1
|
Andreana I, Repellin M, Carton F, Kryza D, Briançon S, Chazaud B, Mounier R, Arpicco S, Malatesta M, Stella B, Lollo G. Nanomedicine for Gene Delivery and Drug Repurposing in the Treatment of Muscular Dystrophies. Pharmaceutics 2021; 13:278. [PMID: 33669654 PMCID: PMC7922331 DOI: 10.3390/pharmaceutics13020278] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/07/2021] [Accepted: 02/14/2021] [Indexed: 12/11/2022] Open
Abstract
Muscular Dystrophies (MDs) are a group of rare inherited genetic muscular pathologies encompassing a variety of clinical phenotypes, gene mutations and mechanisms of disease. MDs undergo progressive skeletal muscle degeneration causing severe health problems that lead to poor life quality, disability and premature death. There are no available therapies to counteract the causes of these diseases and conventional treatments are administered only to mitigate symptoms. Recent understanding on the pathogenetic mechanisms allowed the development of novel therapeutic strategies based on gene therapy, genome editing CRISPR/Cas9 and drug repurposing approaches. Despite the therapeutic potential of these treatments, once the actives are administered, their instability, susceptibility to degradation and toxicity limit their applications. In this frame, the design of delivery strategies based on nanomedicines holds great promise for MD treatments. This review focuses on nanomedicine approaches able to encapsulate therapeutic agents such as small chemical molecules and oligonucleotides to target the most common MDs such as Duchenne Muscular Dystrophy and the Myotonic Dystrophies. The challenge related to in vitro and in vivo testing of nanosystems in appropriate animal models is also addressed. Finally, the most promising nanomedicine-based strategies are highlighted and a critical view in future developments of nanomedicine for neuromuscular diseases is provided.
Collapse
Affiliation(s)
- Ilaria Andreana
- Laboratoire d’Automatique, de Génie des Procédés et de Génie Pharmaceutique, Université Claude Bernard Lyon 1, CNRS UMR 5007, 43 bd 11 Novembre 1918, 69622 Villeurbanne, France; (I.A.); (M.R.); (D.K.); (S.B.)
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125 Torino, Italy;
| | - Mathieu Repellin
- Laboratoire d’Automatique, de Génie des Procédés et de Génie Pharmaceutique, Université Claude Bernard Lyon 1, CNRS UMR 5007, 43 bd 11 Novembre 1918, 69622 Villeurbanne, France; (I.A.); (M.R.); (D.K.); (S.B.)
- Department of Neurosciences, Biomedicine and Movement Sciences, Anatomy and Histology Section, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy; (F.C.); (M.M.)
| | - Flavia Carton
- Department of Neurosciences, Biomedicine and Movement Sciences, Anatomy and Histology Section, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy; (F.C.); (M.M.)
- Department of Health Sciences, University of Eastern Piedmont, Via Solaroli 17, 28100 Novara, Italy
| | - David Kryza
- Laboratoire d’Automatique, de Génie des Procédés et de Génie Pharmaceutique, Université Claude Bernard Lyon 1, CNRS UMR 5007, 43 bd 11 Novembre 1918, 69622 Villeurbanne, France; (I.A.); (M.R.); (D.K.); (S.B.)
- Hospices Civils de Lyon, 69437 Lyon, France
| | - Stéphanie Briançon
- Laboratoire d’Automatique, de Génie des Procédés et de Génie Pharmaceutique, Université Claude Bernard Lyon 1, CNRS UMR 5007, 43 bd 11 Novembre 1918, 69622 Villeurbanne, France; (I.A.); (M.R.); (D.K.); (S.B.)
| | - Bénédicte Chazaud
- Institut NeuroMyoGène, University of Lyon, INSERM U1217, CNRS UMR 5310, 8 Avenue Rockefeller, 69008 Lyon, France; (B.C.); (R.M.)
| | - Rémi Mounier
- Institut NeuroMyoGène, University of Lyon, INSERM U1217, CNRS UMR 5310, 8 Avenue Rockefeller, 69008 Lyon, France; (B.C.); (R.M.)
| | - Silvia Arpicco
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125 Torino, Italy;
| | - Manuela Malatesta
- Department of Neurosciences, Biomedicine and Movement Sciences, Anatomy and Histology Section, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy; (F.C.); (M.M.)
| | - Barbara Stella
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125 Torino, Italy;
| | - Giovanna Lollo
- Laboratoire d’Automatique, de Génie des Procédés et de Génie Pharmaceutique, Université Claude Bernard Lyon 1, CNRS UMR 5007, 43 bd 11 Novembre 1918, 69622 Villeurbanne, France; (I.A.); (M.R.); (D.K.); (S.B.)
| |
Collapse
|
2
|
Emami MR, Young CS, Ji Y, Liu X, Mokhonova E, Pyle AD, Meng H, Spencer MJ. Polyrotaxane Nanocarriers Can Deliver CRISPR/Cas9 Plasmid to Dystrophic Muscle Cells to Successfully Edit the DMD Gene. ADVANCED THERAPEUTICS 2019. [DOI: 10.1002/adtp.201900061] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Michael R. Emami
- Molecular Biology Institute University of California, Los Angeles Los Angeles CA 90095 USA
- Center for Duchenne Muscular Dystrophy University of California, Los Angeles Los Angeles CA 90095 USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research University of California, Los Angeles Los Angeles CA 90095 USA
| | - Courtney S. Young
- Center for Duchenne Muscular Dystrophy University of California, Los Angeles Los Angeles CA 90095 USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research University of California, Los Angeles Los Angeles CA 90095 USA
- Department of Neurology University of California, Los Angeles Los Angeles CA 90095 USA
| | - Ying Ji
- Division of Nanomedicine, Department of Medicine California NanoSystems Institute University of California, Los Angeles Los Angeles CA 90095 USA
| | - Xiangsheng Liu
- Division of Nanomedicine, Department of Medicine California NanoSystems Institute University of California, Los Angeles Los Angeles CA 90095 USA
| | - Ekaterina Mokhonova
- Center for Duchenne Muscular Dystrophy University of California, Los Angeles Los Angeles CA 90095 USA
- Department of Neurology University of California, Los Angeles Los Angeles CA 90095 USA
| | - April D. Pyle
- Molecular Biology Institute University of California, Los Angeles Los Angeles CA 90095 USA
- Center for Duchenne Muscular Dystrophy University of California, Los Angeles Los Angeles CA 90095 USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research University of California, Los Angeles Los Angeles CA 90095 USA
- Department of Microbiology, Immunology, and Molecular Genetics University of California, Los Angeles Los Angeles CA 90095 USA
| | - Huan Meng
- Division of Nanomedicine, Department of Medicine California NanoSystems Institute University of California, Los Angeles Los Angeles CA 90095 USA
| | - Melissa J. Spencer
- Molecular Biology Institute University of California, Los Angeles Los Angeles CA 90095 USA
- Center for Duchenne Muscular Dystrophy University of California, Los Angeles Los Angeles CA 90095 USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research University of California, Los Angeles Los Angeles CA 90095 USA
- Department of Neurology University of California, Los Angeles Los Angeles CA 90095 USA
| |
Collapse
|
3
|
Wu B, Wang M, Shah S, Lu QL. In Vivo Evaluation of Dystrophin Exon Skipping in mdx Mice. Methods Mol Biol 2019; 1828:231-247. [PMID: 30171545 DOI: 10.1007/978-1-4939-8651-4_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Dystrophin exon skipping in mdx mice has been the key model for the development of antisense therapy in vivo. Evaluation of exon skipping in this model involves the following two aspects: (1) efficiency and accuracy of exon skipping and levels of dystrophin expression determined by RT-PCR, immunochemistry, and western blotting; (2) therapeutic effects on muscle pathology and functions assessed by histology and functional assays including grip strength measurement, treadmill test, echocardiogram, and hemodynamics for cardiac functions. Here we describe some key considerations and the essential methodologies in detail for exon skipping in mdx mice.
