1
|
Dong XX, Chen DL, Miao YF, Li DL, Kai JY, Hu DN, Zhang XF, Carla L, Andrzej G, Pan CW. The impact of 25-hydroxyvitamin D and calcium on risk of age-related macular degeneration: a Mendelian randomization study. Am J Clin Nutr 2024; 120:727-736. [PMID: 38964658 DOI: 10.1016/j.ajcnut.2024.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 06/20/2024] [Accepted: 06/28/2024] [Indexed: 07/06/2024] Open
Abstract
BACKGROUND The relationships between 25-hydroxyvitamin D [25(OH)D] and calcium and age-related macular degeneration (AMD) are unclear. OBJECTIVES This study aimed to investigate the causal role of 25(OH)D concentrations, calcium concentrations, and dietary supplements use of vitamin D and calcium on risk of AMD and its subtypes. METHODS Independent genetic variants associated with 25(OH)D and calcium concentrations were used as instrumental variables in published genome-wide association studies (GWASs) of European ancestry. The bidirectional 2-sample Mendelian randomization (MR) analyses were performed using summary-level data from the UK Biobank and FinnGen datasets. Sensitivity analyses were conducted to ensure the robustness of the MR results. The meta-analyses were conducted using both fixed-effect and random-effect models to provide comprehensive and reliable estimates. RESULTS A standard deviation increase in calcium concentrations was linked to a 14%, 17%, and 13% reduction in the likelihood of developing AMD (95% confidence interval [CI]: 0.77, 0.97), wet AMD (95% CI: 0.73, 0.95), and dry AMD (95% CI: 0.75, 1.00), respectively. No significant causal relationships were detected between genetically predicted 25(OH)D concentrations and AMD and its subtypes (all P > 0.05). The combined analyses showed that higher calcium concentrations were associated with a reduced risk of overall AMD, with an odds ratio of 0.89 (95% CI: 0.81, 0.98). CONCLUSIONS This study provides evidence supporting the causal relationship between calcium concentrations and risk of AMD and its subtypes, which may have important implications for the prevention, monitoring, and treatment of AMD.
Collapse
Affiliation(s)
- Xing-Xuan Dong
- School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
| | - Dong-Ling Chen
- School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
| | - Yi-Fan Miao
- School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
| | - Dan-Lin Li
- School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
| | - Jia-Yan Kai
- School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
| | - Dan-Ning Hu
- New York Eye and Ear Infirmary of Mount Sinai, Icahn School of Medicine at Mount Sinai, New York City, NY, United States
| | - Xiao-Feng Zhang
- Department of Ophthalmology, The Fourth Affiliated Hospital of Soochow University, Suzhou, China
| | - Lanca Carla
- Escola Superior de Tecnologia da Saúde de Lisboa (ESTeSL), Instituto Politécnico de Lisboa, Lisboa, Portugal; Comprehensive Health Research Center (CHRC), Escola Nacional de Saúde Pública, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Grzybowski Andrzej
- Institute for Research in Ophthalmology, Foundation for Ophthalmology Development, Poznan, Poland
| | - Chen-Wei Pan
- School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China.
| |
Collapse
|
2
|
Sun Y, Hao M, Wu H, Zhang C, Wei D, Li S, Song Z, Tao Y. Unveiling the role of CaMKII in retinal degeneration: from biological mechanism to therapeutic strategies. Cell Biosci 2024; 14:59. [PMID: 38725013 PMCID: PMC11084033 DOI: 10.1186/s13578-024-01236-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 04/18/2024] [Indexed: 05/12/2024] Open
Abstract
Ca2+/calmodulin-dependent protein kinase II (CaMKII) is a family of broad substrate specificity serine (Ser)/threonine (Thr) protein kinases that play a crucial role in the Ca2+-dependent signaling pathways. Its significance as an intracellular Ca2+ sensor has garnered abundant research interest in the domain of neurodegeneration. Accumulating evidences suggest that CaMKII is implicated in the pathology of degenerative retinopathies such as diabetic retinopathy (DR), age-related macular degeneration (AMD), retinitis pigmentosa (RP) and glaucoma optic neuropathy. CaMKII can induce the aberrant proliferation of retinal blood vessels, influence the synaptic signaling, and exert dual effects on the survival of retinal ganglion cells and pigment epithelial cells. Researchers have put forth multiple therapeutic agents, encompassing small molecules, peptides, and nucleotides that possess the capability to modulate CaMKII activity. Due to its broad range isoforms and splice variants therapeutic strategies seek to inhibit specifically the CaMKII are confronted with considerable challenges. Therefore, it becomes crucial to discern the detrimental and advantageous aspects of CaMKII, thereby facilitating the development of efficacious treatment. In this review, we summarize recent research findings on the cellular and molecular biology of CaMKII, with special emphasis on its metabolic and regulatory mechanisms. We delve into the involvement of CaMKII in the retinal signal transduction pathways and discuss the correlation between CaMKII and calcium overload. Furthermore, we elaborate the therapeutic trials targeting CaMKII, and introduce recent developments in the zone of CaMKII inhibitors. These findings would enrich our knowledge of CaMKII, and shed light on the development of a therapeutic target for degenerative retinopathy.
Collapse
Affiliation(s)
- Yuxin Sun
- Department of Ophthalmology, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
- College of Medicine, Zhengzhou University, Zhengzhou, 450001, China
| | - Mengyu Hao
- Department of Ophthalmology, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
- College of Medicine, Zhengzhou University, Zhengzhou, 450001, China
| | - Hao Wu
- Department of Ophthalmology, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
- College of Medicine, Zhengzhou University, Zhengzhou, 450001, China
| | - Chengzhi Zhang
- Department of Ophthalmology, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
- College of Medicine, Zhengzhou University, Zhengzhou, 450001, China
| | - Dong Wei
- Department of Ophthalmology, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
- College of Medicine, Zhengzhou University, Zhengzhou, 450001, China
| | - Siyu Li
- Department of Ophthalmology, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
- College of Medicine, Zhengzhou University, Zhengzhou, 450001, China
| | - Zongming Song
- Department of Ophthalmology, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China.
| | - Ye Tao
- Department of Ophthalmology, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China.
