1
|
Adav SS, Ng KW. Recent omics advances in hair aging biology and hair biomarkers analysis. Ageing Res Rev 2023; 91:102041. [PMID: 37634889 DOI: 10.1016/j.arr.2023.102041] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/27/2023] [Accepted: 08/23/2023] [Indexed: 08/29/2023]
Abstract
Aging is a complex natural process that leads to a decline in physiological functions, which is visible in signs such as hair graying, thinning, and loss. Although hair graying is characterized by a loss of pigment in the hair shaft, the underlying mechanism of age-associated hair graying is not fully understood. Hair graying and loss can have a significant impact on an individual's self-esteem and self-confidence, potentially leading to mental health problems such as depression and anxiety. Omics technologies, which have applications beyond clinical medicine, have led to the discovery of candidate hair biomarkers and may provide insight into the complex biology of hair aging and identify targets for effective therapies. This review provides an up-to-date overview of recent omics discoveries, including age-associated alterations of proteins and metabolites in the hair shaft and follicle, and highlights the significance of hair aging and graying biomarker discoveries. The decline in hair follicle stem cell activity with aging decreased the regeneration capacity of hair follicles. Cellular senescence, oxidative damage and altered extracellular matrix of hair follicle constituents characterized hair follicle and hair shaft aging and graying. The review attempts to correlate the impact of endogenous and exogenous factors on hair aging. We close by discussing the main challenges and limitations of the field, defining major open questions and offering an outlook for future research.
Collapse
Affiliation(s)
- Sunil S Adav
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Kee Woei Ng
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore; Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, 637141, Singapore.
| |
Collapse
|
2
|
Stone RC, Aviv A, Paus R. Telomere Dynamics and Telomerase in the Biology of Hair Follicles and their Stem Cells as a Model for Aging Research. J Invest Dermatol 2021; 141:1031-1040. [PMID: 33509633 DOI: 10.1016/j.jid.2020.12.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/28/2020] [Accepted: 12/01/2020] [Indexed: 02/06/2023]
Abstract
In this review, we propose that telomere length dynamics play an important but underinvestigated role in the biology of the hair follicle (HF), a prototypic, cyclically remodeled miniorgan that shows an intriguing aging pattern in humans. Whereas the HF pigmentary unit ages quickly, its epithelial stem cell (ESC) component and regenerative capacity are surprisingly aging resistant. Telomerase-deficient mice with short telomeres display an aging phenotype of hair graying and hair loss that is attributed to impaired HF ESC mobilization. Yet, it remains unclear whether the function of telomerase and telomeres in murine HF biology translate to the human system. Therefore, we propose new directions for future telomere research of the human HF. Such research may guide the development of novel treatments for selected disorders of human hair growth or pigmentation (e.g., chemotherapy-induced alopecia, telogen effluvium, androgenetic alopecia, cicatricial alopecia, graying). It might also increase the understanding of the global role of telomeres in aging-related human disease.
Collapse
Affiliation(s)
- Rivka C Stone
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA.
| | - Abraham Aviv
- The Center of Human Development and Aging, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Ralf Paus
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA; Centre for Dermatology Research, University of Manchester, Manchester, United Kingdom; Monasterium Laboratory, Münster, Germany
| |
Collapse
|
3
|
Madonna R, Angelucci S, Di Giuseppe F, Doria V, Giricz Z, Görbe A, Ferdinandy P, De Caterina R. Proteomic analysis of the secretome of adipose tissue-derived murine mesenchymal cells overexpressing telomerase and myocardin. J Mol Cell Cardiol 2019; 131:171-186. [PMID: 31055035 DOI: 10.1016/j.yjmcc.2019.04.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 02/06/2019] [Accepted: 04/18/2019] [Indexed: 12/25/2022]
Abstract
RATIONALE Understanding mechanisms of the therapeutic effects of stem/progenitor cells, among which adipose tissue-derived mesenchymal stromal cells (AT-MSCs), has important implications for clinical use. Since the majority of such cells die within days or weeks after transplantation and do not persist in the transplanted organ or tissue, their effects appear to be largely mediated by paracrine signaling pathways, and are enhanced by overexpression of the antisenescent protein telomerase reverse transcriptase (TERT), and the anti-apoptotic transcription factor myocardin (MYOCD). AIM By a proteomic approach combining two-dimensional gel electrophoresis (2DE) with matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF/TOF) mass spectrometry, we aimed at analyzing how soluble and vesicular secretomes of aged murine AT-MSCs and their angiogenic function are modulated by the overexpression of TERT and MYOCD. METHODS We cultured murine mock-transduced AT-MSCs and "rejuvenated" AT-MSCs overexpressing TERT and MYOCD (rTMAT-MSCs) harvested from 1-year-old male C57BL/6 mice. We established proteomes from 3 mock-transduced AT-MSCs and rTMAT-MSCs cultures in serum-free conditions, as well as their corresponding conditioned medium (CM) and exosome-enriched fractions (Exo+). RESULTS AND CONCLUSIONS Proteomic analysis revealed a 2-fold increase of matrix metalloproteinase-2 (MMP-2) and its inhibitor metalloproteinase inhibitor 2 (TIMP2) in the CM - but not in the Exo + - of rTMAT-MSCs as compared to mock-transduced AT-MSCs. At the functional level, rTMAT-MSCs-CM, and - to a lesser extent - its Exo + fraction, increased tube formation of human vein endothelial cells (HUVECs), which could be blocked by anti-MMP2 and enhanced by anti-TIMP2 antibodies, respectively. Altogether, our results identify MMP2 and its inhibitor TIMP2 as novel candidates by which rTMAT-MSCs can support angiogenesis. Our strategy also illustrates the usefulness of comparative targeted proteomic approach to decipher molecular pathways underlying rTMAT-MSCs properties.
