1
|
Kataoka M, Kuroda Y, Tanaka H, Sato A, Kato M. Polysplenia and developmental delay in a case of microduplication in the 1p36.11 region involving the ARID1A gene. Congenit Anom (Kyoto) 2025; 65:e70000. [PMID: 39711212 DOI: 10.1111/cga.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/22/2024] [Accepted: 12/06/2024] [Indexed: 12/24/2024]
Affiliation(s)
- Machiko Kataoka
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Yukiko Kuroda
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Hiroyuki Tanaka
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Ayami Sato
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Motohiro Kato
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
2
|
Cornejo KG, Venegas A, Sono MH, Door M, Gutierrez-Ruiz B, Karabedian LB, Nandi SG, Hadisurya M, Tao WA, Dykhuizen EC, Saha RN. Activity-assembled nBAF complex mediates rapid immediate early gene transcription by regulating RNA polymerase II productive elongation. Cell Rep 2024; 43:114877. [PMID: 39412992 PMCID: PMC11625021 DOI: 10.1016/j.celrep.2024.114877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 09/03/2024] [Accepted: 09/30/2024] [Indexed: 10/18/2024] Open
Abstract
Signal-dependent RNA polymerase II (RNA Pol II) productive elongation is an integral component of gene transcription, including that of immediate early genes (IEGs) induced by neuronal activity. However, it remains unclear how productively elongating RNA Pol II overcomes nucleosomal barriers. Using RNAi, three degraders, and several small-molecule inhibitors, we show that the mammalian switch/sucrose non-fermentable (SWI/SNF) complex of neurons (neuronal BRG1/BRM-associated factor or nBAF) is required for activity-induced transcription of neuronal IEGs, including Arc. The nBAF complex facilitates promoter-proximal RNA Pol II pausing and signal-dependent RNA Pol II recruitment (loading) and, importantly, mediates productive elongation in the gene body via interaction with the elongation complex and elongation-competent RNA Pol II. Mechanistically, RNA Pol II elongation is mediated by activity-induced nBAF assembly (especially ARID1A recruitment) and its ATPase activity. Together, our data demonstrate that the nBAF complex regulates several aspects of RNA Pol II transcription and reveal mechanisms underlying activity-induced RNA Pol II elongation. These findings may offer insights into human maladies etiologically associated with mutational interdiction of BAF functions.
Collapse
Affiliation(s)
- Karen G Cornejo
- Molecular and Cell Biology Department, School of Natural Sciences, University of California, Merced, 5200 North Lake Road, Merced, CA 95343, USA
| | - Andie Venegas
- Molecular and Cell Biology Department, School of Natural Sciences, University of California, Merced, 5200 North Lake Road, Merced, CA 95343, USA
| | - Morgan H Sono
- Molecular and Cell Biology Department, School of Natural Sciences, University of California, Merced, 5200 North Lake Road, Merced, CA 95343, USA
| | - Madeline Door
- Molecular and Cell Biology Department, School of Natural Sciences, University of California, Merced, 5200 North Lake Road, Merced, CA 95343, USA
| | - Brenda Gutierrez-Ruiz
- Molecular and Cell Biology Department, School of Natural Sciences, University of California, Merced, 5200 North Lake Road, Merced, CA 95343, USA
| | - Lucy B Karabedian
- Molecular and Cell Biology Department, School of Natural Sciences, University of California, Merced, 5200 North Lake Road, Merced, CA 95343, USA
| | - Supratik G Nandi
- Molecular and Cell Biology Department, School of Natural Sciences, University of California, Merced, 5200 North Lake Road, Merced, CA 95343, USA
| | - Marco Hadisurya
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - W Andy Tao
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA; Purdue University Institute for Cancer Research, Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | - Emily C Dykhuizen
- Purdue University Institute for Cancer Research, Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | - Ramendra N Saha
- Molecular and Cell Biology Department, School of Natural Sciences, University of California, Merced, 5200 North Lake Road, Merced, CA 95343, USA.
| |
Collapse
|
3
|
van der Sluijs PJ, Moutton S, Dingemans AJM, Weis D, Levy MA, Boycott KM, Arberas C, Baldassarri M, Beneteau C, Brusco A, Coutton C, Dabir T, Dentici ML, Devriendt K, Faivre L, van Haelst MM, Jizi K, Kempers MJ, Kerkhof J, Kharbanda M, Lachlan K, Marle N, McConkey H, Mencarelli MA, Mowat D, Niceta M, Nicolas C, Novelli A, Orlando V, Pichon O, Rankin J, Relator R, Ropers FG, Rosenfeld JA, Sachdev R, Sandaradura SA, Shukarova-Angelovska E, Steenbeek D, Tartaglia M, Tedder MA, Trajkova S, Winer N, Woods J, de Vries BBA, Sadikovic B, Alders M, Santen GWE. Microduplications of ARID1A and ARID1B cause a novel clinical and epigenetic distinct BAFopathy. Genet Med 2024; 27:101283. [PMID: 39355979 DOI: 10.1016/j.gim.2024.101283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 09/23/2024] [Accepted: 09/23/2024] [Indexed: 10/03/2024] Open
Abstract
PURPOSE ARID1A/ARID1B haploinsufficiency leads to Coffin-Siris syndrome, duplications of ARID1A lead to a distinct clinical syndrome, whilst ARID1B duplications have not yet been linked to a phenotype. METHODS We collected patients with duplications encompassing ARID1A and ARID1B duplications. RESULTS 16 ARID1A and 13 ARID1B duplication cases were included with duplication sizes ranging from 0.1 to 1.2 Mb (1-44 genes) for ARID1A and 0.9 to 10.3 Mb (2-101 genes) for ARID1B. Both groups shared features, with ARID1A patients having more severe intellectual disability, growth delay, and congenital anomalies. DNA methylation analysis showed that ARID1A patients had a specific methylation pattern in blood, which differed from controls and from patients with ARID1A or ARID1B loss-of-function variants. ARID1B patients appeared to have a distinct methylation pattern, similar to ARID1A duplication patients, but further research is needed to validate these results. Five cases with duplications including ARID1A or ARID1B initially annotated as duplications of uncertain significance were evaluated using PhenoScore and DNA methylation reanalysis, resulting in the reclassification of 2 ARID1A and 2 ARID1B duplications as pathogenic. CONCLUSION Our findings reveal that ARID1B duplications manifest a clinical phenotype, and ARID1A duplications have a distinct episignature that overlaps with that of ARID1B duplications, providing further evidence for a distinct and emerging BAFopathy caused by whole-gene duplication rather than haploinsufficiency.