- College of Medicine, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
3
|
Orihara K, Kobayashi-Otsugu M, Nakajima E, Walkup RD, Wilson DJ, Shearer TR, Azuma M. Calpain-specific breakdown fragment in human drusen. Histol Histopathol 2024; 39:165-175. [PMID: 37314158 DOI: 10.14670/hh-18-635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
PURPOSE With aging and age-related macular dystrophy (AMD), proteolytic fragments are deposited in extracellular drusen located between the RPE and Bruch's membrane. Localized hypoxia may be a risk factor for AMD. Our hypothesis is that following hypoxia, activation of proteolytic enzymes called calpains may cause proteolysis/degeneration of retinal cells and RPE. No direct evidence has yet demonstrated activation of calpains in AMD. The purpose of the present study was to identify calpain-cleaved proteins in drusen. METHODS Seventy-six (76) drusen were analyzed in human eye sections from six normal and twelve AMD human donor eyes. The sections were subjected to immunofluorescence for the calpain-specific 150 kDa breakdown product from α-spectrin, SBDP150 - a marker for calpain activation, and for recoverin - a marker for photoreceptor cells. RESULTS Among 29 nodular drusen, 80% from normal eyes and 90% from AMD eyes stained positive for SBDP150. Among 47 soft drusen, mostly from AMD eyes, 72% stained positive for SBDP150. Thus, the majority of both soft and nodular drusen from AMD donors contained SBDP150. CONCLUSIONS SBDP150 was detected for the first time in soft and nodular drusen from human donors. Our results suggest that calpain-induced proteolysis participates in the degeneration of photoreceptors and/or RPE cells during aging and AMD. Calpain inhibitors may ameliorate AMD progression.
Collapse
Affiliation(s)
- Kana Orihara
- Senju Laboratory of Ocular Sciences, Senju Pharmaceutical Corporation Ltd., Portland, OR, USA
| | - Momoko Kobayashi-Otsugu
- Senju Laboratory of Ocular Sciences, Senju Pharmaceutical Corporation Ltd., Portland, OR, USA
| | - Emi Nakajima
- Senju Laboratory of Ocular Sciences, Senju Pharmaceutical Corporation Ltd., Portland, OR, USA
- Department of Oral Rehabilitation and Biosciences, Oregon Health and Science University, Portland, OR, USA
| | - Ryan D Walkup
- Senju Laboratory of Ocular Sciences, Senju Pharmaceutical Corporation Ltd., Portland, OR, USA
- Department of Oral Rehabilitation and Biosciences, Oregon Health and Science University, Portland, OR, USA
| | - David J Wilson
- Department of Ophthalmology, School of Medicine, Oregon Health and Science University, Portland, OR, USA
| | - Thomas R Shearer
- Department of Oral Rehabilitation and Biosciences, Oregon Health and Science University, Portland, OR, USA
| | - Mitsuyoshi Azuma
- Senju Laboratory of Ocular Sciences, Senju Pharmaceutical Corporation Ltd., Portland, OR, USA
- Department of Oral Rehabilitation and Biosciences, Oregon Health and Science University, Portland, OR, USA.
| |
Collapse
|
4
|
Qu S, Lin H, Pfeiffer N, Grus FH. Age-Related Macular Degeneration and Mitochondria-Associated Autoantibodies: A Review of the Specific Pathogenesis and Therapeutic Strategies. Int J Mol Sci 2024; 25:1624. [PMID: 38338904 PMCID: PMC10855900 DOI: 10.3390/ijms25031624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/22/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Age-related macular degeneration (AMD) is a severe retinal disease that causes irreversible visual loss and blindness in elderly populations worldwide. The pathological mechanism of AMD is complex, involving the interactions of multiple environmental and genetic factors. A poor understanding of the disease leads to limited treatment options and few effective prevention methods. The discovery of autoantibodies in AMD patients provides an opportunity to explore the pathogenesis and treatment direction of the disease. This review focuses on the mitochondria-associated autoantibodies and summarizes the functional roles of mitochondria under physiological conditions and their alterations during the pathological states. Additionally, it discusses the crosstalk between mitochondria and other organelles, as well as the mitochondria-related therapeutic strategies in AMD.
Collapse
Affiliation(s)
| | | | | | - Franz H. Grus
- Department of Experimental and Translational Ophthalmology, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany; (S.Q.); (H.L.)
| |
Collapse
|
5
|
Różanowska MB. Lipofuscin, Its Origin, Properties, and Contribution to Retinal Fluorescence as a Potential Biomarker of Oxidative Damage to the Retina. Antioxidants (Basel) 2023; 12:2111. [PMID: 38136230 PMCID: PMC10740933 DOI: 10.3390/antiox12122111] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/05/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
Lipofuscin accumulates with age as intracellular fluorescent granules originating from incomplete lysosomal digestion of phagocytosed and autophagocytosed material. The purpose of this review is to provide an update on the current understanding of the role of oxidative stress and/or lysosomal dysfunction in lipofuscin accumulation and its consequences, particularly for retinal pigment epithelium (RPE). Next, the fluorescence of lipofuscin, spectral changes induced by oxidation, and its contribution to retinal fluorescence are discussed. This is followed by reviewing recent developments in fluorescence imaging of the retina and the current evidence on the prognostic value of retinal fluorescence for the progression of age-related macular degeneration (AMD), the major blinding disease affecting elderly people in developed countries. The evidence of lipofuscin oxidation in vivo and the evidence of increased oxidative damage in AMD retina ex vivo lead to the conclusion that imaging of spectral characteristics of lipofuscin fluorescence may serve as a useful biomarker of oxidative damage, which can be helpful in assessing the efficacy of potential antioxidant therapies in retinal degenerations associated with accumulation of lipofuscin and increased oxidative stress. Finally, amendments to currently used fluorescence imaging instruments are suggested to be more sensitive and specific for imaging spectral characteristics of lipofuscin fluorescence.
