1
|
Li L, Yang L, Jiang D. Research progress of CD80 in the development of immunotherapy drugs. Front Immunol 2024; 15:1496992. [PMID: 39575257 PMCID: PMC11578925 DOI: 10.3389/fimmu.2024.1496992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 10/22/2024] [Indexed: 11/24/2024] Open
Abstract
CD80 is a molecule that plays an important role in the immune system, especially during T-cell activation, and its ligands are mainly CD28, PD-L1, and CTLA-4. CD80 is expressed on the surface of tumor cells, and it can be used as a molecular target in the process of T-cell anti-tumor immune response. In autoimmune diseases, CD80 can also regulate autoimmune diseases by modulating immunity. This review mainly focus on the role of CD80 in the immune system, as well as the research progress on the application of CD80-related immunopharmaceuticals in the treatment of tumors and autoimmune diseases.
Collapse
Affiliation(s)
- Lanying Li
- Institute of Cancer, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Lei Yang
- Department of Respiratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - DePeng Jiang
- Department of Respiratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
2
|
Zhao Y, Wei K, Chi H, Xia Z, Li X. IL-7: A promising adjuvant ensuring effective T cell responses and memory in combination with cancer vaccines? Front Immunol 2022; 13:1022808. [PMID: 36389666 PMCID: PMC9650235 DOI: 10.3389/fimmu.2022.1022808] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/17/2022] [Indexed: 11/30/2022] Open
Abstract
Cancer vaccines exhibit specificity, effectiveness, and safety as an alternative immunotherapeutic strategy to struggle against malignant diseases, especially with the rapid development of mRNA cancer vaccines in recent years. However, how to maintain long-term immune memory after vaccination, especially T cells memory, to fulfill lasting surveillance against cancers, is still a challenging issue for researchers all over the world. IL-7 is critical for the development, maintenance, and proliferation of T lymphocytes, highlighting its potential role as an adjuvant in the development of cancer vaccines. Here, we summarized the IL-7/IL-7 receptor signaling in the development of T lymphocytes, the biological function of IL-7 in the maintenance and survival of T lymphocytes, the performance of IL-7 in pre-clinical and clinical trials of cancer vaccines, and the rationale to apply IL-7 as an adjuvant in cancer vaccine-based therapeutic strategy.
Collapse
Affiliation(s)
- Yue Zhao
- Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Kongyuan Wei
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Hao Chi
- Clinical Medical Collage, Southwest Medical University, Luzhou, China
| | - Zhijia Xia
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
- *Correspondence: Zhijia Xia, ; Xiaosong Li,
| | - Xiaosong Li
- Clinical Molecular Medicine Testing Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Zhijia Xia, ; Xiaosong Li,
| |
Collapse
|
3
|
Lokhov PG, Lichtenberg S, Balashova EE. Changing Landscape of Cancer Vaccines-Novel Proteomics Platform for New Antigen Compositions. Int J Mol Sci 2022; 23:4401. [PMID: 35457221 PMCID: PMC9029553 DOI: 10.3390/ijms23084401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/12/2022] [Accepted: 04/12/2022] [Indexed: 11/16/2022] Open
Abstract
The creation of cancer vaccines is a constant priority for research and biotechnology. Therefore, the emergence of any new technology in this field is a significant event, especially because previous technologies have not yielded results. Recently, the development of a cancer vaccine has been complemented by a new proteomics technology platform that allows the creation of antigen compositions known as antigenic essences. Antigenic essence comprises a target fraction of cellular antigens, the composition of which is precisely controlled by peptide mass spectrometry and compared to the proteomic footprint of the target cells to ensure similarity. This proteomics platform offers potential for a massive upgrade of conventional cellular cancer vaccines. Antigenic essences have the same mechanism of action, but without the disadvantages, and with notable advantages such as precise targeting of the immune response, safety, controlled composition, improved immunogenicity, addressed MHC restriction, and extended range of vaccination doses. The present paper calls attention to this novel platform, stimulates discussion of the role of antigenic essence in vaccine development, and consolidates academic science with biotech capabilities. A brief description of the platform, list of cellular cancer vaccines suitable for the upgrade, main recommendations, limitations, and legal and ethical aspects of vaccine upgrade are reported here.
