1
|
Scuderi M, Dermol-Černe J, Batista Napotnik T, Chaigne S, Bernus O, Benoist D, Sigg DC, Rems L, Miklavčič D. Characterization of Experimentally Observed Complex Interplay between Pulse Duration, Electrical Field Strength, and Cell Orientation on Electroporation Outcome Using a Time-Dependent Nonlinear Numerical Model. Biomolecules 2023; 13:727. [PMID: 37238597 PMCID: PMC10216437 DOI: 10.3390/biom13050727] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 05/28/2023] Open
Abstract
Electroporation is a biophysical phenomenon involving an increase in cell membrane permeability to molecules after a high-pulsed electric field is applied to the tissue. Currently, electroporation is being developed for non-thermal ablation of cardiac tissue to treat arrhythmias. Cardiomyocytes have been shown to be more affected by electroporation when oriented with their long axis parallel to the applied electric field. However, recent studies demonstrate that the preferentially affected orientation depends on the pulse parameters. To gain better insight into the influence of cell orientation on electroporation with different pulse parameters, we developed a time-dependent nonlinear numerical model where we calculated the induced transmembrane voltage and pores creation in the membrane due to electroporation. The numerical results show that the onset of electroporation is observed at lower electric field strengths for cells oriented parallel to the electric field for pulse durations ≥10 µs, and cells oriented perpendicular for pulse durations ~100 ns. For pulses of ~1 µs duration, electroporation is not very sensitive to cell orientation. Interestingly, as the electric field strength increases beyond the onset of electroporation, perpendicular cells become more affected irrespective of pulse duration. The results obtained using the developed time-dependent nonlinear model are corroborated by in vitro experimental measurements. Our study will contribute to the process of further development and optimization of pulsed-field ablation and gene therapy in cardiac treatments.
Collapse
Affiliation(s)
- Maria Scuderi
- Faculty of Electrical Engineering, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Janja Dermol-Černe
- Faculty of Electrical Engineering, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Tina Batista Napotnik
- Faculty of Electrical Engineering, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Sebastien Chaigne
- INSERM, CRCTB, U 1045, IHU Liryc, University of Bordeaux, F-33000 Bordeaux, France
| | - Olivier Bernus
- INSERM, CRCTB, U 1045, IHU Liryc, University of Bordeaux, F-33000 Bordeaux, France
| | - David Benoist
- INSERM, CRCTB, U 1045, IHU Liryc, University of Bordeaux, F-33000 Bordeaux, France
| | - Daniel C. Sigg
- Medtronic, Cardiac Ablation Solutions, Minneapolis, MN 55105, USA
| | - Lea Rems
- Faculty of Electrical Engineering, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Damijan Miklavčič
- Faculty of Electrical Engineering, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
2
|
Kawajiri K, Ihara K, Sasano T. Gene therapy to terminate tachyarrhythmias. Expert Rev Cardiovasc Ther 2022; 20:431-442. [PMID: 35655364 DOI: 10.1080/14779072.2022.2085686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
INTRODUCTION To date, the treatment option for tachyarrhythmia is classified into drug therapy, catheter ablation, and implantable device therapy. However, the efficacy of the antiarrhythmic drugs is limited. Although the indication of catheter ablation is expanding, several fatal tachyarrhythmias are still refractory to ablation. Implantable cardioverter-defibrillator increases survival, but it is not a curable treatment. Therefore, a novel therapy for tachyarrhythmias refractory to present treatments is desired. Gene therapy is being developed as a promising candidate for this purpose, and basic research and translational research have been accumulated in recent years. AREAS COVERED This paper reviews the current state of gene therapy for arrhythmias, including susceptible arrhythmias, the route of administration to the heart, and the type of vector to use. We also discuss the latest progress in the technology of gene delivery and genome editing. EXPERT OPINION Gene therapy is one of the most promising technologies for arrhythmia treatment. However, additional technological innovation to achieve safe, localized, homogeneous, and long-lasting gene transfer is required for its clinical application.
Collapse
Affiliation(s)
- Kohei Kawajiri
- Department of Cardiovascular Medicine, Tokyo Medical and Dental University (TMDU), Tokyo 113-8519, Japan
| | - Kensuke Ihara
- Department of Bio-informational Pharmacology, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan
| | - Tetsuo Sasano
- Department of Cardiovascular Medicine, Tokyo Medical and Dental University (TMDU), Tokyo 113-8519, Japan
| |
Collapse
|
3
|
Boye C, Arpag S, Burcus N, Lundberg C, DeClemente S, Heller R, Francis M, Bulysheva A. Cardioporation enhances myocardial gene expression in rat heart. Bioelectrochemistry 2021; 142:107892. [PMID: 34371349 DOI: 10.1016/j.bioelechem.2021.107892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 07/13/2021] [Accepted: 07/16/2021] [Indexed: 11/19/2022]
Abstract
Damage from myocardial infarction (MI) and subsequent heart failure are serious public health concerns. Current clinical treatments and therapies to treat MI damage largely do not address the regeneration of cardiomyocytes. In a previous study, we established that it is possible to promote regeneration of cardiac muscle with vascular endothelial growth factor B gene delivery directly to the ischemic myocardium. In the current study we aim to optimize cardioporation parameters to increase expression efficiency by varying electrode configuration, applied voltage, pulse length, and plasmid vector size. By using a surface monopolar electrode, optimized pulsing conditions and reducing vector size, we were able to prevent ventricular fibrillation, increase survival, reduce tissue damage, and significantly increase gene expression levels.
