1
|
Ramamurthy RM, Rodriguez M, Ainsworth HC, Shields J, Meares D, Bishop C, Farland A, Langefeld CD, Atala A, Doering CB, Spencer HT, Porada CD, Almeida-Porada G. Comparison of different gene addition strategies to modify placental derived-mesenchymal stromal cells to produce FVIII. Front Immunol 2022; 13:954984. [PMID: 36591257 PMCID: PMC9800010 DOI: 10.3389/fimmu.2022.954984] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Introduction Placenta-derived mesenchymal cells (PLCs) endogenously produce FVIII, which makes them ideally suited for cell-based fVIII gene delivery. We have previously reported that human PLCs can be efficiently modified with a lentiviral vector encoding a bioengineered, expression/secretion-optimized fVIII transgene (ET3) and durably produce clinically relevant levels of functionally active FVIII. The objective of the present study was to investigate whether CRISPR/Cas9 can be used to achieve location-specific insertion of a fVIII transgene into a genomic safe harbor, thereby eliminating the potential risks arising from the semi-random genomic integration inherent to lentiviral vectors. We hypothesized this approach would improve the safety of the PLC-based gene delivery platform and might also enhance the therapeutic effect by eliminating chromatin-related transgene silencing. Methods We used CRISPR/Cas9 to attempt to insert the bioengineered fVIII transgene "lcoET3" into the AAVS1 site of PLCs (CRISPR-lcoET3) and determined their subsequent levels of FVIII production, comparing results with this approach to those achieved using lentivector transduction (LV-lcoET3) and plasmid transfection (Plasmid-lcoET3). In addition, since liver-derived sinusoidal endothelial cells (LSECs) are the native site of FVIII production in the body, we also performed parallel studies in human (h)LSECs). Results PLCs and hLSECs can both be transduced (LV-lcoET3) with very high efficiency and produce high levels of biologically active FVIII. Surprisingly, both cell types were largely refractory to CRISPR/Cas9-mediated knockin of the lcoET3 fVIII transgene in the AAVS1 genome locus. However, successful insertion of an RFP reporter into this locus using an identical procedure suggests the failure to achieve knockin of the lcoET3 expression cassette at this site is likely a function of its large size. Importantly, using plasmids, alone or to introduce the CRISPR/Cas9 "machinery", resulted in dramatic upregulation of TLR 3, TLR 7, and BiP in PLCs, compromising their unique immune-inertness. Discussion Although we did not achieve our primary objective, our results validate the utility of both PLCs and hLSECs as cell-based delivery vehicles for a fVIII transgene, and they highlight the hurdles that remain to be overcome before primary human cells can be gene-edited with sufficient efficiency for use in cell-based gene therapy to treat HA.
Collapse
Affiliation(s)
- Ritu M. Ramamurthy
- Fetal Research and Therapy Program, Wake Forest Institute for Regenerative Medicine, Winston Salem, NC, United States
| | - Martin Rodriguez
- Fetal Research and Therapy Program, Wake Forest Institute for Regenerative Medicine, Winston Salem, NC, United States
| | - Hannah C. Ainsworth
- Department of Biostatistics and Data Sciences Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Jordan Shields
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Emory University, Atlanta, GA, United States
| | - Diane Meares
- Department of Medicine, Hematology and Oncology, Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Colin Bishop
- Fetal Research and Therapy Program, Wake Forest Institute for Regenerative Medicine, Winston Salem, NC, United States
| | - Andrew Farland
- Department of Medicine, Hematology and Oncology, Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Carl D. Langefeld
- Department of Biostatistics and Data Sciences Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Anthony Atala
- Fetal Research and Therapy Program, Wake Forest Institute for Regenerative Medicine, Winston Salem, NC, United States
| | - Christopher B. Doering
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Emory University, Atlanta, GA, United States
| | - H. Trent Spencer
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Emory University, Atlanta, GA, United States
| | - Christopher D. Porada
- Fetal Research and Therapy Program, Wake Forest Institute for Regenerative Medicine, Winston Salem, NC, United States
| | - Graça Almeida-Porada
- Fetal Research and Therapy Program, Wake Forest Institute for Regenerative Medicine, Winston Salem, NC, United States
| |
Collapse
|
2
|
Stem C, Rodman C, Ramamurthy RM, George S, Meares D, Farland A, Atala A, Doering CB, Spencer HT, Porada CD, Almeida-Porada G. Investigating Optimal Autologous Cellular Platforms for Prenatal or Perinatal Factor VIII Delivery to Treat Hemophilia A. Front Cell Dev Biol 2021; 9:678117. [PMID: 34447745 PMCID: PMC8383113 DOI: 10.3389/fcell.2021.678117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 07/19/2021] [Indexed: 11/17/2022] Open
Abstract
Patients with the severe form of hemophilia A (HA) present with a severe phenotype, and can suffer from life-threatening, spontaneous hemorrhaging. While prophylactic FVIII infusions have revolutionized the clinical management of HA, this treatment is short-lived, expensive, and it is not available to many A patients worldwide. In the present study, we evaluated a panel of readily available cell types for their suitability as cellular vehicles to deliver long-lasting FVIII replacement following transduction with a retroviral vector encoding a B domain-deleted human F8 transgene. Given the immune hurdles that currently plague factor replacement therapy, we focused our investigation on cell types that we deemed to be most relevant to either prenatal or very early postnatal treatment and that could, ideally, be autologously derived. Our findings identify several promising candidates for use as cell-based FVIII delivery vehicles and lay the groundwork for future mechanistic studies to delineate bottlenecks to efficient production and secretion of FVIII following genetic-modification.
Collapse
Affiliation(s)
- Christopher Stem
- Wake Forest Institute for Regenerative Medicine, Fetal Research and Therapy Program, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Christopher Rodman
- Wake Forest Institute for Regenerative Medicine, Fetal Research and Therapy Program, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Ritu M. Ramamurthy
- Wake Forest Institute for Regenerative Medicine, Fetal Research and Therapy Program, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Sunil George
- Wake Forest Institute for Regenerative Medicine, Fetal Research and Therapy Program, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Diane Meares
- Special Hematology Laboratory, Wake Forest Baptist Medical Center, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Andrew Farland
- Special Hematology Laboratory, Wake Forest Baptist Medical Center, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Fetal Research and Therapy Program, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Christopher B. Doering
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Emory University School of Medicine, Atlanta, GA, United States
| | - H. Trent Spencer
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Emory University School of Medicine, Atlanta, GA, United States
| | - Christopher D. Porada
- Wake Forest Institute for Regenerative Medicine, Fetal Research and Therapy Program, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Graça Almeida-Porada
- Wake Forest Institute for Regenerative Medicine, Fetal Research and Therapy Program, Wake Forest School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
3
|
Takushi SE, Paik NY, Fedanov A, Prince C, Doering CB, Spencer HT, Chandrakasan S. Lentiviral Gene Therapy for Familial Hemophagocytic Lymphohistiocytosis Type 3, Caused by UNC13D Genetic Defects. Hum Gene Ther 2021; 31:626-638. [PMID: 32253931 DOI: 10.1089/hum.2019.329] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Familial hemophagocytic lymphohistiocytosis type 3 (FHL3) is a rare disease caused by mutations to the UNC13D gene and the subsequent absence or decreased activity of the Munc13-4 protein. Munc13-4 is essential for the exocytosis of perforin and granzyme containing granules from cytotoxic cells. Without it, these cells are able to recognize an immunological insult but are unable to execute their cytotoxic functions. The result is a hyperinflammatory state that, if left untreated, is fatal. At present, the only curative treatment is hematopoietic stem cell transplantation (HSCT), but eligibility and response to this treatment are largely dependent on the ability to control inflammation before HSCT. In this study, we describe an optimized lentiviral vector that can restore Munc13-4 expression and degranulation capacity in both transduced FHL3 patient T cells and transduced hematopoietic stem cells from the FHL3 (Jinx) disease model.
