1
|
Xu F, Xie L, He J, Huang Q, Shen Y, Chen L, Zeng X. Detection of common pathogenesis of rheumatoid arthritis and atherosclerosis via microarray data analysis. Heliyon 2024; 10:e28029. [PMID: 38628735 PMCID: PMC11019104 DOI: 10.1016/j.heliyon.2024.e28029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/28/2024] [Accepted: 03/11/2024] [Indexed: 04/19/2024] Open
Abstract
Despite extensive research reveal rheumatoid arthritis (RA) is related to atherosclerosis (AS), common pathogenesis between these two diseases still needs to be explored. In current study, we explored the common pathogenesis between rheumatoid arthritis (RA) and atherosclerosis (AS) by identifying 297 Differentially Expressed Genes (DEGs) associated with both diseases. Through KEGG and GO functional analysis, we highlighted the correlation of these DEGs with crucial biological processes such as the vesicle transport, immune system process, signaling receptor binding, chemokine signaling and many others. Employing Protein-Protein Interaction (PPI) network analysis, we elucidated the associations between DEGs, revealing three gene modules enriched in immune system process, vesicle, signaling receptor binding, Pertussis, and among others. Additionally, through CytoHubba analysis, we pinpointed 11 hub genes integral to intergrin-mediated signaling pathway, plasma membrane, phosphotyrosine binding, chemokine signaling pathway and so on. Further investigation via the TRRUST database identified two key Transcription Factors (TFs), SPI1 and RELA, closely linked with these hub genes, shedding light on their regulatory roles. Finally, leveraging the collective insights from hub genes and TFs, we proposed 10 potential drug candidates targeting the molecular mechanisms underlying RA and AS pathogenesis. Further investigation on xCell revealed that 14 types of cells were all different in both AS and RA. This study underscores the shared pathogenic mechanisms, pivotal genes, and potential therapeutic interventions bridging RA and AS, offering valuable insights for future research and clinical management strategies.
Collapse
Affiliation(s)
- Fan Xu
- Department of Cardiovascular Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
- Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University), Fujian Province University, Fuzhou, Fujian Province, China
| | - Linfeng Xie
- Department of Cardiovascular Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
- Fujian Medical University, Fuzhou, Fujian Province, China
| | - Jian He
- Department of Cardiovascular Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
- Fujian Medical University, Fuzhou, Fujian Province, China
| | - Qiuyu Huang
- Department of Cardiovascular Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
- Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University), Fujian Province University, Fuzhou, Fujian Province, China
| | - Yanming Shen
- Department of Cardiovascular Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
- Fujian Medical University, Fuzhou, Fujian Province, China
| | - Liangwan Chen
- Department of Cardiovascular Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
- Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University), Fujian Province University, Fuzhou, Fujian Province, China
| | - Xiaohong Zeng
- Department of Rheumatology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian Province, China
| |
Collapse
|
2
|
Liu S, Liu F, Zhang Z, Zhuang Z, Yuan X, Chen Y. The SELP, CD93, IL2RG, and VAV1 Genes Associated with Atherosclerosis May Be Potential Diagnostic Biomarkers for Psoriasis. J Inflamm Res 2023; 16:827-843. [PMID: 36876153 PMCID: PMC9983575 DOI: 10.2147/jir.s398862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/16/2023] [Indexed: 03/03/2023] Open
Abstract
Purpose Psoriasis and atherosclerosis are immunometabolic diseases. This study aimed to integrate bioinformatics and updated public resources to find potential biological markers associated with atherosclerosis that can cause psoriasis. Patients and Methods Microarray datasets were downloaded from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) were screened, and functional enrichment analysis was performed. We identified psoriasis and atherosclerosis common immune-related genes (PA-IRGs) by overlapping immune-related genes (IRGs) with genes in the module most associated with psoriasis and atherosclerosis obtained by weighted gene co-expression network analysis (WGCNAs). Receiver operating characteristic (ROC) was conducted to evaluate the predictive ability. The skin expression levels of diagnostic biomarkers were further verified by immunohistochemical staining. CIBERSORT, single-sample gene set enrichment analysis (ssGSEA), and Pearson's correlation analysis were applied to evaluate immune and lipid metabolism relationships in psoriatic tissues. In addition, a lincRNA-miRNA-mRNA network was constructed to find the pathogenesis in which diagnostic markers may be involved. Results Four PA-IRGs (SELP, CD93, IL2RG, and VAV1) demonstrated the optimal diagnostic value, with an AUC above 0.8. The immune cell infiltration analysis showed that dendritic resting cells, NK cell activation, neutrophils, macrophages M2, macrophages M0, and B-cell memory were highly abundant in psoriasis. Immune response analysis showed that TNF family members, chemokine receptors, interferons, natural killer cells, and TGF-β family members might be involved in psoriasis. Diagnostic biomarkers are strongly associated with various infiltrating immune cells, immune responses, and lipid metabolism. A lincRNA-miRNA-mRNA regulatory network consisting of 31 lincRNAs and 23 miRNAs was constructed. LINC00662 is involved in modulating four diagnostic biomarkers. Conclusion This study identified atherosclerosis-related genes SELP, CD93, VAV1, and IL2RG as potential psoriasis diagnostic markers. Provide novel insights into the possible regulatory mechanisms involved in psoriasis.