Collapse
Affiliation(s)
- Małgorzata B. Różanowska
- School of Optometry and Vision Sciences, College of Biomedical and Life Sciences, Cardiff University, Maindy Road, Cardiff CF24 4HQ, Wales, UK;
- Cardiff Institute for Tissue Engineering and Repair (CITER), Redwood Building, King Edward VII Avenue, Cardiff CF10 3NB, Wales, UK
| |
Collapse
|
6
|
Tseng YH, Ma TL, Tan DH, Su AJA, Washington KM, Wang CC, Huang YC, Wu MC, Su WF. Injectable Hydrogel Guides Neurons Growth with Specific Directionality. Int J Mol Sci 2023; 24:ijms24097952. [PMID: 37175657 PMCID: PMC10178216 DOI: 10.3390/ijms24097952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/19/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Visual disabilities affect more than 250 million people, with 43 million suffering from irreversible blindness. The eyes are an extension of the central nervous system which cannot regenerate. Neural tissue engineering is a potential method to cure the disease. Injectability is a desirable property for tissue engineering scaffolds which can eliminate some surgical procedures and reduce possible complications and health risks. We report the development of the anisotropic structured hydrogel scaffold created by a co-injection of cellulose nanofiber (CNF) solution and co-polypeptide solution. The positively charged poly (L-lysine)-r-poly(L-glutamic acid) with 20 mol% of glutamic acid (PLLGA) is crosslinked with negatively charged CNF while promoting cellular activity from the acid nerve stimulate. We found that CNF easily aligns under shear forces from injection and is able to form hydrogel with an ordered structure. Hydrogel is mechanically strong and able to support, guide, and stimulate neurite growth. The anisotropy of our hydrogel was quantitatively determined in situ by 2D optical microscopy and 3D X-ray tomography. The effects of PLLGA:CNF blend ratios on cell viability, neurite growth, and neuronal signaling are systematically investigated in this study. We determined the optimal blend composition for stimulating directional neurite growth yielded a 16% increase in length compared with control, reaching anisotropy of 30.30% at 10°/57.58% at 30°. Using measurements of calcium signaling in vitro, we found a 2.45-fold increase vs. control. Based on our results, we conclude this novel material and unique injection method has a high potential for application in neural tissue engineering.
Collapse
Affiliation(s)
- Yun-Hsiu Tseng
- Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Tien-Li Ma
- Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Dun-Heng Tan
- Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - An-Jey A Su
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kia M Washington
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Chun-Chieh Wang
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Yu-Ching Huang
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei 24301, Taiwan
| | - Ming-Chung Wu
- Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan 33302, Taiwan
- Center for Green Technology, Chang Gung University, Taoyuan 33302, Taiwan
- Division of Neonatology, Department of Pediatrics, Chang Gung Memorial Hospital at Linkou, Taoyuan 33305, Taiwan
| | - Wei-Fang Su
- Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei 24301, Taiwan
| |
Collapse
|
7
|
Chen YY, Chen YJ. The Relationship between Dietary Calcium and Age-Related Macular Degeneration. Nutrients 2023; 15:671. [PMID: 36771377 PMCID: PMC9920890 DOI: 10.3390/nu15030671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/22/2023] [Accepted: 01/24/2023] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Mineral element supplements are widely used in the older adult population. However, little is known of their impact on the progression of age-related macular degeneration (ARMD). The aim of this study was to examine the association between dietary micronutrients and ARMD in older adults. METHODS We enrolled 5227 participants from the National Health and Nutrition Examination Survey (NHANES 2005-2008) in this cross-sectional study. ARMD was evaluated using an ophthalmic digital imaging system and digital camera. Mineral element consumption was collected using a 24-hour dietary recall. The association between mineral element use and the presence of ARMD was determined by multivariable logistic regression. RESULTS After adjusting for relevant variables, dietary calcium was negatively associated with ARMD (OR: 680, 95%CI: 0.482-0.960). In contrast to dietary form, serum concentration of calcium was not associated with ARMD. Moreover, increased dietary calcium was associated with reduced ARMD (OR: 0.684, 95%CI: 0.468-1.000). CONCLUSION A lower consumption of dietary calcium was significantly associated with a higher risk of ARMD. Further longitudinal studies are necessary to explore these findings.