Collapse
Affiliation(s)
- Sarah E Takushi
- Department of Immunology and Molecular Pathogenesis, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, Georgia, USA.,Cell and Gene Therapy Program, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, Georgia, USA.,Department of Pediatrics, Emory University, Atlanta, Georgia, USA
| | - Na Yoon Paik
- Cell and Gene Therapy Program, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, Georgia, USA.,Department of Pediatrics, Emory University, Atlanta, Georgia, USA
| | - Andrew Fedanov
- Cell and Gene Therapy Program, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, Georgia, USA.,Department of Pediatrics, Emory University, Atlanta, Georgia, USA
| | - Chengyu Prince
- Cell and Gene Therapy Program, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, Georgia, USA.,Department of Pediatrics, Emory University, Atlanta, Georgia, USA
| | - Christopher B Doering
- Cell and Gene Therapy Program, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, Georgia, USA.,Department of Pediatrics, Emory University, Atlanta, Georgia, USA.,Department of Molecular and Systems Pharmacology, Graduate Division of Biological and Biomedical Sciences, Emory University School of Medicine, Atlanta, Georgia, USA
| | - H Trent Spencer
- Cell and Gene Therapy Program, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, Georgia, USA.,Department of Pediatrics, Emory University, Atlanta, Georgia, USA.,Department of Molecular and Systems Pharmacology, Graduate Division of Biological and Biomedical Sciences, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Shanmuganathan Chandrakasan
- Cell and Gene Therapy Program, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, Georgia, USA.,Department of Pediatrics, Emory University, Atlanta, Georgia, USA.,Bone Marrow Transplant Program, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| |
Collapse
|
4
|
Russell AL, Prince C, Lundgren TS, Knight KA, Denning G, Alexander JS, Zoine JT, Spencer HT, Chandrakasan S, Doering CB. Non-genotoxic conditioning facilitates hematopoietic stem cell gene therapy for hemophilia A using bioengineered factor VIII. Mol Ther Methods Clin Dev 2021; 21:710-727. [PMID: 34141826 PMCID: PMC8181577 DOI: 10.1016/j.omtm.2021.04.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/29/2021] [Indexed: 01/09/2023]
Abstract
Hematopoietic stem and progenitor cell (HSPC) lentiviral gene therapy is a promising strategy toward a lifelong cure for hemophilia A (HA). The primary risks associated with this approach center on the requirement for pre-transplantation conditioning necessary to make space for, and provide immune suppression against, stem cells and blood coagulation factor VIII, respectively. Traditional conditioning agents utilize genotoxic mechanisms of action, such as DNA alkylation, that increase risk of sterility, infection, and developing secondary malignancies. In the current study, we describe a non-genotoxic conditioning protocol using an immunotoxin targeting CD117 (c-kit) to achieve endogenous hematopoietic stem cell depletion and a cocktail of monoclonal antibodies to provide transient immune suppression against the transgene product in a murine HA gene therapy model. This strategy provides high-level engraftment of hematopoietic stem cells genetically modified ex vivo using recombinant lentiviral vector (LV) encoding a bioengineered high-expression factor VIII variant, termed ET3. Factor VIII procoagulant activity levels were durably elevated into the normal range and phenotypic correction achieved. Furthermore, no immunological rejection or development of anti-ET3 immunity was observed. These preclinical data support clinical translation of non-genotoxic antibody-based conditioning in HSPC LV gene therapy for HA.
Collapse
Affiliation(s)
- Athena L. Russell
- Graduate Program in Genetics and Molecular Biology, Laney Graduate School, Emory University, Atlanta, GA 30322, USA
| | - Chengyu Prince
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Taran S. Lundgren
- Graduate Program in Molecular and Systems Pharmacology, Laney Graduate School, Emory University, Atlanta, GA 30322, USA
| | - Kristopher A. Knight
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
- Graduate Program in Molecular and Systems Pharmacology, Laney Graduate School, Emory University, Atlanta, GA 30322, USA
| | | | - Jordan S. Alexander
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jaquelyn T. Zoine
- Graduate Program in Cancer Biology, Laney Graduate School, Emory University, Atlanta, GA 30322, USA
| | - H. Trent Spencer
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
- Expression Therapeutics, LLC, Tucker, GA 30084, USA
| | - Shanmuganathan Chandrakasan
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Christopher B. Doering
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
- Expression Therapeutics, LLC, Tucker, GA 30084, USA
| |
Collapse
|
5
|
Patel SR, Lundgren TS, Spencer HT, Doering CB. The Immune Response to the fVIII Gene Therapy in Preclinical Models. Front Immunol 2020; 11:494. [PMID: 32351497 PMCID: PMC7174743 DOI: 10.3389/fimmu.2020.00494] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 03/04/2020] [Indexed: 12/14/2022] Open
Abstract
Neutralizing antibodies to factor VIII (fVIII), referred to as "inhibitors," remain the most challenging complication post-fVIII replacement therapy. Preclinical development of novel fVIII products involves studies incorporating hemophilia A (HA) and wild-type animal models. Though immunogenicity is a critical aspect of preclinical pharmacology studies, gene therapy studies tend to focus on fVIII expression levels without major consideration for immunogenicity. Therefore, little clarity exists on whether preclinical testing can be predictive of clinical immunogenicity risk. Despite this, but perhaps due to the potential for transformative benefits, clinical gene therapy trials have progressed rapidly. In more than two decades, no inhibitors have been observed. However, all trials are conducted in previously treated patients without a history of inhibitors. The current review thus focuses on our understanding of preclinical immunogenicity for HA gene therapy candidates and the potential indication for inhibitor treatment, with a focus on product- and platform-specific determinants, including fVIII transgene sequence composition and tissue/vector biodistribution. Currently, the two leading clinical gene therapy vectors are adeno-associated viral (AAV) and lentiviral (LV) vectors. For HA applications, AAV vectors are liver-tropic and employ synthetic, high-expressing, liver-specific promoters. Factors including vector serotype and biodistribution, transcriptional regulatory elements, transgene sequence, dosing, liver immunoprivilege, and host immune status may contribute to tipping the scale between immunogenicity and tolerance. Many of these factors can also be important in delivery of LV-fVIII gene therapy, especially when delivered intravenously for liver-directed fVIII expression. However, ex vivo LV-fVIII targeting and transplantation of hematopoietic stem and progenitor cells (HSPC) has been demonstrated to achieve durable and curative fVIII production without inhibitor development in preclinical models. A critical variable appears to be pre-transplantation conditioning regimens that suppress and/or ablate T cells. Additionally, we and others have demonstrated the potential of LV-fVIII HSPC and liver-directed AAV-fVIII gene therapy to eradicate pre-existing inhibitors in murine and canine models of HA, respectively. Future preclinical studies will be essential to elucidate immune mechanism(s) at play in the context of gene therapy for HA, as well as strategies for preventing adverse immune responses and promoting immune tolerance even in the setting of pre-existing inhibitors.
