1
|
Azoad Ahnaf SM, Saha S, Frost S, Atiqur Rahaman GM. Understanding and interpreting CNN's decision in optical coherence tomography-based AMD detection. Eur J Ophthalmol 2024; 34:803-815. [PMID: 37671441 DOI: 10.1177/11206721231199126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
INTRODUCTION Automated assessment of age-related macular degeneration (AMD) using optical coherence tomography (OCT) has gained significant research attention in recent years. Though a list of convolutional neural network (CNN)-based methods has been proposed recently, methods that uncover the decision-making process of CNNs or critically interpret CNNs' decisions in the context are scant. This study aims to bridge this research gap. METHODS We independently trained several state-of-the-art CNN models, namely, VGG16, VGG19, Xception, ResNet50, InceptionResNetV2 for AMD detection and applied CNN visualization techniques, namely, Grad-CAM, Grad-CAM++, Score CAM, Faster Score CAM to highlight the regions of interest utilized by the CNNs in the context. Retinal layer segmentation methods were also developed to explore how the CNN regions of interest related to the layers of the retinal structure. Extensive experiments involving 2130 SD-OCT scans collected from Duke University were performed. RESULTS Experimental analysis shows that Outer Nuclear Layer to Inner Segment Myeloid (ONL-ISM) influences the AMD detection decision heavily as evident from the normalized intersection (NI) scores. For AMD cases the obtained average NI scores were respectively 13.13%, 17.2%, 9.7%, 10.95%, and 11.31% for VGG16, VGG19, ResNet50, Xception, and Inception ResNet V2, whereas, for normal cases, these values were respectively 21.7%, 21.3%, 16.85%, 10.175% and 16%. CONCLUSION Critical analysis reveals that the ONL-ISM is the most contributing layer in determining AMD, followed by Nerve Fiber Layer to Inner Plexiform Layer (NFL-IPL).
Collapse
Affiliation(s)
- S M Azoad Ahnaf
- Computational Color and Spectral Image Analysis Lab, Computer Science and Engineering Discipline, Khulna University, Khulna 9208, Bangladesh
| | - Sajib Saha
- Australian e-Health Research Centre, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Perth, Australia
| | - Shaun Frost
- Australian e-Health Research Centre, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Perth, Australia
| | - G M Atiqur Rahaman
- Computational Color and Spectral Image Analysis Lab, Computer Science and Engineering Discipline, Khulna University, Khulna 9208, Bangladesh
| |
Collapse
|
2
|
Hunter AML, Anderson RS, Redmond T, Garway-Heath DF, Mulholland PJ. Investigating the Spatiotemporal Summation of Perimetric Stimuli in Dry Age-Related Macular Degeneration. Transl Vis Sci Technol 2023; 12:37. [PMID: 38019498 PMCID: PMC10691387 DOI: 10.1167/tvst.12.11.37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 09/26/2023] [Indexed: 11/30/2023] Open
Abstract
Purpose To measure achromatic spatial, temporal, and spatiotemporal summation in dry age-related macular degeneration (AMD) compared to healthy controls under conditions of photopic gaze-contingent perimetry. Methods Twenty participants with dry AMD (mean age, 74.6 years) and 20 healthy controls (mean age, 67.8 years) performed custom, gaze-contingent perimetry tests. An area-modulation test generated localized estimates of Ricco's area (RA) at 2.5° and 5° eccentricities along the 0°, 90°, 180°, and 270° meridians. Contrast thresholds were measured at the same test locations for stimuli of six durations (3.7-190.4 ms) with a Goldmann III stimulus (GIII, 0.43°) and RA-scaled stimuli. The upper limit (critical duration) of complete temporal summation (using the GIII stimulus) and spatiotemporal summation (using the RA stimuli) was estimated using iterative two-phase regression analysis. Results Median (interquartile range [IQR]) RA estimates were significantly larger in AMD participants (2.5°: 0.21 [0.09-0.41] deg2; 5°: 0.32 [0.15-0.65 deg2]) compared to healthy controls (2.5°: 0.08 [0.05-0.13] deg2; 5°: 0.15 [0.08-0.22] deg2) at all test locations (all P < 0.05). No significant difference in median critical duration was found in AMD participants with the GIII stimulus (19.6 [9.9-30.4] ms) and RA-scaled stimuli (22.9 [13.9-40.3] ms) compared to healthy controls (GIII: 17.0 [11.3-24.0] ms; RA-scaled: 22.4 [14.3-33.1] ms) at all test locations (all P > 0.05). Conclusions Spatial summation is altered in dry AMD, without commensurate changes in temporal summation. Translational Relevance The sensitivity of perimetry to AMD may be improved by utilizing stimuli that probe alterations in spatial summation in the disease.
Collapse
Affiliation(s)
- Aoife M. L. Hunter
- Centre for Optometry and Vision Science, Biomedical Sciences Research Institute, Ulster University, Coleraine, UK
| | - Roger S. Anderson
- Centre for Optometry and Vision Science, Biomedical Sciences Research Institute, Ulster University, Coleraine, UK
- National Institute for Health Research Moorfields Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK
| | - Tony Redmond
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, UK
| | - David F. Garway-Heath
- National Institute for Health Research Moorfields Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK
| | - Pádraig J. Mulholland
- Centre for Optometry and Vision Science, Biomedical Sciences Research Institute, Ulster University, Coleraine, UK
- National Institute for Health Research Moorfields Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, UK
| |
Collapse
|
3
|
Tolone A, Haq W, Fachinger A, Roy A, Kesh S, Rentsch A, Wucherpfennig S, Zhu Y, Groten J, Schwede F, Tomar T, Herberg FW, Nache V, Paquet-Durand F. The PKG Inhibitor CN238 Affords Functional Protection of Photoreceptors and Ganglion Cells against Retinal Degeneration. Int J Mol Sci 2023; 24:15277. [PMID: 37894958 PMCID: PMC10607377 DOI: 10.3390/ijms242015277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/27/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Hereditary retinal degeneration (RD) is often associated with excessive cGMP signalling in photoreceptors. Previous research has shown that inhibition of cGMP-dependent protein kinase G (PKG) can reduce photoreceptor loss in two different RD animal models. In this study, we identified a PKG inhibitor, the cGMP analogue CN238, which preserved photoreceptor viability and functionality in rd1 and rd10 mutant mice. Surprisingly, in explanted retinae, CN238 also protected retinal ganglion cells from axotomy-induced retrograde degeneration and preserved their functionality. Furthermore, kinase activity-dependent protein phosphorylation of the PKG target Kv1.6 was reduced in CN238-treated rd10 retinal explants. Ca2+-imaging on rd10 acute retinal explants revealed delayed retinal ganglion cell repolarization with CN238 treatment, suggesting a PKG-dependent modulation of Kv1-channels. Together, these results highlight the strong neuroprotective capacity of PKG inhibitors for both photoreceptors and retinal ganglion cells, illustrating their broad potential for the treatment of retinal diseases and possibly neurodegenerative diseases in general.