Collapse
Affiliation(s)
- Rosalinda Madonna
- Center of Aging Sciences and Translational Medicine - CESI-Met and Institute of Cardiology, "G. D'Annunzio" University, Chieti-Pescara, Chieti, Italy; Department of Internal Medicine, Cardiology, The University of Texas Health Science Center at Houston, Houston, Texas, United States; Department of Neurosciences, Imaging and Clinical Sciences, "G. d'Annunzio" University, Chieti-Pescara, Chieti, Italy.
| | - Stefania Angelucci
- Department of Medical, Oral & Biotechnological Sciences, Dentistry and Biotechnology, and Aging Research Center and Translational Medicine, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy; Stem TeCh Group, Via L Polacchi 13, Chieti, Italy
| | - Fabrizio Di Giuseppe
- Department of Medical, Oral & Biotechnological Sciences, Dentistry and Biotechnology, and Aging Research Center and Translational Medicine, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy; Stem TeCh Group, Via L Polacchi 13, Chieti, Italy
| | - Vanessa Doria
- Center of Aging Sciences and Translational Medicine - CESI-Met and Institute of Cardiology, "G. D'Annunzio" University, Chieti-Pescara, Chieti, Italy; Department of Neurosciences, Imaging and Clinical Sciences, "G. d'Annunzio" University, Chieti-Pescara, Chieti, Italy
| | - Zoltán Giricz
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary; Pharmahungary Group, Szeged, Hungary
| | - Anikó Görbe
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary; Pharmahungary Group, Szeged, Hungary
| | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary; Pharmahungary Group, Szeged, Hungary
| | - Raffaele De Caterina
- Center of Aging Sciences and Translational Medicine - CESI-Met and Institute of Cardiology, "G. D'Annunzio" University, Chieti-Pescara, Chieti, Italy; Institute of Cardiology, University of Pisa, Pisa, Italy; Department of Neurosciences, Imaging and Clinical Sciences, "G. d'Annunzio" University, Chieti-Pescara, Chieti, Italy.
| |
Collapse
|
4
|
HASHIMOTO K, ZAIMA N, SEKIGUCHI H, KUGO H, MIYAMOTO C, HOSHINO K, KAWASAKI N, SUTOH K, USUMI K, MORIYAMA T. Dietary DNA Attenuates the Degradation of Elastin Fibers in the Aortic Wall in Nicotine-Administrated Mice. J Nutr Sci Vitaminol (Tokyo) 2018; 64:271-276. [DOI: 10.3177/jnsv.64.271] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Keisuke HASHIMOTO
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Kindai University
| | - Nobuhiro ZAIMA
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Kindai University
- Agricultural Technology and Innovation Research Institute
| | | | - Hirona KUGO
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Kindai University
| | - Chie MIYAMOTO
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Kindai University
| | - Kiyoto HOSHINO
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Kindai University
| | - Natsumi KAWASAKI
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Kindai University
| | | | | | - Tatsuya MORIYAMA
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Kindai University
- Agricultural Technology and Innovation Research Institute
| |
Collapse
|
5
|
Feyen DA, Gaetani R, Doevendans PA, Sluijter JP. Stem cell-based therapy: Improving myocardial cell delivery. Adv Drug Deliv Rev 2016; 106:104-115. [PMID: 27133386 DOI: 10.1016/j.addr.2016.04.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 04/19/2016] [Accepted: 04/20/2016] [Indexed: 12/15/2022]
Abstract
Stem cell-based therapies form an exciting new class of medicine that attempt to provide the body with the building blocks required for the reconstruction of damaged organs. However, delivering cells to the correct location, while preserving their integrity and functional properties, is a complex undertaking. These challenges have led to the development of a highly dynamic interdisciplinary research field, wherein medical, biological, and chemical sciences have collaborated to develop strategies to overcome the physiological barriers imposed on the cellular therapeutics. In this respect, improving the acute retention and subsequent survival of stem cells is key to effectively increase the effect of the therapy, while proper tissue integration is imperative for stem cells to functionally replace lost cells in damaged organs. In this review, we will use the heart as an example to highlight the current knowledge of therapeutic stem cell utilization, the existing pitfalls and limitations, and the approaches that have been developed to overcome them.
