recherche en Reproduction et Fertilité (CRRF), Université de Montréal, St-Hyacinthe, Québec, Canada
| |
Collapse
|
14
|
Fathi Maroufi N, Hasegawa K, Vahedian V, Nazari Soltan Ahmad S, Zarebkohan A, Miresmaeili Mazrakhondi SA, Hosseini V, Rahbarghazi R. A glimpse into molecular mechanisms of embryonic stem cells pluripotency: Current status and future perspective. J Cell Physiol 2020; 235:6377-6392. [DOI: 10.1002/jcp.29616] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 01/09/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Nazila Fathi Maroufi
- Stem Cell and Regenerative Medicine InstituteTabriz University of Medical Sciences Tabriz Iran
- Student Research CommitteeTabriz University of Medical Sciences Tabriz Iran
- Department of Biochemistry and Clinical Laboratories, Faculty of MedicineTabriz University of Medical Sciences Tabriz Iran
| | - Kouichi Hasegawa
- Institute for Integrated Cell‐Material Sciences, Institute for Advanced StudyKyoto University Kyoto Japan
| | - Vahid Vahedian
- Department of Medical Laboratory Sciences, Faculty of MedicineIslamic Azad University Sari Iran
- Clinical Laboratory Medicine DepartmentRofeydeh Hospital University of Social Welfare and Rehabilitation Science Tehran Iran
| | - Saeed Nazari Soltan Ahmad
- Department of Biochemistry and Clinical Laboratories, Faculty of MedicineTabriz University of Medical Sciences Tabriz Iran
| | - Amir Zarebkohan
- Department of Medical Nanotechnology, Faculty of Advanced Medical SciencesTabriz University of Medical Sciences Tabriz Iran
| | | | - Vahid Hosseini
- Department of Biochemistry and Clinical Laboratories, Faculty of MedicineTabriz University of Medical Sciences Tabriz Iran
- Tuberculosis and Lung Disease Research CenterTabriz University of Medical Sciences Tabriz Iran
| | - Reza Rahbarghazi
- Tuberculosis and Lung Disease Research CenterTabriz University of Medical Sciences Tabriz Iran
- Department of Applied Cell Sciences, Faculty of Advanced Medical SciencesTabriz University of Medical Sciences Tabriz Iran
| |
Collapse
|
15
|
miR-509-5p Inhibits the Proliferation and Invasion of Osteosarcoma by Targeting TRIB2. BIOMED RESEARCH INTERNATIONAL 2019; 2019:2523032. [PMID: 31930114 PMCID: PMC6942763 DOI: 10.1155/2019/2523032] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 11/12/2019] [Indexed: 01/28/2023]
Abstract
Osteosarcoma (OS) is one of the most common malignant bone tumors in adolescents with a poor prognosis. Though miR-509-5p has been reported as a tumor suppressor in several human cancers, the role of miR-509-5p in OS remains unclear. In this study, our result of real-time PCR (RT-PCR) showed that the expression of miR-509-5p was significantly decreased in OS tissues and cell lines. Overexpression of miR-509-5p significantly suppressed cell proliferation and invasion in OS cell lines. Moreover, we identified tribbles homolog 2 (TRIB2) as the direct target of miR-509-5p. Knockdown of TRIB2 could inhibit the malignant capacity of OS cells. At last, we reported that TRIB2 could inhibit the bioactivity of the tumor suppressor gene p21 via blocking its transcriptional activity. Collectively, our study revealed that miR-509-5p functions as a tumor suppressor by targeting TRIB2 in OS and thus could affect the activity of p21, suggesting that miR-509-5p is a novel preventive intervention for OS patients.
Collapse
|
16
|
Richmond L, Keeshan K. Pseudokinases: a tribble-edged sword. FEBS J 2019; 287:4170-4182. [PMID: 31621188 DOI: 10.1111/febs.15096] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/29/2019] [Accepted: 10/14/2019] [Indexed: 12/20/2022]
Abstract
Advances in the understanding of the Tribbles family of pseudokinases (TRIB1, TRIB2 and TRIB3) reveal these proteins as potentially valuable biomarkers of disease diagnosis, prognosis, prediction and clinical strategy. In their role as signalling mediators and scaffolding proteins, TRIBs lead to changes in protein stability and activity, which impact on diverse cellular processes such as proliferation, differentiation, cell cycle and cell death. We review the role of TRIB proteins as promising therapeutic targets, with an emphasis on their role in cancer, and as biomarkers, with potential application across diverse pathological processes.
Collapse
Affiliation(s)
- Laura Richmond
- Paul O'Gorman Leukaemia Research Centre, Institute of Cancer Sciences, University of Glasgow, UK
| | - Karen Keeshan
- Paul O'Gorman Leukaemia Research Centre, Institute of Cancer Sciences, University of Glasgow, UK
| |
Collapse
|
17
|
Hou Z, Guo K, Sun X, Hu F, Chen Q, Luo X, Wang G, Hu J, Sun L. TRIB2 functions as novel oncogene in colorectal cancer by blocking cellular senescence through AP4/p21 signaling. Mol Cancer 2018; 17:172. [PMID: 30541550 PMCID: PMC6291992 DOI: 10.1186/s12943-018-0922-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 11/21/2018] [Indexed: 12/11/2022] Open
Abstract
Background Cellular senescence is a state of irreversible cell growth arrest and senescence cells permanently lose proliferation potential. Induction of cellular senescence might be a novel therapy for cancer cells. TRIB2 has been reported to participate in regulating proliferation and drug resistance of various cancer cells. However, the role of TRIB2 in cellular senescence of colorectal cancer (CRC) and its molecular mechanism remains unclear. Methods The expression of TRIB2 in colorectal cancer tissues and adjacent tissues was detected by immunohistochemistry and RT-PCR. The growth, cell cycle distribution and cellular senescence of colorectal cancer cells were evaluated by Cell Counting Kit-8 (CCK8) assay, flow cytometry detection and senescence-associated β-galactosidase staining, respectively. Western blot, RT-PCR and luciferase assay were performed to determine how TRIB2 regulates p21. Immunoprecipitation (IP) and chromatin-immunoprecipitation (ChIP) were used to investigate the molecular mechanisms. Results We found that TRIB2 expression was elevated in CRC tissues compared to normal adjacent tissues and high TRIB2 expression indicated poor prognosis of CRC patients. Functionally, depletion of TRIB2 inhibited cancer cells proliferation, induced cell cycle arrest and promoted cellular senescence, whereas overexpression of TRIB2 accelerated cell growth, cell cycle progression and blocked cellular senescence. Further studies showed that TRIB2 physically interacted with AP4 and inhibited p21 expression through enhancing transcription activities of AP4. The rescue experiments indicated that silencing of AP4 abrogated the inhibition of cellular senescence induced by TRIB2 overexpression. Conclusion These data demonstrate that TRIB2 suppresses cellular senescence through interaction with AP4 to down-regulate p21 expression. Therefore, TRIB2 could be a potential target for CRC treatment. Electronic supplementary material The online version of this article (10.1186/s12943-018-0922-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhenlin Hou
- Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Kaixuan Guo
- Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Xuling Sun
- Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Fuqing Hu
- Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Qianzhi Chen
- Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Xuelai Luo
- Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Guihua Wang
- Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Junbo Hu
- Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Li Sun
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, 1095 Jiefang Av, Wuhan, Hubei, 430030, People's Republic of China.
| |
Collapse
|