Collapse
Affiliation(s)
- Bo Wu
- McColl-Lockwood Laboratory for Muscular Dystrophy Research, Department of Neurology, Neuromuscular/ALS Center, Carolinas Medical Center, Charlotte, NC, USA.
| | - Mingxing Wang
- McColl-Lockwood Laboratory for Muscular Dystrophy Research, Department of Neurology, Neuromuscular/ALS Center, Carolinas Medical Center, Charlotte, NC, USA
| | - Sapana Shah
- McColl-Lockwood Laboratory for Muscular Dystrophy Research, Department of Neurology, Neuromuscular/ALS Center, Carolinas Medical Center, Charlotte, NC, USA
| | - Qi Long Lu
- McColl-Lockwood Laboratory for Muscular Dystrophy Research, Department of Neurology, Neuromuscular/ALS Center, Carolinas Medical Center, Charlotte, NC, USA.
| |
Collapse
|
4
|
Wang M, Wu B, Shah SN, Lu P, Lu Q. Saponins enhance exon skipping of 2'-O-methyl phosphorothioate oligonucleotide in vitro and in vivo. Drug Des Devel Ther 2018; 12:3705-3715. [PMID: 30464402 PMCID: PMC6217006 DOI: 10.2147/dddt.s179008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Antisense oligonucleotide (ASO)-mediated exon skipping has been feasible and promising approach for treating Duchenne muscular dystrophy (DMD) in preclinical and clinical trials, but its therapeutic applications remain challenges due to inefficient delivery. METHODS We investigated a few Saponins for their potential to improve delivery performance of an antisense 2'-Omethyl phosphorothioate RNA (2'-OMePS) in muscle cells and in dystrophic mdx mice. This study was carried out by evaluating these Saponins' toxicity, cellular uptake, transduction efficiency in vitro, and local delivery in vivo for 2'-OMePS, as well as affinity study between Saponin and 2'-OMePS. RESULTS The results showed that these Saponins, especially Digitonin and Tomatine, enhance the delivery of 2'-OMePS with comparable efficiency to Lipofectamine 2k (LF-2k) -mediated delivery in vitro. Significant performance was further observed in mdx mice, up to 10-fold with the Digitonin as compared to 2'-OMePS alone. Cytotoxicity of the Digitonin and Glycyrrhizin was much lower than LF-2k in vitro and not clearly detected in vivo under the tested concentrations. CONCLUSION This study potentiates Saponins as delivery vehicle for 2'-OMePS in vivo for treating DMD or other diseases.
Collapse
Affiliation(s)
- Mingxing Wang
- McColl-Lockwood Laboratory for Muscular Dystrophy Research, Department of Neurology, Cannon Research Center, Carolinas Medical Center, Charlotte, NC 28203, USA,
| | - Bo Wu
- McColl-Lockwood Laboratory for Muscular Dystrophy Research, Department of Neurology, Cannon Research Center, Carolinas Medical Center, Charlotte, NC 28203, USA,
| | - Sapana N Shah
- McColl-Lockwood Laboratory for Muscular Dystrophy Research, Department of Neurology, Cannon Research Center, Carolinas Medical Center, Charlotte, NC 28203, USA,
| | - Peijuan Lu
- McColl-Lockwood Laboratory for Muscular Dystrophy Research, Department of Neurology, Cannon Research Center, Carolinas Medical Center, Charlotte, NC 28203, USA,
| | - Qilong Lu
- McColl-Lockwood Laboratory for Muscular Dystrophy Research, Department of Neurology, Cannon Research Center, Carolinas Medical Center, Charlotte, NC 28203, USA,
| |
Collapse
|
5
|
Le TMD, Duong HTT, Thambi T, Giang Phan V, Jeong JH, Lee DS. Bioinspired pH- and Temperature-Responsive Injectable Adhesive Hydrogels with Polyplexes Promotes Skin Wound Healing. Biomacromolecules 2018; 19:3536-3548. [PMID: 30005160 DOI: 10.1021/acs.biomac.8b00819] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Thai Minh Duy Le
- School of Chemical Engineering, Theranostic Macromolecules Research Center, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Huu Thuy Trang Duong
- School of Chemical Engineering, Theranostic Macromolecules Research Center, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Thavasyappan Thambi
- School of Chemical Engineering, Theranostic Macromolecules Research Center, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - V.H. Giang Phan
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City 70000, Vietnam
| | - Ji Hoon Jeong
- School of Pharmacy, Theranostic Macromolecules Research Center, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Doo Sung Lee
- School of Chemical Engineering, Theranostic Macromolecules Research Center, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| |
Collapse
|
6
|
Rafael D, Andrade F, Montero S, Gener P, Seras-Franzoso J, Martínez F, González P, Florindo H, Arango D, Sayós J, Abasolo I, Videira M, Schwartz Jr. S. Rational Design of a siRNA Delivery System: ALOX5 and Cancer Stem Cells as Therapeutic Targets. PRECISION NANOMEDICINE 2018. [DOI: 10.29016/180629.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The search for an ideal gene delivery system is a long and laborious process in which several factors from the first idea to final formulation, including main challenges, peaks and troughs, should be deeply taken into consideration to ensure adequate biological safety and in vivo efficacy endpoints. Arachidonate 5-lipoxygenase (ALOX5), a crucial player related with cancer development and in particular with cancer stem cells malignancy. In this work we describe the process behind the development of a small interfering RNA (siRNA) delivery system to inhibit ALOX5 in cancer stem cells (CSC), as a model target gene. We started by screening chitosan polyplexes, among different types of chitosan in different complexation conditions. Due to the low silencing efficacy obtained, chitosan polyplexes were combined with Pluronic®-based polymeric micelles with recognized advantages regarding gene transfection. We tested different types of polymeric particles to improve the biological efficacy of chitosan polyplexes. Nevertheless, limited transfection efficiency was still detected. The well-established polyethyleneimine (PEI) cationic polymer was used in substitution of chitosan, in combination with polymeric micelles, originating PEI-siRNA-Pluronic® systems. The presence of Pluronic® F127 in the formulation showed to be of utmost importance because not only the silencing activity of the polyplexes was improved, but also PEI-associated toxicity was clearly reduced. This, allowed to increase the amount of PEI inside the system and its overall efficacy. Indeed, different types of PEI, N/P ratios and preparation methods were tested until an optimal formulation composed by PEI 10k branched-based polyplexes at an N/P ratio of 50 combined with micelles of Pluronic® F127 was selected. This combined micelle presented adequate technological properties, safety profile, and biological efficacy, resulting in high ALOX5 gene silencing and strong reduction of invasion and transformation capabilities of a stem cell subpopulation isolated from MDA-MB-231 triple negative breast cancer cells.
