1
|
Lietsch M, Chan K, Taylor J, Lee BH, Ciafaloni E, Kwon JM, Waldrop MA, Butterfield RJ, Rathore G, Veerapandiyan A, Kapil A, Parsons JA, Gibbons M, Brower A. Long-Term Follow-Up Cares and Check Initiative: A Program to Advance Long-Term Follow-Up in Newborns Identified with a Disease through Newborn Screening. Int J Neonatal Screen 2024; 10:34. [PMID: 38651399 PMCID: PMC11036280 DOI: 10.3390/ijns10020034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/23/2024] [Accepted: 04/03/2024] [Indexed: 04/25/2024] Open
Abstract
In the United States and around the world, newborns are screened on a population basis for conditions benefiting from pre-symptomatic diagnosis and treatment. The number of screened conditions continues to expand as novel technologies for screening, diagnosing, treating, and managing disease are discovered. While screening all newborns facilitates early diagnosis and treatment, most screened conditions are treatable but not curable. Patients identified by newborn screening often require lifelong medical management and community support to achieve the best possible outcome. To advance the long-term follow-up of infants identified through newborn screening (NBS), the Long-Term Follow-up Cares and Check Initiative (LTFU-Cares and Check) designed, implemented, and evaluated a system of longitudinal data collection and annual reporting engaging parents, clinical providers, and state NBS programs. The LTFU-Cares and Check focused on newborns identified with spinal muscular atrophy (SMA) through NBS and the longitudinal health information prioritized by parents and families. Pediatric neurologists who care for newborns with SMA entered annual data, and data tracking and visualization tools were delivered to state NBS programs with a participating clinical center. In this publication, we report on the development, use of, and preliminary results from the LTFU-Cares and Check Initiative, which was designed as a comprehensive model of LTFU. We also propose next steps for achieving the goal of a national system of LTFU for individuals with identified conditions by meaningfully engaging public health agencies, clinicians, parents, families, and communities.
Collapse
Affiliation(s)
- Mei Lietsch
- American College of Genetics and Genomics, Bethesda, MD 20814, USA; (M.L.); (K.C.); (J.T.)
| | - Kee Chan
- American College of Genetics and Genomics, Bethesda, MD 20814, USA; (M.L.); (K.C.); (J.T.)
| | - Jennifer Taylor
- American College of Genetics and Genomics, Bethesda, MD 20814, USA; (M.L.); (K.C.); (J.T.)
| | - Bo Hoon Lee
- Department of Neurology, University of Rochester, Rochester, NY 14627, USA; (B.H.L.); (E.C.)
| | - Emma Ciafaloni
- Department of Neurology, University of Rochester, Rochester, NY 14627, USA; (B.H.L.); (E.C.)
| | - Jennifer M. Kwon
- Department of Neurology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53726, USA;
| | - Megan A. Waldrop
- Center for Gene Therapy, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205, USA;
- Department of Neurology and Pediatrics, Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Russell J. Butterfield
- Department of Pediatrics and Neurology, University of Utah, Salt Lake City, UT 84132, USA;
| | - Geetanjali Rathore
- Division of Neurology, Department of Pediatrics, University of Nebraska Medical Center, College of Medicine, Omaha, NE 68198, USA;
| | - Aravindhan Veerapandiyan
- Division of Neurology, Department of Pediatrics, University of Arkansas for Medical Sciences, Arkansas Children’s Hospital, Little Rock, AR 72202, USA; (A.V.); (A.K.)
| | - Arya Kapil
- Division of Neurology, Department of Pediatrics, University of Arkansas for Medical Sciences, Arkansas Children’s Hospital, Little Rock, AR 72202, USA; (A.V.); (A.K.)
| | - Julie A. Parsons
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, USA; (J.A.P.); (M.G.)
| | - Melissa Gibbons
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, USA; (J.A.P.); (M.G.)
| | - Amy Brower
- American College of Genetics and Genomics, Bethesda, MD 20814, USA; (M.L.); (K.C.); (J.T.)