Collapse
Affiliation(s)
- Shougang Liu
- Department of Dermatology, Dermatology Hospital of Southern Medical University, Guangzhou, People's Republic of China
| | - Fanghua Liu
- Department of Dermatology, Dermatology Hospital of Southern Medical University, Guangzhou, People's Republic of China.,Department of Dermatology, Guangdong Medical University, Zhanjiang, People's Republic of China
| | - Zeqiao Zhang
- Department of Dermatology, Dermatology Hospital of Southern Medical University, Guangzhou, People's Republic of China
| | - Zhe Zhuang
- Department of Dermatology, Dermatology Hospital of Southern Medical University, Guangzhou, People's Republic of China.,Department of Dermatology, Guangdong Medical University, Zhanjiang, People's Republic of China
| | - Xiuqing Yuan
- Department of Dermatology, Dermatology Hospital of Southern Medical University, Guangzhou, People's Republic of China
| | - Yongfeng Chen
- Department of Dermatology, Dermatology Hospital of Southern Medical University, Guangzhou, People's Republic of China.,Department of Dermatology, Guangdong Medical University, Zhanjiang, People's Republic of China
| |
Collapse
|
3
|
Iyer VS, Boddul SV, Johnsson AK, Raposo B, Sharma RK, Shen Y, Kasza Z, Lim KW, Chemin K, Nilsson G, Malmström V, Phan AT, Wermeling F. Modulating T-cell activation with antisense oligonucleotides targeting lymphocyte cytosolic protein 2. J Autoimmun 2022; 131:102857. [PMID: 35780036 DOI: 10.1016/j.jaut.2022.102857] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/15/2022] [Accepted: 06/15/2022] [Indexed: 11/29/2022]
Abstract
Dysregulated T-cell activation is a hallmark of several autoimmune diseases such as rheumatoid arthritis (RA) and multiple sclerosis (MS). The lymphocyte cytosolic protein 2 (LCP2), also known as SLP-76, is essential for the development and activation of T cells. Despite the critical role of LCP2 in T-cell activation and the need for developing drugs that modify T-cell activation, no LCP2 inhibitors have been developed. This can be explained by the "undruggable" nature of LCP2, lacking a structure permissive to standard small molecule inhibitor modalities. Here, we explored an alternative drug modality, developing antisense oligonucleotides (ASOs) targeting LCP2 mRNAs, and evaluated its activity in modulating T-cell activation. We identified a set of 3' UTR targeting LCP2 ASOs, which knocked down LCP2 in a human T-cell line and primary human T cells and found that these suppressed T-cell receptor mediated activation. We also found that the ASOs suppressed FcεR1-mediated mast cell activation, in line with the role of LCP2 in mast cells. Taken together, our data provide examples of how immunomodulatory ASOs that interfere with undruggable targets can be developed and propose that such drug modalities can be used to treat autoimmune diseases.
Collapse
Affiliation(s)
- Vaishnavi Srinivasan Iyer
- Center for Molecular Medicine, Division of Rheumatology, Department of Medicine, Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden; School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Sanjaykumar V Boddul
- Center for Molecular Medicine, Division of Rheumatology, Department of Medicine, Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Anna-Karin Johnsson
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Bruno Raposo
- Center for Molecular Medicine, Division of Rheumatology, Department of Medicine, Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Ravi K Sharma
- Center for Molecular Medicine, Division of Rheumatology, Department of Medicine, Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Yunbing Shen
- Center for Molecular Medicine, Division of Rheumatology, Department of Medicine, Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Zsolt Kasza
- Center for Molecular Medicine, Division of Rheumatology, Department of Medicine, Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Kah Wai Lim
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Karine Chemin
- Center for Molecular Medicine, Division of Rheumatology, Department of Medicine, Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Gunnar Nilsson
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Vivianne Malmström
- Center for Molecular Medicine, Division of Rheumatology, Department of Medicine, Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Anh Tuân Phan
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore.