Collapse
Affiliation(s)
- Petr G. Lokhov
- Biobohemia, Inc., 1 Broadway, 14th Floor, Cambridge, MA 02142, USA; (S.L.); (E.E.B.)
- Institute of Biomedical Chemistry, 10 Building 8, Pogodinskaya Street, 119121 Moscow, Russia
| | - Steven Lichtenberg
- Biobohemia, Inc., 1 Broadway, 14th Floor, Cambridge, MA 02142, USA; (S.L.); (E.E.B.)
- Institute of Biomedical Chemistry, 10 Building 8, Pogodinskaya Street, 119121 Moscow, Russia
| | - Elena E. Balashova
- Biobohemia, Inc., 1 Broadway, 14th Floor, Cambridge, MA 02142, USA; (S.L.); (E.E.B.)
- Institute of Biomedical Chemistry, 10 Building 8, Pogodinskaya Street, 119121 Moscow, Russia
| |
Collapse
|
4
|
[Tumor vaccination-strategies and time points]. Internist (Berl) 2021; 62:991-997. [PMID: 34398265 DOI: 10.1007/s00108-021-01138-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Immunotherapies have gained increasing importance in the treatment of cancer in recent years. This also includes tumor vaccines, which are used therapeutically to direct the immune system specifically against tumor cells. OBJECTIVES Different strategies of tumor vaccination, their current state of development, the optimal timing and possible combinations of cancer vaccines in the treatment of cancer are discussed. METHODS Scientific publications on various tumor vaccination strategies based on ongoing studies that are listed on clinicaltrials.gov are summarized. CONCLUSIONS For effective tumor vaccination, the selection of suitable tumor antigens present on the cell surface via human leukocyte antigen (HLA) molecules is essential. Suitable antigens should be present exclusively on tumor cells and able to induce a specific anti-tumor immune response, i.e. activate cytotoxic and T helper cells. For this purpose, neoepitopes derived from tumor-specific mutations or tumor-associated antigens (TAAs), which are present exclusively in tumor tissue due to altered gene expression or processing, can be used. For the application of the antigens, various strategies combined with suitable adjuvants are available, including peptide vaccines, DNA- or RNA-based vaccines, approaches with dendritic cells or whole tumor cell vaccines. Currently, numerous vaccination approaches as well as combination protocols are being evaluated in clinical trials with the aim to establish specific and low side effect immunotherapies to combat malignancies and enable long-term protection from disease recurrence via the induction of long-lasting antitumor immune responses.
Collapse
|
5
|
Rojas-Sepúlveda D, Tittarelli A, Gleisner MA, Ávalos I, Pereda C, Gallegos I, González FE, López MN, Butte JM, Roa JC, Fluxá P, Salazar-Onfray F. Tumor lysate-based vaccines: on the road to immunotherapy for gallbladder cancer. Cancer Immunol Immunother 2018; 67:1897-1910. [PMID: 29600445 PMCID: PMC6244977 DOI: 10.1007/s00262-018-2157-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 03/26/2018] [Indexed: 12/14/2022]
Abstract
Immunotherapy based on checkpoint blockers has proven survival benefits in patients with melanoma and other malignancies. Nevertheless, a significant proportion of treated patients remains refractory, suggesting that in combination with active immunizations, such as cancer vaccines, they could be helpful to improve response rates. During the last decade, we have used dendritic cell (DC) based vaccines where DCs loaded with an allogeneic heat-conditioned melanoma cell lysate were tested in a series of clinical trials. In these studies, 60% of stage IV melanoma DC-treated patients showed immunological responses correlating with improved survival. Further studies showed that an essential part of the clinical efficacy was associated with the use of conditioned lysates. Gallbladder cancer (GBC) is a high-incidence malignancy in South America. Here, we evaluated the feasibility of producing effective DCs using heat-conditioned cell lysates derived from gallbladder cancer cell lines (GBCCL). By characterizing nine different GBCCLs and several fresh tumor tissues, we found that they expressed some tumor-associated antigens such as CEA, MUC-1, CA19-9, Erb2, Survivin, and several carcinoembryonic antigens. Moreover, heat-shock treatment of GBCCLs induced calreticulin translocation and release of HMGB1 and ATP, both known to act as danger signals. Monocytes stimulated with combinations of conditioned lysates exhibited a potent increase of DC-maturation markers. Furthermore, conditioned lysate-matured DCs were capable of strongly inducing CD4+ and CD8+ T cell activation, in both allogeneic and autologous cell co-cultures. Finally, in vitro stimulated CD8+ T cells recognize HLA-matched GBCCLs. In summary, GBC cell lysate-loaded DCs may be considered for future immunotherapy approaches.
