1
|
Wang C, Liu Y, Xiong J, Xie K, Wang T, Hu Y, Fu H, Zhang B, Huang X, Bao H, Cai H, Dong B, Li Z. Genome-wide CRISPR screenings identified SMCHD1 as a host-restricting factor for AAV transduction. PLoS Pathog 2024; 20:e1012344. [PMID: 38976714 PMCID: PMC11257396 DOI: 10.1371/journal.ppat.1012344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 07/18/2024] [Accepted: 06/14/2024] [Indexed: 07/10/2024] Open
Abstract
AAV-mediated gene therapy typically requires a high dose of viral transduction, risking acute immune responses and patient safety, part of which is due to limited understanding of the host-viral interactions, especially post-transduction viral genome processing. Here, through a genome-wide CRISPR screen, we identified SMCHD1 (Structural Maintenance of Chromosomes Hinge Domain 1), an epigenetic modifier, as a critical broad-spectrum restricting host factor for post-entry AAV transgene expression. SMCHD1 knock-down by RNAi and CRISPRi or knock-out by CRISPR all resulted in significantly enhanced transgene expression across multiple viral serotypes, as well as for both single-strand and self-complementary AAV genome types. Mechanistically, upon viral transduction, SMCHD1 effectively repressed AAV transcription by the formation of an LRIF1-HP1-containing protein complex and directly binding with the AAV genome to maintain a heterochromatin-like state. SMCHD1-KO or LRIF1-KD could disrupt such a complex and thus result in AAV transcriptional activation. Together, our results highlight the host factor-induced chromatin remodeling as a critical inhibitory mechanism for AAV transduction and may shed light on further improvement in AAV-based gene therapy.
Collapse
Affiliation(s)
- Chenlu Wang
- Center of Growth Metabolism and Aging, State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yu Liu
- National Clinical Research Center for Geriatrics and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Jingfei Xiong
- Center of Growth Metabolism and Aging, State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China
| | - Kun Xie
- Center of Growth Metabolism and Aging, State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China
| | - Tianshu Wang
- Center of Growth Metabolism and Aging, State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yu Hu
- Center of Growth Metabolism and Aging, State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China
| | - Huancheng Fu
- Center of Growth Metabolism and Aging, State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China
| | - Baiquan Zhang
- Center of Growth Metabolism and Aging, State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China
| | - Xiaochao Huang
- Center of Growth Metabolism and Aging, State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China
| | - Hui Bao
- Center of Growth Metabolism and Aging, State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China
| | - Haoyang Cai
- Center of Growth Metabolism and Aging, State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China
| | - Biao Dong
- National Clinical Research Center for Geriatrics and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- Sichuan Real and Best Biotech Co., Ltd., Chengdu, China
| | - Zhonghan Li
- Center of Growth Metabolism and Aging, State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Lu Y, Ling C, Shoti J, Yang H, Nath A, Keeler GD, Qing K, Srivastava A. Enhanced transgene expression from single-stranded AAV vectors in human cells in vitro and in murine hepatocytes in vivo. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102196. [PMID: 38766527 PMCID: PMC11101737 DOI: 10.1016/j.omtn.2024.102196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/18/2024] [Indexed: 05/22/2024]
Abstract
We identified that distal 10 nucleotides in the D-sequence in AAV2 inverted terminal repeat (ITR) share partial sequence homology to 1/2 binding site of glucocorticoid receptor-binding element (GRE). Here, we describe that (1) purified GR binds to AAV2 D-sequence, and the D-sequence competes with GR binding to its cognate binding site; (2) dexamethasone-mediated activation of GR pathway significantly increases the transduction efficiency of AAV2 vectors in human cells; (3) human osteosarcoma cells, U2OS, which lack expression of GR, are poorly transduced by AAV2 vectors, but stable transfection with a GR expression plasmid restores vector-mediated transgene expression; (4) replacement of the distal 10 nucleotides in the D-sequence of the AAV2 ITR with a full-length GRE consensus sequence significantly enhances transgene expression in human cells in vitro and in murine hepatocytes in vivo; and (5) none of the ITRs in AAV1, AAV3, AAV4, AAV5, and AAV6 genomes contains the GRE 1/2 binding site, and insertion of a full-length GRE consensus sequence in the AAV6-ITR also significantly enhances transgene expression from AAV6 vectors, both in vitro and in vivo. These novel vectors, termed generation Y AAV vectors, which are serotype, transgene, or promoter agnostic, should be useful in human gene therapy.
Collapse
Affiliation(s)
- Yuan Lu
- Full Circle Therapeutics, Shanghai, China
| | - Chen Ling
- Department of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Jakob Shoti
- Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL, USA
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, FL, USA
| | - Hua Yang
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Aneesha Nath
- Department of Pharmacotherapy & Translational Research, University of Florida College of Pharmacy, Gainesville, FL, USA
| | - Geoffrey D. Keeler
- Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL, USA
| | - Keyun Qing
- Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL, USA
| | - Arun Srivastava
- Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL, USA
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, FL, USA
- Powell Gene Therapy Center, University of Florida College of Medicine, Gainesville, FL, USA
| |
Collapse
|
3
|
Casy W, Garza IT, Chen X, Dong T, Hu Y, Kanchwala M, Trygg CB, Shyng C, Xing C, Bunnell BA, Braun SE, Gray SJ. SMRT Sequencing Enables High-Throughput Identification of Novel AAVs from Capsid Shuffling and Directed Evolution. Genes (Basel) 2023; 14:1660. [PMID: 37628711 PMCID: PMC10454592 DOI: 10.3390/genes14081660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/15/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
The use of AAV capsid libraries coupled with various selection strategies has proven to be a remarkable approach for generating novel AAVs with enhanced and desired features. The inability to reliably sequence the complete capsid gene in a high-throughput manner has been the bottleneck of capsid engineering. As a result, many library strategies are confined to localized and modest alterations in the capsid, such as peptide insertions or single variable region (VR) alterations. The caveat of short reads by means of next-generation sequencing (NGS) hinders the diversity of capsid library construction, shifting the field away from whole-capsid modifications. We generated AAV capsid shuffled libraries of naturally occurring AAVs and applied directed evolution in both mice and non-human primates (NHPs), with the goal of yielding AAVs that are compatible across both species for translational applications. We recovered DNA from the tissues of injected animal and used single molecule real-time (SMRT) sequencing to identify variants enriched in the central nervous system (CNS). We provide insights and considerations for variant identification by comparing bulk tissue sequencing to that of isolated nuclei. Our work highlights the potential advantages of whole-capsid engineering, as well as indispensable methodological improvements for the analysis of recovered capsids, including the nuclei-enrichment step and SMRT sequencing.
Collapse
Affiliation(s)
- Widler Casy
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA (I.T.G.); (X.C.); (Y.H.)
| | - Irvin T. Garza
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA (I.T.G.); (X.C.); (Y.H.)
- Graduate School of Basic Biomedical Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xin Chen
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA (I.T.G.); (X.C.); (Y.H.)
| | - Thomas Dong
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA (I.T.G.); (X.C.); (Y.H.)
| | - Yuhui Hu
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA (I.T.G.); (X.C.); (Y.H.)
| | - Mohammed Kanchwala
- Eugene McDermott Center for Human Growth & Development, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (M.K.)
| | - Cynthia B. Trygg
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA 70433, USA (B.A.B.); (S.E.B.)
| | - Charles Shyng
- Gene Therapy Center, University of North Carolina, Chapel Hill, NC 27599, USA;
| | - Chao Xing
- Eugene McDermott Center for Human Growth & Development, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (M.K.)
- Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Bruce A. Bunnell
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA 70433, USA (B.A.B.); (S.E.B.)
| | - Stephen E. Braun
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA 70433, USA (B.A.B.); (S.E.B.)
| | - Steven J. Gray
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA (I.T.G.); (X.C.); (Y.H.)
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
4
|
Abstract
Gene-specific treatment for hereditary muscle diseases has made great progress in recent years. The pathomechanisms of many of these diseases could be decrypted using molecular genetic techniques, paving the way for disease-modifying treatment options. A milestone was undoubtedly the successful translation of the antisense oligonucleotide (ASO) technology into clinical practice, with gene-specific ASOs being approved for the first time in 2016 for the treatment of spinal muscular atrophy and Duchenne muscular dystrophy. This article reviews recent developments in the field of antisense and gene therapies for hereditary muscle diseases.
Collapse
|
5
|
Khan N, Cheemadan S, Saxena H, Bammidi S, Jayandharan GR. MicroRNA-based recombinant AAV vector assembly improves efficiency of suicide gene transfer in a murine model of lymphoma. Cancer Med 2020; 9:3188-3201. [PMID: 32108448 PMCID: PMC7196056 DOI: 10.1002/cam4.2935] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 02/01/2020] [Accepted: 02/04/2020] [Indexed: 12/12/2022] Open
Abstract
Recent success in clinical trials with recombinant Adeno-associated virus (AAV)-based gene therapy has redirected efforts in optimizing AAV assembly and production, to improve its potency. We reasoned that inclusion of a small RNA during vector assembly, which specifically alters the phosphorylation status of the packaging cells may be beneficial. We thus employed microRNAs (miR-431, miR-636) identified by their ability to bind AAV genome and also dysregulate Mitogen-activated protein kinase (MAPK) signaling during vector production, by a global transcriptome study in producer cells. A modified vector assembly protocol incorporating a plasmid encoding these microRNAs was developed. AAV2 vectors packaged in the presence of microRNA demonstrated an improved gene transfer potency by 3.7-fold, in vitro. Furthermore, AAV6 serotype vectors encoding an inducible caspase 9 suicide gene, packaged in the presence of miR-636, showed a significant tumor regression (~2.2-fold, P < .01) in a syngeneic murine model of T-cell lymphoma. Taken together, we have demonstrated a simple but effective microRNA-based approach to improve the assembly and potency of suicide gene therapy with AAV vectors.
Collapse
Affiliation(s)
- Nusrat Khan
- Department of Biological Sciences and BioengineeringIndian Institute of TechnologyKanpurUPIndia
| | - Sabna Cheemadan
- Centre for Stem Cell ResearchChristian Medical CollegeVelloreTNIndia
| | - Himanshi Saxena
- Department of Biological Sciences and BioengineeringIndian Institute of TechnologyKanpurUPIndia
| | - Sridhar Bammidi
- Department of Biological Sciences and BioengineeringIndian Institute of TechnologyKanpurUPIndia
| | - Giridhara R. Jayandharan
- Department of Biological Sciences and BioengineeringIndian Institute of TechnologyKanpurUPIndia
- Centre for Stem Cell ResearchChristian Medical CollegeVelloreTNIndia
- Department of HematologyChristian Medical CollegeVelloreTNIndia
| |
Collapse
|
6
|
Guo P, Yu C, Wang Q, Zhang R, Meng X, Feng Y. Liposome Lipid-Based Formulation Has the Least Influence on rAAV Transduction Compared to Other Transfection Agents. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2018; 9:367-375. [PMID: 30038940 PMCID: PMC6054704 DOI: 10.1016/j.omtm.2018.04.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 04/08/2018] [Indexed: 11/18/2022]
Abstract
Recombinant adeno-associated virus (rAAV) vectors are considered ideal vehicles for human gene therapy. Meanwhile, non-viral strategies, such as transfection agents (TAs), have also shown promise to deliver genetic materials, such as siRNA. Transduction with the rAAV vector is performed concurrently with transfection with plasmid DNA or RNA. In the present study, we report that various TAs inhibited rAAV-mediated transgene expression at diverse levels. Overall, cationic polymers and dendrimers dramatically blocked rAAV transduction, while lipid-based liposomes displayed the least effect. The inhibitory effect was dependent on the dose of TAs and the timing of infection, suggesting that the early stages of viral infection were involved. In addition, the present results indicate that the transgene expression of rAAV vectors was significantly increased by liposome-mediated transfection with adenoviral helper genes. At the same time, this was dramatically inhibited by liposome-mediated transfection with the trichosanthin gene encoding a type I ribosome-inactivating protein isolated from traditional Chinese medicine. Furthermore, liposomes also have little effect on rAAV-mediated transgene expression in vivo. Taken together, these findings suggest liposome as the best choice of TAs, which should be used in combination with rAAV-mediated gene therapy.
Collapse
Affiliation(s)
- Pengpeng Guo
- Institute of Integrative Medicine, Qingdao University Medical College, Qingdao, Shandong 266021, China
| | - Chenghui Yu
- Institute of Integrative Medicine, Qingdao University Medical College, Qingdao, Shandong 266021, China
- Department of Genetics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Qingxin Wang
- Department of Traditional Chinese Medicine, PLA 401 Hospital, Qingdao City, Shandong Province FL 266071, China
| | - Ruirong Zhang
- Department of Traditional Chinese Medicine, PLA 401 Hospital, Qingdao City, Shandong Province FL 266071, China
| | - Xianze Meng
- Department of Traditional Chinese Medicine, PLA 401 Hospital, Qingdao City, Shandong Province FL 266071, China
| | - Yinglu Feng
- Department of Traditional Chinese Medicine, PLA 401 Hospital, Qingdao City, Shandong Province FL 266071, China
- Corresponding author: Yinglu Feng, Department of Traditional Chinese Medicine, PLA 401 Hospital, Minjiang Road on the 22nd, Qingdao City, Shandong Province FL 266071, China.
| |
Collapse
|
7
|
Srivastava A. Adeno-Associated Virus: The Naturally Occurring Virus Versus the Recombinant Vector. Hum Gene Ther 2016; 27:1-6. [PMID: 26784640 DOI: 10.1089/hum.2015.29017.asr] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Arun Srivastava
- Division of Cellular and Molecular Therapy, Department of Pediatrics and Department of Molecular Genetics and Microbiology, Powell Gene Therapy Center; Genetics Institute; Shands Cancer Center; University of Florida College of Medicine , Gainesville, Florida
| |
Collapse
|
8
|
Chira S, Jackson CS, Oprea I, Ozturk F, Pepper MS, Diaconu I, Braicu C, Raduly LZ, Calin GA, Berindan-Neagoe I. Progresses towards safe and efficient gene therapy vectors. Oncotarget 2016; 6:30675-703. [PMID: 26362400 PMCID: PMC4741561 DOI: 10.18632/oncotarget.5169] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 08/22/2015] [Indexed: 12/11/2022] Open
Abstract
The emergence of genetic engineering at the beginning of the 1970′s opened the era of biomedical technologies, which aims to improve human health using genetic manipulation techniques in a clinical context. Gene therapy represents an innovating and appealing strategy for treatment of human diseases, which utilizes vehicles or vectors for delivering therapeutic genes into the patients' body. However, a few past unsuccessful events that negatively marked the beginning of gene therapy resulted in the need for further studies regarding the design and biology of gene therapy vectors, so that this innovating treatment approach can successfully move from bench to bedside. In this paper, we review the major gene delivery vectors and recent improvements made in their design meant to overcome the issues that commonly arise with the use of gene therapy vectors. At the end of the manuscript, we summarized the main advantages and disadvantages of common gene therapy vectors and we discuss possible future directions for potential therapeutic vectors.