| | - Fredrik Wermeling
- Center for Molecular Medicine, Division of Rheumatology, Department of Medicine, Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
4
|
Badam TV, Hellberg S, Mehta RB, Lechner-Scott J, Lea RA, Tost J, Mariette X, Svensson-Arvelund J, Nestor CE, Benson M, Berg G, Jenmalm MC, Gustafsson M, Ernerudh J. CD4 + T-cell DNA methylation changes during pregnancy significantly correlate with disease-associated methylation changes in autoimmune diseases. Epigenetics 2021; 17:1040-1055. [PMID: 34605719 PMCID: PMC9487751 DOI: 10.1080/15592294.2021.1982510] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Epigenetics may play a central, yet unexplored, role in the profound changes that the maternal immune system undergoes during pregnancy and could be involved in the pregnancy-induced modulation of several autoimmune diseases. We investigated changes in the methylome in isolated circulating CD4+ T-cells in non-pregnant and pregnant women, during the 1st and 2nd trimester, using the Illumina Infinium Human Methylation 450K array, and explored how these changes were related to autoimmune diseases that are known to be affected during pregnancy. Pregnancy was associated with several hundreds of methylation differences, particularly during the 2nd trimester. A network-based modular approach identified several genes, e.g., CD28, FYN, VAV1 and pathways related to T-cell signalling and activation, highlighting T-cell regulation as a central component of the observed methylation alterations. The identified pregnancy module was significantly enriched for disease-associated methylation changes related to multiple sclerosis, rheumatoid arthritis and systemic lupus erythematosus. A negative correlation between pregnancy-associated methylation changes and disease-associated changes was found for multiple sclerosis and rheumatoid arthritis, diseases that are known to improve during pregnancy whereas a positive correlation was found for systemic lupus erythematosus, a disease that instead worsens during pregnancy. Thus, the directionality of the observed changes is in line with the previously observed effect of pregnancy on disease activity. Our systems medicine approach supports the importance of the methylome in immune regulation of T-cells during pregnancy. Our findings highlight the relevance of using pregnancy as a model for understanding and identifying disease-related mechanisms involved in the modulation of autoimmune diseases.Abbreviations: BMIQ: beta-mixture quantile dilation; DMGs: differentially methylated genes; DMPs: differentially methylated probes; FE: fold enrichment; FDR: false discovery rate; GO: gene ontology; GWAS: genome-wide association studies; MDS: multidimensional scaling; MS: multiple sclerosis; PBMC: peripheral blood mononuclear cells; PBS: phosphate buffered saline; PPI; protein-protein interaction; RA: rheumatoid arthritis; SD: standard deviation; SLE: systemic lupus erythematosus; SNP: single nucleotide polymorphism; TH: CD4+ T helper cell; VIStA: diVIsive Shuffling Approach.
Collapse
Affiliation(s)
- Tejaswi V Badam
- Bioinformatics Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden.,School of Bioscience, Skövde University, Skövde, Sweden
| | - Sandra Hellberg
- Bioinformatics Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden.,Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Ratnesh B Mehta
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Jeannette Lechner-Scott
- School of Medicine and Public Health, University of Newcastle, Callaghan, Australia.,Centre for Brain and Mental Health, Hunter Medical Research Institute, New Lambton Heights, Australia.,Department of Neurology, John Hunter Hospital, New Lambton Heights, Australia
| | - Rodney A Lea
- School of Medicine and Public Health, University of Newcastle, Callaghan, Australia.,Centre for Brain and Mental Health, Hunter Medical Research Institute, New Lambton Heights, Australia.,Institute of Health and Biomedical Innovations, Genomics Research Centre, Queensland University of Technology, Kelvin Grove, Australia
| | - Jorg Tost
- Laboratory of Epigenetics and Environment, Centre National De Recherche En Génomique Humaine, CEA-Institut De Biologie Francois Jacob, Evry, France
| | - Xavier Mariette
- Université Paris-Saclay, AP-HP-Université Paris-Saclay, Hôpital Bicêtre, Institut National de la Santé et de la Recherche Médicale (Inserm) U1184, Center for Immunology of Viral Infections and Autoimmune Diseases, France
| | - Judit Svensson-Arvelund
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Colm E Nestor
- The Centre for Individualized Medicine, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Mikael Benson
- The Centre for Individualized Medicine, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Göran Berg
- Department of Obstetrics and Gynaecology and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Maria C Jenmalm
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Mika Gustafsson
- Bioinformatics Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Jan Ernerudh
- Department of Clinical Immunology and Transfusion Medicine and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
5
|
Conde J, Fernández-Pisonero I, Cuadrado M, Abad A, Robles-Valero J, Bustelo XR. Distinct Roles of Vav Family Members in Adaptive and Innate Immune Models of Arthritis. Biomedicines 2021; 9:695. [PMID: 34205377 PMCID: PMC8234068 DOI: 10.3390/biomedicines9060695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 12/03/2022] Open
Abstract
Genetic evidence suggests that three members of the VAV family (VAV1, VAV2 and VAV3) of signal transduction proteins could play important roles in rheumatoid arthritis. However, it is not known currently whether the inhibition of these proteins protects against this disease and, if so, the number of family members that must be eliminated to get a therapeutic impact. To address this issue, we have used a collection of single and compound Vav family knockout mice in experimental models for antigen-dependent (methylated bovine serum albumin injections) and neutrophil-dependent (Zymosan A injections) rheumatoid arthritis in mice. We show here that the specific elimination of Vav1 is sufficient to block the development of antigen-induced arthritis. This protection is likely associated with the roles of this Vav family member in the development and selection of immature T cells within the thymus as well as in the subsequent proliferation and differentiation of effector T cells. By contrast, we have found that depletion of Vav2 reduces the number of neutrophils present in the joints of Zymosan A-treated mice. Despite this, the elimination of Vav2 does not protect against the joint degeneration triggered by this experimental model. These findings indicate that Vav1 is the most important pharmacological target within this family, although its main role is limited to the protection against antigen-induced rheumatoid arthritis. They also indicate that the three Vav family proteins do not play redundant roles in these pathobiological processes.