Collapse
Affiliation(s)
- Daniel Rojas-Sepúlveda
- Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Independencia 1027, building H, Third floor, 8380453, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Universidad de Chile, 8380453, Santiago, Chile.,Faculty of Science, Universidad San Sebastián, Lota 2465, 7510157, Santiago, Chile
| | - Andrés Tittarelli
- Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Independencia 1027, building H, Third floor, 8380453, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Universidad de Chile, 8380453, Santiago, Chile
| | - María Alejandra Gleisner
- Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Independencia 1027, building H, Third floor, 8380453, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Universidad de Chile, 8380453, Santiago, Chile
| | - Ignacio Ávalos
- Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Independencia 1027, building H, Third floor, 8380453, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Universidad de Chile, 8380453, Santiago, Chile
| | - Cristián Pereda
- Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Independencia 1027, building H, Third floor, 8380453, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Universidad de Chile, 8380453, Santiago, Chile
| | - Iván Gallegos
- Pathological Anatomy Service, Clinic Hospital, Universidad de Chile, 8380456, Santiago, Chile
| | - Fermín Eduardo González
- Millennium Institute on Immunology and Immunotherapy, Universidad de Chile, 8380453, Santiago, Chile.,Department of Conservative Dentistry, Faculty of Dentistry, Universidad de Chile, 8380492, Santiago, Chile
| | - Mercedes Natalia López
- Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Independencia 1027, building H, Third floor, 8380453, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Universidad de Chile, 8380453, Santiago, Chile
| | - Jean Michel Butte
- Department of Surgery, Fundación Arturo López Pérez, Institute of Oncology, 7500921, Santiago, Chile
| | - Juan Carlos Roa
- Department of Pathology, School of Medicine, Pontificia Universidad Católica de Chile, 8330023, Santiago, Chile.,Center for Investigation in Translational Oncology (CITO), Advanced Center for Chronic Diseases (ACCDiS), School of Medicine, Pontificia Universidad Católica de Chile, 8330023, Santiago, Chile
| | - Paula Fluxá
- Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Independencia 1027, building H, Third floor, 8380453, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Universidad de Chile, 8380453, Santiago, Chile
| | - Flavio Salazar-Onfray
- Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Independencia 1027, building H, Third floor, 8380453, Santiago, Chile. .,Millennium Institute on Immunology and Immunotherapy, Universidad de Chile, 8380453, Santiago, Chile.