Collapse
Affiliation(s)
- Carly Boye
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, United States
| | - Sezgi Arpag
- LifeNet Health, Virginia Beach, VA, United States
| | - Nina Burcus
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, United States
| | - Cathryn Lundberg
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, United States
| | - Scott DeClemente
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, United States
| | - Richard Heller
- Department of Medical Engineering, University of South Florida, Tampa, FL, United States
| | | | - Anna Bulysheva
- Department of Electrical and Computer Engineering, Old Dominion University, United States
| |
Collapse
|
4
|
Compact High-Voltage Pulse Generator for Pulsed Electric Field Applications: Lab-Scale Development. JOURNAL OF ELECTRICAL AND COMPUTER ENGINEERING 2020. [DOI: 10.1155/2020/6525483] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Square wave pulses have been identified as more lethal compared to exponential decay pulses in PEF applications. This is because of the on-time which is longer causes a formidable impact on the microorganisms in the food media. To have a reliable high-voltage pulse generator, a technique of capacitor discharge was employed. Four units of capacitor rated 100 μF 1.2 kV were connected in series to produce 25 μF 4.8 kV which were used to store the energy of approximately 200 J. The energy stored was discharged via HTS 181-01-C to the load in the range of nano to microseconds of pulse duration. The maximum voltage applied was limited to 4 kV because it is a lab-scale project. The electrical circuit diagram and the development procedure, as well as experimental results, are presented.
Collapse
|
5
|
Dermol-Černe J, Batista Napotnik T, Reberšek M, Miklavčič D. Short microsecond pulses achieve homogeneous electroporation of elongated biological cells irrespective of their orientation in electric field. Sci Rep 2020; 10:9149. [PMID: 32499601 PMCID: PMC7272635 DOI: 10.1038/s41598-020-65830-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 04/27/2020] [Indexed: 12/21/2022] Open
Abstract
In gene electrotransfer and cardiac ablation with irreversible electroporation, treated muscle cells are typically of elongated shape and their orientation may vary. Orientation of cells in electric field has been reported to affect electroporation, and hence electrodes placement and pulse parameters choice in treatments for achieving homogeneous effect in tissue is important. We investigated how cell orientation influences electroporation with respect to different pulse durations (ns to ms range), both experimentally and numerically. Experimentally detected electroporation (evaluated separately for cells parallel and perpendicular to electric field) via Ca2+ uptake in H9c2 and AC16 cardiomyocytes was numerically modeled using the asymptotic pore equation. Results showed that cell orientation affects electroporation extent: using short, nanosecond pulses, cells perpendicular to electric field are significantly more electroporated than parallel (up to 100-times more pores formed), and with long, millisecond pulses, cells parallel to electric field are more electroporated than perpendicular (up to 1000-times more pores formed). In the range of a few microseconds, cells of both orientations were electroporated to the same extent. Using pulses of a few microseconds lends itself as a new possible strategy in achieving homogeneous electroporation in tissue with elongated cells of different orientation (e.g. electroporation-based cardiac ablation).
Collapse
Affiliation(s)
- Janja Dermol-Černe
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška cesta 25, 1000, Ljubljana, Slovenia
| | - Tina Batista Napotnik
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška cesta 25, 1000, Ljubljana, Slovenia
| | - Matej Reberšek
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška cesta 25, 1000, Ljubljana, Slovenia
| | - Damijan Miklavčič
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška cesta 25, 1000, Ljubljana, Slovenia.
| |
Collapse
|
6
|
Trivedi A, Hoffman J, Arora R. Gene therapy for atrial fibrillation - How close to clinical implementation? Int J Cardiol 2019; 296:177-183. [PMID: 31439427 PMCID: PMC6907402 DOI: 10.1016/j.ijcard.2019.07.057] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 07/03/2019] [Accepted: 07/16/2019] [Indexed: 12/16/2022]
Abstract
In this review we examine the current state of gene therapy for the treatment of cardiac arrhythmias. We describe advances and challenges in successfully creating and incorporating gene vectors into the myocardium. After summarizing the current scientific research in gene transfer technology we then focus on the most promising areas of gene therapy, the treatment of atrial fibrillation and ventricular tachyarrhythmias. We review the scientific literature to determine how gene therapy could potentially be used to treat patients with cardiac arrhythmias.
Collapse
Affiliation(s)
- Amar Trivedi
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University - Feinberg School of Medicine, United States of America
| | - Jacob Hoffman
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University - Feinberg School of Medicine, United States of America
| | - Rishi Arora
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University - Feinberg School of Medicine, United States of America.
| |
Collapse
|
7
|
Trivedi A, Arora R. Gene Therapy for the Treatment of Cardiac Arrhythmias: Current and Emerging Applications. J Innov Card Rhythm Manag 2018; 9:3440-3445. [PMID: 32477792 PMCID: PMC7252777 DOI: 10.19102/icrm.2018.091204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 06/25/2018] [Indexed: 01/16/2023] Open
Abstract
In this review, we examine the current state of gene therapy for the treatment of cardiac arrhythmias. We describe advances and challenges in successfully creating and incorporating gene vectors into the myocardium. After summarizing the current scientific research in gene transfer technology, we then focus on the most promising areas of gene therapy at this time, which is the treatment of atrial fibrillation and ventricular tachyarrhythmias. We also review the scientific literature to determine how gene therapy could potentially be used to treat patients with cardiac arrhythmias.
Collapse
Affiliation(s)
- Amar Trivedi
- Department of Cardiology, Northwestern Memorial Hospital, Chicago, IL, USA
| | - Rishi Arora
- Department of Cardiology, Northwestern Memorial Hospital, Chicago, IL, USA
| |
Collapse
|
8
|
Farraha M, Kumar S, Chong J, Cho HC, Kizana E. Gene Therapy Approaches to Biological Pacemakers. J Cardiovasc Dev Dis 2018; 5:jcdd5040050. [PMID: 30347716 PMCID: PMC6306875 DOI: 10.3390/jcdd5040050] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 10/16/2018] [Accepted: 10/17/2018] [Indexed: 01/01/2023] Open
Abstract
Bradycardia arising from pacemaker dysfunction can be debilitating and life threatening. Electronic pacemakers serve as effective treatment options for pacemaker dysfunction. They however present their own limitations and complications. This has motivated research into discovering more effective and innovative ways to treat pacemaker dysfunction. Gene therapy is being explored for its potential to treat various cardiac conditions including cardiac arrhythmias. Gene transfer vectors with increasing transduction efficiency and biosafety have been developed and trialed for cardiovascular disease treatment. With an improved understanding of the molecular mechanisms driving pacemaker development, several gene therapy targets have been identified to generate the phenotypic changes required to correct pacemaker dysfunction. This review will discuss the gene therapy vectors in use today along with methods for their delivery. Furthermore, it will evaluate several gene therapy strategies attempting to restore biological pacing, having the potential to emerge as viable therapies for pacemaker dysfunction.