Collapse
Affiliation(s)
- Javier Conde
- Mechanisms of Cancer Program, Centro de Investigación del Cáncer, CSIC-University of Salamanca, 37007 Salamanca, Spain; (J.C.); (I.F.-P.); (M.C.); (A.A.); (J.R.-V.)
- Instituto de Biología Molecular y Celular del Cáncer, CSIC-University of Salamanca, 37007 Salamanca, Spain
| | - Isabel Fernández-Pisonero
- Mechanisms of Cancer Program, Centro de Investigación del Cáncer, CSIC-University of Salamanca, 37007 Salamanca, Spain; (J.C.); (I.F.-P.); (M.C.); (A.A.); (J.R.-V.)
- Instituto de Biología Molecular y Celular del Cáncer, CSIC-University of Salamanca, 37007 Salamanca, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC-University of Salamanca, 37007 Salamanca, Spain
| | - Myriam Cuadrado
- Mechanisms of Cancer Program, Centro de Investigación del Cáncer, CSIC-University of Salamanca, 37007 Salamanca, Spain; (J.C.); (I.F.-P.); (M.C.); (A.A.); (J.R.-V.)
- Instituto de Biología Molecular y Celular del Cáncer, CSIC-University of Salamanca, 37007 Salamanca, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC-University of Salamanca, 37007 Salamanca, Spain
| | - Antonio Abad
- Mechanisms of Cancer Program, Centro de Investigación del Cáncer, CSIC-University of Salamanca, 37007 Salamanca, Spain; (J.C.); (I.F.-P.); (M.C.); (A.A.); (J.R.-V.)
- Instituto de Biología Molecular y Celular del Cáncer, CSIC-University of Salamanca, 37007 Salamanca, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC-University of Salamanca, 37007 Salamanca, Spain
| | - Javier Robles-Valero
- Mechanisms of Cancer Program, Centro de Investigación del Cáncer, CSIC-University of Salamanca, 37007 Salamanca, Spain; (J.C.); (I.F.-P.); (M.C.); (A.A.); (J.R.-V.)
- Instituto de Biología Molecular y Celular del Cáncer, CSIC-University of Salamanca, 37007 Salamanca, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC-University of Salamanca, 37007 Salamanca, Spain
| | - Xosé R. Bustelo
- Mechanisms of Cancer Program, Centro de Investigación del Cáncer, CSIC-University of Salamanca, 37007 Salamanca, Spain; (J.C.); (I.F.-P.); (M.C.); (A.A.); (J.R.-V.)
- Instituto de Biología Molecular y Celular del Cáncer, CSIC-University of Salamanca, 37007 Salamanca, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC-University of Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
6
|
Nikopensius T, Niibo P, Haller T, Jagomägi T, Voog-Oras Ü, Tõnisson N, Metspalu A, Saag M, Pruunsild C. Association analysis of juvenile idiopathic arthritis genetic susceptibility factors in Estonian patients. Clin Rheumatol 2021; 40:4157-4165. [PMID: 34101054 PMCID: PMC8463396 DOI: 10.1007/s10067-021-05756-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 12/16/2022]
Abstract
Background Juvenile idiopathic arthritis (JIA) is the most common chronic rheumatic condition of childhood. Genetic association studies have revealed several JIA susceptibility loci with the strongest effect size observed in the human leukocyte antigen (HLA) region. Genome-wide association studies have augmented the number of JIA-associated loci, particularly for non-HLA genes. The aim of this study was to identify new associations at non-HLA loci predisposing to the risk of JIA development in Estonian patients. Methods We performed genome-wide association analyses in an entire JIA case–control sample (All-JIA) and in a case–control sample for oligoarticular JIA, the most prevalent JIA subtype. The entire cohort was genotyped using the Illumina HumanOmniExpress BeadChip arrays. After imputation, 16,583,468 variants were analyzed in 263 cases and 6956 controls. Results We demonstrated nominal evidence of association for 12 novel non-HLA loci not previously implicated in JIA predisposition. We replicated known JIA associations in CLEC16A and VCTN1 regions in the oligoarticular JIA sample. The strongest associations in the All-JIA analysis were identified at PRKG1 (P = 2,54 × 10−6), LTBP1 (P = 9,45 × 10−6), and ELMO1 (P = 1,05 × 10−5). In the oligoarticular JIA analysis, the strongest associations were identified at NFIA (P = 5,05 × 10−6), LTBP1 (P = 9,95 × 10−6), MX1 (P = 1,65 × 10−5), and CD200R1 (P = 2,59 × 10−5). Conclusion This study increases the number of known JIA risk loci and provides additional evidence for the existence of overlapping genetic risk loci between JIA and other autoimmune diseases, particularly rheumatoid arthritis. The reported loci are involved in molecular pathways of immunological relevance and likely represent genomic regions that confer susceptibility to JIA in Estonian patients.