Collapse
Affiliation(s)
- Seema R. Patel
- Hemostasis and Thrombosis Program, Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Emory University, Atlanta, GA, United States
| | - Taran S. Lundgren
- Cell and Gene Therapy Program, Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Emory University, Atlanta, GA, United States
- Graduate Program in Molecular and Systems Pharmacology, Laney Graduate School, Emory University, Atlanta, GA, United States
| | - H. Trent Spencer
- Cell and Gene Therapy Program, Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Emory University, Atlanta, GA, United States
| | - Christopher B. Doering
- Cell and Gene Therapy Program, Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Emory University, Atlanta, GA, United States
| |
Collapse
|
6
|
Rodriguez M, Porada CD, Almeida-Porada G. Mechanistic Insights into Factor VIII Immune Tolerance Induction via Prenatal Cell Therapy in Hemophilia A. CURRENT STEM CELL REPORTS 2019; 5:145-161. [PMID: 32351874 DOI: 10.1007/s40778-019-00165-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Purpose of Review Prenatal stem cell and gene therapy approaches are amongst the few therapies that can promise the birth of a healthy infant with specific known genetic diseases. This review describes fetal immune cell signaling and its potential influence on donor cell engraftment, and summarizes mechanisms of central T cell tolerance to peripherally-acquired antigen in the context of prenatal therapies for Hemophilia A. Recent Findings During early gestation, different subsets of antigen presenting cells take up peripherally-acquired, non-inherited antigens and induce the deletion of antigen-reactive T-cell precursors in the thymus, demonstrating the potential for using prenatal cell and gene therapies to induce central tolerance to FVIII in the context of prenatal diagnosis/therapy of Hemophilia A. Summary Prenatal cell and gene therapies are promising approaches to treat several genetic disorders including Hemophilia A and B. Understanding the mechanisms of how FVIII-specific tolerance is achieved during ontogeny could help develop novel therapies for HA and better approaches to overcome FVIII inhibitors.
Collapse
Affiliation(s)
- Martin Rodriguez
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Christopher D Porada
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Graҫa Almeida-Porada
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
7
|
Doering CB, Denning G, Shields JE, Fine EJ, Parker ET, Srivastava A, Lollar P, Spencer HT. Preclinical Development of a Hematopoietic Stem and Progenitor Cell Bioengineered Factor VIII Lentiviral Vector Gene Therapy for Hemophilia A. Hum Gene Ther 2019; 29:1183-1201. [PMID: 30160169 DOI: 10.1089/hum.2018.137] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Genetically modified, autologous hematopoietic stem and progenitor cells (HSPCs) represent a new class of genetic medicine. Following this therapeutic paradigm, we are developing a product candidate, designated CD68-ET3-LV CD34+, for the treatment of the severe bleeding disorder, hemophilia A. The product consists of autologous CD34+ cells transduced with a human immunodeficiency virus 1-based, monocyte lineage-restricted, self-inactivating lentiviral vector (LV), termed CD68-ET3-LV, encoding a bioengineered coagulation factor VIII (fVIII) transgene, termed ET3, designed for enhanced expression. This vector was shown capable of high-titer manufacture under clinical scale and Good Manufacturing Practice. Biochemical and immunogenicity testing of recombinant ET3, as well as safety and efficacy testing of CD68-ET3-LV HSPCs, were utilized to demonstrate overall safety and efficacy in murine models. In the first model, administration of CD68-ET3-LV-transduced stem-cell antigen-1+ cells to hemophilia A mice resulted in sustained plasma fVIII production and hemostatic correction without signs of toxicity. Patient-derived, autologous mobilized peripheral blood (mPB) CD34+ cells are the clinical target cells for ex vivo transduction using CD68-ET3-LV, and the resulting genetically modified cells represent the investigational drug candidate. In the second model, CD68-ET3-LV gene transfer into mPB CD34+ cells isolated from normal human donors was utilized to obtain in vitro and in vivo pharmacology, pharmacokinetic, and toxicology assessment. CD68-ET3-LV demonstrated reproducible and efficient gene transfer into mPB CD34+ cells, with vector copy numbers in the range of 1 copy per diploid genome equivalent without affecting clonogenic potential. Differentiation of human CD34+ cells into monocytes was associated with increased fVIII production, supporting the designed function of the CD68 promoter. To assess in vivo pharmacodynamics, CD68-ET3-LV CD34+ cell product was administered to immunodeficient mice. Treated mice displayed sustained plasma fVIII levels and no signs of product related toxicity. Collectively, the findings of the current study support the preclinical safety and efficacy of CD68-ET3-LV CD34+.
Collapse
Affiliation(s)
- Christopher B Doering
- 1 Aflac Cancer and Blood Disorders Center, Department of Pediatrics, School of Medicine, Emory University , Atlanta, Georgia; Christian Medical College , Vellore, India
| | - Gabriela Denning
- 2 Expression Therapeutics, LLC , Tucker, Georgia; Christian Medical College , Vellore, India
| | - Jordan E Shields
- 1 Aflac Cancer and Blood Disorders Center, Department of Pediatrics, School of Medicine, Emory University , Atlanta, Georgia; Christian Medical College , Vellore, India
| | - Eli J Fine
- 2 Expression Therapeutics, LLC , Tucker, Georgia; Christian Medical College , Vellore, India
| | - Ernest T Parker
- 1 Aflac Cancer and Blood Disorders Center, Department of Pediatrics, School of Medicine, Emory University , Atlanta, Georgia; Christian Medical College , Vellore, India
| | - Alok Srivastava
- 3 Centre for Stem Cell Research , inStem, Bengaluru, India; and Christian Medical College , Vellore, India .,4 Department of Haematology, Christian Medical College , Vellore, India
| | - Pete Lollar
- 1 Aflac Cancer and Blood Disorders Center, Department of Pediatrics, School of Medicine, Emory University , Atlanta, Georgia; Christian Medical College , Vellore, India
| | - H Trent Spencer
- 1 Aflac Cancer and Blood Disorders Center, Department of Pediatrics, School of Medicine, Emory University , Atlanta, Georgia; Christian Medical College , Vellore, India
| |
Collapse
|
8
|
Improvement of K562 Cell Line Transduction by FBS Mediated Attachment to the Cell Culture Plate. BIOMED RESEARCH INTERNATIONAL 2019; 2019:9540702. [PMID: 31032368 PMCID: PMC6457364 DOI: 10.1155/2019/9540702] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 01/09/2019] [Accepted: 02/21/2019] [Indexed: 01/17/2023]
Abstract
Lentiviral vectors have been used for gene therapy in the clinical phase in recent years. These vectors provide a tool for gene insertion, deletion, or modification in organisms. The K562 human cell line has been used extensively in hematopoietic research. Despite its broad application, it is hard-to-transfection and transduction. So, this study presents a simple method to increase the transduction efficiency of K562 cells with a low multiplicity of infection (MOI) of the virus particle. For this purpose, 24-well plate was coated by 300 μl fetal bovine serum (FBS) before seeding. Then 2×104 K562 cells were seeded in each FBS coated plate. After 24h, K562 cells were attached and doubled. Different amount of lentivirus-based GFP vector according to MOI (5, 10, 15, and 20) along with 8 μg polybrene was added to the attached K562 cells and after 6h cells and viral particle complex were spinfected. Then cells were returned to the plate and incubated in 37°C overnight. After 48h transduction efficiency was established by measuring the GFP-expressing cells by flow cytometry. Flow cytometry analysis showed that, after plate treatment by FBS, 64.5% transduction rate in K562 cells was achieved at MOI=20. Therefore, this method can be an effective and simple way to increase the lentiviral transduction rate for suspended cells such as K562.