Collapse
Affiliation(s)
- Melad Farraha
- Centre for Heart Research, the Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW 2145, Australia.
- Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia.
| | - Saurabh Kumar
- Department of Cardiology, Westmead Hospital, Westmead, NSW 2145, Australia.
| | - James Chong
- Centre for Heart Research, the Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW 2145, Australia.
- Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia.
- Department of Cardiology, Westmead Hospital, Westmead, NSW 2145, Australia.
| | - Hee Cheol Cho
- Departments of Pediatrics and Biomedical Engineering, Emory University, Atlanta, GA 30322, USA.
| | - Eddy Kizana
- Centre for Heart Research, the Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW 2145, Australia.
- Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia.
- Department of Cardiology, Westmead Hospital, Westmead, NSW 2145, Australia.
| |
Collapse
|
9
|
Bulysheva AA, Burcus N, Lundberg CG, Francis MP, Heller R. VEGF-B electrotransfer mediated gene therapy induces cardiomyogenesis in a rat model of cardiac ischemia. Bioelectrochemistry 2018; 124:105-111. [PMID: 30015266 DOI: 10.1016/j.bioelechem.2018.07.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 05/22/2018] [Accepted: 07/06/2018] [Indexed: 12/22/2022]
Abstract
Atherosclerosis induced myocardial infarction (MI) continues to be a major public health concern. Regenerative therapies that restore cardiac muscle cells are largely absent. The rate of cardiomyogenesis in adults is insufficient to compensate for MI damage. In this study, we explored the capacity of a gene therapy approach to promote cardiomyogenesis. We hypothesized that VEGF-B, critical during fetal heart development, could promote cardiomyogenesis in adult ischemic hearts. Gene electrotransfer (GET), a physical method of in vivo gene delivery, was adapted to the rat model of MI. Favorable pulsing parameters were then used for delivery of pVEGF-B and compared to a sham control in terms of infarct size, cardiomyocyte proliferation and presence of new cardiomyocytes. Ki67 immunoreactivity was used for proliferation analysis. Newly synthetized DNA was labeled with BrdU to identify new cells post-infarction. Cardiac troponin co-localization indicated proliferating and new cardiomyocytes histologically. Eight weeks post-treatment, GET pVEGF-B treated hearts had significantly smaller infarcts than the sham control group (p < 0.04). Proliferating and new cardiomyocytes were only present in the GET of pVEGF-B group, and absent in the controls. In summary, GET pVEGF-B promoted cardiomyogenesis post-MI, demonstrating for the first time direct evidence of myocardial regeneration post-infarction.
Collapse
Affiliation(s)
- Anna A Bulysheva
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, United States of America.
| | - Nina Burcus
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, United States of America
| | - Cathryn G Lundberg
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, United States of America
| | - Michael P Francis
- Embody LLC, Norfolk, VA, United States of America; Eastern Virginia Medical School, Norfolk, VA, United States of America
| | - Richard Heller
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, United States of America; School of Medical Diagnostics and Translational Sciences, College of Health and Sciences, Old Dominion University, Norfolk, VA, United States of America
| |
Collapse
|
10
|
Choi HJ, Lee HB, Jung S, Park HK, Jo W, Cho SM, Kim WJ, Son WC. Development of a Mouse Model of Prostate Cancer Using the Sleeping Beauty Transposon and Electroporation. Molecules 2018; 23:molecules23061360. [PMID: 29874846 PMCID: PMC6100630 DOI: 10.3390/molecules23061360] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 05/20/2018] [Accepted: 06/01/2018] [Indexed: 01/12/2023] Open
Abstract
The Sleeping Beauty (SB) transposon system is non-viral and uses insertional mutagenesis, resulting in the permanent expression of transferred genes. Although the SB transposon is a useful method for establishing a mouse tumor model, there has been difficulty in using this method to generate tumors in the prostate. In the present study, electroporation was used to enhance the transfection efficiency of the SB transposon. To generate tumors, three constructs (a c-Myc expression cassette, a HRAS (HRas proto-oncogene, GTPase) expression cassette and a shRNA against p53) contained within the SB transposon plasmids were directly injected into the prostate. Electroporation was conducted on the injection site after the injection of the DNA plasmid. Following the tumorigenesis, the tumors were monitored by animal PET imaging and identified by gross observation. After this, the tumors were characterized by using histological and immunohistochemical techniques. The expression of the targeted genes was analyzed by Real-Time qRT-PCR. All mice subjected to the injection were found to have prostate tumors, which was supported by PSA immunohistochemistry. To our knowledge, this is the first demonstration of tumor induction in the mouse prostate using the electroporation-enhanced SB transposon system in combination with c-Myc, HRAS and p53. This model serves as a valuable resource for the future development of SB-induced mouse models of cancer.
Collapse
Affiliation(s)
- Hyun-Ji Choi
- Asan Institute for Life Sciences, Asan Medical Center, Songpa-gu, 05505 Seoul, Korea.
- Department of Pathology, University of Ulsan College of Medicine, Songpa-gu, 05505 Seoul, Korea.
| | - Han-Byul Lee
- Asan Institute for Life Sciences, Asan Medical Center, Songpa-gu, 05505 Seoul, Korea.
- Department of Pathology, University of Ulsan College of Medicine, Songpa-gu, 05505 Seoul, Korea.
| | - Sunyoung Jung
- Asan Institute for Life Sciences, Asan Medical Center, Songpa-gu, 05505 Seoul, Korea.
- Department of Pathology, University of Ulsan College of Medicine, Songpa-gu, 05505 Seoul, Korea.
| | - Hyun-Kyu Park
- Asan Institute for Life Sciences, Asan Medical Center, Songpa-gu, 05505 Seoul, Korea.
- Department of Pathology, University of Ulsan College of Medicine, Songpa-gu, 05505 Seoul, Korea.
| | - Woori Jo
- Asan Institute for Life Sciences, Asan Medical Center, Songpa-gu, 05505 Seoul, Korea.