- Genetic Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
2
|
Chan K, Hu Z, Bush LW, Cope H, Holm IA, Kingsmore SF, Wilhelm K, Scharfe C, Brower A. NBSTRN Tools to Advance Newborn Screening Research and Support Newborn Screening Stakeholders. Int J Neonatal Screen 2023; 9:63. [PMID: 37987476 PMCID: PMC10660757 DOI: 10.3390/ijns9040063] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/17/2023] [Accepted: 10/19/2023] [Indexed: 11/22/2023] Open
Abstract
Rapid advances in the screening, diagnosis, and treatment of genetic disorders have increased the number of conditions that can be detected through universal newborn screening (NBS). However, the addition of conditions to the Recommended Uniform Screening Panel (RUSP) and the implementation of nationwide screening has been a slow process taking several years to accomplish for individual conditions. Here, we describe web-based tools and resources developed and implemented by the newborn screening translational research network (NBSTRN) to advance newborn screening research and support NBS stakeholders worldwide. The NBSTRN's tools include the Longitudinal Pediatric Data Resource (LPDR), the NBS Condition Resource (NBS-CR), the NBS Virtual Repository (NBS-VR), and the Ethical, Legal, and Social Issues (ELSI) Advantage. Research programs, including the Inborn Errors of Metabolism Information System (IBEM-IS), BabySeq, EarlyCheck, and Family Narratives Use Cases, have utilized NBSTRN's tools and, in turn, contributed research data to further expand and refine these resources. Additionally, we discuss ongoing tool development to facilitate the expansion of genetic disease screening in increasingly diverse populations. In conclusion, NBSTRN's tools and resources provide a trusted platform to enable NBS stakeholders to advance NBS research and improve clinical care for patients and their families.
Collapse
Affiliation(s)
- Kee Chan
- American College of Medical Genetics and Genomics, Bethesda, MD 20814, USA
| | - Zhanzhi Hu
- Department of Systems Biology, Columbia University, New York, NY 10032, USA
| | - Lynn W Bush
- Division Genetics and Genomics, Boston Children's Hospital Center, Boston, MA 02115, USA
- Department of Pediatrics and Center for Bioethics, Harvard Medical School, Boston, MA 02115, USA
| | - Heidi Cope
- GenOmics and Translational Research Center, RTI International, Research Triangle Park, NC 27709, USA
| | - Ingrid A Holm
- Division Genetics and Genomics, Boston Children's Hospital Center, Boston, MA 02115, USA
- Department of Pediatrics and Center for Bioethics, Harvard Medical School, Boston, MA 02115, USA
| | | | - Kevin Wilhelm
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Curt Scharfe
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Amy Brower
- American College of Medical Genetics and Genomics, Bethesda, MD 20814, USA
| |
Collapse
|
3
|
Lim CC, Vockley J, Ujah O, Kirby RS, Edick MJ, Berry SA, Arnold GL. Outcomes and genotype correlations in patients with mitochondrial trifunctional protein or isolated long chain 3-hydroxyacyl-CoA dehydrogenase deficiency enrolled in the IBEM-IS database. Mol Genet Metab Rep 2022; 32:100884. [PMID: 35677112 PMCID: PMC9167967 DOI: 10.1016/j.ymgmr.2022.100884] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 12/14/2022] Open
Abstract