Collapse
Affiliation(s)
- Diana Rafael
- Research Institute for Medicines and Pharmaceutical Sciences, Faculdade de Farmácia, Universidade de Lisboa
| | - Fernanda Andrade
- Molecular Biology and Biochemistry Research Centre for Nanomedicine (CIBBIM-Nanomedicine), Vall d’Hebron Institut de Recerca, Universitat Autònoma de Barcelona
| | - Sara Montero
- Molecular Biology and Biochemistry Research Centre for Nanomedicine (CIBBIM-Nanomedicine), Vall d’Hebron Institut de Recerca, Universitat Autònoma de Barcelona
| | - Petra Gener
- Molecular Biology and Biochemistry Research Centre for Nanomedicine (CIBBIM-Nanomedicine), Vall d’Hebron Institut de Recerca, Universitat Autònoma de Barcelona
| | - Joaquin Seras-Franzoso
- Molecular Biology and Biochemistry Research Centre for Nanomedicine (CIBBIM-Nanomedicine), Vall d’Hebron Institut de Recerca, Universitat Autònoma de Barcelona
| | - Francesc Martínez
- Molecular Biology and Biochemistry Research Centre for Nanomedicine (CIBBIM-Nanomedicine), Vall d’Hebron Institut de Recerca, Universitat Autònoma de Barcelona
| | - Patricia González
- Networking Research Centre for Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, Zaragoza
| | - Helena Florindo
- Research Institute for Medicines and Pharmaceutical Sciences, Faculdade de Farmácia, Universidade de Lisboa
| | - Diego Arango
- Biomedical Research in Digestive Tract Tumors, CIBBIM-Nanomedicine, Vall d’Hebron Institut de Recerca, Universitat Autònoma de Barcelona,
| | - Joan Sayós
- Immune Regulation and Immunotherapy, CIBBIM-Nanomedicine, Vall d’Hebron Institut de Recerca, Universitat Autònoma de Barcelona
| | - Ibane Abasolo
- Functional Validation & Preclinical Research (FVPR), CIBBIM-Nanomedicine, Vall d’Hebron Institut de Recerca, Universitat Autònoma de Barcelona
| | - Mafalda Videira
- Research Institute for Medicines and Pharmaceutical Sciences, Faculdade de Farmácia, Universidade de Lisboa (iMed.ULisboa), Lisbon
| | - Simó Schwartz Jr.
- Molecular Biology and Biochemistry Research Centre for Nanomedicine (CIBBIM-Nanomedicine), Vall d’Hebron Institut de Recerca
| |
Collapse
|
7
|
|
8
|
Wang M, Wu B, Tucker JD, Lu P, Lu Q. A combinatorial library of triazine-cored polymeric vectors for pDNA delivery in vitro and in vivo. J Mater Chem B 2017; 5:3907-3918. [PMID: 32264252 DOI: 10.1039/c6tb03311c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A set of triazine-cored cationic amphiphilic polymers (TAPs) composed of low molecular weight (Mw) polyethylenimine (LPEI, B) and amphiphilic Jeffamine (A) were prepared with controllable composition and molecular size, and further characterized for plasmid DNA (pDNA) delivery both in vitro and in vivo. These new polymers condensed pDNA efficiently at a polymer/pDNA weight ratio of 5 with particle sizes below 200 nm. The introduction of Jeffamine in the polymers significantly improved the cellular uptake of pDNA, but without increasing its toxicity compared with the parent LPEI. The best formulation resulted in 6- and 29-fold transfection efficiencies of PEI 25k in vitro and in vivo in mdx mice, respectively. Higher transfection efficiency was achieved with more lipophilic A1/A3-based polymers in vitro, with 1A11B3 and 1A12B3 showing the greatest delivery performance. However, the lipophilicity of the TAPs is less critical in vivo as the less lipophilic A2/A4 constructed TAPs also performed similarly well as the more lipophilic A1/A3 constructed ones. In addition, a synergistic effect of LPEI and Jeffamine via chemical conjugation for the delivery of pDNA was revealed in transfection efficiency. These results indicate that the appropriate positive surface and particle size of polymer/pDNA complex and the composition and hydrophilic-lipophilic balance (HLB) of polymers are crucial for effective delivery, although intricate matching exists between A and B in the TAP composition. Triazine-cored cationic amphiphilic polymers are safe and potentially effective carriers for gene/drug delivery.
Collapse
Affiliation(s)
- Mingxing Wang
- McColl-Lockwood Laboratory for Muscular Dystrophy Research, Cannon Research Center, Carolinas Medical Center, 1000 Blythe Blvd., Charlotte, NC 28231, USA.