Collapse
Affiliation(s)
- Yuan-Yuei Chen
- Department of Pathology, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei 114, Taiwan
- Department of Pathology, Tri-Service General Hospital Songshan Branch, School of Medicine, National Defense Medical Center, Taipei 114, Taiwan
| | - Ying-Jen Chen
- Department of Ophthalmology, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei 114, Taiwan
| |
Collapse
|
8
|
Combined drug triads for synergic neuroprotection in retinal degeneration. Biomed Pharmacother 2022; 149:112911. [DOI: 10.1016/j.biopha.2022.112911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 11/23/2022] Open
|
9
|
Bakhtogarimov IR, Kudryavtseva AV, Krasnov GS, Gladysh NS, Volodin VV, Kudryavtsev AA, Bulavkina EV, Goncharova MA, Ledyaeva VS, Pastukhov IS, Vershinina YS, Starkova AM, Snezhkina AV, Shuvalova AI, Pavlov VS, Nikiforov-Nikishin DL, Moskalev AA, Guvatova ZG. The Effect of Meclofenoxate on the Transcriptome of Aging Brain of Nothobranchius guentheri Annual Killifish. Int J Mol Sci 2022; 23:ijms23052491. [PMID: 35269638 PMCID: PMC8910246 DOI: 10.3390/ijms23052491] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/16/2022] [Accepted: 02/21/2022] [Indexed: 02/04/2023] Open
Abstract
Annual fish of the genus Nothobranchius are promising models for aging research. Nothobranchius reproduces typical aspects of vertebrate aging, including hallmarks of brain aging. Meclofenoxate (MF) is a well-known compound that can enhance cognitive performance. The drug is prescribed for asthenic conditions, trauma, and vascular diseases of the brain. It is believed that MF is able to delay age-dependent changes in the human brain. However, until now, there has been no study of the MF effect on the brain transcriptome. In the present work, we performed an RNA-Seq study of brain tissues from aged Nothobranchius guentheri, which were almost lifetime administered with MF, as well as young and aged control fish. As expected, in response to MF, we revealed significant overexpression of neuron-specific genes including genes involved in synaptic activity and plasticity, neurotransmitter secretion, and neuron projection. The effect was more pronounced in female fish. In this aspect, MF alleviated age-dependent decreased expression of genes involved in neuronal activity. In both treated and untreated animals, we observed strong aging-associated overexpression of immune and inflammatory response genes. MF treatment did not prevent this effect, and moreover, some of these genes tended to be slightly upregulated under MF treatment. Additionally, we noticed upregulation of some genes associated with aging and cellular senescence, including isoforms of putative vascular cell adhesion molecule 1 (VCAM1), protein O-GlcNAcase (OGA), protein kinase C alpha type (KPCA), prolow-density lipoprotein receptor-related protein 1 (LRP1). Noteworthy, MF treatment was also associated with the elevated transcription of transposons, which are highly abundant in the N. guentheri genome. In conclusion, MF compensates for the age-dependent downregulation of neuronal activity genes, but its effect on aging brain transcriptome still cannot be considered unambiguously positive.
Collapse
Affiliation(s)
- Ildar R. Bakhtogarimov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (I.R.B.); (G.S.K.); (N.S.G.); (V.V.V.); (A.A.M.)
| | - Anna V. Kudryavtseva
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (I.R.B.); (G.S.K.); (N.S.G.); (V.V.V.); (A.A.M.)
- Correspondence: (A.V.K.); (Z.G.G.); Tel.: +7-(499)-135-23-91 (A.V.K. & Z.G.G.)
| | - George S. Krasnov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (I.R.B.); (G.S.K.); (N.S.G.); (V.V.V.); (A.A.M.)
| | - Natalya S. Gladysh
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (I.R.B.); (G.S.K.); (N.S.G.); (V.V.V.); (A.A.M.)
| | - Vsevolod V. Volodin
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (I.R.B.); (G.S.K.); (N.S.G.); (V.V.V.); (A.A.M.)
| | - Alexander A. Kudryavtsev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (A.A.K.); (E.V.B.); (M.A.G.); (V.S.L.); (Y.S.V.); (A.M.S.); (A.V.S.); (A.I.S.); (V.S.P.)
| | - Elizaveta V. Bulavkina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (A.A.K.); (E.V.B.); (M.A.G.); (V.S.L.); (Y.S.V.); (A.M.S.); (A.V.S.); (A.I.S.); (V.S.P.)
| | - Margarita A. Goncharova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (A.A.K.); (E.V.B.); (M.A.G.); (V.S.L.); (Y.S.V.); (A.M.S.); (A.V.S.); (A.I.S.); (V.S.P.)
| | - Veronika S. Ledyaeva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (A.A.K.); (E.V.B.); (M.A.G.); (V.S.L.); (Y.S.V.); (A.M.S.); (A.V.S.); (A.I.S.); (V.S.P.)
| | - Ivan S. Pastukhov
- Institute of Biotechnology and Fisheries, K.G. Razumovsky Moscow State University of Technologies and Management (the First Cossack University), 109004 Moscow, Russia; (I.S.P.); (D.L.N.-N.)
| | - Yulia S. Vershinina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (A.A.K.); (E.V.B.); (M.A.G.); (V.S.L.); (Y.S.V.); (A.M.S.); (A.V.S.); (A.I.S.); (V.S.P.)
| | - Anna M. Starkova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (A.A.K.); (E.V.B.); (M.A.G.); (V.S.L.); (Y.S.V.); (A.M.S.); (A.V.S.); (A.I.S.); (V.S.P.)
| | - Anastasiya V. Snezhkina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (A.A.K.); (E.V.B.); (M.A.G.); (V.S.L.); (Y.S.V.); (A.M.S.); (A.V.S.); (A.I.S.); (V.S.P.)
| | - Anastasija I. Shuvalova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (A.A.K.); (E.V.B.); (M.A.G.); (V.S.L.); (Y.S.V.); (A.M.S.); (A.V.S.); (A.I.S.); (V.S.P.)
| | - Vladislav S. Pavlov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (A.A.K.); (E.V.B.); (M.A.G.); (V.S.L.); (Y.S.V.); (A.M.S.); (A.V.S.); (A.I.S.); (V.S.P.)
| | - Dmitry L. Nikiforov-Nikishin
- Institute of Biotechnology and Fisheries, K.G. Razumovsky Moscow State University of Technologies and Management (the First Cossack University), 109004 Moscow, Russia; (I.S.P.); (D.L.N.-N.)
| | - Alexey A. Moskalev
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (I.R.B.); (G.S.K.); (N.S.G.); (V.V.V.); (A.A.M.)
| | - Zulfiya G. Guvatova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (I.R.B.); (G.S.K.); (N.S.G.); (V.V.V.); (A.A.M.)