| |
Collapse
|
6
|
Wagner SC, Ichim TE, Bogin V, Min WP, Silva F, Patel AN, Kesari S. Induction and characterization of anti-tumor endothelium immunity elicited by ValloVax therapeutic cancer vaccine. Oncotarget 2018; 8:28595-28613. [PMID: 28404894 PMCID: PMC5438675 DOI: 10.18632/oncotarget.15563] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 01/24/2017] [Indexed: 12/22/2022] Open
Abstract
ValloVax is a placental endothelium derived vaccine which induces tissue-nonspecific antitumor immunity by blocking tumor angiogesis. To elucidate mechanisms of action, we showed that production of ValloVax, which involves treating placental endothelial cells with IFN-gamma, results in upregulation of HLA and costimulatory molecules. It was shown that in mixed lymphocyte reaction, ValloVax induces Type I cytokines and allo-proliferative responses. Plasma from ValloVax immunized mice was capable of killing in vitro tumor-like endothelium but not control endothelium. Using defined antigens associated with tumor endothelial cells, specific molecular entities were identified as being targeted by ValloVax induced antibodies. Binding of predominantly IgG antibodies to ValloVax cells was confirmed by flow cytometry. Further suggesting direct killing of tumor endothelial cells was expression of TUNEL positive cells, as well as, reduction in tumor oxygenation. Supporting a role for antibody mediated responses, cell depletion experiments suggested a predominant role of B cells in maintaining an intact anti-tumor endothelial response. Adoptive transfer experiments suggested that infusion of CD3+ T cells from immunized mice was sufficient to transfer tumor protection. Generation of memory T cells selective to tumor endothelial specific markers was observed. Functional confirmation of memory responses was observed in tumor rechallenge experiments. Furthermore, we observed that both PD-1 or CTLA-4 blockade augmented antitumor effects of ValloVax. These data suggest a T cell induced B cell mediated anti-tumor endothelial response and set the framework clinical trials through elucidation of mechanism of action.
Collapse
Affiliation(s)
| | | | | | - Wei-Ping Min
- Department of Immunology, University of Western Ontario, London, Ontario, Canada
| | - Francisco Silva
- Department of Surgery, University of Miami School of Medicine, Miami, FL, USA
| | - Amit N Patel
- Department of Surgery, University of Miami School of Medicine, Miami, FL, USA
| | - Santosh Kesari
- John Wayne Cancer Institute and Pacific Neuroscience Institute, Santa Monica, CA, USA
| |
Collapse
|
7
|
Massa C, Robins H, Desmarais C, Riemann D, Fahldieck C, Fornara P, Seliger B. Identification of patient-specific and tumor-shared T cell receptor sequences in renal cell carcinoma patients. Oncotarget 2017; 8:21212-21228. [PMID: 28177902 PMCID: PMC5400578 DOI: 10.18632/oncotarget.15064] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 01/09/2017] [Indexed: 01/29/2023] Open
Abstract
A major requirement for cancer immunotherapy is the development of biomarkers for prognosis and for monitoring therapy response. In an attempt to evaluate the immune response of renal cell carcinoma (RCC) patients, tumor lesions and / or blood samples from 12 RCC patients underwent deep T cell receptor (TCR) sequencing. Despite the low number of samples, different TCR distribution patterns could be detected. Most of the RCC patients presented "patient-specific" TCR sequences, and those clonotypes were present at higher frequency in tumor lesions suggesting a specific extravasation from the blood. Comparison among the tumor samples revealed also "patient-shared" TCR patterns. Indeed, a central core of 16 different TCRs were shared by 3 patients, whereas other 6 patients shared between 4 and 6 TCR sequences, with two sub-groups sharing 12 to 17 different clonotypes. The relative frequencies of shared clonotypes were very different varying from < 1% to a maximum of 37% of the total TCR repertoire. These data confirm the presence of tumor-specific TCR within the cancer tissue and suggest the existence of shared epitopes among different patients that might be used as targets for tumor immunotherapy.