Purpose Mitochondrial trifunctional protein deficiency (TFPD) and isolated long chain 3-hydroxyacyl-CoA dehydrogenase deficiency (LCHADD) are two related defects of fatty acid β -oxidation. While NBS has decreased mortality, morbidity remains significant. Additionally, the relationship of genotype to clinical outcome remains unclear. To better understand these issues, we collected natural history data for these conditions by reviewing seven years of retrospective data from 45 cases of TFPD or LCHADD in the Inborn Errors of Metabolism - Information System. Methods Available data included age at database entry, last datapoint, and development of various complications. Data were analyzed by clinical assigned diagnosis (LCHADD or TFPD), subdivided by method of ascertainment (newborn screening-NBS, or other than by newborn screening-NNBS), then re-analyzed based on four genotype groups: homozygous c.1528GC (p.E510Q) (common LCHAD variant); heterozygous c.1528GC (p.E510Q), other HADHA variants; and HADHB variants. Results Forty-five patients from birth to 34 years of age were analyzed by assigned diagnosis (30 LCHADD and 15 TFPD) and method of ascertainment. Thirty had further analysis by genotype (22 biallelic HADHA variants and 8 biallelic HADHB variants). With regards to maternal complications, retinopathy, cardiomyopathy and hypoglycemia, patients with biallelic HADHA variants (with or without the common LCHAD variant) manifest a traditional LCHADD phenotype, while those with HADHB gene variants more commonly reported neuromusculoskeletal type TFPD phenotype. While retinopathy, rhabdomyolysis and peripheral neuropathy tended to present later in childhood, many features including initial report of cardiomyopathy and hypoglycemia presented across a wide age spectrum. Conclusion This study demonstrates the utility of genotypic confirmation of patients identified with LCHADD/TFPD as variants in the HADHA and HADHB genes lead to different symptom profiles. In our data, biallelic HAHDA variants conferred a LCHADD phenotype, regardless of the presence of the common LCHAD variant.
Collapse
Affiliation(s)
| | - Jerry Vockley
- University of Pittsburgh School of Medicine, USA,UPMC Children's Hospital of Pittsburgh, USA
| | - Otobo Ujah
- University of South Florida College of Public Health, USA
| | | | | | | | - Georgianne L. Arnold
- University of Pittsburgh School of Medicine, USA,UPMC Children's Hospital of Pittsburgh, USA
| |
Collapse
|
4
|
Wilhelm K, Edick MJ, Berry SA, Hartnett M, Brower A. Using Long-Term Follow-Up Data to Classify Genetic Variants in Newborn Screened Conditions. Front Genet 2022; 13:859837. [PMID: 35692825 PMCID: PMC9178101 DOI: 10.3389/fgene.2022.859837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/28/2022] [Indexed: 11/16/2022] Open
Abstract
With the rapid increase in publicly available sequencing data, healthcare professionals are tasked with understanding how genetic variation informs diagnosis and affects patient health outcomes. Understanding the impact of a genetic variant in disease could be used to predict susceptibility/protection and to help build a personalized medicine profile. In the United States, over 3.8 million newborns are screened for several rare genetic diseases each year, and the follow-up testing of screen-positive newborns often involves sequencing and the identification of variants. This presents the opportunity to use longitudinal health information from these newborns to inform the impact of variants identified in the course of diagnosis. To test this, we performed secondary analysis of a 10-year natural history study of individuals diagnosed with metabolic disorders included in newborn screening (NBS). We found 564 genetic variants with accompanying phenotypic data and identified that 161 of the 564 variants (29%) were not included in ClinVar. We were able to classify 139 of the 161 variants (86%) as pathogenic or likely pathogenic. This work demonstrates that secondary analysis of longitudinal data collected as part of NBS finds unreported genetic variants and the accompanying clinical information can inform the relationship between genotype and phenotype.