Key Points • Juvenile idiopathic arthritis (JIA) is the most common childhood rheumatic disease with heterogeneous presentation and genetic predisposition. • Present genome-wide association study for Estonian JIA patients is first of its kind in Northern and Northeastern Europe. • The results of the present study increase the knowledge about JIA risk loci replicating some previously described associations, so adding weight to their relevance and describing novel loci. • The study provides additional evidence for the existence of overlapping genetic risk loci between JIA and other autoimmune diseases, particularly rheumatoid arthritis. |
Supplementary Information The online version contains supplementary material available at 10.1007/s10067-021-05756-x.
Collapse
Affiliation(s)
- Tiit Nikopensius
- Estonian Genome Center, Institute of Genomics, University of Tartu, Riia 23B, 51010, Tartu, Estonia.
| | - Priit Niibo
- Institute of Dentistry, University of Tartu, Tartu, Estonia
| | - Toomas Haller
- Estonian Genome Center, Institute of Genomics, University of Tartu, Riia 23B, 51010, Tartu, Estonia
| | - Triin Jagomägi
- Institute of Dentistry, University of Tartu, Tartu, Estonia
| | - Ülle Voog-Oras
- Institute of Dentistry, University of Tartu, Tartu, Estonia.,Stomatology Clinic, Tartu University Hospital, Tartu, Estonia
| | - Neeme Tõnisson
- Estonian Genome Center, Institute of Genomics, University of Tartu, Riia 23B, 51010, Tartu, Estonia.,Department of Clinical Genetics, United Laboratories, Tartu University Hospital, Tartu, Estonia
| | - Andres Metspalu
- Estonian Genome Center, Institute of Genomics, University of Tartu, Riia 23B, 51010, Tartu, Estonia
| | - Mare Saag
- Institute of Dentistry, University of Tartu, Tartu, Estonia
| | - Chris Pruunsild
- Children's Clinic, Tartu University Hospital, Tartu, Estonia.,Children's Clinic, Institute of Clinical Medicine, Faculty of Medicine, University of Tartu, Tartu, Estonia
| |
Collapse
|
7
|
Szpirer C. Rat models of human diseases and related phenotypes: a systematic inventory of the causative genes. J Biomed Sci 2020; 27:84. [PMID: 32741357 PMCID: PMC7395987 DOI: 10.1186/s12929-020-00673-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/09/2020] [Indexed: 12/13/2022] Open
Abstract
The laboratory rat has been used for a long time as the model of choice in several biomedical disciplines. Numerous inbred strains have been isolated, displaying a wide range of phenotypes and providing many models of human traits and diseases. Rat genome mapping and genomics was considerably developed in the last decades. The availability of these resources has stimulated numerous studies aimed at discovering causal disease genes by positional identification. Numerous rat genes have now been identified that underlie monogenic or complex diseases and remarkably, these results have been translated to the human in a significant proportion of cases, leading to the identification of novel human disease susceptibility genes, helping in studying the mechanisms underlying the pathological abnormalities and also suggesting new therapeutic approaches. In addition, reverse genetic tools have been developed. Several genome-editing methods were introduced to generate targeted mutations in genes the function of which could be clarified in this manner [generally these are knockout mutations]. Furthermore, even when the human gene causing a disease had been identified without resorting to a rat model, mutated rat strains (in particular KO strains) were created to analyze the gene function and the disease pathogenesis. Today, over 350 rat genes have been identified as underlying diseases or playing a key role in critical biological processes that are altered in diseases, thereby providing a rich resource of disease models. This article is an update of the progress made in this research and provides the reader with an inventory of these disease genes, a significant number of which have similar effects in rat and humans.
Collapse
Affiliation(s)
- Claude Szpirer
- Université Libre de Bruxelles, B-6041, Gosselies, Belgium.