Collapse
|
6
|
Balistreri CR, Madonna R, Melino G, Caruso C. The emerging role of Notch pathway in ageing: Focus on the related mechanisms in age-related diseases. Ageing Res Rev 2016; 29:50-65. [PMID: 27328278 DOI: 10.1016/j.arr.2016.06.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 06/10/2016] [Accepted: 06/16/2016] [Indexed: 12/13/2022]
Abstract
Notch signaling is an evolutionarily conserved pathway, which is fundamental for the development of all tissues, organs and systems of human body. Recently, a considerable and still growing number of studies have highlighted the contribution of Notch signaling in various pathological processes of the adult life, such as age-related diseases. In particular, the Notch pathway has emerged as major player in the maintenance of tissue specific homeostasis, through the control of proliferation, migration, phenotypes and functions of tissue cells, as well as in the cross-talk between inflammatory cells and the innate immune system, and in onset of inflammatory age-related diseases. However, until now there is a confounding evidence about the related mechanisms. Here, we discuss mechanisms through which Notch signaling acts in a very complex network of pathways, where it seems to have the crucial role of hub. Thus, we stress the possibility to use Notch pathway, the related molecules and pathways constituting this network, both as innovative (predictive, diagnostic and prognostic) biomarkers and targets for personalised treatments for age-related diseases.
Collapse
|
7
|
Jäger K, Walter M. Therapeutic Targeting of Telomerase. Genes (Basel) 2016; 7:genes7070039. [PMID: 27455328 PMCID: PMC4962009 DOI: 10.3390/genes7070039] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 06/16/2016] [Accepted: 06/24/2016] [Indexed: 12/20/2022] Open
Abstract
Telomere length and cell function can be preserved by the human reverse transcriptase telomerase (hTERT), which synthesizes the new telomeric DNA from a RNA template, but is normally restricted to cells needing a high proliferative capacity, such as stem cells. Consequently, telomerase-based therapies to elongate short telomeres are developed, some of which have successfully reached the stage I in clinical trials. Telomerase is also permissive for tumorigenesis and 90% of all malignant tumors use telomerase to obtain immortality. Thus, reversal of telomerase upregulation in tumor cells is a potential strategy to treat cancer. Natural and small-molecule telomerase inhibitors, immunotherapeutic approaches, oligonucleotide inhibitors, and telomerase-directed gene therapy are useful treatment strategies. Telomerase is more widely expressed than any other tumor marker. The low expression in normal tissues, together with the longer telomeres in normal stem cells versus cancer cells, provides some degree of specificity with low risk of toxicity. However, long term telomerase inhibition may elicit negative effects in highly-proliferative cells which need telomerase for survival, and it may interfere with telomere-independent physiological functions. Moreover, only a few hTERT molecules are required to overcome senescence in cancer cells, and telomerase inhibition requires proliferating cells over a sufficient number of population doublings to induce tumor suppressive senescence. These limitations may explain the moderate success rates in many clinical studies. Despite extensive studies, only one vaccine and one telomerase antagonist are routinely used in clinical work. For complete eradication of all subpopulations of cancer cells a simultaneous targeting of several mechanisms will likely be needed. Possible technical improvements have been proposed including the development of more specific inhibitors, methods to increase the efficacy of vaccination methods, and personalized approaches. Telomerase activation and cell rejuvenation is successfully used in regenerative medicine for tissue engineering and reconstructive surgery. However, there are also a number of pitfalls in the treatment with telomerase activating procedures for the whole organism and for longer periods of time. Extended cell lifespan may accumulate rare genetic and epigenetic aberrations that can contribute to malignant transformation. Therefore, novel vector systems have been developed for a 'mild' integration of telomerase into the host genome and loss of the vector in rapidly-proliferating cells. It is currently unclear if this technique can also be used in human beings to treat chronic diseases, such as atherosclerosis.