- Correspondence: (A.V.K.); (Z.G.G.); Tel.: +7-(499)-135-23-91 (A.V.K. & Z.G.G.)
| |
Collapse
|
10
|
Mezzelani M, Nardi A, Bernardini I, Milan M, Peruzza L, d'Errico G, Fattorini D, Gorbi S, Patarnello T, Regoli F. Environmental pharmaceuticals and climate change: The case study of carbamazepine in M. galloprovincialis under ocean acidification scenario. ENVIRONMENT INTERNATIONAL 2021; 146:106269. [PMID: 33248345 DOI: 10.1016/j.envint.2020.106269] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/18/2020] [Accepted: 10/18/2020] [Indexed: 06/12/2023]
Abstract
Contaminants of emerging concern and ocean changes are key environmental stressors for marine species with possibly synergistic, but still unexplored, deleterious effects. In the present study the influence of a simulated ocean acidification scenario (pH = 7.6) was investigated on metabolism and sub-lethal effects of carbamazepine, CBZ (1 µg/L), chosen as one of the most widely diffused pharmaceuticals in marine organisms. A multidisciplinary approach was applied on mussels, M. galloprovincialis, integrating measurement of drug bioaccumulation with changes in the whole transcriptome, responsiveness of various biochemical and cellular biomarkers including immunological parameters, lipid and oxidative metabolism, onset of genotoxic effects. Chemical analyses revealed a limited influence of hypercapnia on accumulation and excretion of CBZ, while a complex network of biological responses was observed in gene expression profile and functional changes at cellular level. The modulation of gamma-aminobutyric acid (GABA) pathway suggested similarities with the Mechanism of Action known for vertebrates: immune responses, cellular homeostasis and oxidative system represented the processes targeted by combined stressors. The overall elaboration of results through a quantitative Weight of Evidence model, revealed clearly increased cellular hazard due to interactions of CBZ with acidification compared to single stressors.
Collapse
Affiliation(s)
- Marica Mezzelani
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, via Brecce Bianche (60131), Ancona, Italy
| | - Alessandro Nardi
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, via Brecce Bianche (60131), Ancona, Italy
| | - Ilaria Bernardini
- Dipartimento di Biomedicina Comparata e Alimentazione, Università di Padova, Viale dell'Università, 16, 35020 Legnaro (PD), Polo di Agripolis, Italy
| | - Massimo Milan
- Dipartimento di Biomedicina Comparata e Alimentazione, Università di Padova, Viale dell'Università, 16, 35020 Legnaro (PD), Polo di Agripolis, Italy
| | - Luca Peruzza
- Dipartimento di Biomedicina Comparata e Alimentazione, Università di Padova, Viale dell'Università, 16, 35020 Legnaro (PD), Polo di Agripolis, Italy
| | - Giuseppe d'Errico
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, via Brecce Bianche (60131), Ancona, Italy
| | - Daniele Fattorini
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, via Brecce Bianche (60131), Ancona, Italy
| | - Stefania Gorbi
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, via Brecce Bianche (60131), Ancona, Italy
| | - Tomaso Patarnello
- Dipartimento di Biomedicina Comparata e Alimentazione, Università di Padova, Viale dell'Università, 16, 35020 Legnaro (PD), Polo di Agripolis, Italy
| | - Francesco Regoli
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, via Brecce Bianche (60131), Ancona, Italy.
| |
Collapse
|
11
|
Zhang Q, Presswalla F, Calton M, Charniga C, Stern J, Temple S, Vollrath D, Zacks DN, Ali RR, Thompson DA, Miller JML. Highly Differentiated Human Fetal RPE Cultures Are Resistant to the Accumulation and Toxicity of Lipofuscin-Like Material. Invest Ophthalmol Vis Sci 2019; 60:3468-3479. [PMID: 31408109 PMCID: PMC6692057 DOI: 10.1167/iovs.19-26690] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Purpose The accumulation of undigestible autofluorescent material (UAM), termed lipofuscin in vivo, is a hallmark of aged RPE. Lipofuscin derives, in part, from the incomplete degradation of phagocytized photoreceptor outer segments (OS). Whether this accumulated waste is toxic is unclear. We therefore investigated the effects of UAM in highly differentiated human fetal RPE (hfRPE) cultures. Methods Unmodified and photo-oxidized OS were fed daily to confluent cultures of ARPE-19 RPE or hfRPE. The emission spectrum, composition, and morphology of resulting UAM were measured and compared to in vivo lipofuscin. Effects of UAM on multiple RPE phenotypes were assessed. Results Compared to ARPE-19, hfRPE were markedly less susceptible to UAM buildup. Accumulated UAM in hfRPE initially resembled the morphology of lipofuscin from AMD eyes, but compacted and shifted spectrum over time to resemble lipofuscin from healthy aged human RPE. UAM accumulation mildly reduced transepithelial electrical resistance, ketogenesis, certain RPE differentiation markers, and phagocytosis efficiency, while inducing senescence and rare, focal pockets of epithelial-mesenchymal transition. However, it had no effects on mitochondrial oxygen consumption rate, certain other RPE differentiation markers, secretion of drusen components or polarity markers, nor cell death. Conclusions hfRPE demonstrates a remarkable resistance to UAM accumulation, suggesting mechanisms for efficient OS processing that may be lost in other RPE culture models. Furthermore, while UAM alters hfRPE phenotype, the effects are modest, consistent with conflicting reports in the literature on the toxicity of lipofuscin. Our results suggest that healthy RPE may adequately adapt to and tolerate lipofuscin accumulation.