Collapse
Affiliation(s)
| | - Sébastien Moutton
- CPDPN, Pôle mère enfant, Maison de Santé Protestante Bordeaux Bagatelle, Talence, France; Centre de Référence Anomalies du Développement et Syndromes Malformatifs, FHU TRANSLAD, CHU Dijon, Dijon, France
| | - Alexander J M Dingemans
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Denisa Weis
- Institute of Medical Genetics, Kepler University Hospital Med Campus IV, Johannes Kepler University, Linz, Austria
| | - Michael A Levy
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, Canada
| | - Kym M Boycott
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON, Canada; Department of Genetics, Children's Hospital of Eastern Ontario, Ottawa, ON, Canada
| | - Claudia Arberas
- Sección Genética Médica, Hospital de Niños Dr. Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Margherita Baldassarri
- Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena, Italy; Medical Genetics, University of Siena, Siena, Italy
| | - Claire Beneteau
- Service de Génétique Médicale, Centre Hospitalier Universitaire de Nantes, Nantes, France; Centre Hospitalier Universitaire de Nantes, UF de Foetopathologie et Génétique, Nantes, France; Service de Génétique Médicale, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France
| | - Alfredo Brusco
- Department of Medical Sciences, University of Torino, Torino, Italy
| | - Charles Coutton
- Service de Génétique, Génomique, et Procréation, Centre Hospitalier Universitaire Grenoble Alpes, La Tronche, France; Inserm, CNRS UMR 5309, Institut pour l'Avancée des Biosciences (IAB), Université Grenoble Alpes, Grenoble, France
| | - Tabib Dabir
- Department of Genetic Medicine, Belfast City Hospital, Belfast, Northern Ireland, United Kingdom
| | - Maria L Dentici
- Medical Genetics, IRCCS Bambino Gesù Children Hospital, Rome, Italy
| | | | - Laurence Faivre
- Centre de Référence Anomalies du Développement et Syndromes Malformatifs, FHU TRANSLAD, CHU Dijon, Dijon, France; Genetics of Developmental Disorders, Inserm - Bourgogne Franche-Comté University, UMR 1231 GAD Team, Dijon, France
| | - Mieke M van Haelst
- Section Clinical Genetics, Department of Human Genetics, Amsterdam University Medical Centers, Amsterdam, The Netherlands; Amsterdam Reproduction and Development, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Khadije Jizi
- Department of Pediatrics, Université de Montréal, Montreal, QC, Canada; Centre de Recherche et Centre Hospitalier Universitaire Sainte-Justine, Montreal, QC, Canada
| | - Marlies J Kempers
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jennifer Kerkhof
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, Canada
| | - Mira Kharbanda
- Wessex Clinical Genetics Service, University Hospital Southampton, Princess Anne Hospital, Southampton, United Kingdom
| | - Katherine Lachlan
- Wessex Clinical Genetics Service, University Hospital Southampton, Princess Anne Hospital, Southampton, United Kingdom; Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Nathalie Marle
- Laboratoire de Génétique Chromosomique et Moléculaire, Pôle de Biologie, CHU de Dijon, Dijon, France
| | - Haley McConkey
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, Canada; Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada
| | | | - David Mowat
- Center for Clinical Genetics, Sydney Children's Hospital, Randwick, New South Wales, Australia; University of New South Wales, School of Women's and Children's Health, Faculty of Medicine and Health, Kensington, New South Wales, Australia
| | - Marcello Niceta
- Molecular Genetics and Functional Genomics, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Claire Nicolas
- Centre de Référence Anomalies du Développement et Syndromes Malformatifs, FHU TRANSLAD, CHU Dijon, Dijon, France; Genetics of Developmental Disorders, Inserm - Bourgogne Franche-Comté University, UMR 1231 GAD Team, Dijon, France
| | - Antonio Novelli
- Translational Cytogenomics, IRCCS Bambino Gesù Children Hospital, Rome, Italy
| | - Valeria Orlando
- Translational Cytogenomics, IRCCS Bambino Gesù Children Hospital, Rome, Italy
| | - Olivier Pichon
- Service de Génétique Médicale, Centre Hospitalier Universitaire de Nantes, Nantes, France
| | - Julia Rankin
- Department of Clinical Genetics, Royal Devon and Exeter NHS Foundation Trust, Exeter, United Kingdom
| | - Raissa Relator
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, Canada
| | - Fabienne G Ropers
- Willem-Alexander Children's Hospital, Department of Pediatrics, Leiden University Medical Center, Leiden, The Netherlands
| | - Jill A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Baylor Genetics Laboratories, Houston, TX
| | - Rani Sachdev
- University of New South Wales, School of Women's and Children's Health, Faculty of Medicine and Health, Kensington, New South Wales, Australia; School of Women's and Children's Health, UNSW Medicine and Health, University of New South Wales, Sydney, New South Wales, Australia