Collapse
Affiliation(s)
- Arianna Tolone
- Cell Death Mechanism Group, Institute for Ophthalmic Research, Eberhard-Karls-Universität Tübingen, 72076 Tübingen, Germany; (A.T.); (Y.Z.)
| | - Wadood Haq
- Neuroretinal Electrophysiology and Imaging, Institute for Ophthalmic Research, Eberhard-Karls-Universität Tübingen, 72076 Tübingen, Germany;
| | - Alexandra Fachinger
- Biochemistry Department, University of Kassel, 34132 Kassel, Germany; (A.F.); (F.W.H.)
| | - Akanksha Roy
- PamGene International B.V., 5211 ‘s-Hertogenbosch, The Netherlands; (A.R.); (J.G.); (T.T.)
| | - Sandeep Kesh
- Institute of Physiology II, University Hospital Jena, Friedrich Schiller University Jena, 07743 Jena, Germany; (S.K.); (S.W.); (V.N.)
| | - Andreas Rentsch
- Biolog Life Science Institute GmbH & Co. KG, 28199 Bremen, Germany; (A.R.); (F.S.)
| | - Sophie Wucherpfennig
- Institute of Physiology II, University Hospital Jena, Friedrich Schiller University Jena, 07743 Jena, Germany; (S.K.); (S.W.); (V.N.)
| | - Yu Zhu
- Cell Death Mechanism Group, Institute for Ophthalmic Research, Eberhard-Karls-Universität Tübingen, 72076 Tübingen, Germany; (A.T.); (Y.Z.)
| | - John Groten
- PamGene International B.V., 5211 ‘s-Hertogenbosch, The Netherlands; (A.R.); (J.G.); (T.T.)
| | - Frank Schwede
- Biolog Life Science Institute GmbH & Co. KG, 28199 Bremen, Germany; (A.R.); (F.S.)
| | - Tushar Tomar
- PamGene International B.V., 5211 ‘s-Hertogenbosch, The Netherlands; (A.R.); (J.G.); (T.T.)
| | - Friedrich W. Herberg
- Biochemistry Department, University of Kassel, 34132 Kassel, Germany; (A.F.); (F.W.H.)
| | - Vasilica Nache
- Institute of Physiology II, University Hospital Jena, Friedrich Schiller University Jena, 07743 Jena, Germany; (S.K.); (S.W.); (V.N.)
| | - François Paquet-Durand
- Cell Death Mechanism Group, Institute for Ophthalmic Research, Eberhard-Karls-Universität Tübingen, 72076 Tübingen, Germany; (A.T.); (Y.Z.)
| |
Collapse
|
4
|
Wąż P, Zorena K, Murawska A, Bielińska-Wąż D. Classification Maps: A New Mathematical Tool Supporting the Diagnosis of Age-Related Macular Degeneration. J Pers Med 2023; 13:1074. [PMID: 37511686 PMCID: PMC10381320 DOI: 10.3390/jpm13071074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/18/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
OBJECTIVE A new diagnostic graphical tool-classification maps-supporting the detection of Age-Related Macular Degeneration (AMD) has been constructed. METHODS The classification maps are constructed using the ordinal regression model. In the ordinal regression model, the ordinal variable (the dependent variable) is the degree of the advancement of AMD. The other variables, such as CRT (Central Retinal Thickness), GCC (Ganglion Cell Complex), MPOD (Macular Pigment Optical Density), ETDRS (Early Treatment Diabetic Retinopathy Study), Snellen and Age have also been used in the analysis and are represented on the axes of the maps. RESULTS Here, 132 eyes were examined and classified to the AMD advancement level according to the four-point Age-Related Eye Disease Scale (AREDS): AREDS 1, AREDS 2, AREDS 3 and AREDS 4. These data were used for the creation of two-dimensional classification maps for each of the four stages of AMD. CONCLUSIONS The maps allow us to perform the classification of the patient's eyes to particular stages of AMD. The pairs of the variables represented on the axes of the maps can be treated as diagnostic identifiers necessary for the classification to particular stages of AMD.
Collapse
Affiliation(s)
- Piotr Wąż
- Department of Nuclear Medicine, Medical University of Gdańsk, 80-210 Gdańsk, Poland
| | - Katarzyna Zorena
- Department of Immunobiology and Environment Microbiology, Medical University of Gdańsk, 80-210 Gdańsk, Poland
| | - Anna Murawska
- Department of Immunobiology and Environment Microbiology, Medical University of Gdańsk, 80-210 Gdańsk, Poland
| | - Dorota Bielińska-Wąż
- Department of Radiological Informatics and Statistics, Medical University of Gdańsk, 80-210 Gdańsk, Poland
| |
Collapse
|
5
|
Salehi MA, Mohammadi S, Gouravani M, Rezagholi F, Arevalo JF. Retinal and choroidal changes in AMD: A systematic review and meta-analysis of spectral-domain optical coherence tomography studies. Surv Ophthalmol 2023; 68:54-66. [PMID: 35908660 DOI: 10.1016/j.survophthal.2022.07.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 07/18/2022] [Accepted: 07/25/2022] [Indexed: 02/01/2023]
Abstract
Optical coherence tomography is a noninvasive imaging technology using the optical reflectivity of tissues that is capable of detecting quantitative and qualitative biomarkers of age-related macular degeneration (AMD) that cannot be similarly recognized in conventional imaging. We systematically searched PubMed and Embase databases to identify relevant articles to this subject. A fixed-effect or random-effect model was applied for the meta-analysis based on the heterogeneity level. In addition, subgroup analyses, meta-regression, publication bias, and quality assessment were also performed. Twenty-five studies with 1,632 cases and 1,445 healthy controls in total were included. Our results revealed that, when compared to controls, AMD subjects showed a significantly lower thickness in the choroid at 500 µm temporal, 1,500 µm nasal, and temporal to the fovea, subfoveal choroid, average peripapillary retinal nerve fiber layer, and average macular ganglion cell complex (GCC); however, average and central choroidal thickness 500 µm nasal, 1,000 µm nasal and temporal to the fovea, central and parafoveal macular GCC, retinal nerve fiber layer, and inner plexiform layer, and central macular thickness did not change significantly. Various regional analyses showed several other significant differences. The findings of the current study confirm that some retinal layers are altered in AMD patients compared to healthy controls. Thus, future studies are required to derive more definitive conclusions.
Collapse
Affiliation(s)
| | - Soheil Mohammadi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Gouravani
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fateme Rezagholi
- School of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - J Fernando Arevalo
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
6
|
Kim JT, Jun JH, Lee SC, Lee MW. Retinal microvasculature and choriocapillaris impairments according to the stage of dry age-related macular degeneration. Clin Exp Ophthalmol 2023; 51:36-43. [PMID: 36067116 DOI: 10.1111/ceo.14165] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND We aimed to analyse the retinal microvasculature and choriocapillaris according to the dry age-related macular degeneration (AMD) stage and to identify factors associated with their microvasculatures. METHODS Patients were divided into four groups: normal controls, early, intermediate and advanced AMD groups. The vessel density (VD) of superficial capillary plexus (SCP), deep capillary plexus (DCP) and choriocapillaris was compared using optical coherence tomography angiography among the groups. Linear regression analysis was performed to identify factors associated with the VD. RESULTS The VDs of the SCP were 22.1 ± 5.7, 19.1 ± 5.4, 18.0 ± 6.4 and 12.2 ± 6.4% (p < 0.001); the VDs of the DCP were 22.4 ± 4.5, 20.7 ± 4.3, 18.1 ± 5.3 and 14.6 ± 5.8% (p < 0.001); the VDs of the choriocapillaris were 29.4 ± 3.7, 26.4 ± 4.8, 24.5 ± 4.9 and 24.2 ± 3.7% (p < 0.001) in the control, early, intermediate, and advanced groups, respectively. AMD stage and age were significantly associated with the VDs of all layers, and the VDs of the SCP and DCP were associated with visual acuity (both p < 0.001). Additionally, hypertension was associated with the VDs of the DCP (p = 0.027) and choriocapillaris (p = 0.024). CONCLUSIONS The retinal microvasculature and choriocapillaris tended to become more impaired as the AMD stage progressed. Age was significantly associated with the microvasculature impairments of all layers, and hypertension was significantly associated with impairments of the DCP microvasculature and choriocapillaris.