| | | | | | | | | |
Collapse
|
9
|
Nance ME, Hakim CH, Yang NN, Duan D. Nanotherapy for Duchenne muscular dystrophy. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2017; 10. [PMID: 28398005 DOI: 10.1002/wnan.1472] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 02/09/2017] [Accepted: 03/11/2017] [Indexed: 12/14/2022]
Abstract
Duchenne muscular dystrophy (DMD) is a lethal X-linked childhood muscle wasting disease caused by mutations in the dystrophin gene. Nanobiotechnology-based therapies (such as synthetic nanoparticles and naturally existing viral and nonviral nanoparticles) hold great promise to replace and repair the mutated dystrophin gene and significantly change the disease course. While a majority of DMD nanotherapies are still in early preclinical development, several [such as adeno-associated virus (AAV)-mediated systemic micro-dystrophin gene therapy] are advancing for phase I clinical trials. Recent regulatory approval of Ataluren (a nonsense mutation read-through chemical) in Europe and Exondys51 (an exon-skipping antisense oligonucleotide drug) in the United States shall offer critical insight in how to move DMD nanotherapy to human patients. Progress in novel, optimized nano-delivery systems may further improve emerging molecular therapeutic modalities for DMD. Despite these progresses, DMD nanotherapy faces a number of unique challenges. Specifically, the dystrophin gene is one of the largest genes in the genome while nanoparticles have an inherent size limitation per definition. Furthermore, muscle is the largest tissue in the body and accounts for 40% of the body mass. How to achieve efficient bodywide muscle targeting in human patients with nanomedication remains a significant translational hurdle. New creative approaches in the design of the miniature micro-dystrophin gene, engineering of muscle-specific synthetic AAV capsids, and novel nanoparticle-mediated exon-skipping are likely to result in major breakthroughs in DMD therapy. WIREs Nanomed Nanobiotechnol 2018, 10:e1472. doi: 10.1002/wnan.1472 This article is categorized under: Biology-Inspired Nanomaterials > Protein and Virus-Based Structures Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Michael E Nance
- Department of Microbiology and Immunology, University of Missouri School of Medicine, Columbia, MO, USA
| | - Chady H Hakim
- Department of Microbiology and Immunology, University of Missouri School of Medicine, Columbia, MO, USA.,National Center for Advancing Translational Sciences, NIH, Rockville, MD, USA
| | - N Nora Yang
- National Center for Advancing Translational Sciences, NIH, Rockville, MD, USA
| | - Dongsheng Duan
- Department of Microbiology and Immunology, University of Missouri School of Medicine, Columbia, MO, USA.,Department of Neurology, University of Missouri, Columbia, MO, USA.,Department of Bioengineering, University of Missouri, Columbia, MO, USA.,Department of Biomedical Sciences, University of Missouri, Columbia, MO, USA
| |
Collapse
|
10
|
Chiper M, Tounsi N, Kole R, Kichler A, Zuber G. Self-aggregating 1.8kDa polyethylenimines with dissolution switch at endosomal acidic pH are delivery carriers for plasmid DNA, mRNA, siRNA and exon-skipping oligonucleotides. J Control Release 2016; 246:60-70. [PMID: 27956144 DOI: 10.1016/j.jconrel.2016.12.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 11/23/2016] [Accepted: 12/05/2016] [Indexed: 11/24/2022]
Abstract
Efficiency of polyethylenimine (PEI) for nucleic acid delivery is affected by the size of the carrier and length of the nucleic acids. For instance, PEIs with molecular weights between 10-30kDa provide optimal DNA delivery activity whereas PEIs with molecular weights below 1.8kDa are ineffective. The activity of PEI is also severely diminished by substitution of DNA for shorter nucleic acids such as mRNA or siRNA. Here, through chemical modification of the primary amines to aromatic domains we achieved nucleic acid delivery by the 1.8kDa polyethylenimine (PEI) particles. This modification did not affect the PEI buffering abilities but enhanced its pH-sensitive aggregation, enabling stabilization of the polyplex outside the cell while still allowing nucleic acid release following cellular entry. The aromatic PEIs were then evaluated for their gene, mRNA, siRNA and 2'O-methyl phosphorothioate oligonucleotide in vitro transfection abilities. The salicylamide-grafted PEI showed to be a reliable carrier for delivering nucleic acids with cytoplasmic activity such as the mRNA and siRNA or nuclear diffusible oligonucleotide. It was then further equipped with polyethyleneglycol (PEG) and the delivery efficiency of the copolymer was tested in vivo for regeneration of dystrophin in the muscle of mdx mouse through a 2'O-methyl phosphorothioate-mediated splicing modulation. Intramuscular administration of polyplexes resulted in dystrophin-positive fibers in a mouse model of Duchenne muscular dystrophy without apparent toxicity. These findings indicate that precise modifications of low molecular weight PEI improve its bio-responsiveness and yield delivery vehicles for nucleic acids of various types in vitro and in vivo.
Collapse
Affiliation(s)
- Manuela Chiper
- Molecular and Pharmaceutical Engineering of Biologics, CNRS - Université de Strasbourg UMR 7242, Boulevard Sebastien Brant, 67412 Illkirch, France; Faculté de Pharmacie - Université de Strasbourg, 74 Route du Rhin, F-67400 Illkirch, France
| | - Nassera Tounsi
- Faculté de Pharmacie - Université de Strasbourg, 74 Route du Rhin, F-67400 Illkirch, France; Laboratory of Therapeutic Innovation UMR 7200, CNRS - Université de Strasbourg, France
| | - Ryszard Kole
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, United States
| | - Antoine Kichler
- Faculté de Pharmacie - Université de Strasbourg, 74 Route du Rhin, F-67400 Illkirch, France; Laboratoire de Conception et d'Application de Molécules Bioactives, CNRS - Université de Strasbourg UMR 7199, France; Genethon, 91000 Evry, France
| | - Guy Zuber
- Molecular and Pharmaceutical Engineering of Biologics, CNRS - Université de Strasbourg UMR 7242, Boulevard Sebastien Brant, 67412 Illkirch, France.
| |
Collapse
|
11
|
Wu Z, Zhan S, Fan W, Ding X, Wu X, Zhang W, Fu Y, Huang Y, Huang X, Chen R, Li M, Xu N, Zheng Y, Ding B. Peptide-Mediated Tumor Targeting by a Degradable Nano Gene Delivery Vector Based on Pluronic-Modified Polyethylenimine. NANOSCALE RESEARCH LETTERS 2016; 11:122. [PMID: 26932761 PMCID: PMC4773318 DOI: 10.1186/s11671-016-1337-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 02/23/2016] [Indexed: 05/29/2023]
Abstract
Polyethylenimine (PEI) is considered to be a promising non-viral gene delivery vector. To solve the toxicity versus efficacy and tumor-targeting challenges of PEI used as gene delivery vector, we constructed a novel non-viral vector DR5-TAT-modified Pluronic-PEI (Pluronic-PEI-DR5-TAT), which was based on the attachment of low-molecular-weight polyethylenimine (LMW-PEI) to the amphiphilic polymer Pluronic to prepare Pluronic-modified LMW-PEI (Pluronic-PEI). This was then conjugated to a multifunctional peptide containing a cell-penetrating peptide (TAT) and a synthetic peptide that would bind to DR5-a receptor that is overexpressed in cancer cells. The vector showed controlled degradation, favorable DNA condensation and protection performance. The Pluronic-PEI-DR5-TAT/DNA complexes at an N/P ratio of 15:1 were spherical nanoparticles of 122 ± 11.6 nm and a zeta potential of about 22 ± 2.8 mV. In vitro biological characterization results indicated that Pluronic-PEI-DR5-TAT/DNA complexes had a higher specificity for the DR5 receptor and were taken up more efficiently by tumor cells than normal cells, compared to complexes formed with PEI 25 kDa or Pluronic-PEI. Thus, the novel complexes showed much lower cytotoxicity to normal cells and higher gene transfection efficiency in tumor cells than that exhibited by PEI 25 kDa and Pluronic-PEI. In summary, our novel, degradable non-viral tumor-targeting vector is a promising candidate for use in gene therapy.