| | - Sarah A Sandaradura
- Sydney Children's Hospitals Network, Westmead, New South Wales, Australia; Children's Hospital Westmead Clinical School, University of Sydney, Sydney, New South Wales, Australia
| | - Elena Shukarova-Angelovska
- Department of Endocrinology and Genetics, University Clinic for Children's Diseases, Medical Faculty, University Sv. Kiril I Metodij, Skopje, Republic of North Macedonia
| | - Duco Steenbeek
- Department of Rehabilitation Medicine, Maastricht University Medical Center/Adelante, Rehabilitation, Maastricht, The Netherlands
| | - Marco Tartaglia
- Molecular Genetics and Functional Genomics, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | | | - Slavica Trajkova
- Department of Medical Sciences, University of Torino, Torino, Italy; Molecular Biotechnology Center "Guido Tarone, " University of Turin, Turin, Italy
| | - Norbert Winer
- Service de Gynécologie-Obstétrique, Centre Hospitalier Universitaire de Nantes, Nantes, France; Nun, INRAE, Physiol, UMR1280 AN, Université de Nantes, Nantes, France
| | - Jeremy Woods
- Department of Genetics, Valley Children's Hospital, Madera, CA; Stanford University, Palo Alto, CA
| | - Bert B A de Vries
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Bekim Sadikovic
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, Canada; Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada
| | - Marielle Alders
- Department of Human Genetics, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Gijs W E Santen
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
4
|
Cornejo KG, Venegas A, Sono MH, Door M, Gutierrez-Ruiz B, Karabedian LB, Nandi SG, Dykhuizen EC, Saha RN. Activity-assembled nBAF complex mediates rapid immediate early gene transcription by regulating RNA Polymerase II productive elongation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.30.573688. [PMID: 38234780 PMCID: PMC10793463 DOI: 10.1101/2023.12.30.573688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Signal-dependent RNA Polymerase II (Pol2) productive elongation is an integral component of gene transcription, including those of immediate early genes (IEGs) induced by neuronal activity. However, it remains unclear how productively elongating Pol2 overcome nucleosomal barriers. Using RNAi, three degraders, and several small molecule inhibitors, we show that the mammalian SWI/SNF complex of neurons (neuronal BAF, or nBAF) is required for activity-induced transcription of neuronal IEGs, including Arc . The nBAF complex facilitates promoter-proximal Pol2 pausing, signal-dependent Pol2 recruitment (loading), and importantly, mediates productive elongation in the gene body via interaction with the elongation complex and elongation-competent Pol2. Mechanistically, Pol2 elongation is mediated by activity-induced nBAF assembly (especially, ARID1A recruitment) and its ATPase activity. Together, our data demonstrate that the nBAF complex regulates several aspects of Pol2 transcription and reveal mechanisms underlying activity-induced Pol2 elongation. These findings may offer insights into human maladies etiologically associated with mutational interdiction of BAF functions.
Collapse
|
5
|
Liu PP, Lu SP, Li X, Tang GB, Liu X, Dai SK, Jiao LF, Lin XW, Li XG, Hu B, Jiao J, Teng ZQ, Han CS, Liu CM. Abnormal chromatin remodeling caused by ARID1A deletion leads to malformation of the dentate gyrus. Cell Death Differ 2023; 30:2187-2199. [PMID: 37543710 PMCID: PMC10483045 DOI: 10.1038/s41418-023-01199-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 07/15/2023] [Accepted: 07/27/2023] [Indexed: 08/07/2023] Open
Abstract
ARID1A, an SWI/SNF chromatin-remodeling gene, is commonly mutated in cancer and hypothesized to be a tumor suppressor. Recently, loss-of-function of ARID1A gene has been shown to cause intellectual disability. Here we generate Arid1a conditional knockout mice and investigate Arid1a function in the hippocampus. Disruption of Arid1a in mouse forebrain significantly decreases neural stem/progenitor cells (NSPCs) proliferation and differentiation to neurons within the dentate gyrus (DG), increasing perinatal and postnatal apoptosis, leading to reduced hippocampus size. Moreover, we perform single-cell RNA sequencing (scRNA-seq) to investigate cellular heterogeneity and reveal that Arid1a is necessary for the maintenance of the DG progenitor pool and survival of post-mitotic neurons. Transcriptome and ChIP-seq analysis data demonstrate that ARID1A specifically regulates Prox1 by altering the levels of histone modifications. Overexpression of downstream target Prox1 can rescue proliferation and differentiation defects of NSPCs caused by Arid1a deletion. Overall, our results demonstrate a critical role for Arid1a in the development of the hippocampus and may also provide insight into the genetic basis of intellectual disabilities such as Coffin-Siris syndrome, which is caused by germ-line mutations or microduplication of Arid1a.