Collapse
Affiliation(s)
- Kevin Wilhelm
- Newborn Screening Translational Research Network, American College of Medical Genetics and Genomics, Bethesda, MD, United States
- Graduate Program in Genetics and Genomics, Graduate School of Biological Sciences, Baylor College of Medicine, Houston, TX, United States
| | | | - Susan A. Berry
- Department of Pediatrics, Division of Genetics and Metabolism, University of Minnesota, Minneapolis, MN, United States
| | - Michael Hartnett
- Newborn Screening Translational Research Network, American College of Medical Genetics and Genomics, Bethesda, MD, United States
| | - Amy Brower
- Newborn Screening Translational Research Network, American College of Medical Genetics and Genomics, Bethesda, MD, United States
| |
Collapse
|
5
|
Tingley K, Lamoureux M, Pugliese M, Geraghty MT, Kronick JB, Potter BK, Coyle D, Wilson K, Kowalski M, Austin V, Brunel-Guitton C, Buhas D, Chan AKJ, Dyack S, Feigenbaum A, Giezen A, Goobie S, Greenberg CR, Ghai SJ, Inbar-Feigenberg M, Karp N, Kozenko M, Langley E, Lines M, Little J, MacKenzie J, Maranda B, Mercimek-Andrews S, Mohan C, Mhanni A, Mitchell G, Mitchell JJ, Nagy L, Napier M, Pender A, Potter M, Prasad C, Ratko S, Salvarinova R, Schulze A, Siriwardena K, Sondheimer N, Sparkes R, Stockler-Ipsiroglu S, Trakadis Y, Turner L, Van Karnebeek C, Vallance H, Vandersteen A, Walia J, Wilson A, Wilson BJ, Yu AC, Yuskiv N, Chakraborty P. Evaluation of the quality of clinical data collection for a pan-Canadian cohort of children affected by inherited metabolic diseases: lessons learned from the Canadian Inherited Metabolic Diseases Research Network. Orphanet J Rare Dis 2020; 15:89. [PMID: 32276663 PMCID: PMC7149838 DOI: 10.1186/s13023-020-01358-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 03/17/2020] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND The Canadian Inherited Metabolic Diseases Research Network (CIMDRN) is a pan-Canadian practice-based research network of 14 Hereditary Metabolic Disease Treatment Centres and over 50 investigators. CIMDRN aims to develop evidence to improve health outcomes for children with inherited metabolic diseases (IMD). We describe the development of our clinical data collection platform, discuss our data quality management plan, and present the findings to date from our data quality assessment, highlighting key lessons that can serve as a resource for future clinical research initiatives relating to rare diseases. METHODS At participating centres, children born from 2006 to 2015 who were diagnosed with one of 31 targeted IMD were eligible to participate in CIMDRN's clinical research stream. For all participants, we collected a minimum data set that includes information about demographics and diagnosis. For children with five prioritized IMD, we collected longitudinal data including interventions, clinical outcomes, and indicators of disease management. The data quality management plan included: design of user-friendly and intuitive clinical data collection forms; validation measures at point of data entry, designed to minimize data entry errors; regular communications with each CIMDRN site; and routine review of aggregate data. RESULTS As of June 2019, CIMDRN has enrolled 798 participants of whom 764 (96%) have complete minimum data set information. Results from our data quality assessment revealed that potential data quality issues were related to interpretation of definitions of some variables, participants who transferred care across institutions, and the organization of information within the patient charts (e.g., neuropsychological test results). Little information was missing regarding disease ascertainment and diagnosis (e.g., ascertainment method - 0% missing). DISCUSSION Using several data quality management strategies, we have established a comprehensive clinical database that provides information about care and outcomes for Canadian children affected by IMD. We describe quality issues and lessons for consideration in future clinical research initiatives for rare diseases, including accurately accommodating different clinic workflows and balancing comprehensiveness of data collection with available resources. Integrating data collection within clinical care, leveraging electronic medical records, and implementing core outcome sets will be essential for achieving sustainability.