Collapse
Affiliation(s)
- Sergiu Chira
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, University of Medicine and Pharmacy "Iuliu Haţieganu", Cluj Napoca, Romania
| | - Carlo S Jackson
- Department of Immunology and Institute for Cellular and Molecular Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Iulian Oprea
- Department of Oncology and Pathology, Cancer Center Karolinska, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Ferhat Ozturk
- Department of Molecular Biology and Genetics, Canik Başari University, Samsun, Turkey
| | - Michael S Pepper
- Department of Immunology and Institute for Cellular and Molecular Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | | | - Cornelia Braicu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, University of Medicine and Pharmacy "Iuliu Haţieganu", Cluj Napoca, Romania
| | - Lajos-Zsolt Raduly
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, University of Medicine and Pharmacy "Iuliu Haţieganu", Cluj Napoca, Romania.,Department of Physiopathology, Faculty of Veterinary Medicine, University of Agricultural Science and Veterinary Medicine, Cluj Napoca, Romania
| | - George A Calin
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, University of Medicine and Pharmacy "Iuliu Haţieganu", Cluj Napoca, Romania.,Department of Immunology, University of Medicine and Pharmacy "Iuliu Haţieganu", Cluj Napoca, Romania.,Department of Functional Genomics and Experimental Pathology, Oncological Institute "Prof. Dr. Ion Chiricuţă", Cluj Napoca, Romania.,Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
9
|
Ling C, Yin Z, Li J, Zhang D, Aslanidi G, Srivastava A. Strategies to generate high-titer, high-potency recombinant AAV3 serotype vectors. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2016; 3:16029. [PMID: 27200382 PMCID: PMC4856060 DOI: 10.1038/mtm.2016.29] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 03/17/2016] [Accepted: 03/18/2016] [Indexed: 02/08/2023]
Abstract
Although recombinant adeno-associated virus serotype 3 (AAV3) vectors were largely ignored previously, owing to their poor transduction efficiency in most cells and tissues examined, our initial observation of the selective tropism of AAV3 serotype vectors for human liver cancer cell lines and primary human hepatocytes has led to renewed interest in this serotype. AAV3 vectors and their variants have recently proven to be extremely efficient in targeting human and nonhuman primate hepatocytes in vitro as well as in vivo. In the present studies, we wished to evaluate the relative contributions of the cis-acting inverted terminal repeats (ITRs) from AAV3 (ITR3), as well as the trans-acting Rep proteins from AAV3 (Rep3) in the AAV3 vector production and transduction. To this end, we utilized two helper plasmids: pAAVr2c3, which carries rep2 and cap3 genes, and pAAVr3c3, which carries rep3 and cap3 genes. The combined use of AAV3 ITRs, AAV3 Rep proteins, and AAV3 capsids led to the production of recombinant vectors, AAV3-Rep3/ITR3, with up to approximately two to fourfold higher titers than AAV3-Rep2/ITR2 vectors produced using AAV2 ITRs, AAV2 Rep proteins, and AAV3 capsids. We also observed that the transduction efficiency of Rep3/ITR3 AAV3 vectors was approximately fourfold higher than that of Rep2/ITR2 AAV3 vectors in human hepatocellular carcinoma cell lines in vitro. The transduction efficiency of Rep3/ITR3 vectors was increased by ~10-fold, when AAV3 capsids containing mutations in two surface-exposed residues (serine 663 and threonine 492) were used to generate a S663V+T492V double-mutant AAV3 vector. The Rep3/ITR3 AAV3 vectors also transduced human liver tumors in vivo approximately twofold more efficiently than those generated with Rep2/ITR2. Our data suggest that the transduction efficiency of AAV3 vectors can be significantly improved both using homologous Rep proteins and ITRs as well as by capsid optimization. Thus, the combined use of homologous Rep proteins, ITRs, and capsids should also lead to more efficacious other AAV serotype vectors for their optimal use in human gene therapy.
Collapse
Affiliation(s)
- Chen Ling
- Division of Cellular and Molecular Therapy, Department of Pediatrics; University of Florida College of Medicine, Gainesville, Florida, USA; Powell Gene Therapy Center; University of Florida College of Medicine, Gainesville, Florida, USA; Shands Cancer Center; University of Florida College of Medicine, Gainesville, Florida, USA
| | - Zifei Yin
- Division of Cellular and Molecular Therapy, Department of Pediatrics; University of Florida College of Medicine , Gainesville, Florida, USA
| | - Jun Li
- Division of Cellular and Molecular Therapy, Department of Pediatrics; University of Florida College of Medicine , Gainesville, Florida, USA
| | - Daniel Zhang
- Division of Cellular and Molecular Therapy, Department of Pediatrics; University of Florida College of Medicine , Gainesville, Florida, USA
| | - George Aslanidi
- Division of Cellular and Molecular Therapy, Department of Pediatrics; University of Florida College of Medicine, Gainesville, Florida, USA; Powell Gene Therapy Center; University of Florida College of Medicine, Gainesville, Florida, USA
| | - Arun Srivastava
- Division of Cellular and Molecular Therapy, Department of Pediatrics; University of Florida College of Medicine, Gainesville, Florida, USA; Powell Gene Therapy Center; University of Florida College of Medicine, Gainesville, Florida, USA; Shands Cancer Center; University of Florida College of Medicine, Gainesville, Florida, USA; Genetics Institute; University of Florida College of Medicine, Gainesville, Florida, USA; Department of Molecular Genetics & Microbiology; University of Florida College of Medicine, Gainesville, Florida, USA
| |
Collapse
|
10
|
Boyd RF, Sledge DG, Boye SL, Boye SE, Hauswirth WW, Komáromy AM, Petersen-Jones SM, Bartoe JT. Photoreceptor-targeted gene delivery using intravitreally administered AAV vectors in dogs. Gene Ther 2016; 23:223-30. [PMID: 26467396 PMCID: PMC4840844 DOI: 10.1038/gt.2015.96] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 08/03/2015] [Accepted: 08/24/2015] [Indexed: 12/11/2022]
Abstract
Delivery of therapeutic transgenes to retinal photoreceptors using adeno-associated virus (AAV) vectors has traditionally required subretinal injection. Recently, photoreceptor transduction efficiency following intravitreal injection (IVT) has improved in rodent models through use of capsid-mutant AAV vectors; but remains limited in large animal models. Thickness of the inner limiting membrane (ILM) in large animals is thought to impair retinal penetration by AAV. Our study compared two newly developed AAV vectors containing multiple capsid amino acid substitutions following IVT in dogs. The ability of two promoter constructs to restrict reporter transgene expression to photoreceptors was also evaluated. AAV vectors containing the interphotoreceptor-binding protein (IRBP) promoter drove expression exclusively in rod and cone photoreceptors, with transduction efficiencies of ~4% of cones and 2% of rods. Notably, in the central region containing the cone-rich visual streak, 15.6% of cones were transduced. Significant regional variation existed, with lower transduction efficiencies in the temporal regions of all eyes. This variation did not correlate with ILM thickness. Vectors carrying a cone-specific promoter failed to transduce a quantifiable percentage of cone photoreceptors. The newly developed AAV vectors containing the IRBP promoter were capable of producing photoreceptor-specific transgene expression following IVT in the dog.