Collapse
Affiliation(s)
- Pei-Pei Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Shi-Ping Lu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Xiao Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Gang-Bin Tang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Xiao Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shang-Kun Dai
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lin-Fei Jiao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xi-Wen Lin
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Xing-Guo Li
- Graduate Institute of Biomedical Sciences, China Medical University, No.91, Hsueh-Shih Road, Taichung, 40402, Taiwan
| | - Baoyang Hu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianwei Jiao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhao-Qian Teng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Chun-Sheng Han
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Chang-Mei Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
6
|
Liu P, Dai S, Mi T, Tang G, Wang Z, Wang H, Du H, Tang Y, Teng Z, Liu C. Acetate supplementation restores cognitive deficits caused by ARID1A haploinsufficiency in excitatory neurons. EMBO Mol Med 2022; 14:e15795. [PMID: 36385502 PMCID: PMC9728054 DOI: 10.15252/emmm.202215795] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/18/2022] Open
Abstract
Mutations in AT-rich interactive domain-containing protein 1A (ARID1A) cause Coffin-Siris syndrome (CSS), a rare genetic disorder that results in mild to severe intellectual disabilities. However, the biological role of ARID1A in the brain remains unclear. In this study, we report that the haploinsufficiency of ARID1A in excitatory neurons causes cognitive impairment and defects in hippocampal synaptic transmission and dendritic morphology in mice. Similarly, human embryonic stem cell-derived excitatory neurons with deleted ARID1A exhibit fewer dendritic branches and spines, and abnormal electrophysiological activity. Importantly, supplementation of acetate, an epigenetic metabolite, can ameliorate the morphological and electrophysiological deficits observed in mice with Arid1a haploinsufficiency, as well as in ARID1A-null human excitatory neurons. Mechanistically, transcriptomic and ChIP-seq analyses demonstrate that acetate supplementation can increase the levels of H3K27 acetylation at the promoters of key regulatory genes associated with neural development and synaptic transmission. Collectively, these findings support the essential roles of ARID1A in the excitatory neurons and cognition and suggest that acetate supplementation could be a potential therapeutic intervention for CSS.
Collapse
Affiliation(s)
- Pei‐Pei Liu
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of SciencesBeijingChina,University of Chinese Academy of SciencesBeijingChina,Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijingChina,Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
| | - Shang‐Kun Dai
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of SciencesBeijingChina,University of Chinese Academy of SciencesBeijingChina,School of Life Sciences and MedicineShandong University of TechnologyZiboChina
| | - Ting‐Wei Mi
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of SciencesBeijingChina
| | - Gang‐Bin Tang
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of SciencesBeijingChina
| | - Zhuo Wang
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of SciencesBeijingChina,University of Chinese Academy of SciencesBeijingChina
| | - Hui Wang
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of SciencesBeijingChina,University of Chinese Academy of SciencesBeijingChina
| | - Hong‐Zhen Du
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of SciencesBeijingChina,Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijingChina,Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
| | - Yi Tang
- Department of Neurology, Innovation Center for Neurological Disorders, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Zhao‐Qian Teng
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of SciencesBeijingChina,University of Chinese Academy of SciencesBeijingChina,Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijingChina,Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
| | - Chang‐Mei Liu
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of SciencesBeijingChina,University of Chinese Academy of SciencesBeijingChina,Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijingChina,Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
| |
Collapse
|
7
|
Cárcamo B, Masotto B, Baquero-Vaquer A, Ceballos-Saenz D, Zapata-Aldana E. "Cancer in ARID1A-Coffin-Siris syndrome: Review and report of a child with hepatoblastoma". Eur J Med Genet 2022; 65:104600. [PMID: 36049608 DOI: 10.1016/j.ejmg.2022.104600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 05/26/2022] [Accepted: 08/24/2022] [Indexed: 11/21/2022]
Abstract
Coffin-Siris syndrome (CSS) is a rare neurodevelopmental and multisystemic disorder with wide genetic heterogeneity and phenotypic variability caused by pathogenic variants in the BAF complex with 341 cases enrolled in the CSS/BAF-related disorders registry by 2021. Pathogenic variants of ARID1A account for 7-8% of cases with CSS phenotype. Malignancy has been previously reported in six individuals with CSS associated with BAF mutations. Two of these malignancies including one acute lymphoid leukemia and one hepatoblastoma were reported in ARID1A-associated CSS (ARID1A-CSS). Alterations in ARID1A are among the most common molecular aberrations in human cancer. Somatic deletion of 1p and specifically of 1p36.11 containing ARID1A is frequently seen in hepatoblastoma and has been associated with high-risk features. Here we report a child with CSS Phenotype and a novel de novo variant of ARID1A with hepatoblastoma. Because hepatoblastoma has an incidence of 1 per million children, the presence of hepatoblastoma in 2 of 30 known cases of ARID1A-CSS is significant. ARID1A-CSS should be included among the cancer predisposition syndromes associated with an increased risk of hepatoblastoma and tumour surveillance considered for these patients. The role of ARID1A in the pathogenesis and outcome of hepatoblastoma deserves further investigation.
Collapse
Affiliation(s)
- Benjamín Cárcamo
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, Paul L. Foster School of Medicine, Texas Tech University Health Science Center El Paso, El Paso, TX, USA; El Paso Children's Hospital, El Paso, TX, USA
| | | | | | - Delia Ceballos-Saenz
- Telethon Children's Rehabilitation Centre (Centro de Rehabilitación e inclusión Infantil Teleton), Guerrero, Mexico
| | - Eugenio Zapata-Aldana
- Telethon Children's Rehabilitation Centre (Centro de Rehabilitación e inclusión Infantil Teleton), Guerrero, Mexico; Medical Genetics, Sistemas Genómicos, Paterna, Spain.