Collapse
Affiliation(s)
- Chiara Massa
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle, Saale 06112, Germany
| | - Harlan Robins
- Adaptive Biotechnologies Corp, Seattle, WA 98102, USA
| | | | - Dagmar Riemann
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle, Saale 06112, Germany
| | - Corinna Fahldieck
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle, Saale 06112, Germany
| | - Paolo Fornara
- Clinic of Urology, Martin Luther University Halle-Wittenberg, Halle, Saale 06112, Germany
| | - Barbara Seliger
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle, Saale 06112, Germany
| |
Collapse
|
8
|
Flörcken A, Kopp J, Kölsch U, Meisel C, Dörken B, Pezzutto A, Westermann J. DC generation from peripheral blood mononuclear cells in patients with chronic myeloid leukemia: Influence of interferons on DC yield and functional properties. Hum Vaccin Immunother 2016; 12:1117-23. [PMID: 26864050 DOI: 10.1080/21645515.2015.1132965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
In Chronic Myeloid Leukemia (CML), standard treatment consists of modern tyrosine-kinase inhibitors (TKI). Nevertheless, there is evidence that immune responses against leukemia-associated antigens (LAA) may play an important role in disease control. Dendritic cell (DC)- based immunotherapy is able to induce T cell responses against LAA and might therefore pose an interesting therapeutic option in CML, especially in the setting of minimal residual disease (MRD). GMP production of DC for clinical vaccination remains a time- and cost- intensive procedure and standardized DC generation is warranted. We asked whether maturation-induction with IFN-γ and IFN-α has an influence on functional properties of DC derived from peripheral blood mononuclear cells (PBMC) in CML patients. Monocyte-derived DC from healthy donors and from patients with CML were analyzed after maturation-induction with our TNF-α-containing standard cytokine cocktail with or without addition of IFN-α and/or IFN-γ. Our results confirm that the addition of IFN-γ leads to enhanced IL-12 secretion in healthy donors. In contrast, in CML patients, IFN-γ was not able to increase IL-12 secretion, possibly due to a higher degree of cell adherence and lower cell yield during the cell culture. Our data suggest, that- in contrast to healthy donors-, additional interferons are not beneficial for maturation induction during large-scale DC production in patients with CML.
Collapse
Affiliation(s)
- Anne Flörcken
- a Department of Hematology , Oncology, and Tumor Immunology, Charité- University Medicine, Campus-Virchow-Klinikum , Berlin , Germany.,b Labor Berlin Charité Vivantes GmbH , Berlin , Germany
| | - Joachim Kopp
- c Experimental and Clinical Research Center (ECRC), Charité- University Medicine, Campus Berlin-Buch , Berlin , Germany
| | - Uwe Kölsch
- b Labor Berlin Charité Vivantes GmbH , Berlin , Germany
| | - Christian Meisel
- b Labor Berlin Charité Vivantes GmbH , Berlin , Germany.,d Institute of Immunology, Charité- University Medicine, Campus Virchow-Klinikum , Berlin , Germany
| | - Bernd Dörken
- a Department of Hematology , Oncology, and Tumor Immunology, Charité- University Medicine, Campus-Virchow-Klinikum , Berlin , Germany.,b Labor Berlin Charité Vivantes GmbH , Berlin , Germany
| | - Antonio Pezzutto
- e Department of Hematology , Oncology, and Tumor Immunology, Charité- University Medicine Berlin, Campus Benjamin Franklin , Berlin , Germany
| | - Jörg Westermann
- a Department of Hematology , Oncology, and Tumor Immunology, Charité- University Medicine, Campus-Virchow-Klinikum , Berlin , Germany.,b Labor Berlin Charité Vivantes GmbH , Berlin , Germany
| |
Collapse
|
9
|
Abstract
Immunotherapy is coming to the fore as a viable anti-cancer treatment modality, even in poorly immunogenic cancers such as glioblastoma (GBM). Accumulating evidence suggests that the central nervous system may not be impervious to tumor-specific immune cells and could be an adequate substrate for immunologic anti-cancer therapies. Recent advances in antigen-specific cancer vaccines and checkpoint blockade in GBM provide promise for future immunotherapy in glioma. As anti-GBM immunotherapeutics enter clinical trials, it is important to understand the interactions, if any, between immune-based treatment modalities and the current standard of care for GBM involving chemoradiation and steroid therapy. Current data suggests that chemoradiation may not preclude the success of immunotherapeutics, as their effects may be synergistic. The future of therapy for GBM lies in the power of combination modalities, involving immunotherapy and the current standard of care.