Collapse
Affiliation(s)
- Jung-Tae Kim
- Department of Ophthalmology, Konyang University College of Medicine, Daejeon, Republic of Korea
| | - Ji-Ho Jun
- Department of Ophthalmology, Konyang University College of Medicine, Daejeon, Republic of Korea
| | - Sung-Chul Lee
- Department of Ophthalmology, Konyang University College of Medicine, Daejeon, Republic of Korea
| | - Min-Woo Lee
- Department of Ophthalmology, Konyang University College of Medicine, Daejeon, Republic of Korea
| |
Collapse
|
7
|
Amato R, Catalani E, Dal Monte M, Cammalleri M, Cervia D, Casini G. Morpho-functional analysis of the early changes induced in retinal ganglion cells by the onset of diabetic retinopathy: The effects of a neuroprotective strategy. Pharmacol Res 2022; 185:106516. [DOI: 10.1016/j.phrs.2022.106516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/05/2022] [Accepted: 10/14/2022] [Indexed: 10/31/2022]
|
8
|
Mattern L, Otten K, Miskey C, Fuest M, Izsvák Z, Ivics Z, Walter P, Thumann G, Johnen S. Molecular and Functional Characterization of BDNF-Overexpressing Human Retinal Pigment Epithelial Cells Established by Sleeping Beauty Transposon-Mediated Gene Transfer. Int J Mol Sci 2022; 23:12982. [PMID: 36361771 PMCID: PMC9656812 DOI: 10.3390/ijms232112982] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 09/30/2022] [Accepted: 10/25/2022] [Indexed: 04/12/2024] Open
Abstract
More and more patients suffer from multifactorial neurodegenerative diseases, such as age-related macular degeneration (AMD). However, their pathological mechanisms are still poorly understood, which complicates the development of effective therapies. To improve treatment of multifactorial diseases, cell-based gene therapy can be used to increase the expression of therapeutic factors. To date, there is no approved therapy for dry AMD, including late-stage geographic atrophy. We present a treatment option for dry AMD that transfers the brain-derived neurotrophic factor (BDNF) gene into retinal pigment epithelial (RPE) cells by electroporation using the plasmid-based Sleeping Beauty (SB) transposon system. ARPE-19 cells and primary human RPE cells were co-transfected with two plasmids encoding the SB100X transposase and the transposon carrying a BDNF transcription cassette. We demonstrated efficient expression and secretion of BDNF in both RPE cell types, which were further increased in ARPE-19 cell cultures exposed to hydrogen peroxide. BDNF-transfected cells exhibited lower apoptosis rates and stimulated neurite outgrowth in human SH-SY5Y cells. This study is an important step in the development of a cell-based BDNF gene therapy that could be applied as an advanced therapy medicinal product to treat dry AMD or other degenerative retinal diseases.
Collapse
Affiliation(s)
- Larissa Mattern
- Department of Ophthalmology, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Katrin Otten
- Department of Ophthalmology, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Csaba Miskey
- Division of Medical Biotechnology, Paul-Ehrlich-Institute, 63225 Langen, Germany
| | - Matthias Fuest
- Department of Ophthalmology, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Zsuzsanna Izsvák
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
| | - Zoltán Ivics
- Division of Medical Biotechnology, Paul-Ehrlich-Institute, 63225 Langen, Germany
| | - Peter Walter
- Department of Ophthalmology, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Gabriele Thumann
- Department of Ophthalmology, University Hospitals of Geneva, 1205 Geneva, Switzerland
- Experimental Ophthalmology, University of Geneva, 1205 Geneva, Switzerland
| | - Sandra Johnen
- Department of Ophthalmology, University Hospital RWTH Aachen, 52074 Aachen, Germany
| |
Collapse
|
9
|
Kang D, Yoon EG, Nam KT, Yun C. Chorioretinal thickness and retinal pigment epithelial degeneration of fellow eyes in patients with unilateral neovascular age-related macular degeneration with subretinal drusenoid deposits. BMC Ophthalmol 2022; 22:304. [PMID: 35836149 PMCID: PMC9284825 DOI: 10.1186/s12886-022-02518-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 07/04/2022] [Indexed: 11/24/2022] Open
Abstract
Background We sought to investigate the chorioretinal thickness and retinal pigment epithelial (RPE) degenerative features of eyes with early age-related macular degeneration (AMD) and subretinal drusenoid deposits (SDDs) according to the presence of macular neovascularization (MNV) in the fellow eyes. Methods We classified 70 eyes into two groups of 47 eyes with non-neovascular AMD and 23 eyes with neovascular AMD, respectively, according to the presence of MNV in the fellow eyes. The mean macular retinal, ganglion cell–inner plexiform layer (GCIPL), and choroidal thickness values and RPE features of the 6-mm-diameter zone were compared. RPE degeneration was defined as a lesion with an incomplete RPE and outer retinal atrophy (iRORA) or attenuated RPE reflectivity with diffuse basal laminar deposits, which was defined as when the eye showed an attenuated RPE line with granular features and mixed reflectivity in combination with sub-RPE deposits with a lesion ≥ 1,000 µm in length. Results Mean retinal, GCIPL, and choroidal thickness values (286.69 ± 15.02 µm, 64.36 ± 4.21 µm, and 156.11 ± 33.10 µm) of the neovascular AMD group were greater than those (278.61 ± 13.96 µm, 61.44 ± 4.63 µm, and 133.59 ± 34.33 µm) of the non-neovascular AMD group (all P < 0.05). RPE degeneration was more prevalent in the neovascular AMD group (65.2%) than the non-neovascular AMD group (38.3%; P = 0.034). Greater mean GCIPL and choroidal thickness values and the presence of RPE degeneration were associated with type 3 MNV in fellow eyes (all P < 0.05). Conclusions Different degenerative features according to MNV in fellow eyes of patients with AMD and SDDs suggest that variable degenerative features might be present during disease progression and have an association with the phenotype. Supplementary Information The online version contains supplementary material available at 10.1186/s12886-022-02518-4.
Collapse
Affiliation(s)
- Dongwan Kang
- Department of Ophthalmology, Korea University College of Medicine, Seoul, Korea
| | - Eun Gyu Yoon
- Department of Ophthalmology, Korea University College of Medicine, Seoul, Korea
| | - Ki Tae Nam
- Department of Ophthalmology, Korea University College of Medicine, Seoul, Korea
| | - Cheolmin Yun
- Department of Ophthalmology, Korea University College of Medicine, Seoul, Korea.
| |
Collapse
|
10
|
Trinh M, Kalloniatis M, Alonso-Caneiro D, Nivison-Smith L. High-Density Optical Coherence Tomography Analysis Provides Insights Into Early/Intermediate Age-Related Macular Degeneration Retinal Layer Changes. Invest Ophthalmol Vis Sci 2022; 63:36. [PMID: 35622354 PMCID: PMC9150835 DOI: 10.1167/iovs.63.5.36] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Purpose To topographically map all of the thickness differences in individual retinal layers between early/intermediate age-related macular degeneration (AMDearly/AMDint) and normal eyes and to determine interlayer relationships. Methods Ninety-six AMDtotal (48 AMDearly and 48 AMDint) and 96 normal eyes from 192 participants were propensity-score matched by age, sex, and refraction. Retrospective optical coherence tomography (OCT) macular cube scans were acquired, and high-density (60 × 60 0.01-mm2) grid thicknesses were custom extracted for comparison between AMDtotal and normal eyes corrected for confounding. Resultant "normal differences" underwent cluster, interlayer correlation, and dose-response analyses for the retinal nerve fiber layer (RNFL), ganglion cell layer (GCL), inner plexiform layer (IPL), inner nuclear layer (INL), outer plexiform layer (OPL), outer nuclear layer + Henle's fiber layer (ONL+HFL), inner and outer segment (IS/OS) thickness, and retinal pigment epithelium (RPE) to Bruch's membrane (BM) thickness. Results AMDtotal inner retinal clusters demonstrated extensively thinned RNFL, GCL, IPL, and paracentral INL and thickened INL elsewhere, with normal difference means ranging from -8.13 µm (95% confidence interval [CI], -11.12 to -5.13) to 1.58 µm (95% CI, 1.07-2.09) (P < 0.0001 to P < 0.05). Outer retinal clusters displayed thinned paracentral OPL/ONL+HFL, central IS/OS, and peripheral RPE-BM and thickened central RPE-BM, with means ranging from -1.31 µm (95% CI, -2.06 to -0.55) to 2.99 µm (95% CI, 0.97-5.01] (P < 0.0001 to P <0.05). Effect sizes (-2.56 to 9.93 SD), cluster sizes, and eccentricity effects varied. All interlayer correlations were negligible to moderate regardless of AMD severity. Only the RPE-BM was partly thicker with greater AMD severity (up to 5.44 µm; 95% CI, 4.88-6.00; P < 0.01). Conclusions From the early stage, AMD eyes demonstrate thickness differences compared to normal with unique topographies across all retinal layers. Poor interlayer correlations highlight that the outer retina inadequately reflects complete retinal health. The clinical importance of OCT assessment across all individual retinal layers in early/intermediate AMD requires further investigation.