| |
Collapse
|
8
|
Tai DJC, Razaz P, Erdin S, Gao D, Wang J, Nuttle X, de Esch CE, Collins RL, Currall BB, O'Keefe K, Burt ND, Yadav R, Wang L, Mohajeri K, Aneichyk T, Ragavendran A, Stortchevoi A, Morini E, Ma W, Lucente D, Hastie A, Kelleher RJ, Perlis RH, Talkowski ME, Gusella JF. Tissue- and cell-type-specific molecular and functional signatures of 16p11.2 reciprocal genomic disorder across mouse brain and human neuronal models. Am J Hum Genet 2022; 109:1789-1813. [PMID: 36152629 PMCID: PMC9606388 DOI: 10.1016/j.ajhg.2022.08.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/23/2022] [Indexed: 01/29/2023] Open
Abstract
Chromosome 16p11.2 reciprocal genomic disorder, resulting from recurrent copy-number variants (CNVs), involves intellectual disability, autism spectrum disorder (ASD), and schizophrenia, but the responsible mechanisms are not known. To systemically dissect molecular effects, we performed transcriptome profiling of 350 libraries from six tissues (cortex, cerebellum, striatum, liver, brown fat, and white fat) in mouse models harboring CNVs of the syntenic 7qF3 region, as well as cellular, transcriptional, and single-cell analyses in 54 isogenic neural stem cell, induced neuron, and cerebral organoid models of CRISPR-engineered 16p11.2 CNVs. Transcriptome-wide differentially expressed genes were largely tissue-, cell-type-, and dosage-specific, although more effects were shared between deletion and duplication and across tissue than expected by chance. The broadest effects were observed in the cerebellum (2,163 differentially expressed genes), and the greatest enrichments were associated with synaptic pathways in mouse cerebellum and human induced neurons. Pathway and co-expression analyses identified energy and RNA metabolism as shared processes and enrichment for ASD-associated, loss-of-function constraint, and fragile X messenger ribonucleoprotein target gene sets. Intriguingly, reciprocal 16p11.2 dosage changes resulted in consistent decrements in neurite and electrophysiological features, and single-cell profiling of organoids showed reciprocal alterations to the proportions of excitatory and inhibitory GABAergic neurons. Changes both in neuronal ratios and in gene expression in our organoid analyses point most directly to calretinin GABAergic inhibitory neurons and the excitatory/inhibitory balance as targets of disruption that might contribute to changes in neurodevelopmental and cognitive function in 16p11.2 carriers. Collectively, our data indicate the genomic disorder involves disruption of multiple contributing biological processes and that this disruption has relative impacts that are context specific.
Collapse
Affiliation(s)
- Derek J C Tai
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Parisa Razaz
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Serkan Erdin
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Dadi Gao
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jennifer Wang
- Center for Quantitative Health, Division of Clinical Research, Massachusetts General Hospital, Boston, MA 02114, USA; Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Xander Nuttle
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Celine E de Esch
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ryan L Collins
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Benjamin B Currall
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Kathryn O'Keefe
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Nicholas D Burt
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Rachita Yadav
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Lily Wang
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Kiana Mohajeri
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Tatsiana Aneichyk
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ashok Ragavendran
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Alexei Stortchevoi
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Elisabetta Morini
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Weiyuan Ma
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Diane Lucente
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | | | - Raymond J Kelleher
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Roy H Perlis
- Center for Quantitative Health, Division of Clinical Research, Massachusetts General Hospital, Boston, MA 02114, USA; Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Michael E Talkowski
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - James F Gusella
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
9
|
D’Aurizio R, Catona O, Pitasi M, Li YE, Ren B, Nicolis SK. Bridging between Mouse and Human Enhancer-Promoter Long-Range Interactions in Neural Stem Cells, to Understand Enhancer Function in Neurodevelopmental Disease. Int J Mol Sci 2022; 23:ijms23147964. [PMID: 35887306 PMCID: PMC9322198 DOI: 10.3390/ijms23147964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/08/2022] [Accepted: 07/14/2022] [Indexed: 11/16/2022] Open
Abstract
Non-coding variation in complex human disease has been well established by genome-wide association studies, and is thought to involve regulatory elements, such as enhancers, whose variation affects the expression of the gene responsible for the disease. The regulatory elements often lie far from the gene they regulate, or within introns of genes differing from the regulated gene, making it difficult to identify the gene whose function is affected by a given enhancer variation. Enhancers are connected to their target gene promoters via long-range physical interactions (loops). In our study, we re-mapped, onto the human genome, more than 10,000 enhancers connected to promoters via long-range interactions, that we had previously identified in mouse brain-derived neural stem cells by RNApolII-ChIA-PET analysis, coupled to ChIP-seq mapping of DNA/chromatin regions carrying epigenetic enhancer marks. These interactions are thought to be functionally relevant. We discovered, in the human genome, thousands of DNA regions syntenic with the interacting mouse DNA regions (enhancers and connected promoters). We further annotated these human regions regarding their overlap with sequence variants (single nucleotide polymorphisms, SNPs; copy number variants, CNVs), that were previously associated with neurodevelopmental disease in humans. We document various cases in which the genetic variant, associated in humans to neurodevelopmental disease, affects an enhancer involved in long-range interactions: SNPs, previously identified by genome-wide association studies to be associated with schizophrenia, bipolar disorder, and intelligence, are located within our human syntenic enhancers, and alter transcription factor recognition sites. Similarly, CNVs associated to autism spectrum disease and other neurodevelopmental disorders overlap with our human syntenic enhancers. Some of these enhancers are connected (in mice) to homologs of genes already associated to the human disease, strengthening the hypothesis that the gene is indeed involved in the disease. Other enhancers are connected to genes not previously associated with the disease, pointing to their possible pathogenetic involvement. Our observations provide a resource for further exploration of neural disease, in parallel with the now widespread genome-wide identification of DNA variants in patients with neural disease.
