1
|
Zhang X, Zhang K, Yan L, Wang P, Zhao F, Hu S. The role of toll-like receptors in immune tolerance induced by Helicobacter pylori infection. Helicobacter 2023; 28:e13020. [PMID: 37691007 DOI: 10.1111/hel.13020] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/11/2023] [Accepted: 08/29/2023] [Indexed: 09/12/2023]
Abstract
Helicobacter pylori (H. pylori) is a gram-negative, microaerobic bacterium that colonizes the gastric mucosa in about half of the world's population. H. pylori infection can lead to various diseases. Chronic infection by H. pylori exposes the gastric mucosa to bacterial components such as lipopolysaccharide (LPS), outer membrane vesicles (OMVs), and several toxic proteins. Infected with H. pylori activates the release of pro-inflammatory factors and triggers inflammatory responses that damage the gastric mucosa. As the only microorganism that permanently colonizes the human stomach, H. pylori can suppress host immunity to achieve long-term colonization. Toll-like receptors (TLRs) play a crucial role in T-cell activation, promoting innate immune responses and immune tolerance during H. pylori infection. Among the 10 TLRs found in humans, TLR2, TLR4, TLR5, and TLR9 have been thoroughly investigated in relation to H. pylori-linked immune regulation. In the present review, we provide a comprehensive analysis of the various mechanisms employed by different TLRs in the induction of immune tolerance upon H. pylori infection, which will contribute to the research of pathogenic mechanism of H. pylori.
Collapse
Affiliation(s)
- Xiulin Zhang
- Department of Clinical Laboratory, Peking University Shougang Hospital, Beijing, China
| | - Ke Zhang
- Department of Clinical Laboratory, Peking University Shougang Hospital, Beijing, China
| | - Linlin Yan
- Department of Clinical Laboratory, Peking University Shougang Hospital, Beijing, China
| | - Pengfei Wang
- Department of Clinical Laboratory, Peking University Shougang Hospital, Beijing, China
| | - Fan Zhao
- Department of Clinical Laboratory, Peking University Shougang Hospital, Beijing, China
| | - Shoukui Hu
- Department of Clinical Laboratory, Peking University Shougang Hospital, Beijing, China
| |
Collapse
|
2
|
Roy VL, Majumder PP. Genomic associations with antibody response to an oral cholera vaccine. Vaccine 2023; 41:6391-6400. [PMID: 37699782 DOI: 10.1016/j.vaccine.2023.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/03/2023] [Accepted: 09/07/2023] [Indexed: 09/14/2023]
Abstract
Oral cholera vaccine is one of the key interventions used in our fight to end the longest pandemic of our time, cholera. The immune response conferred by the currently available cholera vaccines, as measured by serum antibody levels, is variable amongst its recipients. We undertook a genome wide association study (GWAS) on antibody response to the cholera vaccine; globally, the first GWAS on cholera vaccine response. We identified three clusters of bi-allelic SNPs, in high within-cluster linkage disequilibrium that were moderately (p < 5 × 10-6) associated with antibody response to the cholera vaccine and mapped to chromosomal regions 4p14, 4p16.1 and 6q23.3. Intronic SNPs of TBC1D1 comprised the cluster on 4p14, intronic SNPs of TBC1D14 comprised that on 4p16.1 and SNPs upstream of TNFAIP3 formed the cluster on 6q23.3. SNPs within and around these clusters have been implicated in immune cell function and immunological aspects of autoimmune or infectious diseases (e.g., diseases caused by Helicobacter pylori and malarial parasite). 6q23.3 is a prominent region harbouring many loci associated with immune related diseases, including multiple sclerosis, rheumatoid arthritis and systemic lupus erythematosus, as well as IL2 and INFα response to a smallpox vaccine. The gene clusters identified in this study play roles in vesicle-mediated pathway, autophagy and NF-κB signaling. No significant effect of O blood group on antibody response to the cholera vaccine was observed in this study.