Collapse
Affiliation(s)
- Zhaoyong Wu
- Department of Pharmacy, Jiaxing Maternal and Child Health Care Hospital, Affiliated Hospital of Jiaxing University, Jiaxing, People's Republic of China
| | - Shuyu Zhan
- Department of Pharmaceutics, Medical College of Jiaxing University, Jiaxing, People's Republic of China
| | - Wei Fan
- Department of Pharmacy, The 425th Hospital of PLA, Sanya, People's Republic of China
| | - Xueying Ding
- Department of Pharmaceutics, Shanghai First People's Hospital, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Xin Wu
- Department of Pharmaceutics, Shanghai First People's Hospital, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Wei Zhang
- Department of Pharmacy, Shanghai Pulmonary Hospital, Shanghai, People's Republic of China
| | - Yinghua Fu
- Department of Pharmaceutics, Medical College of Jiaxing University, Jiaxing, People's Republic of China
| | - Yueyan Huang
- Department of Pharmaceutics, Medical College of Jiaxing University, Jiaxing, People's Republic of China
| | - Xuan Huang
- Department of Pharmaceutics, Medical College of Jiaxing University, Jiaxing, People's Republic of China
| | - Rubing Chen
- Department of Pharmaceutics, Medical College of Jiaxing University, Jiaxing, People's Republic of China
| | - Mingjuan Li
- Department of Pharmaceutics, Medical College of Jiaxing University, Jiaxing, People's Republic of China
| | - Ningyin Xu
- Department of Pharmaceutics, Medical College of Jiaxing University, Jiaxing, People's Republic of China
| | - Yongxia Zheng
- Department of Pharmaceutics, Medical College of Jiaxing University, Jiaxing, People's Republic of China.
| | - Baoyue Ding
- Department of Pharmaceutics, Medical College of Jiaxing University, Jiaxing, People's Republic of China.
| |
Collapse
|
12
|
Fletcher S, Bellgard MI, Price L, Akkari AP, Wilton SD. Translational development of splice-modifying antisense oligomers. Expert Opin Biol Ther 2016; 17:15-30. [PMID: 27805416 DOI: 10.1080/14712598.2017.1250880] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Antisense nucleic acid analogues can interact with pre-mRNA motifs and influence exon or splice site selection and thereby alter gene expression. Design of antisense molecules to target specific motifs can result in either exon exclusion or exon inclusion during splicing. Novel drugs exploiting the antisense concept are targeting rare, life-limiting diseases; however, the potential exists to treat a wide range of conditions by antisense-mediated splice intervention. Areas covered: In this review, the authors discuss the clinical translation of novel molecular therapeutics to address the fatal neuromuscular disorders Duchenne muscular dystrophy and spinal muscular atrophy. The review also highlights difficulties posed by issues pertaining to restricted participant numbers, variable phenotype and disease progression, and the identification and validation of study endpoints. Expert opinion: Translation of novel therapeutics for Duchenne muscular dystrophy and spinal muscular atrophy has been greatly advanced by multidisciplinary research, academic-industry partnerships and in particular, the engagement and support of the patient community. Sponsors, supporters and regulators are cooperating to deliver new drugs and identify and define meaningful outcome measures. Non-conventional and adaptive trial design could be particularly suited to clinical evaluation of novel therapeutics and strategies to treat serious, rare diseases that may be problematic to study using more conventional clinical trial structures.
Collapse
Affiliation(s)
- S Fletcher
- a Centre for Neuromuscular and Neurological Disorders , University of Western Australia , Nedlands , Western Australia , Australia.,b Western Australian Neuroscience Research Institute , Nedlands , Western Australia , Australia.,c Centre for Comparative Genomics , Murdoch University , Western Australia , Australia
| | - M I Bellgard
- b Western Australian Neuroscience Research Institute , Nedlands , Western Australia , Australia.,c Centre for Comparative Genomics , Murdoch University , Western Australia , Australia
| | - L Price
- a Centre for Neuromuscular and Neurological Disorders , University of Western Australia , Nedlands , Western Australia , Australia.,b Western Australian Neuroscience Research Institute , Nedlands , Western Australia , Australia.,c Centre for Comparative Genomics , Murdoch University , Western Australia , Australia
| | - A P Akkari
- b Western Australian Neuroscience Research Institute , Nedlands , Western Australia , Australia.,c Centre for Comparative Genomics , Murdoch University , Western Australia , Australia.,d Shiraz Pharmaceuticals, Inc , Chapel Hill , NC , USA
| | - S D Wilton
- a Centre for Neuromuscular and Neurological Disorders , University of Western Australia , Nedlands , Western Australia , Australia.,b Western Australian Neuroscience Research Institute , Nedlands , Western Australia , Australia.,c Centre for Comparative Genomics , Murdoch University , Western Australia , Australia
| |
Collapse
|
13
|
Chira S, Jackson CS, Oprea I, Ozturk F, Pepper MS, Diaconu I, Braicu C, Raduly LZ, Calin GA, Berindan-Neagoe I. Progresses towards safe and efficient gene therapy vectors. Oncotarget 2016; 6:30675-703. [PMID: 26362400 PMCID: PMC4741561 DOI: 10.18632/oncotarget.5169] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 08/22/2015] [Indexed: 12/11/2022] Open
Abstract
The emergence of genetic engineering at the beginning of the 1970′s opened the era of biomedical technologies, which aims to improve human health using genetic manipulation techniques in a clinical context. Gene therapy represents an innovating and appealing strategy for treatment of human diseases, which utilizes vehicles or vectors for delivering therapeutic genes into the patients' body. However, a few past unsuccessful events that negatively marked the beginning of gene therapy resulted in the need for further studies regarding the design and biology of gene therapy vectors, so that this innovating treatment approach can successfully move from bench to bedside. In this paper, we review the major gene delivery vectors and recent improvements made in their design meant to overcome the issues that commonly arise with the use of gene therapy vectors. At the end of the manuscript, we summarized the main advantages and disadvantages of common gene therapy vectors and we discuss possible future directions for potential therapeutic vectors.