- Department of Pathology, University of Ulsan College of Medicine, Songpa-gu, 05505 Seoul, Korea.
| | - Sung-Min Cho
- Asan Institute for Life Sciences, Asan Medical Center, Songpa-gu, 05505 Seoul, Korea.
- Department of Pathology, University of Ulsan College of Medicine, Songpa-gu, 05505 Seoul, Korea.
| | - Woo-Jin Kim
- Department of Pathology, University of Ulsan College of Medicine, Songpa-gu, 05505 Seoul, Korea.
| | - Woo-Chan Son
- Asan Institute for Life Sciences, Asan Medical Center, Songpa-gu, 05505 Seoul, Korea.
- Department of Pathology, University of Ulsan College of Medicine, Songpa-gu, 05505 Seoul, Korea.
| |
Collapse
|
11
|
Abstract
Atrial fibrillation is a prominent cause of morbidity and mortality in developed countries. Treatment strategies center on controlling atrial rhythm or ventricular rate. The need for anticoagulation is an independent decision from the rate versus rhythm control debate. This review discusses novel biological strategies that have potential utility in the management of atrial fibrillation. Rate controlling strategies predominately rely on G-protein gene transfer to enhance cholinergic or suppress adrenergic signaling pathways in the atrioventricular node. Calcium channel blocking gene therapy and fibrosis enhancing cell therapy have also been reported. Rhythm controlling strategies focus on disrupting reentry by enhancing conduction or suppressing repolarization. Efforts to suppress inflammation and apoptosis are also under study. Resistance to blood clot formation has been shown with thrombomodulin. These strategies are in various stages of preclinical development.
Collapse
|
12
|
Farraha M, Chong JJ, Kizana E. Therapeutic Prospects of Gene Therapy for Atrial Fibrillation. Heart Lung Circ 2016; 25:808-13. [DOI: 10.1016/j.hlc.2016.04.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 04/17/2016] [Indexed: 01/01/2023]
|
13
|
Abstract
Electrotransfection has been widely used as a versatile, non-viral method for gene delivery. However, electrotransfection efficiency (eTE) is still low and unstable, compared to viral methods. To understand potential mechanisms of the unstable eTE, we investigated effects of electrode materials on eTE and viability of mammalian cells. Data from the study showed that commonly used metal electrodes generated a significant amount of particles during application of pulsed electric field, which could cause precipitation of plasmid DNA from solutions, thereby reducing eTE. For aluminum electrodes, the particles were composed of aluminum hydroxide and/or aluminum oxide, and their median sizes were 300 to 400 nm after the buffer being pulsed 4 to 8 times at 400 V cm-1, 5 ms duration and 1 Hz frequency. The precipitation could be prevented by using carbon (graphite) electrodes in electrotransfection experiments. The use of carbon electrodes also increased cell viability. Taken together, the study suggested that electrodes made of inner materials were desirable for electrotransfection of cells in vitro.
Collapse
|
14
|
Bulysheva AA, Hargrave B, Burcus N, Lundberg CG, Murray L, Heller R. Vascular endothelial growth factor-A gene electrotransfer promotes angiogenesis in a porcine model of cardiac ischemia. Gene Ther 2016; 23:649-656. [PMID: 27078083 PMCID: PMC4974143 DOI: 10.1038/gt.2016.35] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 03/30/2016] [Accepted: 04/05/2016] [Indexed: 02/06/2023]
Abstract
This study aimed to assess safety and therapeutic potential of gene electrotransfer as a method for delivery of plasmid encoding vascular endothelial growth factor A to ischemic myocardium in a porcine model. Myocardial ischemia was induced by surgically occluding the left anterior descending coronary artery in swine. Gene electrotransfer following plasmid encoding vascular endothelial growth factor A injection was performed at four sites in the ischemic region. Control groups either received injections of the plasmid without electrotransfer or injections of saline vehicle. Animals were monitored for seven weeks and hearts were evaluated for angiogenesis, myocardial infarct size, and left ventricular contractility. Arteriograms suggest growth of new arteries as early as two weeks post treatment in electrotransfer animals. There is a significant reduction of infarct area and left ventricular contractility is improved in gene electrotransfer treated group compared to controls. There was no significant difference in mortality of animals treated with gene electrotransfer of plasmid encoding vascular endothelial growth factor A from control groups. Gene delivery of plasmid encoding vascular endothelial growth factor A to ischemic myocardium in a porcine model can be accomplished safely with potential for myocardial repair and regeneration.
Collapse
Affiliation(s)
- Anna A Bulysheva
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA
| | - Barbara Hargrave
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA.,School of Medical Diagnostics and Translational Sciences, College of Health and Sciences, Old Dominion University, Norfolk, VA
| | - Nina Burcus
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA
| | - Cathryn G Lundberg
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA
| | | | - Richard Heller
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA.,School of Medical Diagnostics and Translational Sciences, College of Health and Sciences, Old Dominion University, Norfolk, VA
| |
Collapse
|
15
|
Matkar PN, Leong-Poi H, Singh KK. Cardiac gene therapy: are we there yet? Gene Ther 2016; 23:635-48. [DOI: 10.1038/gt.2016.43] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 04/13/2016] [Accepted: 04/21/2016] [Indexed: 01/19/2023]
|
16
|
Feng XJ, Wu C, Yan GF, Liu QJ, Liu JX, Hao J, Xing LL, Yang M, Liu SX. TLR2 Plays a Critical Role in HMGB1-Induced Glomeruli Cell Proliferation Through the FoxO1 Signaling Pathway in Lupus Nephritis. J Interferon Cytokine Res 2016; 36:258-66. [PMID: 26799193 DOI: 10.1089/jir.2015.0082] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The objective of this study was to examine the role and possible mechanisms of toll-like receptor 2 (TLR2) in high-mobility group box chromosomal protein 1 (HMGB1)-induced mouse mesangial cell (MMC) proliferation and glomeruli proliferation of MRL/Fas(lpr) mice. First, the expression of proliferating cell nuclear antigen (PCNA), TLR2 and Forkhead box protein O1 (FoxO1) messenger RNA (mRNA) and protein in the glomeruli of MRL/Fas(lpr) mice was quantified, and the correlation with cell proliferation of glomeruli was analyzed. Then, lipopolysaccharide (LPS), TLR2 neutralization antibody, and small hairpin TLR2 (shTLR2) were used to confirm the role of TLR2 in HMGB1-induced MMC proliferation. Furthermore, wild-type FoxO1 (WT-FoxO1) vector was used to investigate the effect of FoxO1 pathway on HMGB1-induced MMC proliferation. Finally, electroporation was used to knockdown TLR2 in the glomeruli of MRL/Fas(lpr) mice, and renal function, FoxO1, and PCNA expression were detected. The results showed that the TLR2 expression was upregulated and FoxO1 expression was decreased in the glomeruli of MRL/Fas(lpr) mice, and these effects were significantly correlated with cell proliferation of the glomeruli. In vitro, the TLR2 neutralization antibody and the WT-FoxO1 vector, both reduced the MMC proliferation levels induced by HMGB1. The TLR2 neutralization antibody also blocked the HMGB1-dependent activation of the FoxO1 pathway and cell proliferation. In addition, transfection with shTLR2 decreased the proliferation levels and PCNA expression induced by HMGB1. In vivo, treatment with shTLR2 significantly reduced the PCNA expression in the glomeruli of MRL/Fas(lpr) mice and improved renal function. In addition, treatment with shTLR2 or blocking of TLR2 also reduced the translocation of FoxO1. Thus, TLR2 plays a critical role in HMGB1-induced glomeruli cell proliferation through the FoxO1 signaling pathway in lupus nephritis.