Collapse
Affiliation(s)
- Vijay Laxmi Roy
- National Institute of Biomedical Genomics, P.O.: N.S.S., Kalyani, West Bengal 741251, India
| | - Partha P Majumder
- National Institute of Biomedical Genomics, P.O.: N.S.S., Kalyani, West Bengal 741251, India; Indian Statistical Institute, 203, Barrackpore Trunk Road, Kolkata, West Bengal 700108, India.
| |
Collapse
|
3
|
Subbaiah KCV, Wu J, Tang WHW, Yao P. FAM114A1 influences cardiac pathological remodeling by regulating angiotensin II signaling. JCI Insight 2022; 7:152783. [PMID: 35671117 PMCID: PMC9310534 DOI: 10.1172/jci.insight.152783] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 06/01/2022] [Indexed: 11/30/2022] Open
Abstract
Cardiac pathological remodeling, a primary contributor to heart failure (HF) and death, is an important target for HF therapy. However, the signaling pathways that govern cardiac remodeling are not fully elucidated. Here, we found that a functionally unannotated human myocardial infarction–associated (MI-associated) gene, family with sequence similarity 114 member A1 (FAM114A1), is induced in failing human and mouse hearts compared with nonfailing hearts. Homozygous KO of Fam114a1 (Fam114a1–/–) in the mouse genome reduces cardiomyocyte hypertrophy, inflammation, and cardiac fibrosis while restoring cardiac function in angiotensin II–induced (Ang II–induced) and MI-induced HF mouse models. Cardiac fibroblasts (CFs) exhibit the highest FAM114A1 expression among different cardiac cell types. FAM114A1 is a critical autonomous factor for CF proliferation, activation, and migration. Mechanistically, FAM114A1 interacts with angiotensin receptor–associated protein (AGTRAP) and regulates the expression of angiotensin type 1 receptor (AT1R) and downstream Ang II signaling transduction, and it subsequently influences profibrotic response. Our results indicate that FAM114A1 regulates Ang II signaling, thereby activating CFs and other cardiac cells and augmenting pathological cardiac remodeling. These findings provide potentially novel insights into the regulation of cardiac remodeling and identify FAM114A1 as a therapeutic target for the treatment of heart disease.
Collapse
Affiliation(s)
- Kadiam C Venkata Subbaiah
- Department of Medicine, University of Rochester School of Medicine, Rochester, United States of America
| | - Jiangbin Wu
- Department of Medicine, University of Rochester School of Medicine, Rochester, United States of America
| | - Wai Hong Wilson Tang
- Department of Cardiovascular Medicine, Cleveland Clinic Foundation, Cleveland, United States of America
| | - Peng Yao
- Department of Medicine, University of Rochester School of Medicine, Rochester, United States of America
| |
Collapse
|
4
|
Lam SY, Mommersteeg MC, Yu B, Broer L, Spaander MCW, Frost F, Weiss S, Völzke H, Lerch MM, Schöttker B, Zhang Y, Stocker H, Brenner H, Levy D, Hwang SJ, Wood AC, Rich SS, Rotter JI, Taylor KD, Tracy RP, Kabagambe EK, Leja M, Klovins J, Peculis R, Rudzite D, Nikitina-Zake L, Skenders G, Rovite V, Uitterlinden A, Kuipers EJ, Fuhler GM, Homuth G, Peppelenbosch MP. Toll-Like Receptor 1 Locus Re-examined in a Genome-Wide Association Study Update on Anti-Helicobacter pylori IgG Titers. Gastroenterology 2022; 162:1705-1715. [PMID: 35031300 DOI: 10.1053/j.gastro.2022.01.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 12/03/2021] [Accepted: 01/07/2022] [Indexed: 12/17/2022]
Abstract
BACKGROUND & AIMS A genome-wide significant association between anti-Helicobacter pylori (H pylori) IgG titers and Toll-like receptor (TLR1/6/10) locus on 4p14 was demonstrated for individuals of European ancestry, but not uniformly replicated. We re-investigated this association in an updated genome-wide association study (GWAS) meta-analysis for populations with low gastric cancer incidence, address potential causes of cohort heterogeneity, and explore functional implications of genetic variation at the TLR1/6/10 locus. METHODS The dichotomous GWAS (25% individuals exhibiting highest anti-H pylori IgG titers vs remaining 75%) included discovery and replication sampls of, respectively, n = 15,685 and n = 9676, all of European ancestry. Longitudinal analysis of serologic data was performed on H pylori-eradicated subjects (n = 132) and patients under surveillance for premalignant gastric lesions (n = 107). TLR1/6/10 