Collapse
Affiliation(s)
- Qitao Zhang
- Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, United States
| | - Feriel Presswalla
- Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, United States
| | - Melissa Calton
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States
| | - Carol Charniga
- Neural Stem Cell Institute, Rensselaer, New York, United States
| | - Jeffrey Stern
- Neural Stem Cell Institute, Rensselaer, New York, United States
| | - Sally Temple
- Neural Stem Cell Institute, Rensselaer, New York, United States
| | - Douglas Vollrath
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States
| | - David N Zacks
- Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, United States
| | - Robin R Ali
- Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, United States.,UCL Institute of Ophthalmology, London, United Kingdom
| | - Debra A Thompson
- Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, United States
| | - Jason M L Miller
- Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, United States
| |
Collapse
|
12
|
Penberthy KK, Rival C, Shankman LS, Raymond MH, Zhang J, Perry JSA, Lee CS, Han CZ, Onengut-Gumuscu S, Palczewski K, Lysiak JJ, Ravichandran KS. Context-dependent compensation among phosphatidylserine-recognition receptors. Sci Rep 2017; 7:14623. [PMID: 29116131 PMCID: PMC5676788 DOI: 10.1038/s41598-017-15191-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 10/19/2017] [Indexed: 12/03/2022] Open
Abstract
Phagocytes express multiple phosphatidylserine (PtdSer) receptors that recognize apoptotic cells. It is unknown whether these receptors are interchangeable or if they play unique roles during cell clearance. Loss of the PtdSer receptor Mertk is associated with apoptotic corpse accumulation in the testes and degeneration of photoreceptors in the eye. Both phenotypes are linked to impaired phagocytosis by specialized phagocytes: Sertoli cells and the retinal pigmented epithelium (RPE). Here, we overexpressed the PtdSer receptor BAI1 in mice lacking MerTK (Mertk -/- Bai1 Tg ) to evaluate PtdSer receptor compensation in vivo. While Bai1 overexpression rescues clearance of apoptotic germ cells in the testes of Mertk -/- mice it fails to enhance RPE phagocytosis or prevent photoreceptor degeneration. To determine why MerTK is critical to RPE function, we examined visual cycle intermediates and performed unbiased RNAseq analysis of RPE from Mertk +/+ and Mertk -/- mice. Prior to the onset of photoreceptor degeneration, Mertk -/- mice had less accumulation of retinyl esters and dysregulation of a striking array of genes, including genes related to phagocytosis, metabolism, and retinal disease in humans. Collectively, these experiments establish that not all phagocytic receptors are functionally equal, and that compensation among specific engulfment receptors is context and tissue dependent.
Collapse
Affiliation(s)
- Kristen K Penberthy
- Center for Cell Clearance, University of Virginia, Charlottesville, VA, USA
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, USA
| | - Claudia Rival
- Center for Cell Clearance, University of Virginia, Charlottesville, VA, USA
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, USA
- Department of Urology, University of Virginia, Charlottesville, VA, USA
| | - Laura S Shankman
- Center for Cell Clearance, University of Virginia, Charlottesville, VA, USA
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, USA
| | - Michael H Raymond
- Center for Cell Clearance, University of Virginia, Charlottesville, VA, USA
- Department of Neuroscience, University of Virginia, Charlottesville, VA, USA
| | - Jianye Zhang
- Department of Pharmacology and Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Justin S A Perry
- Center for Cell Clearance, University of Virginia, Charlottesville, VA, USA
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, USA
| | - Chang Sup Lee
- Center for Cell Clearance, University of Virginia, Charlottesville, VA, USA
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, USA
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, 501 Jinju-daero, Jinju, Gyeongnam, 52828, Korea
| | - Claudia Z Han
- Center for Cell Clearance, University of Virginia, Charlottesville, VA, USA
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, USA
| | - Suna Onengut-Gumuscu
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Krzysztof Palczewski
- Department of Pharmacology and Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Jeffrey J Lysiak
- Center for Cell Clearance, University of Virginia, Charlottesville, VA, USA
- Department of Urology, University of Virginia, Charlottesville, VA, USA
| | - Kodi S Ravichandran
- Center for Cell Clearance, University of Virginia, Charlottesville, VA, USA.
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, USA.
- Inflammation Research Center, VIB, and the Department of Biomedical molecular Biology, Ghent University, Ghent, Belgium.
| |
Collapse
|
13
|
|
14
|
Singh R, Kuai D, Guziewicz KE, Meyer J, Wilson M, Lu J, Smith M, Clark E, Verhoeven A, Aguirre GD, Gamm DM. Pharmacological Modulation of Photoreceptor Outer Segment Degradation in a Human iPS Cell Model of Inherited Macular Degeneration. Mol Ther 2015; 23:1700-1711. [PMID: 26300224 PMCID: PMC4817951 DOI: 10.1038/mt.2015.141] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 07/23/2015] [Indexed: 12/16/2022] Open
Abstract
Degradation of photoreceptor outer segments (POS) by retinal pigment epithelium (RPE) is essential for vision, and studies have implicated altered POS processing in the pathogenesis of some retinal degenerative diseases. Consistent with this concept, a recently established hiPSC-RPE model of inherited macular degeneration, Best disease (BD), displayed reduced rates of POS breakdown. Herein we utilized this model to determine (i) if disturbances in protein degradation pathways are associated with delayed POS digestion and (ii) whether such defect(s) can be pharmacologically targeted. We found that BD hiPSC-RPE cultures possessed increased protein oxidation, decreased free-ubiquitin levels, and altered rates of exosome secretion, consistent with altered POS processing. Application of valproic acid (VPA) with or without rapamycin increased rates of POS degradation in our model, whereas application of bafilomycin-A1 decreased such rates. Importantly, the negative effect of bafilomycin-A1 could be fully reversed by VPA. The utility of hiPSC-RPE for VPA testing was further evident following examination of its efficacy and metabolism in a complementary canine disease model. Our findings suggest that disturbances in protein degradation pathways contribute to the POS processing defect observed in BD hiPSC-RPE, which can be manipulated pharmacologically. These results have therapeutic implications for BD and perhaps other maculopathies.