Collapse
Affiliation(s)
- Sergiu Chira
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, University of Medicine and Pharmacy "Iuliu Haţieganu", Cluj Napoca, Romania
| | - Carlo S Jackson
- Department of Immunology and Institute for Cellular and Molecular Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Iulian Oprea
- Department of Oncology and Pathology, Cancer Center Karolinska, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Ferhat Ozturk
- Department of Molecular Biology and Genetics, Canik Başari University, Samsun, Turkey
| | - Michael S Pepper
- Department of Immunology and Institute for Cellular and Molecular Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | | | - Cornelia Braicu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, University of Medicine and Pharmacy "Iuliu Haţieganu", Cluj Napoca, Romania
| | - Lajos-Zsolt Raduly
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, University of Medicine and Pharmacy "Iuliu Haţieganu", Cluj Napoca, Romania.,Department of Physiopathology, Faculty of Veterinary Medicine, University of Agricultural Science and Veterinary Medicine, Cluj Napoca, Romania
| | - George A Calin
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, University of Medicine and Pharmacy "Iuliu Haţieganu", Cluj Napoca, Romania.,Department of Immunology, University of Medicine and Pharmacy "Iuliu Haţieganu", Cluj Napoca, Romania.,Department of Functional Genomics and Experimental Pathology, Oncological Institute "Prof. Dr. Ion Chiricuţă", Cluj Napoca, Romania.,Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
14
|
Wang M, Wu B, Tucker JD, Bollinger LE, Lu P, Lu Q. Poly(ester amine) Composed of Polyethylenimine and Pluronic Enhance Delivery of Antisense Oligonucleotides In Vitro and in Dystrophic mdx Mice. MOLECULAR THERAPY. NUCLEIC ACIDS 2016; 5:e341. [PMID: 27483024 PMCID: PMC5023397 DOI: 10.1038/mtna.2016.51] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 06/08/2016] [Indexed: 01/16/2023]
Abstract
A series of poly(esteramine)s (PEAs) constructed from low molecular weight polyethyleneimine (LPEI) and Pluronic were evaluated for the delivery of antisense oligonuclotides (AOs), 2'-O-methyl phosphorothioate RNA (2'-OMePS) and phosphorodiamidate morpholino oligomer (PMO) in cell culture and dystrophic mdx mice. Improved exon-skipping efficiency of both 2'-OMePS and PMO was observed in the C2C12E50 cell line with all PEA polymers compared with PEI 25k or LF-2k. The degree of efficiency was found in the order of PEA 01, PEA 04 > PEA 05 > others. The in vivo study in mdx mice demonstrated enhanced exon-skipping of 2'-OMePS with the order of PEA 06 > PEA 04, PEA 07 > PEA 03 > PEA 01 > others, and much higher than PEI 25k formulated 2'-OMePS. Exon-skipping efficiency of PMO in formulation with the PEAs were significantly enhanced in the order of PEA 02 > PEA 10 > PEA 01, PEA 03 > PEA 05, PEA 07, PEA 08 > others, with PEA 02 reaching fourfold of Endo-porter formulated PMO. PEAs improve PMO delivery more effectively than 2'-OMePS delivery in vivo, and the systemic delivery evaluation further highlight the efficiency of PEA for PMO delivery in all skeletal muscle. The results suggest that the flexibility of PEA polymers could be explored for delivery of different AO chemistries, especially for antisense therapy.
Collapse
Affiliation(s)
- Mingxing Wang
- McCollLockwood Laboratory for Muscular Dystrophy Research, Cannon Research Center, Carolinas Medical Center, Charlotte, North Carolina, USA
| | - Bo Wu
- McCollLockwood Laboratory for Muscular Dystrophy Research, Cannon Research Center, Carolinas Medical Center, Charlotte, North Carolina, USA
| | - Jason D Tucker
- McCollLockwood Laboratory for Muscular Dystrophy Research, Cannon Research Center, Carolinas Medical Center, Charlotte, North Carolina, USA
| | - Lauren E Bollinger
- McCollLockwood Laboratory for Muscular Dystrophy Research, Cannon Research Center, Carolinas Medical Center, Charlotte, North Carolina, USA
| | - Peijuan Lu
- McCollLockwood Laboratory for Muscular Dystrophy Research, Cannon Research Center, Carolinas Medical Center, Charlotte, North Carolina, USA
| | - Qilong Lu
- McCollLockwood Laboratory for Muscular Dystrophy Research, Cannon Research Center, Carolinas Medical Center, Charlotte, North Carolina, USA
| |
Collapse
|
15
|
Wang M, Wu B, Tucker JD, Lu P, Lu Q. Poly(ester amine) constructed from polyethylenimine and pluronic for gene delivery in vitro and in vivo. Drug Deliv 2016; 23:3224-3233. [PMID: 26960992 DOI: 10.3109/10717544.2016.1162877] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
A series of poly (ester amines) (PEAs) constructed from low molecular weight polyethyleneimine (LPEI, Mw: 0.8k, 1.2k Da) and Pluronic (different molecular weight (Mw) and hydrophilic-lipophilic-balance (HLB)) components were synthesized, and evaluated in vitro and in vivo as gene delivery carriers. Most PEA polymers were able to bind and condense plasmid DNA effectively into particles of approximately 150 nm in solution at the polymer/DNA ratio of 5 and above. Transfection efficiency of the PEA polymers depends on particle size of the polymer/DNA complex, molecular weight and HLB of the Pluronics and the size of PEI within PEA composition, as well as the cell type. Significant improvement in gene delivery efficacy was achieved with PEA01/04/05 composed of Pluronic size (Mw: 3000-5000 Da), and HLB (12-18) in CHO, C2C12 and HSkM cell lines; and the effective transfection was reflected with PEA 01/04/07 composed of Pluronics with size (2000-5000 Da) and HLB (12-23) in mdx mice. The best formulation for pDNA delivery was obtained with PEA 01 producing transgene expression efficiency 5, 19-folds of that of PEI 25k in vitro and in vivo, respectively. These results potent some of these PEA polymers as attractive vehicles for gene or oligonucleotide delivery.