Collapse
Affiliation(s)
| | - Monica Lamoureux
- Newborn Screening Ontario, Children's Hospital of Eastern Ontario, 401 Smyth Road, Ottawa, Ontario, K1H 8L1, Canada
| | | | - Michael T Geraghty
- University of Ottawa, Ottawa, Ontario, Canada
- Newborn Screening Ontario, Children's Hospital of Eastern Ontario, 401 Smyth Road, Ottawa, Ontario, K1H 8L1, Canada
| | - Jonathan B Kronick
- The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | | | - Doug Coyle
- University of Ottawa, Ottawa, Ontario, Canada
| | - Kumanan Wilson
- University of Ottawa, Ottawa, Ontario, Canada
- Bruyère Research Institute, Ottawa, ON, Canada
- Department of Medicine, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Michael Kowalski
- Newborn Screening Ontario, Children's Hospital of Eastern Ontario, 401 Smyth Road, Ottawa, Ontario, K1H 8L1, Canada
| | - Valerie Austin
- The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | | | - Daniela Buhas
- Montreal Children's Hospital, McGill University, Montreal, Quebec, Canada
| | - Alicia K J Chan
- Stollery Children's Hospital, University of Alberta, Edmonton, Alberta, Canada
| | - Sarah Dyack
- IWK Health Centre, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Annette Feigenbaum
- The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Alette Giezen
- BC Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sharan Goobie
- IWK Health Centre, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Cheryl R Greenberg
- Health Sciences Centre Winnipeg, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Shailly Jain Ghai
- Stollery Children's Hospital, University of Alberta, Edmonton, Alberta, Canada
| | | | - Natalya Karp
- London Health Sciences Centre, Western University, London, Ontario, Canada
| | - Mariya Kozenko
- Hamilton Health Sciences Centre, McMaster University, Hamilton, Ontario, Canada
| | - Erica Langley
- Newborn Screening Ontario, Children's Hospital of Eastern Ontario, 401 Smyth Road, Ottawa, Ontario, K1H 8L1, Canada
| | - Matthew Lines
- Newborn Screening Ontario, Children's Hospital of Eastern Ontario, 401 Smyth Road, Ottawa, Ontario, K1H 8L1, Canada
| | | | - Jennifer MacKenzie
- Hamilton Health Sciences Centre, McMaster University, Hamilton, Ontario, Canada
| | - Bruno Maranda
- Le centre hospitalier universitaire Sherbrooke, Sherbrooke, Quebec, Canada
| | | | - Connie Mohan
- Alberta Children's Hospital, University of Calgary, Calgary, Alberta, Canada
| | - Aizeddin Mhanni
- Health Sciences Centre Winnipeg, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Grant Mitchell
- Le centre hospitalier universitaire Ste-Justine, Montreal, Quebec, Canada
| | - John J Mitchell
- Montreal Children's Hospital, McGill University, Montreal, Quebec, Canada
| | - Laura Nagy
- The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Melanie Napier
- London Health Sciences Centre, Western University, London, Ontario, Canada
| | - Amy Pender
- Hamilton Health Sciences Centre, McMaster University, Hamilton, Ontario, Canada
| | - Murray Potter
- Hamilton Health Sciences Centre, McMaster University, Hamilton, Ontario, Canada
| | - Chitra Prasad
- London Health Sciences Centre, Western University, London, Ontario, Canada
| | - Suzanne Ratko
- London Health Sciences Centre, Western University, London, Ontario, Canada
| | - Ramona Salvarinova
- BC Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Andreas Schulze
- The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Komudi Siriwardena
- Stollery Children's Hospital, University of Alberta, Edmonton, Alberta, Canada
| | - Neal Sondheimer
- The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Rebecca Sparkes
- Alberta Children's Hospital, University of Calgary, Calgary, Alberta, Canada
| | | | - Yannis Trakadis
- Montreal Children's Hospital, McGill University, Montreal, Quebec, Canada
| | - Lesley Turner
- Janeway Children's Hospital, Memorial University, St John's, NL, Canada
| | - Clara Van Karnebeek
- BC Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Hilary Vallance
- BC Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Jagdeep Walia
- Kingston General Hospital, Queen's University, Kingston, Ontario, Canada
| | - Ashley Wilson
- The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Brenda J Wilson
- Janeway Children's Hospital, Memorial University, St John's, NL, Canada
| | - Andrea C Yu
- London Health Sciences Centre, Western University, London, Ontario, Canada
| | - Nataliya Yuskiv
- BC Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Pranesh Chakraborty
- University of Ottawa, Ottawa, Ontario, Canada.