Collapse
|
10
|
Flörcken A, Grau M, Wolf A, Weilemann A, Kopp J, Dörken B, Blankenstein T, Pezzutto A, Lenz P, Lenz G, Westermann J. Gene expression profiling of peripheral blood mononuclear cells during treatment with a gene-modified allogeneic tumor cell vaccine in advanced renal cell cancer: tumor-induced immunosuppression and a possible role for NF-κB. Int J Cancer 2014; 136:1814-26. [PMID: 25242680 DOI: 10.1002/ijc.29230] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 08/28/2014] [Accepted: 09/03/2014] [Indexed: 11/10/2022]
Abstract
Tumor-induced immunosuppression remains a major challenge for immunotherapy of cancer patients. To further elucidate why an allogeneic gene-modified [interleukin-7 (IL-7)/CD80-cotransfected] renal cell cancer (RCC) vaccine failed to induce clinically relevant TH-1-polarized immune responses, peripheral blood mononuclear cells from enrolled study patients were analyzed by gene expression profiling (GEP) both prior and after vaccination. At baseline before vaccination, a profound downregulation of gene signatures associated with antigen presentation, immune response/T cells, cytokines/chemokines and signaling/transcription factors was observed in RCC patients as compared to healthy controls. Vaccination led to a partial reversion of preexisting immunosuppression, however, GEP indicated that an appropriate TH-1 polarization could not be achieved. Most interestingly, our results suggest that the nuclear factor-kappa B signaling pathway might be involved in the impairment of immunological responsiveness and the observed TH-2 deviation. In summary, our data suggest that GEP might be a powerful tool for the prediction of immunosuppression and the monitoring of immune responses within immunotherapy trials.
Collapse
Affiliation(s)
- Anne Flörcken
- Department of Hematology, Oncology, and Tumor Immunology, Charité University Medicine, Campus Virchow-Klinikum, Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
The future of glioblastoma therapy: synergism of standard of care and immunotherapy. Cancers (Basel) 2014; 6:1953-85. [PMID: 25268164 PMCID: PMC4276952 DOI: 10.3390/cancers6041953] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 08/05/2014] [Accepted: 09/03/2014] [Indexed: 12/18/2022] Open
Abstract
The current standard of care for glioblastoma (GBM) is maximal surgical resection with adjuvant radiotherapy and temozolomide (TMZ). As the 5-year survival with GBM remains at a dismal <10%, novel therapies are needed. Immunotherapies such as the dendritic cell (DC) vaccine, heat shock protein vaccines, and epidermal growth factor receptor (EGFRvIII) vaccines have shown encouraging results in clinical trials, and have demonstrated synergistic effects with conventional therapeutics resulting in ongoing phase III trials. Chemoradiation has been shown to have synergistic effects when used in combination with immunotherapy. Cytotoxic ionizing radiation is known to trigger pro-inflammatory signaling cascades and immune activation secondary to cell death, which can then be exploited by immunotherapies. The future of GBM therapeutics will involve finding the place for immunotherapy in the current treatment regimen with a focus on developing strategies. Here, we review current GBM therapy and the evidence for combination of immune checkpoint inhibitors, DC and peptide vaccines with the current standard of care.
Collapse
|
12
|
Srivatsan S, Patel JM, Bozeman EN, Imasuen IE, He S, Daniels D, Selvaraj P. Allogeneic tumor cell vaccines: the promise and limitations in clinical trials. Hum Vaccin Immunother 2013; 10:52-63. [PMID: 24064957 DOI: 10.4161/hv.26568] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The high mortality rate associated with cancer and its resistance to conventional treatments such as radiation and chemotherapy has led to the investigation of a variety of anti-cancer immunotherapies. The development of novel immunotherapies has been bolstered by the discovery of tumor-associated antigens (TAAs), through gene sequencing and proteomics. One such immunotherapy employs established allogeneic human cancer cell lines to induce antitumor immunity in patients through TAA presentation. Allogeneic cancer immunotherapies are desirable in a clinical setting due to their ease of production and availability. This review aims to summarize clinical trials of allogeneic tumor immunotherapies in various cancer types. To date, clinical trials have shown limited success due potentially to extensive degrees of inter- and intra-tumoral heterogeneity found among cancer patients. However, these clinical results provide guidance for the rational design and creation of more effective allogeneic tumor immunotherapies for use as monotherapies or in combination with other therapies.