Collapse
Affiliation(s)
- Xiao-juan Feng
- 1 Department of Pathology, Hebei Key Laboratory of Nephrology, Hebei Medical University , Shijiazhuang, China
| | - Chao Wu
- 1 Department of Pathology, Hebei Key Laboratory of Nephrology, Hebei Medical University , Shijiazhuang, China
| | - Gui-fang Yan
- 2 Department of Rehabilitation, Hebei General Hospital , Shijiazhuang, China
| | - Qing-juan Liu
- 1 Department of Pathology, Hebei Key Laboratory of Nephrology, Hebei Medical University , Shijiazhuang, China
| | - Jin-xi Liu
- 1 Department of Pathology, Hebei Key Laboratory of Nephrology, Hebei Medical University , Shijiazhuang, China
| | - Jun Hao
- 1 Department of Pathology, Hebei Key Laboratory of Nephrology, Hebei Medical University , Shijiazhuang, China
| | - Ling-ling Xing
- 3 Department of Nephrology, the 2nd Hospital of Hebei Medical University , Shijiazhuang, China
| | - Min Yang
- 4 Department of Pathology, Shijiazhuang People's Medical College , Shijiazhuang, China
| | - Shu-xia Liu
- 1 Department of Pathology, Hebei Key Laboratory of Nephrology, Hebei Medical University , Shijiazhuang, China
| |
Collapse
|
17
|
Xie F, Varghese F, Pakhomov AG, Semenov I, Xiao S, Philpott J, Zemlin C. Ablation of Myocardial Tissue With Nanosecond Pulsed Electric Fields. PLoS One 2015; 10:e0144833. [PMID: 26658139 PMCID: PMC4687652 DOI: 10.1371/journal.pone.0144833] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Accepted: 11/24/2015] [Indexed: 01/28/2023] Open
Abstract
Background Ablation of cardiac tissue is an essential tool for the treatment of arrhythmias, particularly of atrial fibrillation, atrial flutter, and ventricular tachycardia. Current ablation technologies suffer from substantial recurrence rates, thermal side effects, and long procedure times. We demonstrate that ablation with nanosecond pulsed electric fields (nsPEFs) can potentially overcome these limitations. Methods We used optical mapping to monitor electrical activity in Langendorff-perfused New Zealand rabbit hearts (n = 12). We repeatedly inserted two shock electrodes, spaced 2–4 mm apart, into the ventricles (through the entire wall) and applied nanosecond pulsed electric fields (nsPEF) (5–20 kV/cm, 350 ns duration, at varying pulse numbers and frequencies) to create linear lesions of 12–18 mm length. Hearts were stained either with tetrazolium chloride (TTC) or propidium iodide (PI) to determine the extent of ablation. Some stained lesions were sectioned to obtain the three-dimensional geometry of the ablated volume. Results In all animals (12/12), we were able to create nonconducting lesions with less than 2 seconds of nsPEF application per site and minimal heating (< 0.2°C) of the tissue. The geometry of the ablated volume was smoother and more uniform throughout the wall than typical for RF ablation. The width of the lesions could be controlled up to 6 mm via the electrode spacing and the shock parameters. Conclusions Ablation with nsPEFs is a promising alternative to radiofrequency (RF) ablation of AF. It may dramatically reduce procedure times and produce more consistent lesion thickness than RF ablation.
Collapse
Affiliation(s)
- Fei Xie
- Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, Virginia, United States of America.,Center for Bioelectrics, Old Dominion University, Norfolk, Virginia, United States of America
| | - Frency Varghese
- Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, Virginia, United States of America.,Center for Bioelectrics, Old Dominion University, Norfolk, Virginia, United States of America
| | - Andrei G Pakhomov
- Center for Bioelectrics, Old Dominion University, Norfolk, Virginia, United States of America
| | - Iurii Semenov
- Center for Bioelectrics, Old Dominion University, Norfolk, Virginia, United States of America
| | - Shu Xiao
- Center for Bioelectrics, Old Dominion University, Norfolk, Virginia, United States of America
| | - Jonathan Philpott
- Department of Surgery, Eastern Virginia Medical School, Norfolk, Virginia, United States of America
| | - Christian Zemlin
- Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, Virginia, United States of America.,Center for Bioelectrics, Old Dominion University, Norfolk, Virginia, United States of America
| |
Collapse
|
18
|
Wei Z, Huang Y, Zhao D, Hu Z, Li Z, Liang Z. A pliable electroporation patch (ep-Patch) for efficient delivery of nucleic acid molecules into animal tissues with irregular surface shapes. Sci Rep 2015; 5:7618. [PMID: 25557092 PMCID: PMC5154598 DOI: 10.1038/srep07618] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 12/03/2014] [Indexed: 01/08/2023] Open
Abstract
Delivery of nucleic acids into animal tissues by electroporation is an appealing approach for various types of gene therapy, but efficiency of existing methodsis not satisfactory. Here we present the validation of novel electroporation patch (ep-Patch) for efficient delivery of DNA and siRNA into mouse tissues. Using micromachining technology, closely spaced gold electrodes were made on the pliable parylene substrate to form a patch-like electroporation metrics. It enabled large coverage of the target tissues and close surface contact between the tissues and electrodes, thus providing a uniform electric field to deliver nucleic acids into tissues, even beneath intact skin. Using this ep-Patch for efficiently delivery of both DNA and siRNA, non-invasive electroporation of healthy mouse muscle tissue was successfully achieved. Delivery of these nucleic acids was performed to intact tumors with satisfactory results. Silencing of tumor genes using the ep-Patch was also demonstrated on mice. This pliable electroporation patch method constitutes a novel way of in vivo delivery of siRNA and DNA to certain tissues or organs to circumvent the disadvantages of existing methodologies for in vivo delivery of nucleic acid molecules.