- Newborn Screening Ontario, Children's Hospital of Eastern Ontario, 401 Smyth Road, Ottawa, Ontario, K1H 8L1, Canada.
| |
Collapse
|
6
|
Karaceper MD, Khangura SD, Wilson K, Coyle D, Brownell M, Davies C, Dodds L, Feigenbaum A, Fell DB, Grosse SD, Guttmann A, Hawken S, Hayeems RZ, Kronick JB, Laberge AM, Little J, Mhanni A, Mitchell JJ, Nakhla M, Potter M, Prasad C, Rockman-Greenberg C, Sparkes R, Stockler S, Ueda K, Vallance H, Wilson BJ, Chakraborty P, Potter BK. Health services use among children diagnosed with medium-chain acyl-CoA dehydrogenase deficiency through newborn screening: a cohort study in Ontario, Canada. Orphanet J Rare Dis 2019; 14:70. [PMID: 30902101 PMCID: PMC6431026 DOI: 10.1186/s13023-019-1001-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 01/10/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND We describe early health services utilization for children diagnosed with medium-chain acyl-CoA dehydrogenase (MCAD) deficiency through newborn screening in Ontario, Canada, relative to a screen negative comparison cohort. METHODS Eligible children were identified via newborn screening between April 1, 2006 and March 31, 2010. Age-stratified rates of physician encounters, emergency department (ED) visits and inpatient hospitalizations to March 31, 2012 were compared using incidence rate ratios (IRR) and incidence rate differences (IRD). We used negative binomial regression to adjust IRRs for sex, gestational age, birth weight, socioeconomic status and rural/urban residence. RESULTS Throughout the first few years of life, children with MCAD deficiency (n = 40) experienced statistically significantly higher rates of physician encounters, ED visits, and hospital stays compared with the screen negative cohort. The highest rates of ED visits and hospitalizations in the MCAD deficiency cohort occurred from 6 months to 2 years of age (ED use: 2.1-2.5 visits per child per year; hospitalization: 0.5-0.6 visits per child per year), after which rates gradually declined. CONCLUSIONS This study confirms that young children with MCAD deficiency use health services more frequently than the general population throughout the first few years of life. Rates of service use in this population gradually diminish after 24 months of age.
Collapse
Affiliation(s)
- Maria D Karaceper
- School of Epidemiology and Public Health, Faculty of Medicine, University of Ottawa, 600 Peter Morand Cr, Ottawa, ON, K1G 5Z3, Canada
| | - Sara D Khangura
- School of Epidemiology and Public Health, Faculty of Medicine, University of Ottawa, 600 Peter Morand Cr, Ottawa, ON, K1G 5Z3, Canada
| | - Kumanan Wilson
- School of Epidemiology and Public Health, Faculty of Medicine, University of Ottawa, 600 Peter Morand Cr, Ottawa, ON, K1G 5Z3, Canada.,Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Canada.,Department of Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Doug Coyle
- School of Epidemiology and Public Health, Faculty of Medicine, University of Ottawa, 600 Peter Morand Cr, Ottawa, ON, K1G 5Z3, Canada
| | - Marni Brownell
- Manitoba Centre for Health Policy, Department of Community Health Sciences, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Christine Davies
- Newborn Screening Ontario, Children's Hospital of Eastern Ontario, Ottawa, Canada
| | - Linda Dodds
- Departments of Obstetrics & Gynecology and Pediatrics, Dalhousie University, Halifax, Canada
| | - Annette Feigenbaum
- Department of Pediatrics, Division of Clinical & Metabolic Genetics, The Hospital for Sick Children and University of Toronto, Toronto, Canada
| | - Deshayne B Fell