Collapse
Affiliation(s)
- Romina D’Aurizio
- Institute of Informatics and Telematics (IIT), National Research Council (CNR), 56124 Pisa, Italy;
- Correspondence:
| | - Orazio Catona
- Institute of Informatics and Telematics (IIT), National Research Council (CNR), 56124 Pisa, Italy;
| | - Mattia Pitasi
- Dipartimento di Biotecnologie e Bioscienze, University of Milano-Bicocca, 20126 Milano, Italy; (M.P.); (S.K.N.)
| | - Yang Eric Li
- University of California San Diego, La Jolla, CA 92093, USA; (Y.E.L.); (B.R.)
| | - Bing Ren
- University of California San Diego, La Jolla, CA 92093, USA; (Y.E.L.); (B.R.)
| | - Silvia Kirsten Nicolis
- Dipartimento di Biotecnologie e Bioscienze, University of Milano-Bicocca, 20126 Milano, Italy; (M.P.); (S.K.N.)
| |
Collapse
|
10
|
Eigenhuis KN, Somsen HB, van den Berg DLC. Transcription Pause and Escape in Neurodevelopmental Disorders. Front Neurosci 2022; 16:846272. [PMID: 35615272 PMCID: PMC9125161 DOI: 10.3389/fnins.2022.846272] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 04/11/2022] [Indexed: 11/17/2022] Open
Abstract
Transcription pause-release is an important, highly regulated step in the control of gene expression. Modulated by various factors, it enables signal integration and fine-tuning of transcriptional responses. Mutations in regulators of pause-release have been identified in a range of neurodevelopmental disorders that have several common features affecting multiple organ systems. This review summarizes current knowledge on this novel subclass of disorders, including an overview of clinical features, mechanistic details, and insight into the relevant neurodevelopmental processes.
Collapse
|
11
|
Slavotinek A, Lefebvre M, Brehin AC, Thauvin C, Patrier S, Sparks TN, Norton M, Yu J, Huang E. Prenatal presentation of multiple anomalies associated with haploinsufficiency for ARID1A. Eur J Med Genet 2022; 65:104407. [PMID: 34942405 PMCID: PMC9162882 DOI: 10.1016/j.ejmg.2021.104407] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 11/04/2021] [Accepted: 12/14/2021] [Indexed: 02/03/2023]
Abstract
The ARID1A gene is an infrequent cause of Coffin-Siris syndrome (CSS) and has been associated with severe to profound developmental delays and hypotonia in addition to characteristic craniofacial and digital findings. We present three fetuses and a male neonate with ventriculomegaly/hydrocephalus, absence of the corpus callosum (ACC), cerebellar hypoplasia, retinal dysplasia, lung lobulation defects, renal dysplasia, imperforate or anteriorly placed anus, thymus hypoplasia and a single umbilical artery. Facial anomalies included downslanting palpebral fissures, wide-spaced eyes, low-set and posteriorly rotated ears, a small jaw, widely spaced nipples and hypoplastic nails. All fetuses had heterozygous variants predicting premature protein truncation in ARID1A (c.4886dup:p.Val1630Cysfs*18; c.4860dup:p.Pro1621Thrfs*27; and c.175G>T:p.Glu59*) and the baby's microarray demonstrated mosaicism for a deletion at chromosome 1p36.11 (arr[GRCh37] 1p36.11(26,797,508_27,052,080)×1∼2), that contained the first exon of ARID1A. Although malformations, in particular ACC, have been described with CSS caused by pathogenic variants in ARID1A, prenatal presentations associated with this gene are rare. Retinal dysplasia, lung lobulation defects and absent thymus were novel findings in association with ARID1A variants. Studies in cancer have demonstrated that pathogenic ARID1A variants hamper nuclear import of the protein and/or affect interaction with the subunits of SWI/SNF complex, resulting in dysregulation of the PI3K/AKT pathway and perturbed PTEN and PIKC3A signaling. As haploinsufficiency for PTEN and PIKC3A can be associated with ventriculomegaly/hydrocephalus, aberrant expression of these genes is a putative mechanism for the brain malformations demonstrated in patients with ARID1A variants.
Collapse
Affiliation(s)
- Anne Slavotinek
- Dept. Pediatrics, University of California San Francisco, San Francisco, CA, 94143, USA.
| | - Mathilde Lefebvre
- UFR Des Sciences de Santé, INSERM-Université de Bourgogne UMR1231, Génétique des Anomalies du Développement, Dijon, France
| | | | - Christel Thauvin
- UFR Des Sciences de Santé, INSERM-Université de Bourgogne UMR1231, Génétique des Anomalies du Développement, Dijon, France
| | - Sophie Patrier
- Department of Pathology, CHU Rouen, F-76000, Rouen, France
| | - Teresa N Sparks
- Department of Obstetrics, Gynecology, & Reproductive Sciences, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Mary Norton
- Department of Obstetrics, Gynecology, & Reproductive Sciences, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Jingwei Yu
- Dept. Cytogenetics, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Eric Huang
- Dept. Pathology, University of California San Francisco, San Francisco, CA, 94143, USA
| |
Collapse
|
12
|
Liu X, Dai SK, Liu PP, Liu CM. Arid1a regulates neural stem/progenitor cell proliferation and differentiation during cortical development. Cell Prolif 2021; 54:e13124. [PMID: 34562292 PMCID: PMC8560606 DOI: 10.1111/cpr.13124] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/03/2021] [Accepted: 09/03/2021] [Indexed: 12/26/2022] Open
Abstract
Objective Neurodevelopmental diseases are common disorders caused by the disruption of essential neurodevelopmental processes. Recent human exome sequencing and genome‐wide association studies have shown that mutations in the subunits of the SWI/SNF (BAF) complex are risk factors for neurodevelopmental diseases. Clinical studies have found that ARID1A (BAF250a) is the most frequently mutated SWI/SNF gene and its mutations lead to mental retardation and microcephaly. However, the function of ARID1A in brain development and its underlying mechanisms still remain elusive. Methods The present study used Cre/loxP system to generate an Arid1a conditional knockout mouse line. Cell proliferation, cell apoptosis and cell differentiation of NSPCs were studied by immunofluorescence staining. In addition, RNA‐seq and RT‐PCR were performed to dissect the molecular mechanisms of Arid1a underlying cortical neurogenesis. Finally, rescue experiments were conducted to evaluate the effects of Neurod1 or Fezf2 overexpression on the differentiation of NSPCs in vitro. Results Conditional knockout of Arid1a reduces cortical thickness in the developing cortex. Arid1a loss of function inhibits the proliferation of radial glial cells, and increases cell death during late cortical development, and leads to dysregulated expression of genes associated with proliferation and differentiation. Overexpression of Neurod1 or Fezf2 in Arid1a cKO NSPCs rescues their neural differentiation defect in vitro. Conclusions This study demonstrates for the first time that Arid1a plays an important role in regulating the proliferation and differentiation of NSPCs during cortical development, and proposes several gene candidates that are worth to understand the pathological mechanisms and to develop novel interventions of neurodevelopment disorders caused by Arid1a mutations.