Collapse
Affiliation(s)
- Zewen Wei
- National Center for Nanoscience and Technology, Beijing 100190, PR China
| | - Yuanyu Huang
- Institute of Molecular Medicine, Peking University, Beijing 100871, PR China
| | - Deyao Zhao
- Institute of Molecular Medicine, Peking University, Beijing 100871, PR China
| | - Zhiyuan Hu
- National Center for Nanoscience and Technology, Beijing 100190, PR China
| | - Zhihong Li
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Institute of Microelectronics, Peking University, Beijing 100871, PR China
| | - Zicai Liang
- Institute of Molecular Medicine, Peking University, Beijing 100871, PR China
| |
Collapse
|
19
|
Hargrave B, Strange R, Navare S, Stratton M, Burcus N, Murray L, Lundberg C, Bulysheva A, Li F, Heller R. Gene electro transfer of plasmid encoding vascular endothelial growth factor for enhanced expression and perfusion in the ischemic swine heart. PLoS One 2014; 9:e115235. [PMID: 25545364 PMCID: PMC4278858 DOI: 10.1371/journal.pone.0115235] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 11/20/2014] [Indexed: 11/19/2022] Open
Abstract
Myocardial ischemia can damage heart muscle and reduce the heart's pumping efficiency. This study used an ischemic swine heart model to investigate the potential for gene electro transfer of a plasmid encoding vascular endothelial growth factor for improving perfusion and, thus, for reducing cardiomyopathy following acute coronary syndrome. Plasmid expression was significantly greater in gene electro transfer treated tissue compared to injection of plasmid encoding vascular endothelial growth factor alone. Higher gene expression was also seen in ischemic versus non-ischemic groups with parameters 20 Volts (p<0.03), 40 Volts (p<0.05), and 90 Volts (p<0.05), but not with 60 Volts (p<0.09) while maintaining a pulse width of 20 milliseconds. The group with gene electro transfer of plasmid encoding vascular endothelial growth factor had increased perfusion in the area at risk compared to control groups. Troponin and creatine kinase increased across all groups, suggesting equivalent ischemia in all groups prior to treatment. Echocardiography was used to assess ejection fraction, cardiac output, stroke volume, left ventricular end diastolic volume, and left ventricular end systolic volume. No statistically significant differences in these parameters were detected during a 2-week time period. However, directional trends of these variables were interesting and offer valuable information about the feasibility of gene electro transfer of vascular endothelial growth factor in the ischemic heart. The results demonstrate that gene electro transfer can be applied safely and can increase perfusion in an ischemic area. Additional study is needed to evaluate potential efficacy.
Collapse
Affiliation(s)
- Barbara Hargrave
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, Virginia, United States of America
- School of Medical Diagnostics and Translational Sciences, College of Health Sciences, Old Dominion University, Norfolk, Virginia, United States of America
| | - Robert Strange
- Naval Medical Center Portsmouth, Portsmouth, Virginia, United States of America
| | - Sagar Navare
- Naval Medical Center Portsmouth, Portsmouth, Virginia, United States of America
| | - Michael Stratton
- Naval Medical Center Portsmouth, Portsmouth, Virginia, United States of America
| | - Nina Burcus
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, Virginia, United States of America
| | - Len Murray
- Sobran, Inc. Fairfax, Virginia, United States of America
| | - Cathryn Lundberg
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, Virginia, United States of America
| | - Anna Bulysheva
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, Virginia, United States of America
| | - Fanying Li
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, Virginia, United States of America
| | - Richard Heller
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, Virginia, United States of America
- School of Medical Diagnostics and Translational Sciences, College of Health Sciences, Old Dominion University, Norfolk, Virginia, United States of America
| |
Collapse
|
20
|
Abstract
Electroporation has been used extensively to transfer DNA to bacteria, yeast, and mammalian cells in culture for the past 30 years. Over this time, numerous advances have been made, from using fields to facilitate cell fusion, delivery of chemotherapeutic drugs to cells and tissues, and most importantly, gene and drug delivery in living tissues from rodents to man. Electroporation uses electrical fields to transiently destabilize the membrane allowing the entry of normally impermeable macromolecules into the cytoplasm. Surprisingly, at the appropriate field strengths, the application of these fields to tissues results in little, if any, damage or trauma. Indeed, electroporation has even been used successfully in human trials for gene delivery for the treatment of tumors and for vaccine development. Electroporation can lead to between 100 and 1000-fold increases in gene delivery and expression and can also increase both the distribution of cells taking up and expressing the DNA as well as the absolute amount of gene product per cell (likely due to increased delivery of plasmids into each cell). Effective electroporation depends on electric field parameters, electrode design, the tissues and cells being targeted, and the plasmids that are being transferred themselves. Most importantly, there is no single combination of these variables that leads to greatest efficacy in every situation; optimization is required in every new setting. Electroporation-mediated in vivo gene delivery has proven highly effective in vaccine production, transgene expression, enzyme replacement, and control of a variety of cancers. Almost any tissue can be targeted with electroporation, including muscle, skin, heart, liver, lung, and vasculature. This chapter will provide an overview of the theory of electroporation for the delivery of DNA both in individual cells and in tissues and its application for in vivo gene delivery in a number of animal models.