- School of Epidemiology and Public Health, Faculty of Medicine, University of Ottawa, 600 Peter Morand Cr, Ottawa, ON, K1G 5Z3, Canada.,Children's Hospital of Eastern Ontario Research Institute, Ottawa, Canada.,ICES, Toronto and Ottawa, Canada
| | - Scott D Grosse
- Centers for Disease Control and Prevention, National Center on Birth Defects and Developmental Disabilities, Atlanta, USA
| | - Astrid Guttmann
- Child Health Evaluative Sciences, The Hospital for Sick Children, Toronto, Canada.,ICES, Toronto and Ottawa, Canada.,Department of Pediatrics, Division of Paediatric Medicine, The Hospital for Sick Children, University of Toronto, Toronto, Canada.,Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, Canada
| | - Steven Hawken
- School of Epidemiology and Public Health, Faculty of Medicine, University of Ottawa, 600 Peter Morand Cr, Ottawa, ON, K1G 5Z3, Canada.,Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Canada.,ICES, Toronto and Ottawa, Canada
| | - Robin Z Hayeems
- Child Health Evaluative Sciences, The Hospital for Sick Children, Toronto, Canada.,Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, Canada
| | - Jonathan B Kronick
- Department of Pediatrics, Division of Clinical & Metabolic Genetics, The Hospital for Sick Children and University of Toronto, Toronto, Canada
| | - Anne-Marie Laberge
- Medical Genetics, CHU Sainte-Justine and Department of Pediatrics, Université de Montréal, Montreal, Canada
| | - Julian Little
- School of Epidemiology and Public Health, Faculty of Medicine, University of Ottawa, 600 Peter Morand Cr, Ottawa, ON, K1G 5Z3, Canada
| | - Aizeddin Mhanni
- Department of Paediatrics and Child Health, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - John J Mitchell
- Montreal Children's Hospital, McGill University, Montreal, Canada
| | - Meranda Nakhla
- Montreal Children's Hospital, McGill University, Montreal, Canada
| | - Murray Potter
- Department of Pathology and Molecular Medicine, Faculty of Health Sciences, McMaster University, Hamilton, Canada.,Clinical Genetics Program, McMaster University Medical Centre, Hamilton Health Sciences, Hamilton, Canada
| | - Chitra Prasad
- London Health Sciences Centre, Western University, London, Canada
| | - Cheryl Rockman-Greenberg
- Department of Paediatrics and Child Health, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Rebecca Sparkes
- Department of Paediatrics, Section of Clinical Genetics, Alberta Children's Hospital, Calgary, Canada
| | - Sylvia Stockler
- Children's & Women's Health Centre of British Columbia, Vancouver, Canada.,Biochemical Genetics Laboratory, Children's & Women's Health Centre of British Columbia, Vancouver, Canada
| | - Keiko Ueda
- Children's & Women's Health Centre of British Columbia, Vancouver, Canada
| | - Hilary Vallance
- Biochemical Genetics Laboratory, Children's & Women's Health Centre of British Columbia, Vancouver, Canada.,Department of Pathology, University of British Columbia, Vancouver, Canada
| | - Brenda J Wilson
- Division of Community Health and Humanities, Memorial University of Newfoundland, St. John's, Canada
| | - Pranesh Chakraborty
- Department of Pediatrics, Faculty of Medicine, University of Ottawa, Ottawa, Canada.,Newborn Screening Ontario, Children's Hospital of Eastern Ontario, Ottawa, Canada.,Children's Hospital of Eastern Ontario Research Institute, Ottawa, Canada
| | - Beth K Potter
- School of Epidemiology and Public Health, Faculty of Medicine, University of Ottawa, 600 Peter Morand Cr, Ottawa, ON, K1G 5Z3, Canada. .,Children's Hospital of Eastern Ontario Research Institute, Ottawa, Canada. .,ICES, Toronto and Ottawa, Canada.