Collapse
|
9
|
Kumar P, Gao K, Wang C, Pivetti C, Lankford L, Farmer D, Wang A. In Utero Transplantation of Placenta-Derived Mesenchymal Stromal Cells for Potential Fetal Treatment of Hemophilia A. Cell Transplant 2019; 27:130-139. [PMID: 29562772 PMCID: PMC6434487 DOI: 10.1177/0963689717728937] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Hemophilia A (HA) is an X-linked recessive disorder caused by mutations in the factor VIII (FVIII) gene leading to deficient blood coagulation. The current standard of care is frequent infusions of plasma-derived FVIII or recombinant B-domain-deleted FVIII (BDD-FVIII). While this treatment is effective, many patients eventually develop FVIII inhibitors that limit the effectiveness of the infused FVIII. As a monogenic disorder, HA is an ideal target for gene or cell-based therapy. Several studies have investigated allogeneic stem cell therapy targeting in utero or postnatal treatment of HA but have not been successful in completely correcting HA. Autologous in utero transplantation of mesenchymal stem cells is promising for treatment of HA due to the naive immune status of the fetal environment as well as its potential to prevent transplant rejection and long-term FVIII inhibitor formation. HA can be diagnosed by chorionic villus sampling performed during the first trimester (10 to 13 wk) of gestation. In this study, we used an established protocol and isolated placenta-derived mesenchymal stromal cells (PMSCs) from first trimester chorionic villus tissue and transduced them with lentiviral vector encoding the BDD-FVIII gene. We show that gene-modified PMSCs maintain their immunophenotype and multipotency, express, and secrete high levels of active FVIII. PMSCs were then transplanted at embryonic day 14.5 (E14.5) into wild-type fetuses from time-mated pregnant mice. Four days after birth, pups were checked for engraftment, and varying levels of expression of human green fluorescent protein were found in the organs tested. This study shows feasibility of the approach to obtain PMSCs from first trimester chorionic villus tissue, genetically modify them with the FVIII gene, and transplant them in utero for cell-mediated gene therapy of HA. Future studies will involve evaluation of long-term engraftment, phenotypic correction in HA mice, and prevention of FVIII inhibitor development by this approach.
Collapse
Affiliation(s)
- Priyadarsini Kumar
- 1 Department of Surgery, Surgical Bioengineering Laboratory, UC Davis School of Medicine, Research II, University of California, Davis, Sacramento, CA, USA
| | - Kewa Gao
- 1 Department of Surgery, Surgical Bioengineering Laboratory, UC Davis School of Medicine, Research II, University of California, Davis, Sacramento, CA, USA.,2 Department of Burns and Plastic Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China
| | - Chuwang Wang
- 1 Department of Surgery, Surgical Bioengineering Laboratory, UC Davis School of Medicine, Research II, University of California, Davis, Sacramento, CA, USA.,2 Department of Burns and Plastic Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China
| | - Christopher Pivetti
- 1 Department of Surgery, Surgical Bioengineering Laboratory, UC Davis School of Medicine, Research II, University of California, Davis, Sacramento, CA, USA
| | - Lee Lankford
- 1 Department of Surgery, Surgical Bioengineering Laboratory, UC Davis School of Medicine, Research II, University of California, Davis, Sacramento, CA, USA
| | - Diana Farmer
- 1 Department of Surgery, Surgical Bioengineering Laboratory, UC Davis School of Medicine, Research II, University of California, Davis, Sacramento, CA, USA
| | - Aijun Wang
- 1 Department of Surgery, Surgical Bioengineering Laboratory, UC Davis School of Medicine, Research II, University of California, Davis, Sacramento, CA, USA
| |
Collapse
|
10
|
Rodríguez MC, Ceaglio N, Antuña S, Tardivo MB, Etcheverrigaray M, Prieto C. Production of Therapeutic Enzymes by Lentivirus Transgenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1148:25-54. [PMID: 31482493 DOI: 10.1007/978-981-13-7709-9_2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Since ERT for several LSDs treatment has emerged at the beginning of the 1980s with Orphan Drug approval, patients' expectancy and life quality have been improved. Most LSDs treatment are based on the replaced of mutated or deficient protein with the natural or recombinant protein.One of the main ERT drawback is the high drug prices. Therefore, different strategies trying to optimize the global ERT biotherapeutic production have been proposed. LVs, a gene delivery tool, can be proposed as an alternative method to generate stable cell lines in manufacturing of recombinant proteins. Since LVs have been used in human gene therapy, clinical trials, safety testing assays and procedures have been developed. Moreover, one of the main advantages of LVs strategy to obtain manufacturing cell line is the short period required as well as the high protein levels achieved.In this chapter, we will focus on LVs as a recombinant protein production platform and we will present a case study that employs LVs to express in a manufacturing cell line, alpha-Galactosidase A (rhαGAL), which is used as ERT for Fabry disease treatment.
Collapse
Affiliation(s)
| | - Natalia Ceaglio
- Cell Culture Laboratory, UNL, CONICET, FBCB, Santa Fe, Argentina
| | | | | | | | - Claudio Prieto
- Cell Culture Laboratory, UNL, FBCB, Santa Fe, Argentina.
| |
Collapse
|
11
|
Pipe SW. Gene therapy for hemophilia. Pediatr Blood Cancer 2018; 65. [PMID: 29077262 DOI: 10.1002/pbc.26865] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 09/05/2017] [Accepted: 09/18/2017] [Indexed: 12/21/2022]
Abstract
Individuals with the inherited bleeding disorder hemophilia have achieved tremendous advances in clinical outcomes through widespread implementation of prophylactic replacement with safe and efficacious factor VIII and IX. However, despite this therapeutic approach, bleeds still occur, some with serious consequence, joint disease has not been eradicated, and patients have not yet been liberated from the need for regular intravenous infusions. The shift from protein replacement to gene replacement is offering great hope to achieve durable levels of plasma factor activity levels high enough to remove the risk for recurrent joint bleeding. For the first time, clinical trial results are showing promise for "curative" correction of the bleeding phenotype.