Collapse
Affiliation(s)
- Mingxing Wang
- a McColl-Lockwood Laboratory for Muscular Dystrophy Research, Carolinas Medical Center , Charlotte , NC , USA
| | - Bo Wu
- a McColl-Lockwood Laboratory for Muscular Dystrophy Research, Carolinas Medical Center , Charlotte , NC , USA
| | - Jason D Tucker
- a McColl-Lockwood Laboratory for Muscular Dystrophy Research, Carolinas Medical Center , Charlotte , NC , USA
| | - Peijuan Lu
- a McColl-Lockwood Laboratory for Muscular Dystrophy Research, Carolinas Medical Center , Charlotte , NC , USA
| | - Qilong Lu
- a McColl-Lockwood Laboratory for Muscular Dystrophy Research, Carolinas Medical Center , Charlotte , NC , USA
| |
Collapse
|
16
|
Moreno PMD, Santos JC, Gomes CP, Varela-Moreira A, Costa A, Leiro V, Mansur H, Pêgo AP. Delivery of Splice Switching Oligonucleotides by Amphiphilic Chitosan-Based Nanoparticles. Mol Pharm 2016; 13:344-56. [PMID: 26702499 DOI: 10.1021/acs.molpharmaceut.5b00538] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Splice switching oligonucleotides (SSOs) are a class of single-stranded antisense oligonucleotides (ssONs) being used as gene therapeutics and demonstrating great therapeutic potential. The availability of biodegradable and biocompatible delivery vectors that could improve delivery efficiencies, reduce dosage, and, in parallel, reduce toxicity concerns could be advantageous for clinical translation. In this work we explored the use of quaternized amphiphilic chitosan-based vectors in nanocomplex formation and delivery of splice switching oligonucleotides (SSO) into cells, while providing insights regarding cellular uptake of such complexes. Results show that the chitosan amphiphilic character is important when dealing with SSOs, greatly improving colloidal stability under serum conditions, as analyzed by dynamic light scattering, and enhancing cellular association. Nanocomplexes were found to follow an endolysosomal route with a long lysosome residence time. Conjugation of a hydrophobic moiety, stearic acid, to quaternized chitosan was a necessary condition to achieve transfection, as an unmodified quaternary chitosan was completely ineffective. We thus demonstrate that amphiphilic quaternized chitosan is a biomaterial that holds promise and warrants further development as a platform for SSO delivery strategies.
Collapse
Affiliation(s)
- Pedro M D Moreno
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto (UPorto) , Rua Alfredo Allen, 208, 4200-135 Porto, Portugal.,i3S-Instituto de Investigação e Inovação em Saúde , UPorto, 4200-135 Porto, Portugal
| | - Joyce C Santos
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto (UPorto) , Rua Alfredo Allen, 208, 4200-135 Porto, Portugal.,i3S-Instituto de Investigação e Inovação em Saúde , UPorto, 4200-135 Porto, Portugal.,CeNano2I, Department of Metallurgical and Materials Engineering, UFMG, 31270-901 Belo Horizonte, Brazil
| | - Carla P Gomes
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto (UPorto) , Rua Alfredo Allen, 208, 4200-135 Porto, Portugal.,i3S-Instituto de Investigação e Inovação em Saúde , UPorto, 4200-135 Porto, Portugal.,Faculdade de Engenharia da UPorto (FEUP), 4200-319 Porto, Portugal
| | - Aida Varela-Moreira
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto (UPorto) , Rua Alfredo Allen, 208, 4200-135 Porto, Portugal.,i3S-Instituto de Investigação e Inovação em Saúde , UPorto, 4200-135 Porto, Portugal.,Faculdade de Medicina da UPorto (FMUP), 4200-319 Porto, Portugal
| | - Artur Costa
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto (UPorto) , Rua Alfredo Allen, 208, 4200-135 Porto, Portugal.,i3S-Instituto de Investigação e Inovação em Saúde , UPorto, 4200-135 Porto, Portugal
| | - Victoria Leiro
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto (UPorto) , Rua Alfredo Allen, 208, 4200-135 Porto, Portugal.,i3S-Instituto de Investigação e Inovação em Saúde , UPorto, 4200-135 Porto, Portugal
| | - Herman Mansur
- CeNano2I, Department of Metallurgical and Materials Engineering, UFMG, 31270-901 Belo Horizonte, Brazil
| | - Ana P Pêgo
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto (UPorto) , Rua Alfredo Allen, 208, 4200-135 Porto, Portugal.,i3S-Instituto de Investigação e Inovação em Saúde , UPorto, 4200-135 Porto, Portugal.,Faculdade de Engenharia da UPorto (FEUP), 4200-319 Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar (ICBAS) , UPorto, 4050-313 Porto, Portugal
| |
Collapse
|
17
|
Fakhoury JJ, Edwardson TG, Conway JW, Trinh T, Khan F, Barłóg M, Bazzi HS, Sleiman HF. Antisense precision polymer micelles require less poly(ethylenimine) for efficient gene knockdown. NANOSCALE 2015; 7:20625-20634. [PMID: 26597764 DOI: 10.1039/c5nr05157f] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Therapeutic nucleic acids are powerful molecules for shutting down protein expression. However, their cellular uptake is poor and requires transport vectors, such as cationic polymers. Of these, poly(ethylenimine) (PEI) has been shown to be an efficient vehicle for nucleic acid transport into cells. However, cytotoxicity has been a major hurdle in the development of PEI-DNA complexes as clinically viable therapeutics. We have synthesized antisense-polymer conjugates, where the polymeric block is completely monodisperse and sequence-controlled. Depending on the polymer sequence, these can self-assemble to produce micelles of very low polydispersity. The introduction of linear poly(ethylenimine) to these micelles leads to aggregation into size-defined PEI-mediated superstructures. Subsequently, both cellular uptake and gene silencing are greatly enhanced over extended periods compared to antisense alone, while at the same time cellular cytotoxicity remains very low. In contrast, gene silencing is not enhanced with antisense polymer conjugates that are not able to self-assemble into micelles. Thus, using antisense precision micelles, we are able to achieve significant transfection and knockdown with minimal cytotoxicity at much lower concentrations of linear PEI then previously reported. Consequently, a conceptual solution to the problem of antisense or siRNA delivery is to self-assemble these molecules into 'gene-like' micelles with high local charge and increased stability, thus reducing the amount of transfection agent needed for effective gene silencing.
Collapse
Affiliation(s)
- Johans J Fakhoury
- Department of Chemistry and Center for Self-Assembled Chemical Structures, McGill University, 801 Sherbrooke St. W., Montreal, Quebec H3A 0B8, Canada.
| | - Thomas G Edwardson
- Department of Chemistry and Center for Self-Assembled Chemical Structures, McGill University, 801 Sherbrooke St. W., Montreal, Quebec H3A 0B8, Canada.
| | - Justin W Conway
- Department of Chemistry and Center for Self-Assembled Chemical Structures, McGill University, 801 Sherbrooke St. W., Montreal, Quebec H3A 0B8, Canada.
| | - Tuan Trinh
- Department of Chemistry and Center for Self-Assembled Chemical Structures, McGill University, 801 Sherbrooke St. W., Montreal, Quebec H3A 0B8, Canada.
| | - Farhad Khan
- Department of Chemistry and Center for Self-Assembled Chemical Structures, McGill University, 801 Sherbrooke St. W., Montreal, Quebec H3A 0B8, Canada.