Collapse
Affiliation(s)
- RF Boyd
- Small Animal Clinical Sciences, Michigan State University, East Lansing, MI, USA
| | - DG Sledge
- Diagnostic Center for Population and Animal Health, Michigan State University, East Lansing, MI, USA
| | - SL Boye
- Department of Ophthalmology, University of Florida College of Medicine, Gainesville, FL, USA
| | - SE Boye
- Department of Ophthalmology, University of Florida College of Medicine, Gainesville, FL, USA
| | - WW Hauswirth
- Department of Ophthalmology, University of Florida College of Medicine, Gainesville, FL, USA
| | - AM Komáromy
- Small Animal Clinical Sciences, Michigan State University, East Lansing, MI, USA
| | - SM Petersen-Jones
- Small Animal Clinical Sciences, Michigan State University, East Lansing, MI, USA
| | - JT Bartoe
- Small Animal Clinical Sciences, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
11
|
Hösel M, Lucifora J, Michler T, Holz G, Gruffaz M, Stahnke S, Zoulim F, Durantel D, Heikenwalder M, Nierhoff D, Millet R, Salvetti A, Protzer U, Büning H. Hepatitis B virus infection enhances susceptibility toward adeno-associated viral vector transduction in vitro and in vivo. Hepatology 2014; 59:2110-20. [PMID: 24425003 DOI: 10.1002/hep.26990] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 12/23/2013] [Indexed: 12/20/2022]
Abstract
UNLABELLED Gene therapy has become an accepted concept for the treatment of a variety of different diseases. In contrast to preclinical models, subjects enrolled in clinical trials, including gene therapy, possess a history of infection with microbes that may influence its safety and efficacy. Especially, viruses that establish chronic infections in the liver, one of the main targets for in vivo gene therapy, raise important concerns. Among them is the hepatitis B virus (HBV), which has chronically infected more than 350 million people worldwide. Here, we investigated the effect of HBV on adeno-associated viral (AAV) vectors, the most frequently applied gene transfer vehicles for in vivo gene therapy. Unexpectedly, we found that HBV greatly improved AAV transduction in cells replicating HBV and identified HBV protein x (HBx) as a key factor. Whereas HBV-positive and -negative cells were indistinguishable with respect to cell-entry efficiency, significantly higher numbers of AAV vector genomes were successfully delivered to the nucleus in the presence of HBV. The HBV-promoting effect was abolished by inhibitors of phosphatidylinositol 3-kinase (PI3K). PI3K was required for efficient trafficking of AAV to the nucleus and was enhanced in HBV-replicating cells and upon HBx expression. Enhancement of AAV transduction was confirmed in vivo using HBV transgenic mice and could successfully be applied to inhibit HBV progeny release. CONCLUSION Our results demonstrate that acute, as well as chronic, infections with unrelated viruses change the intracellular milieu, thereby likely influencing gene therapy outcomes. In the case of HBV, HBx-mediated enhancement of AAV transduction is an advantage that could be exploited for development of novel treatments of HBV infection.
Collapse
Affiliation(s)
- Marianna Hösel
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany; German Center for Infection Research, Partner sites Bonn-Cologne and Munich, Germany; Department I of Internal Medicine, University Hospital Cologne, Cologne, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Dong B, Duan X, Chow HY, Chen L, Lu H, Wu W, Hauck B, Wright F, Kapranov P, Xiao W. Proteomics analysis of co-purifying cellular proteins associated with rAAV vectors. PLoS One 2014; 9:e86453. [PMID: 24498275 PMCID: PMC3911921 DOI: 10.1371/journal.pone.0086453] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 12/11/2013] [Indexed: 12/05/2022] Open
Abstract
Recombinant adeno-associated vectors (rAAV) are commonly purified by either chromatography or equilibrium CsCl gradient. Nevertheless, even after purification various cellular proteins often associate with rAAV vector capsids. Such co-purifying cellular proteins may raise concern about safety of gene therapy. Here we report identification and characterization of the co-purifying cellular protein in the vector preparations by using a combination of two proteomics approaches, GeLC-MS (gel electrophoresis liquid chromatography-mass spectrometry) and 2DE (two-dimensional gel electrophoresis). Most prominent bands revealed by Coomassie Blue staining were mostly similar to the AAV capsid proteins. Posttranslational modifications of capsid proteins were detected by the proteomics analysis. A total of 13 cellular proteins were identified in the rAAV vectors purified by two rounds of cesium chloride gradient centrifugation, including 9 by the GeLC-MS analysis and 4 by the 2DE analysis. Selected cellular proteins were verified by western blot. Furthermore, the cellular proteins could be consistently found associated with different AAV serotypes and carrying different transgenes. Yet, the proteins were not integral components of the viral capsis since a stringent washing procedure by column purification could remove them. These co-purified proteins in AAV vector preparations may have a role in various stages of the AAV life cycle.
Collapse
Affiliation(s)
- Biao Dong
- Department of Microbiology and Immunology, Sol Sherry Thrombosis Research Center, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Xunbao Duan
- Department of Microbiology and Immunology, Sol Sherry Thrombosis Research Center, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Hoi Yee Chow
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
| | - Lingxia Chen
- Department of Microbiology and Immunology, Sol Sherry Thrombosis Research Center, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Hui Lu
- Department of Microbiology and Immunology, Sol Sherry Thrombosis Research Center, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Wenman Wu
- Department of Microbiology and Immunology, Sol Sherry Thrombosis Research Center, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Bernd Hauck
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, and Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Fraser Wright
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, and Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Philipp Kapranov
- St. Laurent Institute, Cambridge, Massachusetts, United States of America
| | - Weidong Xiao
- Department of Microbiology and Immunology, Sol Sherry Thrombosis Research Center, Temple University, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
13
|
Adeno-associated virus capsid proteins may play a role in transcription and second-strand synthesis of recombinant genomes. J Virol 2013; 88:1071-9. [PMID: 24198419 DOI: 10.1128/jvi.02093-13] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
A group of four interacting amino acids in adeno-associated virus type 8 (AAV8) called the pH quartet has been shown to undergo a structural change when subjected to acidic pH comparable to that seen in endosomal compartments. We examined the phenotypes of mutants with mutations in these amino acids as well as several nearby residues in the background of AAV2. We found that three of the mutations in this region (Y704A, E562A, and E564A) produce normal titers of mature capsids but are extremely defective for transduction (>10(7)-fold). The remaining mutants were also defective for transduction, but the defect in these mutants (E563A, E561A, H526A, and R389A) is not as severe (3- to 22-fold). Two other mutants (Y700A and Y730A) were found to be defective for virus assembly. One of the extremely defective mutants (Y704A) was found to enter the cell, traffic to the nucleus, and uncoat its DNA nearly as efficiently as the wild type. This suggested that some step after nuclear entry and uncoating was defective. To see if the extremely defective mutants were impaired in second-strand synthesis, the Y704A, E562A, and E564A mutants containing self-complementary DNA were compared with virus containing single-stranded genomes. Two of the mutants (Y704A and E564A) showed 1-log and 3-log improvements in infectivity, respectively, while the third mutant (E562A) showed no change. This suggested that inhibition of second-strand synthesis was responsible for some but not most of the defect in these mutants. Comparison of Y704A mRNA synthesis with that of the wild-type capsid showed that accumulation of steady-state mRNA in the Y704A mutant was reduced 450-fold, even though equal genome numbers were uncoated. Our experiments have identified a novel capsid function. They suggest that AAV capsids may play a role in the initiation of both second-strand synthesis and transcription of the input genome.