Collapse
Affiliation(s)
- Steven W Pipe
- Departments of Pediatrics and Pathology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
12
|
Target-Cell-Directed Bioengineering Approaches for Gene Therapy of Hemophilia A. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2018; 9:57-69. [PMID: 29552578 PMCID: PMC5852392 DOI: 10.1016/j.omtm.2018.01.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 01/09/2018] [Indexed: 01/08/2023]
Abstract
Potency is a key optimization parameter for hemophilia A gene therapy product candidates. Optimization strategies include promoter engineering to increase transcription, codon optimization of mRNA to improve translation, and amino-acid substitution to promote secretion. Herein, we describe both rational and empirical design approaches to the development of a minimally sized, highly potent AAV-fVIII vector that incorporates three unique elements: a liver-directed 146-nt transcription regulatory module, a target-cell-specific codon optimization algorithm, and a high-expression bioengineered fVIII variant. The minimal synthetic promoter allows for the smallest AAV-fVIII vector genome known at 4,832 nt, while the tissue-directed codon optimization strategy facilitates increased fVIII transgene product expression in target cell types, e.g., hepatocytes, over traditional genome-level codon optimization strategies. As a tertiary approach, we incorporated ancient and orthologous fVIII sequence elements previously shown to facilitate improved biosynthesis through post-translational mechanisms. Together, these technologies contribute to an AAV-fVIII vector that confers sustained, curative levels of fVIII at a minimal dose in hemophilia A mice. Moreover, the first two technologies should be generalizable to all liver-directed gene therapy vector designs.
Collapse
|
13
|
Tran R, Myers DR, Denning G, Shields JE, Lytle AM, Alrowais H, Qiu Y, Sakurai Y, Li WC, Brand O, Le Doux JM, Spencer HT, Doering CB, Lam WA. Microfluidic Transduction Harnesses Mass Transport Principles to Enhance Gene Transfer Efficiency. Mol Ther 2017; 25:2372-2382. [PMID: 28780274 PMCID: PMC5628863 DOI: 10.1016/j.ymthe.2017.07.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 07/01/2017] [Accepted: 07/02/2017] [Indexed: 12/24/2022] Open
Abstract
Ex vivo gene therapy using lentiviral vectors (LVs) is a proven approach to treat and potentially cure many hematologic disorders and malignancies but remains stymied by cumbersome, cost-prohibitive, and scale-limited production processes that cannot meet the demands of current clinical protocols for widespread clinical utilization. However, limitations in LV manufacture coupled with inefficient transduction protocols requiring significant excess amounts of vector currently limit widespread implementation. Herein, we describe a microfluidic, mass transport-based approach that overcomes the diffusion limitations of current transduction platforms to enhance LV gene transfer kinetics and efficiency. This novel ex vivo LV transduction platform is flexible in design, easy to use, scalable, and compatible with standard cell transduction reagents and LV preparations. Using hematopoietic cell lines, primary human T cells, primary hematopoietic stem and progenitor cells (HSPCs) of both murine (Sca-1+) and human (CD34+) origin, microfluidic transduction using clinically processed LVs occurs up to 5-fold faster and requires as little as one-twentieth of LV. As an in vivo validation of the microfluidic-based transduction technology, HSPC gene therapy was performed in hemophilia A mice using limiting amounts of LV. Compared to the standard static well-based transduction protocols, only animals transplanted with microfluidic-transduced cells displayed clotting levels restored to normal.
Collapse
Affiliation(s)
- Reginald Tran
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Aflac Cancer Center and Blood Disorders Service of Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA 30322, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - David R Myers
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Aflac Cancer Center and Blood Disorders Service of Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA 30322, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | | | - Jordan E Shields
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Aflac Cancer Center and Blood Disorders Service of Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Allison M Lytle
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Aflac Cancer Center and Blood Disorders Service of Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA 30322, USA; Graduate Program in Molecular and Systems Pharmacology, Laney Graduate School, Emory University, Atlanta, GA 30322, USA
| | - Hommood Alrowais
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Yongzhi Qiu
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Aflac Cancer Center and Blood Disorders Service of Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA 30322, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Yumiko Sakurai
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Aflac Cancer Center and Blood Disorders Service of Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA 30322, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - William C Li
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Oliver Brand
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Joseph M Le Doux
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - H Trent Spencer
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Aflac Cancer Center and Blood Disorders Service of Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA 30322, USA; Graduate Program in Molecular and Systems Pharmacology, Laney Graduate School, Emory University, Atlanta, GA 30322, USA
| | - Christopher B Doering
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Aflac Cancer Center and Blood Disorders Service of Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA 30322, USA; Graduate Program in Molecular and Systems Pharmacology, Laney Graduate School, Emory University, Atlanta, GA 30322, USA.
| | - Wilbur A Lam
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Aflac Cancer Center and Blood Disorders Service of Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA 30322, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA.
| |
Collapse
|
14
|
Chira S, Jackson CS, Oprea I, Ozturk F, Pepper MS, Diaconu I, Braicu C, Raduly LZ, Calin GA, Berindan-Neagoe I. Progresses towards safe and efficient gene therapy vectors. Oncotarget 2016; 6:30675-703. [PMID: 26362400 PMCID: PMC4741561 DOI: 10.18632/oncotarget.5169] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 08/22/2015] [Indexed: 12/11/2022] Open
Abstract
The emergence of genetic engineering at the beginning of the 1970′s opened the era of biomedical technologies, which aims to improve human health using genetic manipulation techniques in a clinical context. Gene therapy represents an innovating and appealing strategy for treatment of human diseases, which utilizes vehicles or vectors for delivering therapeutic genes into the patients' body. However, a few past unsuccessful events that negatively marked the beginning of gene therapy resulted in the need for further studies regarding the design and biology of gene therapy vectors, so that this innovating treatment approach can successfully move from bench to bedside. In this paper, we review the major gene delivery vectors and recent improvements made in their design meant to overcome the issues that commonly arise with the use of gene therapy vectors. At the end of the manuscript, we summarized the main advantages and disadvantages of common gene therapy vectors and we discuss possible future directions for potential therapeutic vectors.
Collapse
Affiliation(s)
- Sergiu Chira
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, University of Medicine and Pharmacy "Iuliu Haţieganu", Cluj Napoca, Romania
| | - Carlo S Jackson
- Department of Immunology and Institute for Cellular and Molecular Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Iulian Oprea
- Department of Oncology and Pathology, Cancer Center Karolinska, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Ferhat Ozturk
- Department of Molecular Biology and Genetics, Canik Başari University, Samsun, Turkey
| | - Michael S Pepper
- Department of Immunology and Institute for Cellular and Molecular Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | | | - Cornelia Braicu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, University of Medicine and Pharmacy "Iuliu Haţieganu", Cluj Napoca, Romania
| | - Lajos-Zsolt Raduly
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, University of Medicine and Pharmacy "Iuliu Haţieganu", Cluj Napoca, Romania.,Department of Physiopathology, Faculty of Veterinary Medicine, University of Agricultural Science and Veterinary Medicine, Cluj Napoca, Romania
| | - George A Calin
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, University of Medicine and Pharmacy "Iuliu Haţieganu", Cluj Napoca, Romania.,Department of Immunology, University of Medicine and Pharmacy "Iuliu Haţieganu", Cluj Napoca, Romania.,Department of Functional Genomics and Experimental Pathology, Oncological Institute "Prof. Dr. Ion Chiricuţă", Cluj Napoca, Romania.,Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
15
|
Pang J, Wu Y, Li Z, Hu Z, Wang X, Hu X, Wang X, Liu X, Zhou M, Liu B, Wang Y, Feng M, Liang D. Targeting of the human F8 at the multicopy rDNA locus in Hemophilia A patient-derived iPSCs using TALENickases. Biochem Biophys Res Commun 2016; 472:144-9. [PMID: 26921444 DOI: 10.1016/j.bbrc.2016.02.083] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Accepted: 02/19/2016] [Indexed: 10/22/2022]
Abstract
Hemophilia A (HA) is a monogenic disease due to lack of the clotting factor VIII (FVIII). This deficiency may lead to spontaneous joint hemorrhages or life-threatening bleeding but there is no cure for HA until very recently. In this study, we derived induced pluripotent stem cells (iPSCs) from patients with severe HA and used transcription activator-like effector nickases (TALENickases) to target the factor VIII gene (F8) at the multicopy ribosomal DNA (rDNA) locus in HA-iPSCs, aiming to rescue the shortage of FVIII protein. The results revealed that more than one copy of the exogenous F8 could be integrated into the rDNA locus. Importantly, we detected exogenous F8 mRNA and FVIII protein in targeted HA-iPSCs. After they were differentiated into endothelial cells (ECs), the exogenous FVIII protein was still detectable. Thus, it is showed that the multicopy rDNA locus could be utilized as an effective target site in patient-derived iPSCs for gene therapy. This strategy provides a novel iPSCs-based therapeutic option for HA and other monogenic diseases.