surface expression, TLR1 mRNA, and cytokine levels were measured in leukocyte subsets of healthy subjects (n = 26) genotyped for TLR1/6/10 variants. RESULTS The association of the TLR1/6/10 locus with anti-H pylori IgG titers (rs12233670; β = -0.267 ± SE 0.034; P = 4.42 × 10-15) presented with high heterogeneity and failed replication. Anti-H pylori IgG titers declined within 2-4 years after eradication treatment (P = 0.004), and decreased over time in patients with premalignant gastric lesions (P < 0.001). Variation at the TLR1/6/10 locus affected TLR1-mediated cytokine production and TLR1 surface expression on monocytes (P = 0.016) and neutrophils (P = 0.030), but not mRNA levels. CONCLUSIONS The association between anti-H pylori IgG titers and TLR1/6/10 locus was not replicated across cohorts, possibly owing to dependency of anti-H pylori IgG titers on therapy, clearance, and antibody decay. H pylori-mediated immune cell activation is partly mediated via TLR1 signaling, which in turn is affected by genetic variation.
Collapse
Affiliation(s)
- Suk Yee Lam
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Michiel C Mommersteeg
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Bingting Yu
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Linda Broer
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Manon C W Spaander
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Fabian Frost
- Department of Medicine A, University Medicine Greifswald, Greifswald, Germany
| | - Stefan Weiss
- Department of Medicine A, University Medicine Greifswald, Greifswald, Germany; Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Henry Völzke
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Markus M Lerch
- Department of Medicine A, University Medicine Greifswald, Greifswald, Germany
| | - Ben Schöttker
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Heidelberg, Germany; Network Aging Research, Heidelberg University, Heidelberg, Germany
| | - Yan Zhang
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Heidelberg, Germany
| | - Hannah Stocker
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Heidelberg, Germany; Network Aging Research, Heidelberg University, Heidelberg, Germany
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Heidelberg, Germany; Network Aging Research, Heidelberg University, Heidelberg, Germany
| | - Daniel Levy
- Framingham Heart Study, National Heart, Lung, and Blood Institute, Framingham, Massachusetts, USA; Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA
| | - Shih-Jen Hwang
- Framingham Heart Study, National Heart, Lung, and Blood Institute, Framingham, Massachusetts, USA; Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA
| | - Alexis C Wood
- USDA/ARS Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas, USA
| | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, USA
| | - Jerome I Rotter
- Institute for Translational Genomics and Population Sciences, Department of Pediatrics, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
| | - Kent D Taylor
- Institute for Translational Genomics and Population Sciences, Department of Pediatrics, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
| | - Russell P Tracy
- Laboratory for Clinical Biochemistry Research, University of Vermont College of Medicine, Colchester, Vermont, USA
| | | | - Marcis Leja
- Institute of Clinical and Preventive Medicine, Faculty of Medicine, University of Latvia, Riga, Latvia
| | - Janis Klovins
- Latvian Biomedical Research and Study Center, Riga, Latvia
| | - Raitis Peculis
- Latvian Biomedical Research and Study Center, Riga, Latvia
| | - Dace Rudzite
- Institute of Clinical and Preventive Medicine, Faculty of Medicine, University of Latvia, Riga, Latvia
| | | | - Girts Skenders
- Institute of Clinical and Preventive Medicine, Faculty of Medicine, University of Latvia, Riga, Latvia
| | - Vita Rovite
- Latvian Biomedical Research and Study Center, Riga, Latvia
| | - André Uitterlinden
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Ernst J Kuipers
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Gwenny M Fuhler
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Georg Homuth
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Maikel P Peppelenbosch
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, the Netherlands.