Collapse
|
14
|
Gabriel N, Hareendran S, Sen D, Gadkari RA, Sudha G, Selot R, Hussain M, Dhaksnamoorthy R, Samuel R, Srinivasan N, Srivastava A, Jayandharan GR. Bioengineering of AAV2 capsid at specific serine, threonine, or lysine residues improves its transduction efficiency in vitro and in vivo. Hum Gene Ther Methods 2013; 24:80-93. [PMID: 23379478 DOI: 10.1089/hgtb.2012.194] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
We hypothesized that the AAV2 vector is targeted for destruction in the cytoplasm by the host cellular kinase/ubiquitination/proteasomal machinery and that modification of their targets on AAV2 capsid may improve its transduction efficiency. In vitro analysis with pharmacological inhibitors of cellular serine/threonine kinases (protein kinase A, protein kinase C, casein kinase II) showed an increase (20-90%) on AAV2-mediated gene expression. The three-dimensional structure of AAV2 capsid was then analyzed to predict the sites of ubiquitination and phosphorylation. Three phosphodegrons, which are the phosphorylation sites recognized as degradation signals by ubiquitin ligases, were identified. Mutation targets comprising eight serine (S) or seven threonine (T) or nine lysine (K) residues were selected in and around phosphodegrons on the basis of their solvent accessibility, overlap with the receptor binding regions, overlap with interaction interfaces of capsid proteins, and their evolutionary conservation across AAV serotypes. AAV2-EGFP vectors with the wild-type (WT) capsid or mutant capsids (15 S/T→alanine [A] or 9 K→arginine [R] single mutant or 2 double K→R mutants) were then evaluated in vitro. The transduction efficiencies of 11 S/T→A and 7 K→R vectors were significantly higher (~63-90%) than the AAV2-WT vectors (~30-40%). Further, hepatic gene transfer of these mutant vectors in vivo resulted in higher vector copy numbers (up to 4.9-fold) and transgene expression (up to 14-fold) than observed from the AAV2-WT vector. One of the mutant vectors, S489A, generated ~8-fold fewer antibodies that could be cross-neutralized by AAV2-WT. This study thus demonstrates the feasibility of the use of these novel AAV2 capsid mutant vectors in hepatic gene therapy.
Collapse
Affiliation(s)
- Nishanth Gabriel
- Department of Hematology, Christian Medical College, Vellore 632004, Tamil Nadu, India
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Engineered AAV vector minimizes in vivo targeting of transduced hepatocytes by capsid-specific CD8+ T cells. Blood 2013; 121:2224-33. [PMID: 23325831 DOI: 10.1182/blood-2012-10-460733] [Citation(s) in RCA: 126] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Recent clinical trials have shown that evasion of CD8(+) T-cell responses against viral capsid is critical for successful liver-directed gene therapy with adeno-associated viral (AAV) vectors for hemophilia. Preclinical models to test whether use of alternate serotypes or capsid variants could avoid this deleterious response have been lacking. Here, the ability of CD8(+) T cells ("cap-CD8," specific for a capsid epitope presented by human B*0702 or murine H2-L(d) molecules) to target AAV-infected hepatocytes was investigated. In a murine model based on adoptive transfer of ex vivo expanded cap-CD8, AAV2-transduced livers showed CD8(+) T-cell infiltrates, transaminitis, significant reduction in factor IX transgene expression, and loss of transduced hepatocytes. AAV8 gene transfer resulted in prolonged susceptibility to cap-CD8, consistent with recent clinical findings. In contrast, using an AAV2(Y-F) mutant capsid, which is known to be less degraded by proteasomes, preserved transgene expression and largely avoided hepatotoxicity. In vitro assays confirmed reduced major histocompatibility complex class I presentation of this capsid and killing of human or murine hepatocytes compared with AAV2. In conclusion, AAV capsids can be engineered to substantially reduce the risk of destruction by cytotoxic T lymphocytes, whereas use of alternative serotypes per se does not circumvent this obstacle.
Collapse
|
16
|
Ben Arav A, Pelled G, Zilberman Y, Kimelman-Bleich N, Gazit Z, Schwarz EM, Gazit D. Adeno-associated virus-coated allografts: a novel approach for cranioplasty. J Tissue Eng Regen Med 2012; 6:e43-50. [PMID: 22941779 DOI: 10.1002/term.1594] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 05/20/2012] [Accepted: 07/12/2012] [Indexed: 01/24/2023]
Abstract
Bone autografts are considered the gold standard for cranioplasty, although they lead to co-morbidity. Bone allografts are more easily obtained but have low osteogenic potential and fail to integrate into healthy bone. Previously, we showed that, by coating long-bone allografts with freeze-dried recombinant adeno-associated virus (rAAV) vector encoding for an osteogenic gene, enhanced osteogenesis and bone integration were achieved. In this study our aim was to evaluate the bone repair potential of calvarial autografts and allografts coated with either single-stranded rAAV2 vector (SS-rAAV-BMP2) or self-complementary pseudotyped vector (SC-rAAV-BMP2) encoding for bone morphogenetic protein (BMP)2 in a murine cranioplasty model. The grafts were implanted into critical defects in the calvariae of osteocalcin/luciferase (Oc/Luc) transgenic mice, which allowed longitudinal monitoring of osteogenic activity using bioluminescence imaging (BLI). Our results showed that the bioluminescent signal of the SC-rAAV-BMP2-coated allografts was 40% greater than that of the SS-rAAV-BMP2-coated allografts (p<0.05) and that the bioluminescent signal of the SS-rAAV-BMP2-coated allografts was not significantly different from the signals of the autografts or uncoated allografts. Micro-computed tomography (μCT) confirmed the significant increase in osteogenesis in the SC-rAAV-BMP2 group compared with the SS-rAAV-BMP2 group (p<0.05), indicating a significant difference in bone formation when compared with the other grafts tested. In addition, histological analysis revealed extensive remodelling of the autografts. Collectively, these results demonstrate the feasibility of craniofacial regeneration using SC-rAAV-BMP2-coated allografts, which may be an attractive therapeutic solution for repair of severe craniofacial bone defects.