Collapse
Affiliation(s)
- Jennifer L Young
- Department of Pediatrics, University of Rochester, Rochester, NY, USA
| | - David A Dean
- Departments of Pediatrics and Biomedical Engineering, University of Rochester, Rochester, NY, USA
| |
Collapse
|
21
|
Abstract
Plasmid or non-viral gene therapy offers an alternative to classic viral gene delivery that negates the need for a biological vector. In this case, delivery is enhanced by a variety of approaches including lipid or polymer conjugation, particle-mediated delivery, hydrodynamic delivery, ultrasound or electroporation. Electroporation was originally used as a laboratory tool to deliver DNA to bacterial and mammalian cells in culture. Electrode development allowed this technique to be modified for in vivo use. After preclinical therapeutic studies, clinical delivery of cell impermeant chemotherapeutic agents progressed to clinical delivery of plasmid DNA. One huge benefit of this delivery technique is its malleability. The pulse protocol used for plasmid delivery can be fine-tuned to control the levels and duration of subsequent transgene expression. This fine-tuning allows transgene expression to be tailored to each therapeutic application. Effective and appropriate expression induces the desired clinical response that is a critical component for any gene therapy. This chapter focuses on clinical trials using in vivo electroporation or electrotransfer as a plasmid delivery method. The first clinical trial was initiated in 2004, and now more than fifty trials use electric fields for gene delivery. Safety and tolerability has been demonstrated by several groups, and early clinical efficacy results are promising in both cancer therapeutic and infectious disease vaccine applications.
Collapse
Affiliation(s)
- Richard Heller
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, USA; School of Medical Diagnostics and Translational Sciences, College of Health Sciences, Old Dominion University, Norfolk, VA, USA
| | - Loree C Heller
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, USA; School of Medical Diagnostics and Translational Sciences, College of Health Sciences, Old Dominion University, Norfolk, VA, USA
| |
Collapse
|
22
|
Liu Z, Donahue JK. The Use of Gene Therapy for Ablation of Atrial Fibrillation. Arrhythm Electrophysiol Rev 2014; 3:139-44. [PMID: 26835081 DOI: 10.15420/aer.2014.3.3.139] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 10/17/2014] [Indexed: 12/19/2022] Open
Abstract
Atrial fibrillation is the most common clinically significant cardiac arrhythmia, increasing the risk of stroke, heart failure and morbidity and mortality. Current therapies, including rate control and rhythm control by antiarrhythmic drugs or ablation therapy, are moderately effective but far from optimal. Gene therapy has the potential to become an attractive alternative to currently available therapies for atrial fibrillation. Various gene transfer vectors have been developed for cardiovascular disease with viral vectors being most widely used due to their high efficiency. Several gene delivery methods have been employed on different therapeutic targets. With increasing understanding of arrhythmia mechanisms, novel therapeutic targets have been discovered. This review will evaluate state-of-art gene therapy strategies and approaches including sinus rhythm restoration and ventricular rate control that could eventually prevent or eliminate atrial fibrillation in patients.
Collapse
Affiliation(s)
- Zhao Liu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio
| | - J Kevin Donahue
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio; Department of Cardiovascular Medicine, University of Massachusetts Medical School. Worcester, Massachusetts, US
| |
Collapse
|
23
|
Katz MG, Fargnoli AS, Williams RD, Bridges CR. Gene therapy delivery systems for enhancing viral and nonviral vectors for cardiac diseases: current concepts and future applications. Hum Gene Ther 2014; 24:914-27. [PMID: 24164239 DOI: 10.1089/hum.2013.2517] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Gene therapy is one of the most promising fields for developing new treatments for the advanced stages of ischemic and monogenetic, particularly autosomal or X-linked recessive, cardiomyopathies. The remarkable ongoing efforts in advancing various targets have largely been inspired by the results that have been achieved in several notable gene therapy trials, such as the hemophilia B and Leber's congenital amaurosis. Rate-limiting problems preventing successful clinical application in the cardiac disease area, however, are primarily attributable to inefficient gene transfer, host responses, and the lack of sustainable therapeutic transgene expression. It is arguable that these problems are directly correlated with the choice of vector, dose level, and associated cardiac delivery approach as a whole treatment system. Essentially, a delicate balance exists in maximizing gene transfer required for efficacy while remaining within safety limits. Therefore, the development of safe, effective, and clinically applicable gene delivery techniques for selected nonviral and viral vectors will certainly be invaluable in obtaining future regulatory approvals. The choice of gene transfer vector, dose level, and the delivery system are likely to be critical determinants of therapeutic efficacy. It is here that the interactions between vector uptake and trafficking, delivery route means, and the host's physical limits must be considered synergistically for a successful treatment course.
Collapse
Affiliation(s)
- Michael G Katz
- Sanger Heart and Vascular Institute , Cannon Research Center, Carolinas HealthCare System, Charlotte, NC 28203
| | | | | | | |
Collapse
|
24
|
Lakshmanan S, Gupta GK, Avci P, Chandran R, Sadasivam M, Jorge AES, Hamblin MR. Physical energy for drug delivery; poration, concentration and activation. Adv Drug Deliv Rev 2014; 71:98-114. [PMID: 23751778 DOI: 10.1016/j.addr.2013.05.010] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Revised: 05/15/2013] [Accepted: 05/31/2013] [Indexed: 12/11/2022]
Abstract
Techniques for controlling the rate and duration of drug delivery, while targeting specific locations of the body for treatment, to deliver the cargo (drugs or DNA) to particular parts of the body by what are becoming called "smart drug carriers" have gained increased attention during recent years. Using such smart carriers, researchers have also been investigating a number of physical energy forces including: magnetic fields, ultrasound, electric fields, temperature gradients, photoactivation or photorelease mechanisms, and mechanical forces to enhance drug delivery within the targeted cells or tissues and also to activate the drugs using a similar or a different type of external trigger. This review aims to cover a number of such physical energy modalities. Various advanced techniques such as magnetoporation, electroporation, iontophoresis, sonoporation/mechnoporation, phonophoresis, optoporation and thermoporation will be covered in the review. Special emphasis will be placed on photodynamic therapy owing to the experience of the authors' laboratory in this area, but other types of drug cargo and DNA vectors will also be covered. Photothermal therapy and theranostics will also be discussed.