| | | |
Collapse
|
7
|
Ney DM, Etzel MR. Designing medical foods for inherited metabolic disorders: why intact protein is superior to amino acids. Curr Opin Biotechnol 2017; 44:39-45. [DOI: 10.1016/j.copbio.2016.10.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 10/22/2016] [Indexed: 01/22/2023]
|
8
|
Bentler K, Zhai S, Elsbecker SA, Arnold GL, Burton BK, Vockley J, Cameron CA, Hiner SJ, Edick MJ, Berry SA. 221 newborn-screened neonates with medium-chain acyl-coenzyme A dehydrogenase deficiency: Findings from the Inborn Errors of Metabolism Collaborative. Mol Genet Metab 2016; 119:75-82. [PMID: 27477829 PMCID: PMC5031545 DOI: 10.1016/j.ymgme.2016.07.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 07/08/2016] [Accepted: 07/09/2016] [Indexed: 11/16/2022]
Abstract
INTRODUCTION There is limited understanding of relationships between genotype, phenotype and other conditions contributing to health in neonates with medium-chain acyl-coenzyme A dehydrogenase deficiency (MCADD) identified through newborn screening. METHODS Retrospective analysis of comprehensive data from a cohort of 221 newborn-screened subjects identified as affected with MCADD in the Inborn Errors of Metabolism - Information System (IBEM-IS), a long term follow-up database of the Inborn Errors of Metabolism Collaborative, was performed. RESULTS The average age at notification of first newborn screen results to primary care or metabolic providers was 7.45days. The average octanoylcarnitine (C8) value on first newborn screen was 11.2μmol/L (median 8.6, range 0.36-43.91). A higher C8 level correlated with an earlier first subspecialty visit. Subjects with low birth weight had significantly lower C8 values. Significantly higher C8 values were found in symptomatic newborns, in newborns with abnormal lab testing in addition to newborn screening and/or diagnostic tests, and in subjects homozygous for the c.985A>G ACADM gene mutation or compound heterozygous for the c.985A>G mutation and deletions or other known highly deleterious mutations. Subjects with neonatal symptoms, or neonatal abnormal labs, or neonatal triggers were more likely to have at least one copy of the severe c.985A>G ACADM gene mutation. C8 and genotype category were significant predictors of the likelihood of having neonatal symptoms. Neonates with select triggers were more likely to have symptoms and laboratory abnormalities. CONCLUSIONS This collaborative study is the first in the United States to describe health associations of a large cohort of newborn-screened neonates identified as affected with MCADD. The IBEM-IS has utility as a platform to better understand the characteristics of individuals with newborn-screened conditions and their follow-up interactions with the health system.
Collapse
Affiliation(s)
- Kristi Bentler
- Minnesota Department of Health, St. Paul, MN, United States
| | - Shaohui Zhai
- Michigan Public Health Institute, Okemos, MI, United States
| | - Sara A Elsbecker
- University of Minnesota, Department of Pediatrics, Minneapolis, MN, United States
| | - Georgianne L Arnold
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Barbara K Burton
- Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, United States
| | - Jerry Vockley
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | | | - Sally J Hiner
- Michigan Public Health Institute, Okemos, MI, United States
| | - Mathew J Edick
- Michigan Public Health Institute, Okemos, MI, United States
| | - Susan A Berry
- University of Minnesota, Department of Pediatrics, Minneapolis, MN, United States.
| |
Collapse
|
9
|
Wasserstein MP. Long-term follow-up in newborn screening: the role of collaboration. Genet Med 2016:gim201699. [PMID: 27561085 PMCID: PMC5383523 DOI: 10.1038/gim.2016.99] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 06/07/2016] [Indexed: 11/09/2022] Open
Affiliation(s)
- Melissa P. Wasserstein
- Department of Pediatrics, The Children’s Hospital at Montefiore and the Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|