Collapse
Affiliation(s)
- Matt Trinh
- Centre for Eye Health, University of New South Wales, Sydney, New South Wales, Australia.,School of Optometry and Vision Science, University of New South Wales, Sydney, New South Wales, Australia
| | - Michael Kalloniatis
- Centre for Eye Health, University of New South Wales, Sydney, New South Wales, Australia.,School of Optometry and Vision Science, University of New South Wales, Sydney, New South Wales, Australia
| | - David Alonso-Caneiro
- Contact Lens and Visual Optics Laboratory, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Lisa Nivison-Smith
- Centre for Eye Health, University of New South Wales, Sydney, New South Wales, Australia.,School of Optometry and Vision Science, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
11
|
Agadagba SK, Eldaly ABM, Chan LLH. ECoG Power Alterations Across Stages of Prolonged Transcorneal Electrical Stimulation in the Blind Mice. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:5784-5787. [PMID: 34892434 DOI: 10.1109/embc46164.2021.9629894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Transcorneal electrical stimulation (TES) is a noninvasive approach for activating the retina and its downstream components through the application of electric current on the cornea. Although previous studies have demonstrated the clinical relevance of TES for modulating neurons with improvements in visual evoked potentials (VEPs) and electroretinograms (ERGs), there are still huge gaps in knowledge of its effect on the brain structures. To determine the short-term impact as well as the aftereffects of TES on neural oscillatory power in retinal degeneration mice, we performed electrocorticography (ECoG) recording in the prefrontal and primary visual cortices at different stages of prolonged TES [transient stage, following prolonged stimulation (post-stimulation stage 1) and long after the end of the retinal stimulation (post-stimulation stage 2)]) under varying stimulation current amplitudes (400 µA, 500 µA and 600 µA). The results revealed asymmetric differences between short-term and long-term pTES under different stimulation current amplitudes. Specifically, in post-stimulation stage 1 we observed significant increase in ECoG power of theta, alpha and beta oscillations respectively compared with baseline pre-stimulation results. These effects were dependent on the stimulation current amplitude and stimulation stage. Transient TES was not sufficient to cause significant changes in the ECoG power of all accessed oscillations except in medium, high and ultra-gamma oscillations which significantly decreased in 400 µA and 500 µA stimulation groups respectively compared with pre-stimulation results. Regarding long-term stimulation, the increase in ECoG power of theta, alpha and beta oscillations observed in post-stimulation stage 1 was significantly maintained in post-stimulation stage 2.Clinical Relevance- These results could be of core importance for human TES protocols suggesting that following pTES and long after the end of the stimulation, TES current amplitudes could have relatively different impacts on the power/activity of cortical oscillations. For example, by increasing the activity of oscillations that have been reported to inhibit irrelevant neural processes and enable the brain to focus on more relevant neural processes thus, inducing better coordination in the cortex.
Collapse
|
12
|
Abdolrahimzadeh S, Di Pippo M, Sordi E, Zweifel SA. Inner Retinal Layer Thickness Alterations in Early Age Related Macular Degeneration in Eyes with Subretinal Drusenoid Deposits or Conventional Drusen. J Clin Med 2021; 10:jcm10215136. [PMID: 34768654 PMCID: PMC8584863 DOI: 10.3390/jcm10215136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/26/2021] [Accepted: 10/29/2021] [Indexed: 11/16/2022] Open
Abstract
The purpose of this study was to evaluate central and parafoveal inner retinal layer thickness in patients with subretinal drusenoid deposits (SDD) or conventional drusen (CD). Participants underwent comprehensive ophthalmoscopic examination. Evidence of SDD or CD was evaluated with near infrared reflectance and spectral domain optical coherence tomography. Quantification of subfoveal lesions was made through a qualitative analysis of vertical and horizontal SD-OCT scans centered on the fovea. Inner retinal layer macular thickness measurements were obtained for central circles with 1, 3, and 5 mm diameter. Continuous variables were compared by the analysis of covariance (ANCOVA) with post-hoc Tukey HSD correction for multiple comparison analysis. Fifty-five patients were included in the study; 18 eyes with SDD alone, 19 eyes with CD alone, and 18 eyes of healthy age-matched subjects. Eight eyes with SDD (44%) and 13 eyes with CD (68%) had subfoveal lesions. There was significant reduction in the inner retinal layer thickness in the central 1mm area and in the superior 3 mm area in the SDD and CD group compared to controls. In conclusion the inner retinal layer is thinner in the central macula and in the superior parafovea in eyes.
Collapse
Affiliation(s)
- Solmaz Abdolrahimzadeh
- Ophthalmology Unit, Neurosciences, Mental Health, and Sense Organs (NESMOS) Department, Faculty of Medicine and Psychology, University of Rome Sapienza, St. Andrea Hospital, Via di Grottarossa 1035/1039, 00189 Rome, Italy; (M.D.P.); (E.S.)
- Correspondence:
| | - Mariachiara Di Pippo
- Ophthalmology Unit, Neurosciences, Mental Health, and Sense Organs (NESMOS) Department, Faculty of Medicine and Psychology, University of Rome Sapienza, St. Andrea Hospital, Via di Grottarossa 1035/1039, 00189 Rome, Italy; (M.D.P.); (E.S.)
| | - Edoardo Sordi
- Ophthalmology Unit, Neurosciences, Mental Health, and Sense Organs (NESMOS) Department, Faculty of Medicine and Psychology, University of Rome Sapienza, St. Andrea Hospital, Via di Grottarossa 1035/1039, 00189 Rome, Italy; (M.D.P.); (E.S.)
| | - Sandrine Anne Zweifel
- Department of Ophthalmology, University Hospital Zurich, Frauenklinikstrasse 24, 8091 Zurich, Switzerland;
- University of Zurich, Rämistrasse 71, 8006 Zurich, Switzerland
| |
Collapse
|
13
|
Trinh M, Khou V, Kalloniatis M, Nivison-Smith L. Location-Specific Thickness Patterns in Intermediate Age-Related Macular Degeneration Reveals Anatomical Differences in Multiple Retinal Layers. Invest Ophthalmol Vis Sci 2021; 62:13. [PMID: 34661608 PMCID: PMC8525852 DOI: 10.1167/iovs.62.13.13] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To examine individual retinal layers’ location-specific patterns of thicknesses in intermediate age-related macular degeneration (iAMD) using optical coherence tomography (OCT). Methods OCT macular cube scans were retrospectively acquired from 84 iAMD eyes of 84 participants and 84 normal eyes of 84 participants propensity-score matched on age, sex, and spherical equivalent refraction. Thicknesses of the retinal nerve fiber layer (RNFL), ganglion cell layer (GCL), inner plexiform layer (IPL), inner nuclear layer (INL), outer plexiform layer (OPL), outer nuclear layer + Henle's fiber layer (ONL+HFL), inner- and outer-segment layers (IS/OS), and retinal pigment epithelium to Bruch's membrane (RPE-BM) were calculated across an 8 × 8 grid (total 24° × 24° area). Location-specific analysis was performed using cluster(normal) and grid(iAMD)-to-cluster(normal) comparisons. Results In iAMD versus normal eyes, the central RPE-BM was thickened (mean difference ± SEM up to 27.45% ± 7.48%, P < 0.001; up to 7.6 SD-from-normal), whereas there was thinned outer (OPL, ONL+HFL, and non-central RPE-BM, up to −6.76% ± 2.47%, P < 0.001; up to −1.6 SD-from-normal) and inner retina (GCL and IPL, up to −4.83% ± 1.56%, P < 0.01; up to −1.7 SD-from-normal) with eccentricity-based effects. Interlayer correlations were greater against the ONL+HFL (mean |r| ± SEM 0.19 ± 0.03, P = 0.14 to < 0.0001) than the RPE-BM (0.09 ± 0, P = 0.72 to < 0.0001). Conclusions Location-specific analysis suggests altered retinal anatomy between iAMD and normal eyes. These data could direct clinical diagnosis and monitoring of AMD toward targeted locations.