Collapse
Affiliation(s)
- Kathrin Jäger
- Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, Berlin 13353, Germany.
| | - Michael Walter
- Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, Berlin 13353, Germany.
- Labor Berlin-Charité Vivantes Services GmbH, Sylter Str. 2, Berlin 13353, Germany.
| |
Collapse
|
8
|
Liu Q, Sun Y, Lv Y, Le Z, Xin Y, Zhang P, Liu Y. TERT alleviates irradiation-induced late rectal injury by reducing hypoxia-induced ROS levels through the activation of NF-κB and autophagy. Int J Mol Med 2016; 38:785-93. [PMID: 27431814 PMCID: PMC4990283 DOI: 10.3892/ijmm.2016.2673] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 06/28/2016] [Indexed: 12/11/2022] Open
Abstract
The hypoxic microenvironment which is present following irradiation has been proven to promote radiation-induced injury to normal tissues. Previous studies have demonstrated that telomerase reverse transcriptase (TERT) is regulated by hypoxia, and that it plays a protective role in the process of wound repair. However, its effects on radiation-induced injury remain unclear. In this study, we examined the effects of human TERT on irradiation-induced late rectal injury in fibroblasts under hypoxic conditions. We also performed in vivo experiments. The rectums of 5-week-old female C57BL/6N mice were irradiated locally with a single dose of 25 Gy. We then examined the fibrotic changes using hematoxylin and eosin staining, and Masson's staining. The expression of hypoxia inducible factor-1α (HIF-1α) and TERT was analyzed by immunohistochemistry. In in vitro experiments, apoptosis, reactive oxygen species (ROS) production and the autophagy level induced by exposure to hypoxia were assayed in fibroblasts. The association between TERT, nuclear factor-κB (NF-κB) and the autophagy level was examined by western blot analysis. The antioxidant effects of TERT were examined on the basis of the ratio of glutathione to glutathione disulfide (GSH/GSSG) and mitochondrial membrane potential. Rectal fibrosis was induced significantly at 12 weeks following irradiation. The HIF-1α and TERT expression levels increased in the fibrotic region. The TERT-overexpressing fibroblasts (transfected with an hTERT-expressing lentiviral vector) exhibited reduced apoptosis, reduced ROS production, a higher autophagy level, a higher GSH/GSSG ratio and stable mitochondrial membrane potential compared with the fibroblasts in which TERT had been silenced by siRNA. NF-κB was activated by TERT, and the inhibition of TERT reduced the autophagy level in the fibroblasts. These results demonstrate that TERT decreases cellular ROS production, while maintaining mitochondrial function and protecting the cells from hypoxia-induced apoptosis, which may thus attenuate the effects of irradiation-induced hypoxia on rectal injury following irradiation.
Collapse
Affiliation(s)
- Qi Liu
- Cancer Research Institute, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| | - Yong Sun
- Cancer Research Institute, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| | - Yuefeng Lv
- Department of Obstetrics, Shiyan Taihe Hospital, Hubei University of Medcine, Shiyan, Hubei 442000, P.R. China
| | - Ziyu Le
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| | - Yuhu Xin
- Cancer Research Institute, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| | - Ping Zhang
- Cancer Research Institute, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| | - Yong Liu
- Cancer Research Institute, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| |
Collapse
|
9
|
Tahara Y, Yasuoka J, Sawada S, Sasaki Y, Akiyoshi K. Effective CpG DNA delivery using amphiphilic cycloamylose nanogels. Biomater Sci 2014. [PMID: 26218116 DOI: 10.1039/c4bm00293h] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Unmethylated CpG oligodeoxynucleotides induce inflammatory immune responses through cytokine production and have attracted increasing attention as an immunostimulator. However, there remains a challenging issue of the use of 'native CpG DNA'. In the present study, we prepared cationic nanometer-sized gels (nanogels) consisting of cycloamylose modified with cholesterol and diethylaminoethane to form hydrophobic cross-linking points and to add positively charged groups, respectively. The cationic nanogels and native CpG DNA formed nanometer-sized complexes. Complexes of native CpG DNA with cationic nanogels delivered native CpG DNA to macrophage-like cells and induced cytokine production. In addition, complexes of negative control oligonucleotides with cationic nanogels did not induce cytokine production, and the induction of cytokines using complexes of phosphorothioate-modified CpG with cationic nanogels was lower than that of native CpG DNA. These results suggest that the complex of native CpG DNA with cationic nanogels is a promising strategy for nucleic acid adjuvants.