Collapse
Affiliation(s)
- Ayelet Ben Arav
- Skeletal Biotech Laboratory, Hebrew University-Hadassah Faculty of Dental Medicine, Ein Kerem, Jerusalem, Israel
| | | | | | | | | | | | | |
Collapse
|
17
|
Nonnenmacher M, Weber T. Intracellular transport of recombinant adeno-associated virus vectors. Gene Ther 2012; 19:649-58. [PMID: 22357511 PMCID: PMC4465241 DOI: 10.1038/gt.2012.6] [Citation(s) in RCA: 184] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Revised: 01/11/2012] [Accepted: 01/11/2012] [Indexed: 12/16/2022]
Abstract
Recombinant adeno-associated viral vectors (rAAVs) have been widely used for gene delivery in animal models, and are currently evaluated for human gene therapy after successful clinical trials in the treatment of inherited, degenerative or acquired diseases, such as Leber congenital amaurosis, Parkinson disease or heart failure. However, limitations in vector tropism, such as limited tissue specificity and insufficient transduction efficiencies of particular tissues and cell types, still preclude therapeutic applications in certain tissues. Wild-type adeno-associated viruses (AAVs) are defective viruses that require the presence of a helper virus to complete their life cycle. On the one hand, this unique property makes AAV vectors one of the safest available viral vectors for gene delivery. On the other, it also represents a potential obstacle because rAAV vectors have to overcome several biological barriers in the absence of a helper virus to transduce successfully a cell. Consequently, a better understanding of the cellular roadblocks that limit rAAV gene delivery is crucial and, during the last 15 years, numerous studies resulted in an expanding body of knowledge of the intracellular trafficking pathways of rAAV vectors. This review describes our current understanding of the mechanisms involved in rAAV attachment to target cells, endocytosis, intracellular trafficking, capsid processing, nuclear import and genome release with an emphasis on the most recent discoveries in the field and the emerging strategies used to improve the efficiency of AAV-derived vectors.
Collapse
Affiliation(s)
- M Nonnenmacher
- Cardiovascular Research Center, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | |
Collapse
|
18
|
Inflammation and immune response of intra-articular serotype 2 adeno-associated virus or adenovirus vectors in a large animal model. ARTHRITIS 2012; 2012:735472. [PMID: 22288012 PMCID: PMC3263587 DOI: 10.1155/2012/735472] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Accepted: 10/05/2011] [Indexed: 12/02/2022]
Abstract
Intra-articular gene therapy has potential for the treatment of osteoarthritis and rheumatoid arthritis. To quantify in vitro relative gene transduction, equine chondrocytes and synovial cells were treated with adenovirus vectors (Ad), serotype 2 adeno-associated virus vectors (rAAV2), or self-complementary (sc) AAV2 vectors carrying green fluorescent protein (GFP). Using 6 horses, bilateral metacarpophalangeal joints were injected with Ad, rAAV2, or scAAV2 vectors carrying GFP genes to assess the in vivo joint inflammation and neutralizing antibody (NAb) titer in serum and joint fluid. In vitro, the greater transduction efficiency and sustained gene expression were achieved by scAAV2 compared to rAAV2 in equine chondrocytes and synovial cells. In vivo, AAV2 demonstrated less joint inflammation than Ad, but similar NAb titer. The scAAV2 vectors can induce superior gene transduction than rAAV2 in articular cells, and both rAAV2 and scAAV2 vectors were showed to be safer for intra-articular use than Ad vectors.
Collapse
|
19
|
Zhong L, Jayandharan GR, Aslanidi GV, Zolotukhin S, Herzog RW, Srivastava A. Development of Novel Recombinant AAV Vectors and Strategies for the Potential Gene Therapy of Hemophilia. ACTA ACUST UNITED AC 2012; S1. [PMID: 23264889 DOI: 10.4172/2157-7412.s1-008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Recombinant vectors based on a non-pathogenic human parvovirus, the adeno-associated virus (AAV), have gained attention as a potentially safe and useful alternative to the more commonly used retroviral and adenoviral vectors. AAV vectors are currently in use in Phase I/II clinical trials for gene therapy of a number of diseases such as cystic fibrosis, α-1 antitrypsin deficiency, muscular dystrophy, Batten's disease, and Parkinson's disease, and have shown efficacy in patients with Leber's congenital amaurosis, and hemophilia B. For patients with hemophilia B, however, relatively large vector doses are needed to achieve therapeutic benefits. Large vector doses also trigger an immune response as significant fraction of the vectors fails to traffic efficiently to the nucleus, and is targeted for degradation by the host cell proteasome machinery. With a better understanding of the various steps in the life cycle of AAV vectors, strategies leading to the development of novel AAV vectors that are capable of high-efficiency transduction at lower doses are needed. In this review, we summarize our strategies to develop novel AAV vectors for the potential gene therapy of both hemophilia B and hemophilia A, based on our recent studies on the basic molecular biology of AAV. These strategies, including the development of novel AAV vectors by site-directed mutagenesis of critical surface-exposed tyrosine residues on AAV2 capsids to circumvent the ubiquitination step and the use of different AAV serotypes and self-complementary (sc) AAV2 vectors, and their use as helper vectors to circumvent the obstacles of second-strand DNA synthesis of single-stranded (ss) AAV, should dramatically accelerate the progress towards the potential gene therapy of both hemophilia A and hemophilia B.
Collapse
Affiliation(s)
- Li Zhong
- Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL, USA ; Division of Hematology/Oncology, Department of Medicine, and Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
| | | | | | | | | | | |
Collapse
|
20
|
Abstract
Adeno-associated virus (AAV) was first discovered as a contaminant of adenovirus stocks in the 1960s. The development of recombinant AAV vectors (rAAV) was facilitated by early studies that generated infectious molecular clones, determined the sequence of the genome, and defined the genetic elements of the virus. The refinement of methods and protocols for the production and application of rAAV vectors has come from years of studies that explored the basic biology of this virus and its interaction with host cells. Interest in improving vector performance has in turn driven studies that have provided tremendous insights into the basic biology of the AAV lifecycle. In this chapter, we review the background on AAV biology and its exploitation for vectors and gene delivery.
Collapse
|
21
|
Raj D, Davidoff AM, Nathwani AC. Self-complementary adeno-associated viral vectors for gene therapy of hemophilia B: progress and challenges. Expert Rev Hematol 2011; 4:539-49. [PMID: 21939421 PMCID: PMC3200187 DOI: 10.1586/ehm.11.48] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Therapies currently used for hemophilia involve injection of protein concentrates that are expensive, invasive and associated with side effects such as development of neutralizing antibodies (inhibitors) that diminish therapeutic efficacy. Gene transfer is an attractive alternative to circumvent these issues. However, until now, clinical trials using gene therapy to treat hemophilia have failed to demonstrate sustained efficacy, although a vector based on a self-complementary adeno-associated virus has recently shown promise. This article will briefly outline a novel gene-transfer approach using self-complementary adeno-associated viral vectors using hemophilia B as a target disorder. This approach is currently being evaluated in the clinic. We will provide an overview of the development of self-complementary adeno-associated virus vectors as well as preclinical and clinical data with this vector system.