Collapse
Affiliation(s)
- Sanjay Srivatsan
- Department of Pathology and Laboratory Medicine; Emory University School of Medicine; Atlanta, GA USA
| | - Jaina M Patel
- Department of Pathology and Laboratory Medicine; Emory University School of Medicine; Atlanta, GA USA
| | - Erica N Bozeman
- Department of Pathology and Laboratory Medicine; Emory University School of Medicine; Atlanta, GA USA
| | - Imade E Imasuen
- Department of Pathology and Laboratory Medicine; Emory University School of Medicine; Atlanta, GA USA
| | - Sara He
- Department of Pathology and Laboratory Medicine; Emory University School of Medicine; Atlanta, GA USA
| | - Danielle Daniels
- Department of Pathology and Laboratory Medicine; Emory University School of Medicine; Atlanta, GA USA
| | - Periasamy Selvaraj
- Department of Pathology and Laboratory Medicine; Emory University School of Medicine; Atlanta, GA USA
| |
Collapse
|
13
|
Flörcken A, van Lessen A, Terwey TH, Dörken B, Arnold R, Pezzutto A, Westermann J. Anti-leukemia T cells in AML: TNF-α⁺ CD8⁺ T cells may escape detection and possibly reflect a stage of functional impairment. Hum Vaccin Immunother 2013; 9:1200-4. [PMID: 23571180 DOI: 10.4161/hv.24250] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Leukemia-associated antigens such as proteinase-3 (PR3) and Wilms' tumor protein-1 (WT-1) are potential targets of T-cell responses, which can be monitored by T-cell assays within vaccination trials and after allogeneic stem cell transplantation (SCT). In chronic myeloid leukemia (CML) an aberrant cytokine profile of antigen-specific T-cells with predominant TNF-α secretion has previously been described. The aim of this study was to investigate whether these TNF-α(+)/IFN-γ(-) CD8(+) T-cells can also be observed in AML patients after SCT. Eight HLA-A2(+) AML patients at different time points after SCT were evaluated for HLA-A2-restricted CD8(+) T-cell responses against PR3, WT-1 and influenza-A using pentamer staining and different cytokine-based T-cell assays. Antigen-specific T-cell immune responses against influenza-A and PR3 were observed in 4/8 patients, WT-1-specific T-cells could be detected in 3/8 patients. Interestingly, four different cytokine secretion profiles of antigen-specific T-cells were detected: (1) IFN-γ(+)/TNF-α(+), (2) IFN-γ(+)/TNF-α(-), (3) TNF-α(+)/IFN-γ(-) and (4) IFN-γ(-)/TNF-α(-). TNF-α(+)/IFN-γ(-) CD8(+) T-cells are an interesting biological phenomenon which can obviously be observed also in AML patients. This finding has important implications for both T-cell biology and monitoring within immunotherapy trials. The functional characterization of these TNF-α(+)/IFN-γ(-) CD8(+) T-cells needs further investigations.
Collapse
Affiliation(s)
- Anne Flörcken
- Department of Hematology; Oncology, and Tumor Immunology; Charité University Medicine Berlin, Campus Virchow-Klinikum and Campus Benjamin Franklin; Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
14
|
Flörcken A, Kopp J, van Lessen A, Movassaghi K, Takvorian A, Jöhrens K, Möbs M, Schönemann C, Sawitzki B, Egerer K, Dörken B, Pezzutto A, Westermann J. Allogeneic partially HLA-matched dendritic cells pulsed with autologous tumor cell lysate as a vaccine in metastatic renal cell cancer: a clinical phase I/II study. Hum Vaccin Immunother 2013; 9:1217-27. [PMID: 23458999 DOI: 10.4161/hv.24149] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Multi-kinase inhibitors have been established for the treatment of advanced renal cell cancer, but long-term results are still disappointing and immunotherapeutic approaches remain an interesting experimental option particularly in patients with a low tumor burden. DC are crucial for antigen-specific MHC-restricted T cell immunity. Furthermore, allogeneic HLA-molecules pose a strong immunogenic signal and may help to induce tumor-specific T cell responses. In this phase I/II trial, 7 patients with histologically confirmed progressive metastatic RCC were immunized repetitively with 1 × 10 (7) allogeneic partially HLA-matched DC pulsed with autologous tumor lysate following a schedule of 8 vaccinations over 20 weeks. Patients also received 3 Mio IE IL-2 s.c. once daily starting in week 4. Primary endpoints of the study were feasibility and safety. Secondary endpoints were immunological and clinical responses. Vaccination was feasible and safe with no severe toxicity being observed. No objective response could be documented. However, while all patients had documented progress at study entry, 29% of the patients showed SD throughout the study with a mean TTP of 24.6 weeks (range 5 to 96 weeks). In 3/7 patients, TH1-polarized immune responses against RCC-associated antigens were observed. In one patient showing a minimal clinical response and a TTP of 96 weeks, clonally proliferated T cells against yet undefined antigens were induced by the vaccine. Vaccination with tumor antigen loaded DC remains an interesting experimental approach, but should rather be applied in the situation of minimal residual disease after systemic therapy. Additional depletion of regulatory cells might be a promising strategy.