Collapse
Affiliation(s)
- Matt Trinh
- Centre for Eye Health, University of New South Wales, Sydney, Australia.,School of Optometry and Vision Science, University of New South Wales, Sydney, Australia
| | - Vincent Khou
- Centre for Eye Health, University of New South Wales, Sydney, Australia.,School of Optometry and Vision Science, University of New South Wales, Sydney, Australia
| | - Michael Kalloniatis
- Centre for Eye Health, University of New South Wales, Sydney, Australia.,School of Optometry and Vision Science, University of New South Wales, Sydney, Australia
| | - Lisa Nivison-Smith
- Centre for Eye Health, University of New South Wales, Sydney, Australia.,School of Optometry and Vision Science, University of New South Wales, Sydney, Australia
| |
Collapse
|
14
|
Lem DW, Davey PG, Gierhart DL, Rosen RB. A Systematic Review of Carotenoids in the Management of Age-Related Macular Degeneration. Antioxidants (Basel) 2021; 10:1255. [PMID: 34439503 PMCID: PMC8389280 DOI: 10.3390/antiox10081255] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 01/14/2023] Open
Abstract
Age-related macular degeneration (AMD) remains a leading cause of modifiable vision loss in older adults. Chronic oxidative injury and compromised antioxidant defenses represent essential drivers in the development of retinal neurodegeneration. Overwhelming free radical species formation results in mitochondrial dysfunction, as well as cellular and metabolic imbalance, which becomes exacerbated with increasing age. Thus, the depletion of systemic antioxidant capacity further proliferates oxidative stress in AMD-affected eyes, resulting in loss of photoreceptors, neuroinflammation, and ultimately atrophy within the retinal tissue. The aim of this systematic review is to examine the neuroprotective potential of the xanthophyll carotenoids lutein, zeaxanthin, and meso-zeaxanthin on retinal neurodegeneration for the purpose of adjunctive nutraceutical strategy in the management of AMD. A comprehensive literature review was performed to retrieve 55 eligible publications, using four database searches from PubMed, Embase, Cochrane Library, and the Web of Science. Epidemiology studies indicated an enhanced risk reduction against late AMD with greater dietary consumption of carotenoids, meanwhile greater concentrations in macular pigment demonstrated significant improvements in visual function among AMD patients. Collectively, evidence strongly suggests that carotenoid vitamin therapies offer remarkable synergic protection in the neurosensory retina, with the potential to serve as adjunctive nutraceutical therapy in the management of established AMD, albeit these benefits may vary among different stages of disease.
Collapse
Affiliation(s)
- Drake W. Lem
- College of Optometry, Western University of Health Sciences, Pomona, CA 91766, USA;
| | | | | | - Richard B. Rosen
- Department of Ophthalmology, New York Eye and Ear Infirmary of Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| |
Collapse
|
15
|
Nam KT, Chung HW, Jang S, Hwang SY, Kim SW, Oh J, Yun C. GANGLION CELL-INNER PLEXIFORM LAYER THICKNESS IN EYES WITH NONEXUDATIVE AGE-RELATED MACULAR DEGENERATION OF DIFFERENT DRUSEN SUBTYPES. Retina 2021; 41:1686-1696. [PMID: 33411476 DOI: 10.1097/iae.0000000000003100] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE We sought to investigate the ganglion cell-inner plexiform layer (GCIPL) thickness in eyes with nonexudative age-related macular degeneration. METHODS We classified eyes into four categories-pachydrusen, soft drusen, subretinal drusenoid deposit (SDD), and soft drusen with SDD-and compared the baseline mean macular GCIPL thickness according to the Early Treatment Diabetic Retinopathy Study grid and its change between groups. RESULTS We classified 53, 29, 36, and 34 eyes into the four categories, respectively. The mean GCIPL thickness values in the 3-mm area were 82.61 ± 9.54 µm for the pachydrusen group, 79.11 ± 10.26 µm for the soft drusen group, 77.72 ± 6.04 µm for the SDD group, and 71.63 ± 8.69 µm for the soft drusen with SDD group (P < 0.001). The soft drusen with the SDD group showed a greater change in GCIPL thickness (-2.50 ± 0.29 µm/year) in the 3-mm area as compared with the pachydrusen group (-0.18 ± 0.35 µm/year), soft drusen group (-0.55 ± 0.36 µm/year), and SDD group (-0.55 ± 0.37) (all P < 0.001). CONCLUSION The GCIPL thickness varied according to the type of nonexudative age-related macular degeneration. The thinner baseline GCIPL and its greater change in eyes with soft drusen with SDD may suggest that these eyes are experiencing more prominent neuroretinal degeneration in the central 3-mm area than those in the other groups.
Collapse
Affiliation(s)
- Ki Tae Nam
- Department of Ophthalmology, Korea University College of Medicine, Seoul, Korea
| | - Hyun Woo Chung
- Department of Ophthalmology, Korea University College of Medicine, Seoul, Korea
| | - Sungmin Jang
- Department of Ophthalmology, Saevit Eye Hospital, Goyang, Korea; and
| | - Soon-Young Hwang
- Department of Biostatistics, Korea University College of Medicine, Seoul, Korea
| | - Seong-Woo Kim
- Department of Ophthalmology, Korea University College of Medicine, Seoul, Korea
| | - Jaeryung Oh
- Department of Ophthalmology, Korea University College of Medicine, Seoul, Korea
| | - Cheolmin Yun
- Department of Ophthalmology, Korea University College of Medicine, Seoul, Korea
| |
Collapse
|
16
|
Farinha C, Silva AL, Coimbra R, Nunes S, Cachulo ML, Marques JP, Pires I, Cunha-Vaz J, Silva R. Retinal layer thicknesses and neurodegeneration in early age-related macular degeneration: insights from the Coimbra Eye Study. Graefes Arch Clin Exp Ophthalmol 2021; 259:2545-2557. [PMID: 33738626 DOI: 10.1007/s00417-021-05140-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 02/12/2021] [Accepted: 03/02/2021] [Indexed: 12/18/2022] Open
Abstract
PURPOSE This study aims to analyze the retinal layers and choroidal thickness in a large set of eyes with early age-related macular degeneration (AMD), in order to detect differences by stage suggestive of early neurodegeneration, and to explore biomarkers of different phenotypes. METHODS This study is a population-based, cross-sectional study. Patients from the incidence AMD study (NCT02748824) with early AMD (Rotterdam 2a, 2b, 3) were included. All performed spectral-domain optical coherence tomography (SD-OCT) (Spectralis, Heidelberg Engineering, Germany) and automatic segmentation of all retinal layers was obtained with built-in software. Manual correction was performed whenever necessary. The mean thicknesses (ETDRS grid) and volume of each layer were recorded. Subfoveal choroidal thickness was manually measured. Estimates for each layer thickness were calculated with linear mixed models and tested for pairwise differences between stages. Associations between layer thickness and microstructural findings were assessed by multivariate regression analysis. RESULTS The final cohort comprised 346 eyes (233 patients): 82.66% (n = 286) in stage 2a, 5.49% (n = 19) in stage 2b, and 11.85% (n = 41) in stage 3. A global tendency for lower/inferior thickness of the neuroretinal layers was found comparing stage 3 to 2a: retinal nerve fiber layer (RNFL), ganglion cell layer (GCL), and inner plexiform layer (IPL) were inferior in the inner/outer ETDRS circles and the outer nuclear layer (ONL) and photoreceptors' segments layer in the central circle (p ≤ 0.002). The retinal pigment epithelium-Bruch's membrane (RPE/BrM) layer was thicker in stage 3 (p ≤ 0.001). Subretinal drusenoid deposits (SDD) were associated with thinner neuroretinal layers and choroid (p < 0.05). CONCLUSIONS Our results showed in a large population-based dataset that several inner and outer neuroretinal layers were thinner with a higher stage in early AMD. These findings support the existence of early and progressive neurodegeneration. Neuronal retinal layer thicknesses might thus be used as quantitative biomarkers of disease progression in AMD. The presence of SDD is possibly associated to more prominent and faster neurodegeneration.