| |
Collapse
|
5
|
El-Omar EM. Genetic Predisposition for Helicobacter pylori Infection-The Jury Is Still Out! Gastroenterology 2022; 162:1591-1593. [PMID: 35278417 DOI: 10.1053/j.gastro.2022.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 12/02/2022]
Affiliation(s)
- Emad M El-Omar
- UNSW Microbiome Research Centre, School of Clinical Medicine, UNSW Medicine & Health, University of New South Wales, Sydney, Australia.
| |
Collapse
|
6
|
Tenhu E, Teräsjärvi J, Cruzeiro ML, Savonius O, Rugemalira E, He Q, Pelkonen T. Gene polymorphisms of TLR10: effects on bacterial meningitis outcomes in Angolan children. APMIS 2022; 130:221-229. [PMID: 35122704 DOI: 10.1111/apm.13213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/27/2022] [Indexed: 11/29/2022]
Abstract
This study examined whether gene polymorphisms for toll-like receptor 10 (TLR10) associated with the susceptibility to and outcomes of bacterial meningitis (BM) in Angolan children. The study cohort consisted of 190 BM patients and the determination of ten single-nucleotide polymorphisms (SNPs) by Sanger sequencing. Patients with BM caused by Streptococcus pneumoniae who carried the following variants of TLR10 SNPs exhibited an increased risk of coexisting pneumonia: rs10004195 (T > A) (p = 0.025), rs10856837 (G > A) (p = 0.018) or rs11096956 (G > T) (p = 0.010). Yet, TLR10 SNPs rs11466652 (A > G), rs10856837 (G > A) and rs11096956 (G > T) influenced the protein levels in the cerebrospinal fluid (CSF). Moreover, compared with the wild type, patients with pneumococcal meningitis carrying a variant genotype of TLR10 SNP rs11466648 (A > G) exhibited an increased risk of developing blindness (p = 0.025), whereas patients with TLR10 SNP rs10004195 (T > A) exhibited a lower risk of convulsions at admission (p = 0.039) and a lower risk of altered consciousness (p = 0.029). This study suggests a relationship exists between coexisting pneumonia, protein levels in CSF, blindness, convulsions and an altered consciousness with genetic variations of TLR10 in BM in Angolan children.
Collapse
Affiliation(s)
- Elina Tenhu
- Institute of Biomedicine, Research Centre of Infections and Immunity, University of Turku, Turku, Finland
| | - Johanna Teräsjärvi
- Institute of Biomedicine, Research Centre of Infections and Immunity, University of Turku, Turku, Finland
| | | | - Okko Savonius
- Children's Hospital, Helsinki University Central Hospital and University of Helsinki, Helsinki, Finland
| | - Emilie Rugemalira
- Children's Hospital, Helsinki University Central Hospital and University of Helsinki, Helsinki, Finland
| | - Qiushui He
- Institute of Biomedicine, Research Centre of Infections and Immunity, University of Turku, Turku, Finland.,InFLAMES Research Flagship Centre, University of Turku, Turku, Finland
| | - Tuula Pelkonen
- Hospital Pediátrico David Bernardino, Luanda, Angola.,Children's Hospital, Helsinki University Central Hospital and University of Helsinki, Helsinki, Finland
| |
Collapse
|
7
|
Nagashima H, Yamaoka Y. Importance of Toll-like Receptors in Pro-inflammatory and Anti-inflammatory Responses by Helicobacter pylori Infection. Curr Top Microbiol Immunol 2019; 421:139-158. [PMID: 31123888 DOI: 10.1007/978-3-030-15138-6_6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Infectious diseases have been paramount among the threats to human health and survival throughout evolutionary history. Bacterial cell-surface molecules are key factors in the microorganism-host crosstalk, as they can interact with host pattern-recognition receptors (PRRs) of the gastrointestinal mucosa. The best-studied PRRs are toll-like receptors (TLRs). Because TLRs play an important key role in host defense, they have received increasing interest in the evolutionary and population genetics literature, and their variation represents a potential target of adaptive evolution. Helicobacter pylori is one of the commensal bacteria in our body and can have pathogenic properties in a subset of infected people. The history of H. pylori research indicated that humans and bacteria co-evolved during evolution. A genome-wide association study (GWAS) has opened the way for investigating the genomic evolution of bacterial pathogens during the colonization and infection of humans. Recent GWAS research emphasized the importance of TLRs, especially TLR10 during pathogenesis in H. pylori infection. We demonstrated that TLR10, whose ligand was unknown for a long time, can recognize H. pylori LPS. Our results of H. pylori research suggest that TLR10 might play an important role to also recognize other commensal bacteria. In this review, we discuss the importance of TLRs in pro-inflammatory and anti-inflammatory responses by H. pylori infection. Especially, we highlight the TLR10 interaction with H. pylori infection, providing new insights about TLR10 signaling.