Collapse
Affiliation(s)
- Deepak Raj
- Department of Haematology, University College London Cancer Institute, London, UK
| | - Andrew M Davidoff
- Department of Surgery, St Jude Children’s Research Hospital, Memphis, TN, USA
- Departments of Surgery and Pediatrics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Amit C Nathwani
- Department of Haematology, University College London Cancer Institute, London, UK
- NHS Blood and Transplant, London, UK
| |
Collapse
|
22
|
Ma W, Li B, Ling C, Jayandharan GR, Srivastava A, Byrne BJ. A simple method to increase the transduction efficiency of single-stranded adeno-associated virus vectors in vitro and in vivo. Hum Gene Ther 2011; 22:633-40. [PMID: 21219084 DOI: 10.1089/hum.2010.243] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We have recently shown that co-administration of conventional single-stranded adeno-associated virus 2 (ssAAV2) vectors with self-complementary (sc) AAV2-protein phosphatase 5 (PP5) vectors leads to a significant increase in the transduction efficiency of ssAAV2 vectors in human cells in vitro as well as in murine hepatocytes in vivo. In the present study, this strategy has been further optimized by generating a mixed population of ssAAV2-EGFP and scAAV2-PP5 vectors at a 10:1 ratio to achieve enhanced green fluorescent protein (EGFP) transgene expression at approximately 5- to 10-fold higher efficiency, both in vitro and in vivo. This simple coproduction method should be adaptable to any ssAAV serotype vector containing transgene cassettes that are too large to be encapsidated in scAAV vectors.
Collapse
Affiliation(s)
- Wenqin Ma
- Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | | | | | | | | | | |
Collapse
|
23
|
Wright JF. New Adeno-Associated Virus Strategies to Support Momentum in the Clinic. Hum Gene Ther 2011; 22:519-21. [DOI: 10.1089/hum.2011.4080] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- J. Fraser Wright
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, and Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| |
Collapse
|
24
|
Kauss MA, Smith LJ, Zhong L, Srivastava A, Wong KK, Chatterjee S. Enhanced long-term transduction and multilineage engraftment of human hematopoietic stem cells transduced with tyrosine-modified recombinant adeno-associated virus serotype 2. Hum Gene Ther 2010; 21:1129-36. [PMID: 20486772 DOI: 10.1089/hum.2010.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The search for the ideal stem cell gene therapy vector continues as recognized problems persist. Although recombinant adeno-associated virus serotype 2 (rAAV2) mediates gene transfer into hematopoietic stem cells, identified restrictions to transgene expression reduce overall efficiency. Studies have shown that transduction efficiencies are significantly improved by preventing early proteasomal degradation after mutation of surface-exposed tyrosine residues on the capsid to phenylalanine. Here, we report that transduction of human cord blood CD34(+) stem cells by tyrosine-modified rAAV2 is significantly enhanced both in vitro and in vivo. Serial long-term in vivo bioluminescent imaging of immune-deficient recipients after xenotransplantation of CD34(+) cells transduced with tyrosine-modified rAAV2-luciferase revealed that modification of rAAV2 capsids led to a significant increase in the transduction of human CD34(+) cells, without adversely affecting engraftment capacity, or the ability to undergo multilineage differentiation and self-renewal. Together with observations of sustained high-level transgene expression in vivo and efficient persistence of rAAV genomes in human hematopoietic cells, these results suggest that, because of their ability to bypass restrictions to transduction, tyrosine-modified rAAV vectors, particularly Y500F, Y700F, Y444F, and Y704F, represent highly promising candidates for therapeutic evaluation for diseases of human hematopoietic stem cells.
Collapse
Affiliation(s)
- M Ariel Kauss
- Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | | | | | | | | | | |
Collapse
|
25
|
Markusic DM, Herzog RW, Aslanidi GV, Hoffman BE, Li B, Li M, Jayandharan GR, Ling C, Zolotukhin I, Ma W, Zolotukhin S, Srivastava A, Zhong L. High-efficiency transduction and correction of murine hemophilia B using AAV2 vectors devoid of multiple surface-exposed tyrosines. Mol Ther 2010; 18:2048-56. [PMID: 20736929 PMCID: PMC2997584 DOI: 10.1038/mt.2010.172] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Accepted: 07/15/2010] [Indexed: 12/17/2022] Open
Abstract
Elimination of specific surface-exposed single tyrosine (Y) residues substantially improves hepatic gene transfer with adeno-associated virus type 2 (AAV2) vectors. Here, combinations of mutations in the seven potentially relevant Y residues were evaluated for further augmentation of transduction efficiency. These mutant capsids packaged viral genomes to similar titers and retained infectivity. A triple-mutant (Y444+500+730F) vector consistently had the highest level of in vivo gene transfer to murine hepatocytes, approximately threefold more efficient than the best single-mutants, and ~30-80-fold higher compared with the wild-type (WT) AAV2 capsids. Improvement of gene transfer was similar for both single-stranded AAV (ssAAV) and self-complementary AAV (scAAV) vectors, indicating that these effects are independent of viral second-strand DNA synthesis. Furthermore, Y730F and triple-mutant vectors provided a long-term therapeutic and tolerogenic expression of human factor IX (hF.IX) in hemophilia B (HB) mice after administration of a vector dose that only results in subtherapeutic and transient expression with WT AAV2 encapsidated vectors. In summary, introduction of multiple tyrosine-mutations into the AAV2 capsid results in vectors that yield at least 30-fold improvement of transgene expression, thereby lowering the required therapeutic dose and potentially vector-related immunogenicity. Such vectors should be attractive for treatment of hemophilia and other genetic diseases.
Collapse
Affiliation(s)
- David M Markusic
- Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida College of Medicine, Gainesville, Florida 32611, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Wang J, Faust SM, Rabinowitz JE. The next step in gene delivery: molecular engineering of adeno-associated virus serotypes. J Mol Cell Cardiol 2010; 50:793-802. [PMID: 21029739 DOI: 10.1016/j.yjmcc.2010.10.017] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Revised: 10/12/2010] [Accepted: 10/13/2010] [Indexed: 12/29/2022]
Abstract
Delivery is at the heart of gene therapy. Viral DNA delivery systems are asked to avoid the immune system, transduce specific target cell types while avoiding other cell types, infect dividing and non-dividing cells, insert their cargo within the host genome without mutagenesis or to remain episomal, and efficiently express transgenes for a substantial portion of a lifespan. These sought-after features cannot be associated with a single delivery system, or can they? The Adeno-associated virus family of gene delivery vehicles has proven to be highly malleable. Pseudotyping, using AAV serotype 2 terminal repeats to generate designer shells capable of transducing selected cell types, enables the packaging of common genomes into multiple serotypes virions to directly compare gene expression and tropism. In this review the ability to manipulate this virus will be examined from the inside out. The influence of host cell factors and organism biology including the immune response on the molecular fate of the viral genome will be discussed as well as differences in cellular trafficking patterns and uncoating properties that influence serotype transduction. Re-engineering the prototype vector AAV2 using epitope insertion, chemical modification, and molecular evolution not only demonstrated the flexibility of the best-studied serotype, but now also expanded the tool kit for molecular modification of all AAV serotypes. Current AAV research has changed its focus from examination of wild-type AAV biology to the feedback of host cell/organism on the design and development of a new generation of recombinant AAV delivery vehicles. This article is part of a Special Section entitled "Special Section: Cardiovascular Gene Therapy".