Collapse
Affiliation(s)
- Cláudia Farinha
- Association for Innovation and Biomedical Research on Light and Image (AIBILI), Coimbra, Portugal. .,Department of Ophthalmology, Centro Hospitalar e Universitário de Coimbra (CHUC), Praceta Mota Pinto, 3000, Coimbra, Portugal. .,Faculty of Medicine, University of Coimbra (FMUC), Coimbra, Portugal.
| | - Ana Luísa Silva
- Faculty of Medicine, University of Coimbra (FMUC), Coimbra, Portugal
| | - Rita Coimbra
- Association for Innovation and Biomedical Research on Light and Image (AIBILI), Coimbra, Portugal
| | - Sandrina Nunes
- Association for Innovation and Biomedical Research on Light and Image (AIBILI), Coimbra, Portugal
| | - Maria Luz Cachulo
- Association for Innovation and Biomedical Research on Light and Image (AIBILI), Coimbra, Portugal.,Department of Ophthalmology, Centro Hospitalar e Universitário de Coimbra (CHUC), Praceta Mota Pinto, 3000, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra (FMUC), Coimbra, Portugal
| | - João Pedro Marques
- Association for Innovation and Biomedical Research on Light and Image (AIBILI), Coimbra, Portugal.,Department of Ophthalmology, Centro Hospitalar e Universitário de Coimbra (CHUC), Praceta Mota Pinto, 3000, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra (FMUC), Coimbra, Portugal
| | - Isabel Pires
- Association for Innovation and Biomedical Research on Light and Image (AIBILI), Coimbra, Portugal.,Department of Ophthalmology, Centro Hospitalar e Universitário de Coimbra (CHUC), Praceta Mota Pinto, 3000, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra (FMUC), Coimbra, Portugal
| | - José Cunha-Vaz
- Association for Innovation and Biomedical Research on Light and Image (AIBILI), Coimbra, Portugal.,Faculty of Medicine, University of Coimbra (FMUC), Coimbra, Portugal
| | - Rufino Silva
- Association for Innovation and Biomedical Research on Light and Image (AIBILI), Coimbra, Portugal.,Department of Ophthalmology, Centro Hospitalar e Universitário de Coimbra (CHUC), Praceta Mota Pinto, 3000, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra (FMUC), Coimbra, Portugal.,Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra (iCBR- FMUC), Coimbra, Portugal
| |
Collapse
|
17
|
Hadziahmetovic M, Malek G. Age-Related Macular Degeneration Revisited: From Pathology and Cellular Stress to Potential Therapies. Front Cell Dev Biol 2021; 8:612812. [PMID: 33569380 PMCID: PMC7868387 DOI: 10.3389/fcell.2020.612812] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/23/2020] [Indexed: 12/12/2022] Open
Abstract
Age-related macular degeneration (AMD) is a neurodegenerative disease of the aging retina, in which patients experience severe vision loss. Therapies available to patients are limited and are only effective in a sub-population of patients. Future comprehensive clinical care depends on identifying new therapeutic targets and adopting a multi-therapeutic approach. With this goal in mind, this review examines the fundamental concepts underlying the development and progression of AMD and re-evaluates the pathogenic pathways associated with the disease, focusing on the impact of injury at the cellular level, with the understanding that critical assessment of the literature may help pave the way to identifying disease-relevant targets. During this process, we elaborate on responses of AMD vulnerable cells, including photoreceptors, retinal pigment epithelial cells, microglia, and choroidal endothelial cells, based on in vitro and in vivo studies, to select stressful agents, and discuss current therapeutic developments in the field, targeting different aspects of AMD pathobiology.
Collapse
Affiliation(s)
- Majda Hadziahmetovic
- Duke Eye Center, Department of Ophthalmology, Duke University School of Medicine, Durham, NC, United States
| | - Goldis Malek
- Duke Eye Center, Department of Ophthalmology, Duke University School of Medicine, Durham, NC, United States.,Department of Pathology, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|
18
|
Trinh M, Tong J, Yoshioka N, Zangerl B, Kalloniatis M, Nivison-Smith L. Macula Ganglion Cell Thickness Changes Display Location-Specific Variation Patterns in Intermediate Age-Related Macular Degeneration. Invest Ophthalmol Vis Sci 2020; 61:2. [PMID: 32150251 PMCID: PMC7401429 DOI: 10.1167/iovs.61.3.2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Purpose The purpose of this study was to examine changes in the ganglion cell layer (GCL) of individuals with intermediate age-related macular degeneration (AMD) using grid-wise analysis for macular optical coherence tomography (OCT) volume scans. We also aim to validate the use of age-correction functions for GCL thickness in diseased eyes. Methods OCT macular cube scans covering 30° × 25° were acquired using Spectralis spectral-domain OCT for 87 eyes with intermediate AMD, 77 age-matched normal eyes, and 254 non-age-matched normal eyes. The thickness of the ganglion cell layer (GCL) was defined after segmentation at 60 locations across an 8 × 8 grid centered on the fovea, where each grid location covered 0.74 mm2 (approximately 3° × 3°) within the macula. Each GCL location of normal eyes (n = 77) were assigned to a specific iso-ganglion cell density cluster in the macula, based on patterns of age-related GCL thickness loss. Analyses were then performed comparing AMD GCL grid-wise data against corresponding spatial clusters, and significant AMD GCL thickness changes were denoted as values outside the 95% distribution limits. Results Analysis of GCL thickness changes revealed significant differences between spatial clusters, with thinning toward the fovea, and thickening toward the peripheral macula. The direction of GCL thickness changes in AMD were associated more so with thickening than thinning in all analyses. Results were corroborated by the application of GCL thickness age-correction functions. Conclusions GCL thickness changed significantly and nonuniformly within the macula of intermediate AMD eyes. Further characterization of these changes is critical to improve diagnoses and monitoring of GCL-altering pathologies.