Collapse
Affiliation(s)
- Hiroyuki Nagashima
- Department of Gastroenterology, Hokkaido Cancer Center, Sapporo, Hokkaido, Japan.,Department of Environmental and Preventive Medicine, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Yufu-City, Oita, 879-5593, Japan
| | - Yoshio Yamaoka
- Department of Environmental and Preventive Medicine, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Yufu-City, Oita, 879-5593, Japan. .,Department of Gastroenterology and Hepatology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
8
|
Song M, Camargo MC, Weinstein SJ, Murphy G, Freedman ND, Koshiol J, Stolzenberg-Solomon RZ, Abnet CC, Männistö S, Albanes D, Rabkin CS. Serum pepsinogen 1 and anti-Helicobacter pylori IgG antibodies as predictors of gastric cancer risk in Finnish males. Aliment Pharmacol Ther 2018; 47:494-503. [PMID: 29243850 PMCID: PMC5776724 DOI: 10.1111/apt.14471] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 10/29/2017] [Accepted: 11/23/2017] [Indexed: 12/18/2022]
Abstract
BACKGROUND Serum pepsinogen 1 (SPG1) and anti-Helicobacter pylori serology have been used for gastric risk stratification in Asia. AIM To assess utility of these markers in a Western population. METHODS SPG1 measurements were available for 21 895 Finnish male smokers in the Alpha-Tocopherol, Beta-Carotene Cancer Prevention Study. We used Cox proportional hazards models adjusted for potential confounders to estimate gastric cancer hazard ratios (HR) and 95% confidence intervals (95% CI) for low SPG1 (<25 μg/L). In a subset (n = 3555) with anti-H. pylori serology, these markers jointly defined the following: Group A (H. pylori[-], SPG1[normal]; reference group), Group B (H. pylori[+], SPG1[normal]), Group C (H. pylori[+], SPG1[low]) and Group D (H. pylori[-], SPG1[low]). Odds ratios (ORs) and 95% CI were calculated using multivariate logistic regression. RESULTS There were 329 gastric cancers diagnosed an average of 13.9 years after baseline. Pre-diagnostic low SPG1 was significantly associated with increased gastric cancer risk (HR 2.68, 95% CI 1.99-3.61). Among subjects with both SPG1 and H. pylori serology, groups B, C and D had increased gastric cancer ORs (95% CI) of 1.79 (1.21-2.64), 3.85 (2.36-6.28) and 6.35 (2.20-18.34), respectively. CagA seropositives had significantly higher ORs than CagA seronegatives within group B (Pheterogeneity = 0.01). For groups B and C, repeat SPG1 level at 3 years did not further stratify gastric cancer risk. CONCLUSIONS Low SPG1 was associated with increased gastric cancer risk in our large Finnish cohort. A single measurement of SPG1 along with H. pylori whole cell and CagA serology provides potentially useful prediction of gastric cancer risk.