Collapse
Affiliation(s)
- Xiao Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Shang-Kun Dai
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Pei-Pei Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Chang-Mei Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| |
Collapse
|
13
|
Dyment DA, O'Donnell-Luria A, Agrawal PB, Coban Akdemir Z, Aleck KA, Antaki D, Al Sharhan H, Au PYB, Aydin H, Beggs AH, Bilguvar K, Boerwinkle E, Brand H, Brownstein CA, Buyske S, Chodirker B, Choi J, Chudley AE, Clericuzio CL, Cox GF, Curry C, de Boer E, de Vries BBA, Dunn K, Dutmer CM, England EM, Fahrner JA, Geckinli BB, Genetti CA, Gezdirici A, Gibson WT, Gleeson JG, Greenberg CR, Hall A, Hamosh A, Hartley T, Jhangiani SN, Karaca E, Kernohan K, Lauzon JL, Lewis MES, Lowry RB, López-Giráldez F, Matise TC, McEvoy-Venneri J, McInnes B, Mhanni A, Garcia Minaur S, Moilanen J, Nguyen A, Nowaczyk MJM, Posey JE, Õunap K, Pehlivan D, Pajusalu S, Penney LS, Poterba T, Prontera P, Doriqui MJR, Sawyer SL, Sobreira N, Stanley V, Torun D, Wargowski D, Witmer PD, Wong I, Xing J, Zaki MS, Zhang Y, Boycott KM, Bamshad MJ, Nickerson DA, Blue EE, Innes AM. Alternative genomic diagnoses for individuals with a clinical diagnosis of Dubowitz syndrome. Am J Med Genet A 2021; 185:119-133. [PMID: 33098347 PMCID: PMC8197629 DOI: 10.1002/ajmg.a.61926] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 08/09/2020] [Accepted: 09/19/2020] [Indexed: 01/19/2023]
Abstract
Dubowitz syndrome (DubS) is considered a recognizable syndrome characterized by a distinctive facial appearance and deficits in growth and development. There have been over 200 individuals reported with Dubowitz or a "Dubowitz-like" condition, although no single gene has been implicated as responsible for its cause. We have performed exome (ES) or genome sequencing (GS) for 31 individuals clinically diagnosed with DubS. After genome-wide sequencing, rare variant filtering and computational and Mendelian genomic analyses, a presumptive molecular diagnosis was made in 13/27 (48%) families. The molecular diagnoses included biallelic variants in SKIV2L, SLC35C1, BRCA1, NSUN2; de novo variants in ARID1B, ARID1A, CREBBP, POGZ, TAF1, HDAC8, and copy-number variation at1p36.11(ARID1A), 8q22.2(VPS13B), Xp22, and Xq13(HDAC8). Variants of unknown significance in known disease genes, and also in genes of uncertain significance, were observed in 7/27 (26%) additional families. Only one gene, HDAC8, could explain the phenotype in more than one family (N = 2). All but two of the genomic diagnoses were for genes discovered, or for conditions recognized, since the introduction of next-generation sequencing. Overall, the DubS-like clinical phenotype is associated with extensive locus heterogeneity and the molecular diagnoses made are for emerging clinical conditions sharing characteristic features that overlap the DubS phenotype.