Collapse
|
19
|
Alves CH, Fernandes R, Santiago AR, Ambrósio AF. Microglia Contribution to the Regulation of the Retinal and Choroidal Vasculature in Age-Related Macular Degeneration. Cells 2020; 9:cells9051217. [PMID: 32423062 PMCID: PMC7290930 DOI: 10.3390/cells9051217] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/09/2020] [Accepted: 05/12/2020] [Indexed: 12/17/2022] Open
Abstract
The retina is a highly metabolically active tissue with high-level consumption of nutrients and oxygen. This high metabolic demand requires a properly developed and maintained vascular system. The retina is nourished by two systems: the central retinal artery that supplies the inner retina and the choriocapillaris that supplies the outer retina and retinal pigment epithelium (RPE). Pathological neovascularization, characterized by endothelial cell proliferation and new vessel formation, is a common hallmark in several retinal degenerative diseases, including age-related macular degeneration (AMD). A limited number of studies have suggested that microglia, the resident immune cells of the retina, have an important role not only in the pathology but also in the formation and physiology of the retinal vascular system. Here, we review the current knowledge on microglial interaction with the retinal vascular system under physiological and pathological conditions. To do so, we first highlight the role of microglial cells in the formation and maintenance of the retinal vasculature system. Thereafter, we discuss the molecular signaling mechanisms through which microglial cells contribute to the alterations in retinal and choroidal vasculatures and to the neovascularization in AMD.
Collapse
Affiliation(s)
- C. Henrique Alves
- Retinal Dysfunction and Neuroinflammation Lab, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (C.H.A.); (R.F.); (A.R.S.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-531 Coimbra, Portugal
- Association for Innovation and Biomedical Research on Light and Image (AIBILI), 3000-548 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3004-561 Coimbra, Portugal
| | - Rosa Fernandes
- Retinal Dysfunction and Neuroinflammation Lab, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (C.H.A.); (R.F.); (A.R.S.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-531 Coimbra, Portugal
- Association for Innovation and Biomedical Research on Light and Image (AIBILI), 3000-548 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3004-561 Coimbra, Portugal
| | - Ana Raquel Santiago
- Retinal Dysfunction and Neuroinflammation Lab, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (C.H.A.); (R.F.); (A.R.S.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-531 Coimbra, Portugal
- Association for Innovation and Biomedical Research on Light and Image (AIBILI), 3000-548 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3004-561 Coimbra, Portugal
| | - António Francisco Ambrósio
- Retinal Dysfunction and Neuroinflammation Lab, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (C.H.A.); (R.F.); (A.R.S.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-531 Coimbra, Portugal
- Association for Innovation and Biomedical Research on Light and Image (AIBILI), 3000-548 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3004-561 Coimbra, Portugal
- Correspondence: ; Tel.: +351-239-480093
| |
Collapse
|
20
|
Automatic segmentation of retinal layer boundaries in OCT images using multiscale convolutional neural network and graph search. Neurocomputing 2019. [DOI: 10.1016/j.neucom.2019.07.079] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
21
|
Shin YI, Kim JM, Lee MW, Jo YJ, Kim JY. Characteristics of the Foveal Microvasculature in Asian Patients with Dry Age-Related Macular Degeneration: An Optical Coherence Tomography Angiography Study. Ophthalmologica 2019; 243:145-153. [PMID: 31645037 DOI: 10.1159/000503295] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 09/09/2019] [Indexed: 11/19/2022]
Abstract
PURPOSE To evaluate changes in the foveal microvasculature in patients with dry age-related macular degeneration (dry AMD) using optical coherence tomography angiography (OCTA). METHODS Eighty-three eyes with dry AMD and 83 age- and sex-matched normal eyes were enrolled. A 3 × 3 mm2 OCTA (Zeiss HD-OCT 5000 with AngioPlex; Carl Zeiss Meditec, Dublin, CA, USA) scan was used to acquire images. Vessel density (VD), perfusion density (PD), and the foveal avascular zone (FAZ) of the superficial capillary plexus were analyzed. RESULTS The VD of the full area, central area, and inner ring of the dry AMD patients (18.61, 8.41, and 20.45, respectively) were significantly lower than those of the controls (20.06, 11.09, and 22.51, respectively). The PD of the full area, central area, and inner ring of the dry AMD patients (0.34, 0.15, and 0.37, respectively) were also significantly lower than those of the controls (0.36, 0.19, and 0.40, respectively). The FAZ area and perimeter in the dry AMD patients (0.29 mm2 and 2.47 mm, respectively) were larger than those in the controls (0.23 mm2 and 2.09 mm, respectively). The FAZ circularity index in the dry AMD patients was smaller than that in the controls (0.61 vs. 0.66). Using univariate linear regression, age, best-corrected visual acuity (BCVA), central macular thickness (CMT), and ganglion cell-inner plexiform layer (GC-IPL) thickness were associated with both VD and PD of the full area. Using multivariate analysis, only GC-IPL thickness was significantly associated with the VD and PD of the full area (p = 0.001 and p = 0.004, respectively). CONCLUSIONS OCTA revealed changes in the foveal microcirculation of patients with dry AMD. Age, BCVA, CMT, and GC-IPL thickness should be considered when analyzing the OCTA data of patients with dry AMD. GC-IPL thickness is particularly important during clinical evaluation of VD and PD in patients with dry AMD.
Collapse
Affiliation(s)
- Yong-Il Shin
- Department of Ophthalmology, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Ju Mi Kim
- Department of Ophthalmology, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Min-Woo Lee
- Department of Ophthalmology, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Young-Joon Jo
- Department of Ophthalmology, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Jung-Yeul Kim
- Department of Ophthalmology, Chungnam National University College of Medicine, Daejeon, Republic of Korea,
| |
Collapse
|
22
|
Trinh M, Kalloniatis M, Nivison-Smith L. Vascular Changes in Intermediate Age-Related Macular Degeneration Quantified Using Optical Coherence Tomography Angiography. Transl Vis Sci Technol 2019; 8:20. [PMID: 31404428 PMCID: PMC6685696 DOI: 10.1167/tvst.8.4.20] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 06/10/2019] [Indexed: 12/25/2022] Open
Abstract
Purpose To examine changes in retinal vasculature and ganglion cell layer (GCL) thickness in intermediate age-related macular degeneration (AMD) using optical coherence tomography angiography (OCTA). Methods Zeiss Cirrus Angioplex OCTA 6 × 6 mm scans and a macula 512 × 128 cube scans of the central retina were taken of 63 eyes with intermediate AMD and 51 control eyes. For OCTA scans, the superficial and deep capillary plexus were automatically segmented and vascular density quantified as total number of pixels contributing to the blood flow signal detectable by OCTA. Images were then skeletonized and vessel length, diameter index, morphology, and branching complexity determined. Foveal avascular zone (FAZ) characteristics and GCL thickness were extracted from in-built Angioplex software. Results Vascular density was significantly reduced in the superficial capillary plexus of AMD eyes compared with normal eyes, particularly in the superior quadrant (42.4% ± 1.6% vs. 43.2% ± 1.4%; P < 0.05). A nonsignificant reduction was also seen in the deep capillary plexus (P = 0.06). Total vessel length and average vessel diameter were all significantly decreased in AMD eyes suggesting density changes were related to decreased vessel number and caliber. Vascular complexity and number of branch points was significantly decreased in the deep capillary plexus (P < 0.05) suggesting loss or significantly reduced flow of vessels. Average GCL thickness was also significantly reduced in the AMD eyes (P < 0.05). No significant changes in FAZ parameters were observed in AMD eyes. Conclusions This study suggests intermediate AMD affects both the quantity and morphology of inner retinal vasculature and may be associated with changes in inner retinal structure. This work builds upon the notion that AMD pathogenesis may extends beyond the outer retina. Translational Relevance Better understanding of retinal vascular changes in AMD can provide insights in the development of treatment and prevention protocols for these diseases.