Collapse
Affiliation(s)
- Jialun Pang
- State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Yong Wu
- State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Zhuo Li
- State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Zhiqing Hu
- State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Xiaolin Wang
- State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Xuyun Hu
- State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Xiaoyan Wang
- State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Xionghao Liu
- State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Miaojin Zhou
- State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Bo Liu
- State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Yanchi Wang
- State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Mai Feng
- State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Desheng Liang
- State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China.
| |
Collapse
|
16
|
Megakaryocyte- and megakaryocyte precursor-related gene therapies. Blood 2016; 127:1260-8. [PMID: 26787735 DOI: 10.1182/blood-2015-07-607937] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 09/30/2015] [Indexed: 01/27/2023] Open
Abstract
Hematopoietic stem cells (HSCs) can be safely collected from the body, genetically modified, and re-infused into a patient with the goal to express the transgene product for an individual's lifetime. Hematologic defects that can be corrected with an allogeneic bone marrow transplant can theoretically also be treated with gene replacement therapy. Because some genetic disorders affect distinct cell lineages, researchers are utilizing HSC gene transfer techniques using lineage-specific endogenous gene promoters to confine transgene expression to individual cell types (eg, ITGA2B for inherited platelet defects). HSCs appear to be an ideal target for platelet gene therapy because they can differentiate into megakaryocytes which are capable of forming several thousand anucleate platelets that circulate within blood vessels to establish hemostasis by repairing vascular injury. Platelets play an essential role in other biological processes (immune response, angiogenesis) as well as diseased states (atherosclerosis, cancer, thrombosis). Thus, recent advances in genetic manipulation of megakaryocytes could lead to new and improved therapies for treating a variety of disorders. In summary, genetic manipulation of megakaryocytes has progressed to the point where clinically relevant strategies are being developed for human trials for genetic disorders affecting platelets. Nevertheless, challenges still need to be overcome to perfect this field; therefore, strategies to increase the safety and benefit of megakaryocyte gene therapy will be discussed.
Collapse
|
17
|
George LA, Fogarty PF. Gene therapy for hemophilia: past, present and future. Semin Hematol 2015; 53:46-54. [PMID: 26805907 DOI: 10.1053/j.seminhematol.2015.10.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2004] [Revised: 11/05/2004] [Accepted: 12/01/2005] [Indexed: 01/16/2023]
Abstract
After numerous preclinical studies demonstrated consistent success in large and small animal models, gene therapy has finally seen initial signs of clinically meaningful success. In a landmark study, Nathwani and colleagues reported sustained factor (F)IX expression in individuals with severe hemophilia B following adeno-associated virus (AAV)-mediated in vivo FIX gene transfer. As the next possible treatment-changing paradigm in hemophilia care, gene therapy may provide patients with sufficient hemostatic improvement to achieve the World Federation of Hemophilia's aspirational goal of "integration of opportunities in all aspects of life… equivalent to someone without a bleeding disorder." Although promising momentum supports the potential of gene therapy to replace protein-based therapeutics for hemophilia, several obstacles remain. The largest challenges appear to be overcoming the cellular immune responses to the AAV capsid; preexisting AAV neutralizing antibodies, which immediately exclude approximately 50% of the target population; and the ability to scale-up vector manufacturing for widespread applicability. Additional obstacles specific to hemophilia A (HA) include designing a vector cassette to accommodate a larger cDNA; avoiding development of inhibitory antibodies; and, perhaps the greatest difficulty to overcome, ensuring adequate expression efficiency. This review discusses the relevance of gene therapy to the hemophilia disease state, previous research progress, the current landscape of clinical trials, and considerations for promoting the future availability of gene therapy for hemophilia.
Collapse
Affiliation(s)
- Lindsey A George
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| | - Patrick F Fogarty
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA; Penn Comprehensive Hemophilia and Thrombosis Program, Hospital of the University of Pennsylvania, Philadelphia, PA, USA; Division of Hematology/Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
18
|
Lheriteau E, Davidoff AM, Nathwani AC. Haemophilia gene therapy: Progress and challenges. Blood Rev 2015; 29:321-8. [DOI: 10.1016/j.blre.2015.03.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 03/04/2015] [Indexed: 10/23/2022]
|
19
|
Mao K, Liu F, Liu X, Khuri FR, Marcus AI, Li M, Zhou W. Re-expression of LKB1 in LKB1-mutant EKVX cells leads to resistance to paclitaxel through the up-regulation of MDR1 expression. Lung Cancer 2015; 88:131-8. [PMID: 25769882 DOI: 10.1016/j.lungcan.2015.02.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 01/21/2015] [Accepted: 02/23/2015] [Indexed: 11/28/2022]
Abstract
OBJECTIVES The tumor suppressor LKB1 has recently been shown to be involved in the regulation of microtubule dynamics, thus cancer cells with inactivated LKB1 may have developed a means to overcome dysregulated microtubule functions, making them intrinsically resistant to microtubule targeting agents. Here, we generated isogenic LKB1-wild type and mutant non-small cell lung cancer (NSCLC) cell lines to evaluate the role of LKB1 in paclitaxel resistance. MATERIALS AND METHODS SRB, flow cytometry and immunoblotting were used to assess cell proliferation and apoptosis in NSCLC cell lines after paclitaxel treatment. Expression of LKB1 was restored in LKB1-null cells by retrovirus infection and was reduced in LKB1-wild type cells by shRNA knock down. RESULTS AND CONCLUSION The restoration of LKB1 in LKB1-null cells failed to promote paclitaxel-induced apoptosis in both p53-wild type and p53-mutant backgrounds, indicating that LKB1 was not required for paclitaxel-induced apoptosis. Interestingly, the re-establishment of LKB1 expression led to the up-regulation of class III beta-tubulin and MDR1 in EKVX cells. The up-regulation of MDR1 protein and transcripts in EKVX cells was specifically associated with the expression of wild-type LKB1 and mainly responsible for the increased cellular resistance to paclitaxel. However, the presence of LKB1 protein was not required to maintain this increased MDR1 expression even though there was no genetic amplification or promoter de-methylation of the ABCB1 locus in EKVX-LKB1-WT cells. These data suggest that LKB1 does not promote paclitaxel-induced apoptosis in most NSCLC cell lines. In contrast, in some NSCLC, the presence of LKB1 may facilitate increases in either MDR1 or class III beta-tubulin expression which can lead to paclitaxel resistance.