Collapse
Affiliation(s)
- Jinhui Wang
- Thomas Jefferson University Center for Translational Medicine, Philadelphia, PA 19107, USA
| | | | | |
Collapse
|
27
|
Abstract
Adeno-associated viruses (AAV) are widely spread throughout the human population, yet no pathology has been associated with infection. This fact, together with the availability of simple molecular techniques to alter the packaged viral genome, has made AAV a serious contender in the search for an ideal gene therapy delivery vehicle. However, our understanding of the intriguing features of this virus is far from exhausted and it is likely that the mechanisms underlying the viral lifestyle will reveal possible novel strategies that can be employed in future clinical approaches. One such aspect is the unique approach AAV has evolved in order to establish latency. In the absence of a cellular milieu that will support productive viral replication, wild-type AAV can integrate its genome site specifically into a locus on human chromosome 19 (termed AAVS1), where it resides without apparent effects on the host cell until cellular conditions are changed by outside influences, such as adenovirus super-infection, which will lead to the rescue of the viral genome and productive replication. This article will introduce the biology of AAV, the unique viral strategy of targeted genome integration and address relevant questions within the context of attempts to establish therapeutic approaches that will utilize targeted gene addition to the human genome.
Collapse
Affiliation(s)
- Els Henckaerts
- Department of Infectious Diseases, King's College London School of Medicine, Guy's Hospital, London, SE1 9RT, UK
| | | |
Collapse
|
28
|
Lebsack TW, Fa V, Woods CC, Gruener R, Manziello AM, Pecaut MJ, Gridley DS, Stodieck LS, Ferguson VL, Deluca D. Microarray analysis of spaceflown murine thymus tissue reveals changes in gene expression regulating stress and glucocorticoid receptors. J Cell Biochem 2010; 110:372-81. [PMID: 20213684 DOI: 10.1002/jcb.22547] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The detrimental effects of spaceflight and simulated microgravity on the immune system have been extensively documented. We report here microarray gene expression analysis, in concert with quantitative RT-PCR, in young adult C57BL/6NTac mice at 8 weeks of age after exposure to spaceflight aboard the space shuttle (STS-118) for a period of 13 days. Upon conclusion of the mission, thymus lobes were extracted from space flown mice (FLT) as well as age- and sex-matched ground control mice similarly housed in animal enclosure modules (AEM). mRNA was extracted and an automated array analysis for gene expression was performed. Examination of the microarray data revealed 970 individual probes that had a 1.5-fold or greater change. When these data were averaged (n = 4), we identified 12 genes that were significantly up- or down-regulated by at least 1.5-fold after spaceflight (P < or = 0.05). The genes that significantly differed from the AEM controls and that were also confirmed via QRT-PCR were as follows: Rbm3 (up-regulated) and Hsph110, Hsp90aa1, Cxcl10, Stip1, Fkbp4 (down-regulated). QRT-PCR confirmed the microarray results and demonstrated additional gene expression alteration in other T cell related genes, including: Ctla-4, IFN-alpha2a (up-regulated) and CD44 (down-regulated). Together, these data demonstrate that spaceflight induces significant changes in the thymic mRNA expression of genes that regulate stress, glucocorticoid receptor metabolism, and T cell signaling activity. These data explain, in part, the reported systemic compromise of the immune system after exposure to the microgravity of space.
Collapse
Affiliation(s)
- Ty W Lebsack
- Department of Immunobiology, University of Arizona, Tucson, Arizona 85724, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Jayandharan GR, Zhong L, Sack BK, Rivers AE, Li M, Li B, Herzog RW, Srivastava A. Optimized adeno-associated virus (AAV)-protein phosphatase-5 helper viruses for efficient liver transduction by single-stranded AAV vectors: therapeutic expression of factor IX at reduced vector doses. Hum Gene Ther 2010; 21:271-83. [PMID: 19788390 DOI: 10.1089/hum.2009.100] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Abstract Our studies have shown that coinjection of conventional single-stranded adeno-associated virus 2 (ssAAV2) vectors carrying the enhanced green fluorescent protein (EGFP) gene with self-complementary (sc) AAV2-T cell protein tyrosine phosphatase (TC-PTP) and scAAV2-protein phosphatase-5 (PP5) vectors resulted in an approximately 16-fold increase in EGFP expression in primary murine hepatocytes in vivo [Jayandharan, G.R., Zhong, L., Li, B., Kachniarz, B., and Srivastava, A. (2008). Gene Ther. 15, 1287-1293]. In the present studies, this strategy was further optimized to achieve transgene expression at reduced vector/helper virus doses. These included the use of scAAV helper viruses containing (1) hepatocyte-specific promoters, (2) tyrosine-mutant AAV2 capsids, and (3) additional AAV serotype vectors known to efficiently transduce hepatocytes. The hepatocyte-specific transthyretin (TTR) promoter was approximately 6- to 7-fold more efficient than the Rous sarcoma virus (RSV) promoter; tyrosine-mutant AAV2 capsids were approximately 6- to 11-fold more efficient than the wild-type AAV2 capsids; and the AAV8 serotype helper virus was approximately 16-fold more efficient than AAV2 serotype helper virus. With these modifications, the vector dose of the helper virus could be further reduced by approximately 50-fold. Last, coadministration of scAAV8-PP5 helper virus increased coagulation factor IX expression from an ssAAV2 vector by approximately 7- to 10-fold, thereby achieving therapeutic levels at lower vector doses. No adverse effect on hepatocytes was observed under any of these experimental conditions. The strategy presented here should be adaptable to any ssAAV transgene cassette and, specifically, liver-directed applications of ssAAV2 vectors containing larger genes that cannot be encapsidated in scAAV vectors.
Collapse
Affiliation(s)
- Giridhara R Jayandharan
- Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL 32611-3633, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Channelrhodopsin-2 gene transduced into retinal ganglion cells restores functional vision in genetically blind rats. Exp Eye Res 2009; 90:429-36. [PMID: 20036655 DOI: 10.1016/j.exer.2009.12.006] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Revised: 12/07/2009] [Accepted: 12/10/2009] [Indexed: 10/20/2022]
Abstract
To test the hypothesis that transduction of the channelrhodopsin-2 (ChR2) gene, a microbial-type rhodopsin gene, into retinal ganglion cells of genetically blind rats will restore functional vision, we recorded visually evoked potentials and tested the experimental rats for the presence of optomotor responses. The N-terminal fragment of the ChR2 gene was fused to the fluorescent protein Venus and inserted into an adeno-associated virus to make AAV2-ChR2V. AAV2-ChR2V was injected intravitreally into the eyes of 6-month-old dystrophic RCS (rdy/rdy) rats. Visual function was evaluated six weeks after the injection by recording visually evoked potentials (VEPs) and testing optomotor responses. The expression of ChR2V in the retina was investigated histologically. We found that VEPs could not be recorded from 6-month-old dystrophic RCS rats that had not been injected with AAV2-ChR2V. In contrast, VEPs were elicited from RCS rats six weeks after injection with AAV2-ChR2V. The VEPs were recorded at stimulation rates <20Hz, which was the same as that of normal rats. Optomotor responses were also significantly better after the AAV2-ChR2V injection. Expression of ChR2V was observed mainly in the retinal ganglion cells. These findings demonstrate that visual function can be restored in blind rats by transducing the ChR2V gene into retinal ganglion cells.
Collapse
|