Collapse
Affiliation(s)
- Y Tahara
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan.
| | | | | | | | | |
Collapse
|
10
|
Madonna R, Taylor DA, Geng YJ, De Caterina R, Shelat H, Perin EC, Willerson JT. Transplantation of mesenchymal cells rejuvenated by the overexpression of telomerase and myocardin promotes revascularization and tissue repair in a murine model of hindlimb ischemia. Circ Res 2013; 113:902-14. [PMID: 23780385 DOI: 10.1161/circresaha.113.301690] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
RATIONALE The number and function of stem cells decline with aging, reducing the ability of stem cells to contribute to endogenous repair processes. The repair capacity of stem cells in older individuals may be improved by genetically reprogramming the stem cells to exhibit delayed senescence and enhanced regenerative properties. OBJECTIVE We examined whether the overexpression of myocardin (MYOCD) and telomerase reverse transcriptase (TERT) enhanced the survival, growth, and myogenic differentiation of mesenchymal stromal cells (MSCs) isolated from adipose or bone marrow tissues of aged mice. We also examined the therapeutic efficacy of transplanted MSCs overexpressing MYOCD and TERT in a murine model of hindlimb ischemia. METHODS AND RESULTS MSCs from adipose or bone marrow tissues of young (1 month old) and aged (12 months old) male C57BL/6 and apolipoprotein E-null mice were transiently transduced with lentiviral vectors encoding TERT, MYOCD, or both TERT and MYOCD. Flow cytometry and bromodeoxyuridine cell proliferation assays showed that transduction with TERT and, to a lesser extent, MYOCD, increased MSC viability and proliferation. In colony-forming assays, MSCs overexpressing TERT and MYOCD were more clonogenic than mock-transduced MSCs. Fas-induced apoptosis was inhibited in MSCs overexpressing MYOCD or TERT. When compared with aged mock-transduced MSCs, aged MSCs overexpressing TERT, MYOCD, or both TERT and MYOCD increased myogenic marker expression, blood flow, and arteriogenesis when transplanted into the ischemic hindlimbs of apolipoprotein E-null mice. CONCLUSIONS The delivery of the TERT and MYOCD genes into MSCs may have therapeutic applications for restoring, or rejuvenating, aged MSCs from adipose and bone marrow tissues.
Collapse
|
11
|
Mistriotis P, Andreadis ST. Hair follicle: a novel source of multipotent stem cells for tissue engineering and regenerative medicine. TISSUE ENGINEERING PART B-REVIEWS 2013; 19:265-78. [PMID: 23157470 DOI: 10.1089/ten.teb.2012.0422] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The adult body harbors powerful reservoirs of stem cells that enable tissue regeneration under homeostatic conditions or in response to disease or injury. The hair follicle (HF) is a readily accessible mini organ within the skin and contains stem cells from diverse developmental origins that were shown to have surprisingly broad differentiation potential. In this review, we discuss the biology of the HF with particular emphasis on the various stem cell populations residing within the tissue. We summarize the existing knowledge on putative HF stem cell markers, the differentiation potential, and technologies to isolate and expand distinct stem cell populations. We also discuss the potential of HF stem cells for drug and gene delivery, tissue engineering, and regenerative medicine. We propose that the abundance of stem cells with broad differentiation potential and the ease of accessibility makes the HF an ideal source of stem cells for gene and cell therapies.
Collapse
Affiliation(s)
- Panagiotis Mistriotis
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, New York 14260-4200, USA
| | | |
Collapse
|
12
|
Samal SK, Dash M, Van Vlierberghe S, Kaplan DL, Chiellini E, van Blitterswijk C, Moroni L, Dubruel P. Cationic polymers and their therapeutic potential. Chem Soc Rev 2012; 41:7147-94. [PMID: 22885409 DOI: 10.1039/c2cs35094g] [Citation(s) in RCA: 471] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The last decade has witnessed enormous research focused on cationic polymers. Cationic polymers are the subject of intense research as non-viral gene delivery systems, due to their flexible properties, facile synthesis, robustness and proven gene delivery efficiency. Here, we review the most recent scientific advances in cationic polymers and their derivatives not only for gene delivery purposes but also for various alternative therapeutic applications. An overview of the synthesis and preparation of cationic polymers is provided along with their inherent bioactive and intrinsic therapeutic potential. In addition, cationic polymer based biomedical materials are covered. Major progress in the fields of drug and gene delivery as well as tissue engineering applications is summarized in the present review.
Collapse
Affiliation(s)
- Sangram Keshari Samal
- Polymer Chemistry & Biomaterials Research Group, Ghent University, Krijgslaan 281, S4-Bis, B-9000 Ghent, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|