Collapse
Affiliation(s)
- Kaisheng Mao
- The Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 32322, United States; Department of Hepatobiliary Surgery, NanFang Hospital, Guangzhou, People's Republic of China; Department of Gastroenterology, NanFang Hospital, Guangzhou, People's Republic of China
| | - Fakeng Liu
- The Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 32322, United States; Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Xiuju Liu
- The Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 32322, United States
| | - Fadlo R Khuri
- The Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 32322, United States
| | - Adam I Marcus
- The Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 32322, United States
| | - Mingsong Li
- Department of Gastroenterology, NanFang Hospital, Guangzhou, People's Republic of China.
| | - Wei Zhou
- The Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 32322, United States.
| |
Collapse
|
20
|
Abstract
Hemophilia is an X-linked inherited bleeding disorder consisting of two classifications, hemophilia A and hemophilia B, depending on the underlying mutation. Although the disease is currently treatable with intravenous delivery of replacement recombinant clotting factor, this approach represents a significant cost both monetarily and in terms of quality of life. Gene therapy is an attractive alternative approach to the treatment of hemophilia that would ideally provide life-long correction of clotting activity with a single injection. In this review, we will discuss the multitude of approaches that have been explored for the treatment of both hemophilia A and B, including both in vivo and ex vivo approaches with viral and nonviral delivery vectors.
Collapse
Affiliation(s)
- Geoffrey L Rogers
- University of Florida, Department of Pediatrics, Division of Cellular and Molecular Therapy, Gainesville, FL 32610
| | - Roland W Herzog
- University of Florida, Department of Pediatrics, Division of Cellular and Molecular Therapy, Gainesville, FL 32610
| |
Collapse
|
21
|
High KH, Nathwani A, Spencer T, Lillicrap D. Current status of haemophilia gene therapy. Haemophilia 2014; 20 Suppl 4:43-9. [PMID: 24762274 DOI: 10.1111/hae.12411] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2014] [Indexed: 12/29/2022]
Abstract
After many reports of successful gene therapy studies in small and large animal models of haemophilia, we have, at last, seen the first signs of success in human patients. These very encouraging results have been achieved with the use of adeno-associated viral (AAV) vectors in patients with severe haemophilia B. Following on from these initial promising studies, there are now three ongoing trials of AAV-mediated gene transfer in haemophilia B all aiming to express the factor IX gene from the liver. Nevertheless, as discussed in the first section of this article, there are still a number of significant hurdles to overcome if haemophilia B gene therapy is to become more widely available. The second section of this article deals with the challenges relating to factor VIII gene transfer. While the recent results in haemophilia B are extremely encouraging, there is, as yet, no similar data for factor VIII gene therapy. It is widely accepted that this therapeutic target will be significantly more problematic for a variety of reasons including accommodating the larger factor VIII cDNA, achieving adequate levels of transgene expression and preventing the far more frequent complication of antifactor VIII immunity. In the final section of the article, the alternative approach of lentiviral vector-mediated gene transfer is discussed. While AAV-mediated approaches to transgene delivery have led the way in clinical haemophilia gene therapy, there are still a number of potential advantages of using an alternative delivery vehicle including the fact that ex vivo host cell transduction will avoid the likelihood of immune responses to the vector. Overall, these are exciting times for haemophilia gene therapy with the likelihood of further clinical successes in the near future.
Collapse
Affiliation(s)
- K H High
- Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | | | | |
Collapse
|
22
|
Johnston JM, Denning G, Moot R, Whitehead D, Shields J, Le Doux JM, Doering CB, Spencer HT. High-throughput screening identifies compounds that enhance lentiviral transduction. Gene Ther 2014; 21:1008-20. [PMID: 25231175 DOI: 10.1038/gt.2014.80] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 06/30/2014] [Accepted: 08/01/2014] [Indexed: 12/18/2022]
Abstract
A difficulty in the field of gene therapy is the need to increase the susceptibility of hematopoietic stem cells (HSCs) to ex vivo genetic manipulation. To overcome this obstacle a high-throughput screen was performed to identify compounds that could enhance the transduction of target cells by lentiviral vectors. Of the 1280 compounds initially screened using the myeloid-erythroid-leukemic K562 cell line, 30 were identified as possible enhancers of viral transduction. Among the positive hits were known enhancers of transduction (camptothecin, etoposide and taxol), as well as the previously unidentified phorbol 12-myristate 13-acetate (PMA). The percentage of green fluorescent protein (GFP)-positive-expressing K562 cells was increased more than fourfold in the presence of PMA. In addition, the transduction of K562 cells with a lentiviral vector encoding fVIII was four times greater in the presence of PMA as determined by an increase in the levels of provirus in genetically modified cells. PMA did not enhance viral transduction of all cell types (for example, sca-1(+) mouse hematopoietic cells) but did enhance viral transduction of human bone marrow-derived CD34(+) cells. Notably, the percentage of GFP-positive CD34(+) cells was increased from 7% in the absence of PMA to greater than 22% in the presence of 1 nM PMA. PMA did not affect colony formation of CD34(+) cells or the expression of the hematopoietic markers CD34 and CD45. These data demonstrate that high-throughput screening can be used to identify compounds that increase the transduction efficiency of lentiviral vectors, identifying PMA as a potential enhancer of lentiviral HSC transduction.
Collapse
Affiliation(s)
- J M Johnston
- 1] Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA [2] Graduate Program in Molecular and Systems Pharmacology, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA, USA
| | - G Denning
- Expression Therapeutics, LLC, Tucker, GA, USA
| | - R Moot
- 1] Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA [2] Graduate Program in Molecular and Systems Pharmacology, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA, USA
| | - D Whitehead
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - J Shields
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - J M Le Doux
- Wallace H Coulter Department of Biomedical Engineering, Georgia Tech and Emory University, Atlanta, GA, USA
| | - C B Doering
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - H T Spencer
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
23
|
piggyBac-mediated phenotypic correction of factor VIII deficiency. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2014; 1:14042. [PMID: 26015980 PMCID: PMC4362371 DOI: 10.1038/mtm.2014.42] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 07/24/2014] [Indexed: 01/10/2023]
Abstract
Hemophilia A, caused by a deficiency in factor VIII (FVIII), is the most severe inherited bleeding disorder. Hemophilia A is an attractive gene therapy candidate because even small increases in FVIII levels will positively alter the phenotype. While several vectors are under investigation, gene addition from an integrated transgene offers the possibility of long term expression. We engineered the DNA transposon-based vector, piggyBac (PB), to carry a codon-optimized B-domain deleted human FVIII cDNA. Evaluation of gene transfer efficiency in FVIII null mice demonstrated that PB containing the FVIII cDNA, delivered via hydrodynamic injection to immunocompetent hemophilia mice, conferred persistent gene expression, attaining mean FVIII activity of approximately 60% with 3/19 developing inhibitors. In addition to efficacious expression, a goal of gene transfer-based therapies is to develop vectors with low toxicity. To assess endoplasmic reticulum stress in hepatocytes stably expressing the transgene, we evaluated levels of ER stress markers via qPCR and found no evidence of cell stress. To evaluate phenotypic correction, a tail clip assay performed at the end of the study revealed reduced blood loss. These data demonstrate that PB can be used to achieve sustained FVIII expression and long-term therapeutic benefit in a mouse model.