Collapse
|
25
|
Mali B, Zulj S, Magjarevic R, Miklavcic D, Jarm T. Matlab-based tool for ECG and HRV analysis. Biomed Signal Process Control 2014. [DOI: 10.1016/j.bspc.2014.01.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
26
|
Electroporation-based gene therapy: recent evolution in the mechanism description and technology developments. Methods Mol Biol 2014; 1121:3-23. [PMID: 24510808 DOI: 10.1007/978-1-4614-9632-8_1] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Thirty years after the publication of the first report on gene electrotransfer in cultured cells by the delivery of delivering electric pulses, this technology is starting to be applied to humans. In 2008, at the time of the publication of the first edition of this book, reversible cell electroporation for gene transfer and gene therapy (nucleic acids electrotransfer) was at a cross roads in its development. In 5 years, basic and applied developments have brought gene electrotransfer into a new status. Present knowledge on the effects of cell exposure to appropriate electric field pulses, particularly at the level of the cell membrane, is reported here, as an introduction to the large range of applications described in this book. The importance of the models of electric field distribution in tissues and of the correct choice of electrodes and applied voltages is highlighted, as well as the large range of new specialized electrodes, developed also in the frame of the other electroporation-based treatments (electrochemotherapy). Indeed, electric pulses are now routinely applied for localized drug delivery in the treatment of solid tumors by electrochemotherapy. The mechanisms involved in DNA electrotransfer, which include cell electropermeabilization and DNA electrophoresis, are also surveyed: noticeably, the first molecular description of the crossing of a lipid membrane by a nucleic acid was reported in 2012. The progress in the understanding of cell electroporation as well as developments of technological aspects, in silico, in vitro and in vivo, have contributed to bring gene electrotransfer development to the clinical stage. However, spreading of the technology will require not only more clinical trials but also further homogenization of the protocols and the preparation and validation of Standard Operating Procedures.
Collapse
|
27
|
Abstract
Electroporation is increasingly being used for delivery of chemotherapy to tumors. Likewise, gene delivery by electroporation is rapidly gaining momentum for both vaccination purposes and for delivery of genes coding for other therapeutic molecules, such as chronic diseases or cancer. This chapter describes how gene therapy may be performed using electric pulses to enhance uptake and expression.
Collapse
Affiliation(s)
- Julie Gehl
- Department of Oncology, Center for Experimental Drug and Gene Electrotransfer, Copenhagen University Hospital, Herlev, Denmark
| |
Collapse
|
28
|
Katz MG, Fargnoli AS, Bridges CR. Myocardial gene transfer: routes and devices for regulation of transgene expression by modulation of cellular permeability. Hum Gene Ther 2013; 24:375-92. [PMID: 23427834 DOI: 10.1089/hum.2012.241] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Heart diseases are major causes of morbidity and mortality in Western society. Gene therapy approaches are becoming promising therapeutic modalities to improve underlying molecular processes affecting failing cardiomyocytes. Numerous cardiac clinical gene therapy trials have yet to demonstrate strong positive results and advantages over current pharmacotherapy. The success of gene therapy depends largely on the creation of a reliable and efficient delivery method. The establishment of such a system is determined by its ability to overcome the existing biological barriers, including cellular uptake and intracellular trafficking as well as modulation of cellular permeability. In this article, we describe a variety of physical and mechanical methods, based on the transient disruption of the cell membrane, which are applied in nonviral gene transfer. In addition, we focus on the use of different physiological techniques and devices and pharmacological agents to enhance endothelial permeability. Development of these methods will undoubtedly help solve major problems facing gene therapy.
Collapse
Affiliation(s)
- Michael G Katz
- Thoracic and Cardiovascular Surgery, Sanger Heart & Vascular Institute, Carolinas Healthcare System, Charlotte, NC 28203, USA
| | | | | |
Collapse
|
29
|
Cell-specific targeting strategies for electroporation-mediated gene delivery in cells and animals. J Membr Biol 2013; 246:737-44. [PMID: 23525583 DOI: 10.1007/s00232-013-9534-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 03/08/2013] [Indexed: 01/19/2023]
Abstract
The use of electroporation to facilitate gene transfer is an extremely powerful and useful method for both in vitro and in vivo applications. One of its great strengths is that it induces functional destabilization and permeabilization of cell membranes throughout a tissue leading to widespread gene transfer to multiple cells and cell types within the electric field. While this is a strength, it can also be a limitation in terms of cell-specific gene delivery. The ability to restrict gene delivery and expression to particular cell types is of paramount importance for many types of gene therapy, since ectopic expression of a transgene could lead to deleterious host inflammatory responses or dysregulation of normal cellular functions. At present, there are relatively few ways to obtain cell-specific targeting of nonviral vectors, molecular probes, small molecules, and imaging agents. We have developed a novel means of restricting gene delivery to desired cell types based on the ability to control the transport of plasmids into the nuclei of desired cell types. In this article, we discuss the mechanisms of this approach and several applications in living animals to demonstrate the benefits of the combination of electroporation and selective nuclear import of plasmids for cell-specific gene delivery.
Collapse
|
30
|
Abstract
Intratumoral gene electroporation uses electric charges to facilitate entry of plasmid DNA into cells in a reproducible and highly efficient manner, especially to accessible sites such as cutaneous and subcutaneous melanomas. Effective for locally treated disease, electroporation of plasmid DNA encoding interleukin-12 can also induce responses in untreated distant disease, suggesting that adaptive immune responses are being elicited that can target melanoma-associated antigens. In vivo electroporation with immunomodulatory cytokine DNA is a promising approach that can trigger systemic anti-tumor immune responses without the systemic toxicity associated with intravenous cytokine delivery and potentially offer complete long-term tumor regression.
Collapse
Affiliation(s)
- Edward Cha
- Department of Medicine; University of California-San Francisco, CA, USA.
| | | |
Collapse
|