Collapse
Affiliation(s)
- Ruchira Singh
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, USA; McPherson Eye Research Institute, University of Wisconsin, Madison, Wisconsin, USA
| | - David Kuai
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Karina E Guziewicz
- Department of Clinical Studies-Philadelphia, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jackelyn Meyer
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Molly Wilson
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jianfeng Lu
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Molly Smith
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Eric Clark
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Amelia Verhoeven
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Gustavo D Aguirre
- Department of Clinical Studies-Philadelphia, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - David M Gamm
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, USA; McPherson Eye Research Institute, University of Wisconsin, Madison, Wisconsin, USA; Department of Ophthalmology and Visual Sciences, University of Wisconsin, Madison, Wisconsin, USA.
| |
Collapse
|
15
|
Cheng ZY, Wang XP, Schmid KL, Han XG, Song H, Tang X. GABAAα1 and GABAAρ1 subunits are expressed in cultured human RPE cells and GABAA receptor agents modify the intracellular calcium concentration. Mol Vis 2015; 21:939-47. [PMID: 26321868 PMCID: PMC4548790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 08/22/2015] [Indexed: 12/04/2022] Open
Abstract
PURPOSE Gamma-aminobutyric acid A (GABAA) receptors (GABAARs), which are ionotropic receptors involving chloride channels, have been identified in various neural (e.g., mouse retinal ganglion cells) and nonneural cells (e.g., mouse lens epithelial cells) regulating the intracellular calcium concentration ([Ca(2+)]i). GABAAR β-subunit protein has been isolated in the cultured human and rat RPE, and GABAAα1 and GABAAρ1 mRNAs and proteins are present in the chick RPE. The purpose of this study was to investigate the expression of GABAAα1 and GABAAρ1, two important subunits in forming functional GABAARs, in the cultured human RPE, and further to explore whether altering receptor activation modifies [Ca(2+)]i. METHODS Human RPE cells were separately cultured from five donor eye cups. Real-time PCR, western blots, and immunofluorescence were used to test for GABAAα1 and GABAAρ1 mRNAs and proteins. The effects of the GABAAR agonist muscimol, antagonist picrotoxin, or the specific GABAAρ antagonist 1,2,5,6-tetrahydropyridin-4-yl) methylphosphinic acid (TPMPA) on [Ca(2+)]i in cultured human RPE were demonstrated using Fluo3-AM. RESULTS Both GABAAα1 and GABAAρ1 mRNAs and proteins were identified in cultured human RPE cells; antibody staining was mainly localized to the cell membrane and was also present in the cytoplasm but not in the nucleus. Muscimol (100 μM) caused a transient increase of the [Ca(2+)]i in RPE cells regardless of whether Ca(2+) was added to the buffer. Muscimol-induced increases in the [Ca(2+)]i were inhibited by pretreatment with picrotoxin (300 μM) or TPMPA (500 μM). CONCLUSIONS GABAAα1 and GABAAρ1 are expressed in cultured human RPE cells, and GABAA agents can modify [Ca(2+)]i.
Collapse
Affiliation(s)
- Zhen-Ying Cheng
- Tianjin Eye Hospital, Clinical College of Ophthalmology, Tianjin Medical University, 4 Gansu Road, Heping District, Tianjin, China,Department of Ophthalmology, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Xu-Ping Wang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Katrina L. Schmid
- School of Optometry and Vision Science, Faculty of Health, and Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Xu-Guang Han
- Department of Ophthalmology, The Second People's Hospital of Jinan, Jinan, Shandong, China
| | - Hui Song
- Tianjin Eye Hospital, Clinical College of Ophthalmology, Tianjin Medical University, 4 Gansu Road, Heping District, Tianjin, China
| | - Xin Tang
- Tianjin Eye Hospital, Clinical College of Ophthalmology, Tianjin Medical University, 4 Gansu Road, Heping District, Tianjin, China
| |
Collapse
|
16
|
Cheng ZY, Wang XP, Schmid KL, Han XG. GABAB1 and GABAB2 receptor subunits co-expressed in cultured human RPE cells regulate intracellular Ca2+ via Gi/o-protein and phospholipase C pathways. Neuroscience 2014; 280:254-61. [PMID: 25241062 DOI: 10.1016/j.neuroscience.2014.09.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 09/10/2014] [Accepted: 09/10/2014] [Indexed: 11/26/2022]
Abstract
GABAB receptors associate with Gi/o-proteins that regulate voltage-gated Ca(2+) channels and thus the intracellular Ca(2+) concentration ([Ca(2+)]i), there is also reported cross-regulation of phospholipase C. These associations have been studied extensively in the brain and also shown to occur in non-neural cells (e.g. human airway smooth muscle). More recently GABAB receptors have been observed in chick retinal pigment epithelium (RPE). The aims were to investigate whether the GABAB receptor subunits, GABAB1 and GABAB2, are co-expressed in cultured human RPE cells, and then determine if the GABAB receptor similarly regulates the [Ca(2+)]i of RPE cells and if phospholipase C is involved. Human RPE cells were cultured from five donor eye cups. Evidence for GABAB1 and GABAB2 mRNAs and proteins in the RPE cell cultures was investigated using real time polymerase chain reaction, western blots and immunofluorescence. The effects of the GABAB receptor agonist baclofen, antagonist CGP46381, a Gi/o-protein inhibitor pertussis toxin, and the phospholipase C inhibitor U73122 on [Ca(2+)]i in cultured human RPE were demonstrated using Fluo-3. Both GABAB1 and GABAB2 mRNA and protein were identified in cell cultures of human RPE; antibody staining was co-localized to the cell membrane and cytoplasm. One-hundred micromolars of baclofen caused a transient increase in the [Ca(2+)]i of RPE cells regardless of whether Ca(2+) was added to the buffer. Baclofen-induced increases in the [Ca(2+)]i were attenuated by pre-treatment with CGP46381, pertussis toxin, and U73122. GABAB1 and GABAB2 are co-expressed in cell cultures of human RPE. GABAB receptors in RPE regulate the [Ca(2+)]i via a Gi/o-protein and phospholipase C pathway.