Collapse
|
24
|
Tran R, Ahn B, Myers DR, Qiu Y, Sakurai Y, Moot R, Mihevc E, Trent Spencer H, Doering C, A Lam W. Simplified prototyping of perfusable polystyrene microfluidics. BIOMICROFLUIDICS 2014; 8:046501. [PMID: 25379106 PMCID: PMC4189295 DOI: 10.1063/1.4892035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 07/21/2014] [Indexed: 05/05/2023]
Abstract
Cell culture in microfluidic systems has primarily been conducted in devices comprised of polydimethylsiloxane (PDMS) or other elastomers. As polystyrene (PS) is the most characterized and commonly used substrate material for cell culture, microfluidic cell culture would ideally be conducted in PS-based microsystems that also enable tight control of perfusion and hydrodynamic conditions, which are especially important for culture of vascular cell types. Here, we report a simple method to prototype perfusable PS microfluidics for endothelial cell culture under flow that can be fabricated using standard lithography and wet laboratory equipment to enable stable perfusion at shear stresses up to 300 dyn/cm(2) and pumping pressures up to 26 kPa for at least 100 h. This technique can also be extended to fabricate perfusable hybrid PS-PDMS microfluidics of which one application is for increased efficiency of viral transduction in non-adherent suspension cells by leveraging the high surface area to volume ratio of microfluidics and adhesion molecules that are optimized for PS substrates. These biologically compatible microfluidic devices can be made more accessible to biological-based laboratories through the outsourcing of lithography to various available microfluidic foundries.
Collapse
Affiliation(s)
| | | | | | | | | | - Robert Moot
- Graduate Program in Molecular and Systems Pharmacology, Laney Graduate School, Emory University, Atlanta , Georgia 30322, USA
| | - Emma Mihevc
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta , Georgia 30332, USA
| | | | | | | |
Collapse
|
25
|
Platelet-targeted gene therapy with human factor VIII establishes haemostasis in dogs with haemophilia A. Nat Commun 2014; 4:2773. [PMID: 24253479 PMCID: PMC3868233 DOI: 10.1038/ncomms3773] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 10/15/2013] [Indexed: 12/29/2022] Open
Abstract
It is essential to improve therapies for controlling excessive bleeding in patients with haemorrhagic disorders. As activated blood platelets mediate the primary response to vascular injury, we hypothesize that storage of coagulation Factor VIII within platelets may provide a locally inducible treatment to maintain haemostasis for haemophilia A. Here we show that haematopoietic stem cell gene therapy can prevent the occurrence of severe bleeding episodes in dogs with haemophilia A for at least 2.5 years after transplantation. We employ a clinically relevant strategy based on a lentiviral vector encoding the ITGA2B gene promoter, which drives platelet-specific expression of human FVIII permitting storage and release of FVIII from activated platelets. One animal receives a hybrid molecule of FVIII fused to the von Willebrand Factor propeptide-D2 domain that traffics FVIII more effectively into α-granules. The absence of inhibitory antibodies to platelet-derived FVIII indicates that this approach may have benefit in patients who reject FVIII replacement therapies. Thus, platelet FVIII may provide effective long-term control of bleeding in patients with haemophilia A.
Collapse
|
26
|
Abstract
PURPOSE OF REVIEW Consistently measurable and persistent expression of circulating clotting factor activity, associated with decreased clinical bleeding, has been achieved for the first time in a hemophilia gene therapy trial. This review examines the successes and limitations of this clinical trial for hemophilia B and approaches to advance beyond this milestone. RECENT FINDINGS Although a self-complementary serotype 8 adeno-associated virus (scAAV8) vector approach directed factor IX expression of up to 6% in a human trial, the apparent need to suppress vector dose-dependent immune-mediated liver inflammation in some patients at the highest dose highlighted the next steps to optimize the risk-benefit of hemophilia gene therapy. The approaches being pursued include manufacturing modifications to eliminate contaminating empty vector capsids, the utilization of factor IX and factor VIII modified transgenes to improve secretion or function of the transgene product, and adjunctive pharmacologic and molecular approaches to overcome limitations imposed by naturally occurring antibodies against vectors and by the large size of the factor VIII gene. SUMMARY Preclinical data suggest strategies in development may build upon the first gene therapy success and achieve factor IX correction sufficient to prevent bleeding without toxicity and translate success to hemophilia A gene therapy.
Collapse
|
27
|
Cancio MI, Reiss UM, Nathwani AC, Davidoff AM, Gray JT. Developments in the treatment of hemophilia B: focus on emerging gene therapy. APPLICATION OF CLINICAL GENETICS 2013; 6:91-101. [PMID: 24159262 PMCID: PMC3805181 DOI: 10.2147/tacg.s31928] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Hemophilia B is a genetic disorder that is characterized by a deficiency of clotting factor IX (FIX) and excessive bleeding. Advanced understanding of the pathophysiology of the disease has led to the development of improved treatment strategies that aim to minimize the acute and long-term complications of the disease. Patients with hemophilia B are ideal candidates for gene therapy, mostly because a small increase in protein production can lead to significantly decreased bleeding diathesis. Although human clotting FIX was cloned and sequenced over 30 years ago, progress toward achieving real success in human clinical trials has been slow, with long-term, therapeutically relevant gene expression only achieved in one trial published in 2011. The history of this extensive research effort has revealed the importance of the interactions between gene therapy vectors and multiple arms of the host immune system at multiple stages of the transduction process. Different viral vector systems each have unique properties that influence their ability to deliver genes to different tissues, and the data generated in several clinical trials testing different vectors for hemophilia have guided our understanding toward development of optimal configurations for treating hemophilia B. The recent clinical success implementing a novel adeno-associated virus vector demonstrated sufficient FIX expression in patients to convert a severe hemophilia phenotype to mild, an achievement which has the potential to profoundly alter the impact of this disease on human society. Continued research should lead to vector designs that result in higher FIX activity at lower vector doses and with reduced host immune responses to the vector and the transgene product.
Collapse
|
28
|
Walsh CE, Batt KM. Hemophilia clinical gene therapy: brief review. Transl Res 2013; 161:307-12. [PMID: 23352600 DOI: 10.1016/j.trsl.2012.12.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 12/13/2012] [Accepted: 12/28/2012] [Indexed: 11/30/2022]
Abstract
Genetic correction of hemophilia A and B was long considered amenable to the available gene transfer technologies. This assumption has come to fruition with the recent results of a phase I/II trial for hemophilia B. Here we review the clinical application of gene therapy for the hemophilia's as a paradigm of the evolution of gene transfer science and technology. This review is not intended as comprehensive but rather to highlight current clinical developments of gene therapy for the hemophilias.
Collapse
|