- , Waterloo, Belgium.
| |
Collapse
|
8
|
Li X, Yang Y, Sun G, Dai W, Jie X, Du Y, Huang R, Zhang J. Promising targets and drugs in rheumatoid arthritis: a module-based and cumulatively scoring approach. Bone Joint Res 2020; 9:501-514. [PMID: 32922758 PMCID: PMC7468554 DOI: 10.1302/2046-3758.98.bjr-2019-0301.r1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
AIMS Rheumatoid arthritis (RA) is a systematic autoimmune disorder, characterized by synovial inflammation, bone and cartilage destruction, and disease involvement in multiple organs. Although numerous drugs are employed in RA treatment, some respond little and suffer from severe side effects. This study aimed to screen the candidate therapeutic targets and promising drugs in a novel method. METHODS We developed a module-based and cumulatively scoring approach that is a deeper-layer application of weighted gene co-expression network (WGCNA) and connectivity map (CMap) based on the high-throughput datasets. RESULTS Four noteworthy RA-related modules were identified, revealing the immune- and infection-related biological processes and pathways involved in RA. HLA-DMA, HLA-DMB, HLA-DPA1, HLA-DPB1, HLA-DQB1, HLA-DRA, HLA-DRB1, BLNK, BTK, CD3D, CD4, IL2RG, INPP5D, LCK, PTPRC, RAC2, SYK, and VAV1 were recognized as the key hub genes with high connectivity in gene regulation networks and gene pathway networks. Moreover, the long noncoding RNAs (lncRNAs) in the RA-related modules, such as FAM30A and NEAT1, were identified as the indispensable interactors with the hub genes. Finally, candidate drugs were screened by developing a cumulatively scoring approach based on the selected modules. Niclosamide and the other compounds of T-type calcium channel blocker, IKK inhibitor, and PKC activator, HIF activator, and proteasome inhibitor, which harbour the similar gene signature with niclosamide, were promising drugs with high specificity and broad coverage for the RA-related modules. CONCLUSION This study provides not only the promising targets and drugs for RA but also a novel methodological insight into the target and drug screening.Cite this article: Bone Joint Res 2020;9(8):501-514.
Collapse
Affiliation(s)
- Xingyan Li
- Department of Bone and Joint Surgery, The Third Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yejing Yang
- Department of Bone and Joint Surgery, The Third Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Guili Sun
- Department of Nutriology, The Third Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Wanwu Dai
- Department of Bone and Joint Surgery, The Third Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xuri Jie
- Department of Hematology, The Third Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yongjun Du
- Department of Bone and Joint Surgery, The Third Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Runjie Huang
- Second Clinical College, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiaming Zhang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
9
|
Pawlik A, Malinowski D, Paradowska-Gorycka A, Safranow K, Dziedziejko V. VAV1 Gene Polymorphisms in Patients with Rheumatoid Arthritis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17093214. [PMID: 32380774 PMCID: PMC7246862 DOI: 10.3390/ijerph17093214] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 04/30/2020] [Accepted: 05/02/2020] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Rheumatoid arthritis (RA) is an important public health problem because this disease often causes disability. RA is a chronic, destructive autoimmune disease that leads to joint destruction and the development of extraarticular manifestations. VAV1 is an intracellular signal transduction protein that plays a significant role in signal transduction in T cells and affects T cell development, proliferation and activation. The VAV1 gene contains 27 exons and is located on chromosome 19. In this study, we examined the association between VAV1 rs2546133 and rs2617822 polymorphisms and RA. METHODS We examined 422 patients with RA and 338 healthy subjects as the control group. RESULTS Among RA patients, there was a statistically significant increase in the frequency of VAV1 rs2546133 polymorphism in T allele carriers (TT + CT versus CC, odds ratio: 1.69, 95% confidence interval 1.05-2.73, p = 0.035). There was no statistically significant difference in the distribution of the rs2617822 genotypes and alleles between RA patients and the control group. Additionally, patients who carried the VAV1 rs2546133 T and rs2617822 G allele presented an increased frequency of extraarticular manifestations: vasculitis, amyloidosis and Sjogren syndrome. CONCLUSIONS The results suggest an association between VAV1 gene rs2617822 polymorphism and RA.