Collapse
Affiliation(s)
- Anne Flörcken
- Department of Hematology; Oncology, and Tumor Immunology; Charité University Medicine Berlin; Campus Virchow- Klinikum; Berlin, Germany; Department of Hematology; Oncology, and Tumor Immunology; Charité University Medicine Berlin; Campus Benjamin Franklin; Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Pohla H, Buchner A, Stadlbauer B, Frankenberger B, Stevanovic S, Walter S, Frank R, Schwachula T, Olek S, Kopp J, Willimsky G, Stief CG, Hofstetter A, Pezzutto A, Blankenstein T, Oberneder R, Schendel DJ. High immune response rates and decreased frequencies of regulatory T cells in metastatic renal cell carcinoma patients after tumor cell vaccination. Mol Med 2013; 18:1499-508. [PMID: 23269976 DOI: 10.2119/molmed.2012.00221] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 12/19/2012] [Indexed: 11/06/2022] Open
Abstract
Our previously reported phase I clinical trial with the allogeneic gene-modified tumor cell line RCC-26/CD80/IL-2 showed that vaccination was well tolerated and feasible in metastatic renal cell carcinoma (RCC) patients. Substantial disease stabilization was observed in most patients despite a high tumor burden at study entry. To investigate alterations in immune responses that might contribute to this effect, we performed an extended immune monitoring that included analysis of reactivity against multiple antigens, cytokine/chemokine changes in serum and determination of the frequencies of immune suppressor cell populations, including natural regulatory T cells (nTregs) and myeloid-derived suppressor cell subsets (MDSCs). An overall immune response capacity to virus-derived control peptides was present in 100% of patients before vaccination. Vaccine-induced immune responses to tumor-associated antigens occurred in 75% of patients, demonstrating the potent immune stimulatory capacity of this generic vaccine. Furthermore, some patients reacted to peptide epitopes of antigens not expressed by the vaccine, showing that epitope-spreading occurred in vivo. Frequencies of nTregs and MDSCs were comparable to healthy donors at the beginning of study. A significant decrease of nTregs was detected after vaccination (p = 0.012). High immune response rates, decreased frequencies of nTregs and a mixed T helper 1/T helper 2 (T(H)1/T(H)2)-like cytokine pattern support the applicability of this RCC generic vaccine for use in combination therapies.
Collapse
Affiliation(s)
- Heike Pohla
- Laboratory of Tumor Immunology, LIFE Center, Ludwig Maximilians University, Munich, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Schoenbrunn A, Frentsch M, Kohler S, Keye J, Dooms H, Moewes B, Dong J, Loddenkemper C, Sieper J, Wu P, Romagnani C, Matzmohr N, Thiel A. A Converse 4-1BB and CD40 Ligand Expression Pattern Delineates Activated Regulatory T Cells (Treg) and Conventional T Cells Enabling Direct Isolation of Alloantigen-Reactive Natural Foxp3+ Treg. THE JOURNAL OF IMMUNOLOGY 2012; 189:5985-94. [DOI: 10.4049/jimmunol.1201090] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|