Collapse
Affiliation(s)
- David A Dyment
- Department of Genetics, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Anne O'Donnell-Luria
- Broad Institute of MIT and Harvard, Broad Center for Mendelian Genomics, Cambridge, Massachusetts, USA
- Division of Genetics and Genomics, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Pankaj B Agrawal
- Division of Genetics and Genomics, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Zeynep Coban Akdemir
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Kyrieckos A Aleck
- Department of Genetics and Metabolism, Phoenix Children's Medical Group, Phoenix, Arizona, USA
| | - Danny Antaki
- Laboratory for Pediatric Brain Disease, Howard Hughes Medical Institute, University of California, San Diego, California, USA
- Rady Children's Institute for Genomic Medicine, Rady Children's Hospital, San Diego, California, USA
| | - Hind Al Sharhan
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Pediatrics, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Ping-Yee B Au
- Department of Medical Genetics and Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Hatip Aydin
- Centre of Genetics Diagnosis, Zeynep Kamil Maternity and Children's Training and Research Hospital, Istanbul, Turkey
| | - Alan H Beggs
- Division of Genetics and Genomics, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Kaya Bilguvar
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut, USA
- Yale Center for Genome Analysis, Yale School of Medicine, New Haven, Connecticut, USA
| | - Eric Boerwinkle
- Human Genome Sequencing Center, Baylor College of Medicine, Waco, Texas, USA
| | - Harrison Brand
- Broad Institute of MIT and Harvard, Broad Center for Mendelian Genomics, Cambridge, Massachusetts, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Catherine A Brownstein
- Division of Genetics and Genomics, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Steve Buyske
- Department of Statistics and Biostatistics, Rutgers University, Piscataway, New Jersey, USA
| | - Bernard Chodirker
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Jungmin Choi
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut, USA
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, South Korea
| | - Albert E Chudley
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Carol L Clericuzio
- Department of Pediatrics, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Gerald F Cox
- Division of Genetics and Genomics, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Cynthia Curry
- University of California, San Francisco, California, USA
- Genetic Medicine, University Pediatric Specialists, Fresno, California, USA
| | - Elke de Boer
- Department of Human Genetics, Raboud University Medical Centre, Nijmegen, Netherlands
| | - Bert B A de Vries
- Department of Human Genetics, Raboud University Medical Centre, Nijmegen, Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Raboud University Medical Centre, Nijmegen, Netherlands
| | - Kathryn Dunn
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Cullen M Dutmer
- Children's Hospital Colorado and University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Eleina M England
- Broad Institute of MIT and Harvard, Broad Center for Mendelian Genomics, Cambridge, Massachusetts, USA
| | - Jill A Fahrner
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Bilgen B Geckinli
- Department of Medical Genetics, School of Medicine, Marmara University, Istanbul, Turkey
| | - Casie A Genetti
- Division of Genetics and Genomics, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Alper Gezdirici
- Department of Medical Genetics, Kanuni Sultan Suleyman Training and Research Hospital, Istanbul, Turkey
| | - William T Gibson
- Department of Medical Genetics and British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Joseph G Gleeson
- Laboratory for Pediatric Brain Disease, Howard Hughes Medical Institute, University of California, San Diego, California, USA
- Rady Children's Institute for Genomic Medicine, Rady Children's Hospital, San Diego, California, USA
| | - Cheryl R Greenberg
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - April Hall
- Waisman Center Clinical Genetics, University of Wisconsin, Madison, Wisconsin, USA
| | - Ada Hamosh
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Taila Hartley
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Shalini N Jhangiani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Ender Karaca
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Kristin Kernohan
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Julie L Lauzon
- Department of Medical Genetics and Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - M E Suzanne Lewis
- Department of Medical Genetics and British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - R Brian Lowry
- Department of Medical Genetics and Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Francesc López-Giráldez
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut, USA
- Yale Center for Genome Analysis, Yale School of Medicine, New Haven, Connecticut, USA
| | - Tara C Matise
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, New Jersey, USA
| | - Jennifer McEvoy-Venneri
- Laboratory for Pediatric Brain Disease, Howard Hughes Medical Institute, University of California, San Diego, California, USA
- Rady Children's Institute for Genomic Medicine, Rady Children's Hospital, San Diego, California, USA
| | - Brenda McInnes
- Department of Medical Genetics and Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Aziz Mhanni
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Sixto Garcia Minaur
- Sección de Genética Clínica, INGEMM (Instituto de Genética Médica y Molecular), Madrid, Spain
| | - Jukka Moilanen
- Department of Clinical Genetics, Oulu University Hospital, Medical Research Center Oulu and PEDEGO Research Unit, University of Oulu, Oulu, Finland
| | - An Nguyen
- Laboratory for Pediatric Brain Disease, Howard Hughes Medical Institute, University of California, San Diego, California, USA
- Rady Children's Institute for Genomic Medicine, Rady Children's Hospital, San Diego, California, USA
| | - Malgorzata J M Nowaczyk
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Jennifer E Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Katrin Õunap
- United Laboratories, Department of Clinical Genetics, Tartu University Hospital, Tartu, Estonia
- Institute of Clinical Medicine, Department of Clinical Genetics, Tartu University Hospital, Tartu, Estonia
| | - Davut Pehlivan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Texas Children's Hospital, Houston, Texas, USA
- Section of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Sander Pajusalu
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut, USA
- United Laboratories, Department of Clinical Genetics, Tartu University Hospital, Tartu, Estonia
- Institute of Clinical Medicine, Department of Clinical Genetics, Tartu University Hospital, Tartu, Estonia
| | - Lynette S Penney
- Department of Pediatrics, IWK Health Centre, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Timothy Poterba
- Broad Institute of MIT and Harvard, Broad Center for Mendelian Genomics, Cambridge, Massachusetts, USA
- Analytical and Translational Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Paolo Prontera
- Medical Genetics Unit, Hospital Santa Maria della Misericordia and University of Perugia, Perugia, Italy
| | | | - Sarah L Sawyer
- Department of Genetics, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Nara Sobreira
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Valentina Stanley
- Laboratory for Pediatric Brain Disease, Howard Hughes Medical Institute, University of California, San Diego, California, USA
- Rady Children's Institute for Genomic Medicine, Rady Children's Hospital, San Diego, California, USA
| | - Deniz Torun
- Department of Medical Genetics, Gulhane Military Medical Academy, Ankara, Turkey
| | - David Wargowski
- Division of Genetics, Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - P Dane Witmer
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Isaac Wong
- Broad Institute of MIT and Harvard, Broad Center for Mendelian Genomics, Cambridge, Massachusetts, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Jinchuan Xing
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, New Jersey, USA
| | - Maha S Zaki
- Clinical Genetics Department, Human Genetics and Genome Research Division, National Research Centre, Cairo, Egypt
| | - Yeting Zhang
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, New Jersey, USA
| | - Kym M Boycott
- Department of Genetics, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Michael J Bamshad
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
- Brotman-Baty Institute for Precision Medicine, Seattle, Washington, USA
| | - Deborah A Nickerson
- Brotman-Baty Institute for Precision Medicine, Seattle, Washington, USA
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Elizabeth E Blue
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - A Micheil Innes
- Department of Medical Genetics and Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|