Collapse
Affiliation(s)
- Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
- Correspondence:
| | - Damian Malinowski
- Department of Experimental and Clinical Pharmacology, Pomeranian Medical University, 70-111 Szczecin, Poland;
| | - Agnieszka Paradowska-Gorycka
- Department of Molecular Biology, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637 Warsaw, Poland;
| | - Krzysztof Safranow
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.S.); (V.D.)
| | - Violetta Dziedziejko
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.S.); (V.D.)
| |
Collapse
|
10
|
Salem HF, Nafady MM, Kharshoum RM, Abd El-Ghafar OA, Farouk HO. Mitigation of Rheumatic Arthritis in a Rat Model via Transdermal Delivery of Dapoxetine HCl Amalgamated as a Nanoplatform: In vitro and in vivo Assessment. Int J Nanomedicine 2020; 15:1517-1535. [PMID: 32189966 PMCID: PMC7065716 DOI: 10.2147/ijn.s238709] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 02/01/2020] [Indexed: 12/17/2022] Open
Abstract
Purpose Dapoxetine HCl (DH), a selective serotonin reuptake inhibitor, may be useful for the treatment of rheumatic arthritis (RA). The purpose of this study was to investigate the therapeutic efficacy of transdermal delivery of DH in transethosome nanovesicles (TENVs). This novel delivery of DH may overcome the drawbacks associated with orally administered DH and improve patient compliance. Methods DH-TENV formulations were prepared using an injection- sonication method and optimized using a 33 Box-Behnken-design with Design Expert® software. The TENV formulations were assessed for entrapment efficiency (EE-%), vesicle size, zeta potential, in vitro DH release, and skin permeation. The tolerability of the optimized DH-TENV gel was investigated using a rat skin irritation test. A pharmacokinetic analysis of the optimized DH-TENV gel was also conducted in rats. Moreover, the anti-RA activity of the optimized DH-TENV gel was assessed based on the RA-specific marker anti-cyclic cirtullinated peptide antibody (anti-CCP), the cartilage destruction marker cartilage oligomeric matrix protein (COMP) and the inflammatory marker interleukin-6 (IL-6). Level of tissue receptor activator of nuclear factor kappa-Β ligand (RANKL) were also assessed. Results The optimized DH-TENV formulation involved spherical nanovesicles that had an appropriate EE- % and skin permeation characteristic. The DH-TENV gel was well tolerated by rats. The pharmacokinetics analysis showed that the optimized DH-TENV gel boosted the bioavailability of the DH by 2.42- and 4.16-fold compared to the oral DH solution and the control DH gel, respectively. Moreover, it significantly reduced the serum anti-CCP, COMP and IL-6 levels and decreased the RANKL levels. Furthermore, the DH-TENV gel attenuated histopathological changes by almost normalizing the articular surface and synovial fluid. Conclusion The results indicate that DH-TENVs can improve transdermal delivery of DH and thereby alleviate RA.
Collapse
Affiliation(s)
- Heba Farouk Salem
- Pharmaceutics and Industrial Pharmacy Department, Faculty of Pharmacy, Beni- Suef University, Beni Suef, Egypt
| | - Mohamed Mahmoud Nafady
- Pharmaceutics and Clinical Pharmacy Department, Faculty of Pharmacy, Nahda University, Beni Suef, Egypt
| | - Rasha Mostafa Kharshoum
- Pharmaceutics and Industrial Pharmacy Department, Faculty of Pharmacy, Beni- Suef University, Beni Suef, Egypt
| | | | - Hanan Osman Farouk
- Pharmaceutics and Clinical Pharmacy Department, Faculty of Pharmacy, Nahda University, Beni Suef, Egypt
| |
Collapse
|
11
|
Pentimalli F, Grelli S, Di Daniele N, Melino G, Amelio I. Cell death pathologies: targeting death pathways and the immune system for cancer therapy. Genes Immun 2018; 20:539-554. [PMID: 30563970 PMCID: PMC6451632 DOI: 10.1038/s41435-018-0052-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 10/25/2018] [Accepted: 11/13/2018] [Indexed: 12/15/2022]
Abstract
Alterations in the molecular mechanisms of cell death are a common feature of cancer. These alterations enable malignant cells to survive intrinsic death signalling leading to accumulation of genetic aberrations and helping them to cope with adverse conditions. Regulated cell death has historically been exclusively associated with classical apoptosis; however, increasing evidence indicates that several alternative mechanisms orchestrate multiple death pathways, such as ferroptosis, entosis, necroptosis and immunogenic cell death, each with distinct underlying molecular mechanisms. Although pharmacological targeting of cell death pathways has been the subject of intensive efforts in recent decades with a dominant focus on targeting apoptosis, the identification of these novel death pathways has opened additional venues for intervention in cancer cells and the immune system. In this mini-review, we cover some recent progress on major recently emerged cell death modalities, emphasizing their potential clinical and therapeutic implications. We also discuss the interplay between cell death and immune response, highlighting the potential of the combination of traditional anticancer therapy and immunocheckpoint blockade. While attempting to stimulate discussion and draw attention to the possible clinical impact of these more recently emerged cell death modalities, we also cover the major progress achieved in translating strategies for manipulation of apoptotic pathways into the clinic, focusing on the attempts to target the anti-apoptotic protein BCL-2 and the tumour suppressor p53.