Collapse
Affiliation(s)
- Minkyo Song
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, USA
| | - M. Constanza Camargo
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, USA
| | - Stephanie J. Weinstein
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, USA
| | - Gwen Murphy
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, USA
| | - Neal D. Freedman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, USA
| | - Jill Koshiol
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, USA
| | - Rachael Z. Stolzenberg-Solomon
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, USA
| | - Christian C. Abnet
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, USA
| | - Satu Männistö
- Department of Public Health Solutions, National Institute for Health and Welfare, Helsinki, Finland
| | - Demetrius Albanes
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, USA
| | - Charles S. Rabkin
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, USA
| |
Collapse
|
9
|
Mommersteeg MC, Yu J, Peppelenbosch MP, Fuhler GM. Genetic host factors in Helicobacter pylori-induced carcinogenesis: Emerging new paradigms. Biochim Biophys Acta Rev Cancer 2017; 1869:42-52. [PMID: 29154808 DOI: 10.1016/j.bbcan.2017.11.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 11/13/2017] [Accepted: 11/13/2017] [Indexed: 02/09/2023]
Abstract
Helicobacter Pylori is a gram negative rod shaped microaerophilic bacterium that colonizes the stomach of approximately half the world's population. Infection with c may cause chronic gastritis which via a quite well described process known as Correas cascade can progress through sequential development of atrophic gastritis, intestinal metaplasia and dysplasia to gastric cancer. H. pylori is currently the only bacterium that is classified as a class 1 carcinogen by the WHO, although the exact mechanisms by which this bacterium contributes to gastric carcinogenesis are still poorly understood. Only a minority of H. pylori-infected patients will eventually develop gastric cancer, suggesting that host factors may be important in determining the outcome of H. pylori infection. This is supported by a growing body of evidence suggesting that the host genetic background contributes to risk of H. pylori infection and gastric carcinogenesis. In particular single nucleotide polymorphisms in genes that influence bacterial handling via pattern recognition receptors appear to be involved, further strengthening the link between host risk factors, H. pylori incidence and cancer. Many of these genes influence cellular pathways leading to inflammatory signaling, inflammasome formation and autophagy. In this review we summarize known carcinogenic effects of H. pylori, and discuss recent findings that implicate host genetic pattern recognition pathways in the development of gastric cancer and their relation with H. pylori.
Collapse
Affiliation(s)
- Michiel C Mommersteeg
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical center Rotterdam, Office NA-619, PO Box 2040, 3000 CA Rotterdam, The Netherlands.
| | - Jun Yu
- Department of Medicine and Therapeutics, Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences and CUHK-Shenzhen Research Institute, Rm 707A, 7/F., Li Ka Shing Medical Science Building, The Chinese University of Hong Kong, Hong Kong.
| | - Maikel P Peppelenbosch
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical center Rotterdam, Office NA-619, PO Box 2040, 3000 CA Rotterdam, The Netherlands.
| | - Gwenny M Fuhler
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical center Rotterdam, Office NA-619, PO Box 2040, 3000 CA Rotterdam, The Netherlands.
| |
Collapse
|
10
|
Nagashima H, Yamaoka Y. Reply to Pachathundikandi and Backert. J Infect Dis 2016; 214:167-8. [PMID: 27091909 DOI: 10.1093/infdis/jiw155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 04/11/2016] [Indexed: 11/13/2022] Open
Affiliation(s)
- Hiroyuki Nagashima
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu, Japan Section of Gastroenterology and Hepatology, Department of Medicine, Michael E. DeBakey Veterans Affairs Medical Center and Baylor College of Medicine, Houston, Texas
| | - Yoshio Yamaoka
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu, Japan Section of Gastroenterology and Hepatology, Department of Medicine, Michael E. DeBakey Veterans Affairs Medical Center and Baylor College of Medicine, Houston, Texas
| |
Collapse
|