Collapse
Affiliation(s)
- Z-Y Cheng
- Department of Ophthalmology, Qilu Hospital, Shandong University, Jinan, Shandong 250012, China.
| | - X-P Wang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Shandong University, Jinan, Shandong 250012, China
| | - K L Schmid
- School of Optometry and Vision Science, Faculty of Health, and Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4059, Australia
| | - X-G Han
- Department of Ophthalmology, The Second Hospital, Jinan, Shandong 250001, China
| |
Collapse
|
17
|
Ismagul A, Iskakova G, Harris JC, Eliby S. Biolistic transformation of wheat with centrophenoxine as a synthetic auxin. Methods Mol Biol 2014; 1145:191-202. [PMID: 24816669 DOI: 10.1007/978-1-4939-0446-4_15] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Cereal crops, including bread wheat (Triticum aestivum L.), are an important staple food worldwide. With a growing global population, it is evident that current crop production will not meet the rising demands being placed on modern agriculture. Efforts to improve crop yield and stress-tolerance by traditional breeding are labor intensive, time consuming, and highly dependent upon the ability to capture existing and novel genetic variation from a restricted genetic pool. Genetic engineering of crop species is one of several alternatives to traditional breeding for the introduction of novel genetic variation. This recently established technology has proved useful for the introduction of novel traits like pest resistance and herbicide tolerance. As a universal tool for genetic transformation, the Biolistic Gene Gun allows for the genomic integration of novel gene sequences from various sources into a whole host of living organisms.In this chapter, we present a novel and detailed protocol for the Biolistic Transformation of bread wheat that uses the pharmaceutical compound, Centrophenoxine (CPX). The application of CPX as the main auxin-like plant growth regulator in cereal genetic transformation replaces the potent but more toxic herbicide 2,4-D.
Collapse
Affiliation(s)
- Ainur Ismagul
- Australian Centre for Plant Functional Genomics, University of Adelaide, PMB 1, Glen Osmond, SA, Australia
| | | | | | | |
Collapse
|
18
|
Pasquay C, Wang LF, Lorenz B, Preising MN. Bestrophin 1 – Phenotypes and Functional Aspects in Bestrophinopathies. Ophthalmic Genet 2013; 36:193-212. [DOI: 10.3109/13816810.2013.863945] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
19
|
A degenerative retinal process in HIV-associated non-infectious retinopathy. PLoS One 2013; 8:e74712. [PMID: 24069333 PMCID: PMC3775801 DOI: 10.1371/journal.pone.0074712] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 08/04/2013] [Indexed: 01/04/2023] Open
Abstract
HIV retinopathy is the most common non-infectious complication in the eyes of HIV-positive individuals. Oncotic lesions in the retinal nerve fiber layer, referred to as cotton wool spots (CWS), and intraretinal (IR) hemorrhages are frequently observed but are not unique to this pathology. HIV-positive patients have impaired color vision and contrast sensitivity, which worsens with age. Evidence of inner-retinal lesions and damage have been documented ophthalmoscopically, however their long term structural effect has not been investigated. It has been hypothesized that they may be partially responsible for loss of visual function and visual field. In this study we utilized clinical data, retinal imaging and transcriptomics approaches to comprehensively interrogate non-infectious HIV retinopathy. The methods employed encompassed clinical examinations, fundus photography, indirect ophthalmoscopy, Farmsworth-Munsell 100 hue discrimination testing and Illumina BeadChip analyses. Here we show that changes in the outer retina, specifically in the retinal pigment epithelium (RPE) and photoreceptor outer segments (POS) contribute to vision changes in non-infectious HIV retinopathy. We find that in HIV-positive retinae there is an induction of rhodopsin and other transcripts (including PDE6A, PDE6B, PDE6G, CNGA1, CNGB1, CRX, NRL) involved in visual transduction, as well as structural components of the rod photoreceptors (ABCA4 and ROM1). This is consistent with an increased rate of renewal of rod outer segments induced via increased phagocytosis by HIV-infected RPE previously reported in culture. Cone-specific transcripts (OPN1SW, OPN1LW, PDE6C, PDE6H and GRK7) are uniformly downregulated in HIV positive retina, likely due to a partial loss of cone photoreceptors. Active cotton wool spots and intraretinal hemorrhages (IRH) may not affect photoreceptors directly and the interaction of photoreceptors with the aging RPE may be the key to the progressive vision changes in HIV-positive patients.
Collapse
|
20
|
Nixon RA. The role of autophagy in neurodegenerative disease. Nat Med 2013; 19:983-97. [PMID: 23921753 DOI: 10.1038/nm.3232] [Citation(s) in RCA: 1503] [Impact Index Per Article: 125.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 05/03/2013] [Indexed: 02/08/2023]
Abstract
Autophagy is a lysosomal degradative process used to recycle obsolete cellular constituents and eliminate damaged organelles and protein aggregates. These substrates reach lysosomes by several distinct mechanisms, including delivery within endosomes as well as autophagosomes. Completion of digestion involves dynamic interactions among compartments of the autophagic and endocytic pathways. Neurons are particularly vulnerable to disruptions of these interactions, especially as the brain ages. Not surprisingly, mutations of genes regulating autophagy cause neurodegenerative diseases across the age spectrum with exceptional frequency. In late-onset disorders such as Alzheimer's disease, amyotrophic lateral sclerosis and familial Parkinson's disease, defects arise at different stages of the autophagy pathway and have different implications for pathogenesis and therapy. This Review provides an overview of the role of autophagy in neurodegenerative disease, focusing particularly on less frequently considered lysosomal clearance mechanisms and their considerable impact on disease. Various therapeutic strategies for modulating specific stages of autophagy and the current state of drug development for this purpose are also evaluated.
Collapse
Affiliation(s)
- Ralph A Nixon
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, New York, USA.
| |
Collapse
|