Collapse
Affiliation(s)
- Francesca Pentimalli
- Centro Ricerche Oncologiche Mercogliano (CROM), Istituto Nazionale Tumori - IRCCS -Fondazione G. Pascale, Naples, Italy
| | - Sandro Grelli
- Biochemistry Laboratory, Istituto Dermopatico Immacolata (IDI-IRCCS), 00100, Rome, Italy
| | - Nicola Di Daniele
- Biochemistry Laboratory, Istituto Dermopatico Immacolata (IDI-IRCCS), 00100, Rome, Italy
| | - Gerry Melino
- Biochemistry Laboratory, Istituto Dermopatico Immacolata (IDI-IRCCS), 00100, Rome, Italy.,Medical Research Council, Toxicology Unit, University of Cambridge, Hodgkin Building, Lancaster Road, P.O. Box 138, Leicester, LE1 9HN, UK
| | - Ivano Amelio
- Medical Research Council, Toxicology Unit, University of Cambridge, Hodgkin Building, Lancaster Road, P.O. Box 138, Leicester, LE1 9HN, UK.
| |
Collapse
|
12
|
Bernard I, Sacquin A, Kassem S, Benamar M, Colacios C, Gador M, Pérals C, Fazilleau N, Saoudi A. A Natural Variant of the Signaling Molecule Vav1 Enhances Susceptibility to Myasthenia Gravis and Influences the T Cell Receptor Repertoire. Front Immunol 2018; 9:2399. [PMID: 30410484 PMCID: PMC6210741 DOI: 10.3389/fimmu.2018.02399] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 09/27/2018] [Indexed: 01/01/2023] Open
Abstract
The guanine nucleotide exchange factor Vav1 is essential for transducing T cell receptor (TCR) signals and plays an important role in T cell development and activation. Previous genetic studies identified a natural variant of Vav1 characterized by the substitution of an arginine (R) residue by a tryptophane (W) at position 63 (Vav1R63W). This variant impacts Vav1 adaptor functions and controls susceptibility to T cell-mediated neuroinflammation. To assess the implication of this Vav1 variant on the susceptibility to antibody-mediated diseases, we used the animal model of myasthenia gravis, experimental autoimmune myasthenia gravis (EAMG). To this end, we generated a knock-in (KI) mouse model bearing a R to W substitution in the Vav1 gene (Vav1R63W) and immunized it with either torpedo acetylcholine receptor (tAChR) or the α146-162 immunodominant peptide. We observed that the Vav1R63W conferred increased susceptibility to EAMG, revealed by a higher AChR loss together with an increased production of effector cytokines (IFN-γ, IL-17A, GM-CSF) by antigen-specific CD4+ T cells, as well as an increased frequency of antigen-specific CD4+ T cells. This correlated with the emergence of a dominant antigen-specific T cell clone in KI mice that was not present in wild-type mice, suggesting an impact on thymic selection and/or a different clonal selection threshold following antigen encounter. Our results highlight the key role of Vav1 in the pathophysiology of EAMG and this was associated with an impact on the TCR repertoire of AChR reactive T lymphocytes.
Collapse
Affiliation(s)
- Isabelle Bernard
- Centre de Physiopathologie de Toulouse Purpan, Université de Toulouse, UPS, Inserm, CNRS, Toulouse, France
| | - Antoine Sacquin
- Centre de Physiopathologie de Toulouse Purpan, Université de Toulouse, UPS, Inserm, CNRS, Toulouse, France
| | - Sahar Kassem
- Centre de Physiopathologie de Toulouse Purpan, Université de Toulouse, UPS, Inserm, CNRS, Toulouse, France
| | - Mehdi Benamar
- Centre de Physiopathologie de Toulouse Purpan, Université de Toulouse, UPS, Inserm, CNRS, Toulouse, France
| | - Céline Colacios
- Centre de Physiopathologie de Toulouse Purpan, Université de Toulouse, UPS, Inserm, CNRS, Toulouse, France
| | - Mylène Gador
- Centre de Physiopathologie de Toulouse Purpan, Université de Toulouse, UPS, Inserm, CNRS, Toulouse, France
| | - Corine Pérals
- Centre de Physiopathologie de Toulouse Purpan, Université de Toulouse, UPS, Inserm, CNRS, Toulouse, France
| | - Nicolas Fazilleau
- Centre de Physiopathologie de Toulouse Purpan, Université de Toulouse, UPS, Inserm, CNRS, Toulouse, France
| | - Abdelhadi Saoudi
- Centre de Physiopathologie de Toulouse Purpan, Université de Toulouse, UPS, Inserm, CNRS, Toulouse, France
| |
Collapse
|
13
|
How to manage rheumatoid arthritis according to classic biomarkers and polymorphisms? ACTA ACUST UNITED AC 2017. [DOI: 10.1007/s11515-017-1452-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|