Collapse
Affiliation(s)
- Matt Trinh
- School of Optometry and Vision Science, University of New South Wales, Sydney, Australia.,Centre for Eye Health, University of New South Wales, Sydney, Australia
| | - Michael Kalloniatis
- School of Optometry and Vision Science, University of New South Wales, Sydney, Australia.,Centre for Eye Health, University of New South Wales, Sydney, Australia
| | - Lisa Nivison-Smith
- School of Optometry and Vision Science, University of New South Wales, Sydney, Australia.,Centre for Eye Health, University of New South Wales, Sydney, Australia
| |
Collapse
|
23
|
Blanc J, Seydou A, Ben Ghezala I, Deschasse C, Meillon C, Bron AM, Binquet C, Creuzot-Garcher C. Vitreomacular Interface Abnormalities and Glaucoma in an Elderly Population (The MONTRACHET Study). ACTA ACUST UNITED AC 2019; 60:1996-2002. [DOI: 10.1167/iovs.18-26510] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Julie Blanc
- University Hospital, Department of Ophthalmology, Dijon, France
| | - Alassane Seydou
- Institut National de la Santé et de la Recherche Médicale (INSERM), Clinical Center Investigation, Clinical Epidemiology/Clinical Trials Unit, Universal Hospital, Dijon, France
- Centre des Sciences du Goût et de l'Alimentation, Centre National pour la Recherche Scientifique (CNRS), Institut National de la Recherche Agronomique (INRA), University Bourgogne Franche-Comté, Dijon, France
| | | | | | - Cyril Meillon
- University Hospital, Department of Ophthalmology, Dijon, France
| | - Alain M. Bron
- University Hospital, Department of Ophthalmology, Dijon, France
- Centre des Sciences du Goût et de l'Alimentation, Centre National pour la Recherche Scientifique (CNRS), Institut National de la Recherche Agronomique (INRA), University Bourgogne Franche-Comté, Dijon, France
| | - Christine Binquet
- Institut National de la Santé et de la Recherche Médicale (INSERM), Clinical Center Investigation, Clinical Epidemiology/Clinical Trials Unit, Universal Hospital, Dijon, France
- Centre des Sciences du Goût et de l'Alimentation, Centre National pour la Recherche Scientifique (CNRS), Institut National de la Recherche Agronomique (INRA), University Bourgogne Franche-Comté, Dijon, France
| | - Catherine Creuzot-Garcher
- University Hospital, Department of Ophthalmology, Dijon, France
- Centre des Sciences du Goût et de l'Alimentation, Centre National pour la Recherche Scientifique (CNRS), Institut National de la Recherche Agronomique (INRA), University Bourgogne Franche-Comté, Dijon, France
| |
Collapse
|
24
|
Lamin A, Oakley JD, Dubis AM, Russakoff DB, Sivaprasad S. Changes in volume of various retinal layers over time in early and intermediate age-related macular degeneration. Eye (Lond) 2018; 33:428-434. [PMID: 30310161 DOI: 10.1038/s41433-018-0234-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 09/24/2018] [Indexed: 10/28/2022] Open
Abstract
PURPOSE To evaluate longitudinally volume changes in inner and outer retinal layers in early and intermediate age-related macular degeneration (AMD) compared to healthy control eyes using optical coherence tomography (OCT). METHODS 71 eyes with AMD and 31 control eyes were imaged at two time points: baseline and after 2 years. Automated OCT layer segmentation was performed using OrionTM. This software is able to measure volumes of retinal layers with distinct boundaries including Retinal Nerve Fibre Layer (RNFL), Ganglion Cell-Inner Plexiform Layer (GCIPL), Inner Nuclear Layer (INL), Outer Plexiform Layer (OPL), Outer Nuclear Layer (ONL), Photoreceptors (PR) and Retinal Pigment Epithelium-Bruch's Membrane complex (RPE-BM). The mean retinal layer volumes and volume changes at 2 years were compared between groups. RESULTS Mean GCIPL and INL volumes were lower, while PR and RPE-BM volumes were higher in AMD eyes than controls at baseline (all P < 0.05) and year 2 (all P < 0.05). In AMD eyes, RNFL and ONL volumes decreased by 0.0232 (P = 0.033) and 0.0851 (P = 0.001), respectively. In contrast, OPL and RPE-BM volumes increased in AMD eyes by 0.0391 (P = 0.000) and 0.0209 (P = 0.000) respectively. Moreover, there were significant differences in longitudinal volume change of OPL (P = 0.02), ONL (P = 0.008) and RPE-BM (P = 0.02) between AMD eyes and controls. CONCLUSIONS There were abnormal retinal layer volumes and volume changes in eyes with early and intermediate AMD.
Collapse
Affiliation(s)
- Ali Lamin
- NIHR Moorfields Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust, London, UK.,UCL Institute of Ophthalmology, London, UK
| | | | - Adam M Dubis
- NIHR Moorfields Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust, London, UK.,UCL Institute of Ophthalmology, London, UK
| | | | - Sobha Sivaprasad
- NIHR Moorfields Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust, London, UK. .,UCL Institute of Ophthalmology, London, UK.
| |
Collapse
|
25
|
QUANTITATIVE ANALYSIS OF THE INNER RETINAL LAYER THICKNESSES IN AGE-RELATED MACULAR DEGENERATION USING CORRECTED OPTICAL COHERENCE TOMOGRAPHY SEGMENTATION. Retina 2018. [PMID: 28650925 DOI: 10.1097/iae.0000000000001759] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
PURPOSE To characterize inner retinal damage in patients with dry age-related macular degeneration (AMD) using high-resolution spectral domain optical coherence tomography images. METHODS Sixty eyes of 60 patients with AMD were categorized using the Age-Related Eye Disease Study (AREDS) severity scale. Spectral domain optical coherence tomography images of these patients were quantified by manually correcting the segmentation of each retinal layer, including the retinal nerve fiber layer, ganglion cell layer, and inner plexiform layer to ensure accurate delineation of layers. The mean ganglion cell complex thickness values (ganglion cell layer + inner plexiform layer + retinal nerve fiber layer) were compared with 30 eyes of 30 healthy subjects. RESULTS Ninety percent of eyes (81 eyes) required manual correction of segmentation. Compared with healthy subjects, mean ganglion cell complex thicknesses significantly decreased in more advanced dry AMD eyes, and this decrease was predominantly related to a change in inner plexiform layer thickness. There was no significant difference in thickness-related measurements between milder dry AMD (AREDS-2) eyes and healthy eyes (P > 0.05). CONCLUSION In patients with dry AMD, automatic optical coherence tomography segmentation algorithms may be erroneous. As the severity of dry AMD increases, the inner plexiform layer layer becomes thinned, suggesting that transsynaptic degeneration may be occurring, as the photoreceptor layer is affected by AMD.
Collapse
|
26
|
Novosel J, Vermeer KA, de Jong JH, van Vliet LJ. Joint Segmentation of Retinal Layers and Focal Lesions in 3-D OCT Data of Topologically Disrupted Retinas. IEEE TRANSACTIONS ON MEDICAL IMAGING 2017; 36:1276-1286. [PMID: 28186886 DOI: 10.1109/tmi.2017.2666045] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Accurate quantification of retinal structures in 3-D optical coherence tomography data of eyes with pathologies provides clinically relevant information. We present an approach to jointly segment retinal layers and lesions in eyes with topology-disrupting retinal diseases by a loosely coupled level set framework. In the new approach, lesions are modeled as an additional space-variant layer delineated by auxiliary interfaces. Furthermore, the segmentation of interfaces is steered by local differences in the signal between adjacent retinal layers, thereby allowing the approach to handle local intensity variations. The accuracy of the proposed method of both layer and lesion segmentation has been evaluated on eyes affected by central serous retinopathy and age-related macular degeneration. In addition, layer segmentation of the proposed approach was evaluated on eyes without topology-disrupting retinal diseases. Good agreement between the segmentation performed manually by a medical doctor and results obtained from the automatic segmentation was found for all data types. The mean unsigned error for all interfaces varied between 2.3 and 11.9 μm (0.6-3.1 pixels). Furthermore, lesion segmentation showed a Dice coefficient of 0.68 for drusen and 0.89 for fluid pockets. Overall, the method provides a flexible and accurate solution to jointly segment lesions and retinal layers.
Collapse
|