| | - Maciej Barłóg
- Department of Chemistry, Texas A&M University at Qatar, P.O. Box 23874, Doha, Qatar
| | - Hassan S Bazzi
- Department of Chemistry, Texas A&M University at Qatar, P.O. Box 23874, Doha, Qatar
| | - Hanadi F Sleiman
- Department of Chemistry and Center for Self-Assembled Chemical Structures, McGill University, 801 Sherbrooke St. W., Montreal, Quebec H3A 0B8, Canada.
| |
Collapse
|
18
|
Dobrovolskaia MA, McNeil SE. Strategy for selecting nanotechnology carriers to overcome immunological and hematological toxicities challenging clinical translation of nucleic acid-based therapeutics. Expert Opin Drug Deliv 2015; 12:1163-75. [PMID: 25994601 DOI: 10.1517/17425247.2015.1042857] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Clinical translation of nucleic acid-based therapeutics (NATs) is hampered by assorted challenges in immunotoxicity, hematotoxicity, pharmacokinetics, toxicology and formulation. Nanotechnology-based platforms are being considered to help address some of these challenges due to the nanoparticles' ability to change drug biodistribution, stability, circulation half-life, route of administration and dosage. Addressing toxicology and pharmacology concerns by various means including NATs reformulation using nanotechnology-based carriers has been reviewed before. However, little attention was given to the immunological and hematological issues associated with nanotechnology reformulation. AREAS COVERED This review focuses on application of nanotechnology carriers for delivery of various types of NATs, and how reformulation using nanoparticles affects immunological and hematological toxicities of this promising class of therapeutic agents. EXPERT OPINION NATs share several immunological and hematological toxicities with common nanotechnology carriers. In order to avoid synergy or exaggeration of undesirable immunological and hematological effects of NATs by a nanocarrier, it is critical to consider the immunological compatibility of the nanotechnology platform and its components. Since receptors sensing nucleic acids are located essentially in all cellular compartments, a strategy for developing a nanoformulation with reduced immunotoxicity should first focus on precise delivery to the target site/cells and then on optimizing intracellular distribution.
Collapse
Affiliation(s)
- Marina A Dobrovolskaia
- Principal Scientist, Immunology Section Head,Nanotechnology Characterization Laboratory, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research , P .O. Box B, Frederick, MD 21702 , USA +1 301 8466939 ; +1 301 846 6399 ;
| | | |
Collapse
|
19
|
Wang M, Wu B, Tucker JD, Lu P, Bollinger LE, Lu Q. Tween 85 grafted PEIs enhanced delivery of antisense 2′-O-methyl phosphorothioate oligonucleotides in vitro and in dystrophic mdx mice. J Mater Chem B 2015; 3:5330-5340. [DOI: 10.1039/c5tb00139k] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The most effective Tween 85 modified LPEI (Z7) enhanced exon-skipping of 2′-OMePS over 8 folds compared with 2′-OMePS alone inmdxmice, without increasing toxicity.
Collapse
Affiliation(s)
- Mingxing Wang
- Department of Neurology
- McColl-Lockwood Laboratory for Muscular Dystrophy Research
- Cannon Research Center
- Carolinas Medical Center
- Charlotte
| | - Bo Wu
- Department of Neurology
- McColl-Lockwood Laboratory for Muscular Dystrophy Research
- Cannon Research Center
- Carolinas Medical Center
- Charlotte
| | - Jason D. Tucker
- Department of Neurology
- McColl-Lockwood Laboratory for Muscular Dystrophy Research
- Cannon Research Center
- Carolinas Medical Center
- Charlotte
| | - Peijuan Lu
- Department of Neurology
- McColl-Lockwood Laboratory for Muscular Dystrophy Research
- Cannon Research Center
- Carolinas Medical Center
- Charlotte
| | - Lauren E. Bollinger
- Department of Neurology
- McColl-Lockwood Laboratory for Muscular Dystrophy Research
- Cannon Research Center
- Carolinas Medical Center
- Charlotte
| | - Qilong Lu
- Department of Neurology
- McColl-Lockwood Laboratory for Muscular Dystrophy Research
- Cannon Research Center
- Carolinas Medical Center
- Charlotte
| |
Collapse
|
20
|
Correlating In Vitro Splice Switching Activity With Systemic In Vivo Delivery Using Novel ZEN-modified Oligonucleotides. MOLECULAR THERAPY-NUCLEIC ACIDS 2014; 3:e212. [PMID: 25423116 PMCID: PMC4459549 DOI: 10.1038/mtna.2014.63] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 09/20/2014] [Indexed: 01/16/2023]
Abstract
Splice switching oligonucleotides (SSOs) induce alternative splicing of pre-mRNA and typically employ chemical modifications to increase nuclease resistance and binding affinity to target pre-mRNA. Here we describe a new SSO non-base modifier (a naphthyl-azo group, "ZEN™") to direct exon exclusion in mutant dystrophin pre-mRNA to generate functional dystrophin protein. The ZEN modifier is placed near the ends of a 2'-O-methyl (2'OMe) oligonucleotide, increasing melting temperature and potency over unmodified 2'OMe oligonucleotides. In cultured H2K cells, a ZEN-modified 2'OMe phosphorothioate (PS) oligonucleotide delivered by lipid transfection greatly enhanced dystrophin exon skipping over the same 2'OMePS SSO lacking ZEN. However, when tested using free gymnotic uptake in vitro and following systemic delivery in vivo in dystrophin deficient mdx mice, the same ZEN-modified SSO failed to enhance potency. Importantly, we show for the first time that in vivo activity of anionic SSOs is modelled in vitro only when using gymnotic delivery. ZEN is thus a novel modifier that enhances activity of SSOs in vitro but will require improved delivery methods before its in vivo clinical potential can be realized.
Collapse
|
21
|
Abstract
Polyethylenimines (PEIs) have proven to be highly efficient and versatile agents for nucleic acid delivery in vitro and in vivo. Despite the low biodegradability of these polymers, they have been used in several clinical trials and the results suggest that the nucleic acid/PEI complexes have a good safety profile. The high transfection efficiency of PEIs probably relies on the fact that these polymers possess a stock of amines that can undergo protonation during the acidification of endosomes. This buffering capacity likely enhances endosomal escape of the polyplexes through the "proton sponge" effect. PEIs have also attracted great interest because the presence of many amino groups allow for easy chemical modifications or conjugation of targeting moieties and hydrophilic polymers. In the present chapter, we summarize and discuss the mechanism of PEI-mediated transfection, as well as the recent developments in PEI-mediated DNA, antisense oligonucleotide, and siRNA delivery.
Collapse
Affiliation(s)
- Patrick Neuberg
- Laboratoire "Vecteurs: Synthèse et Applications Thérapeutiques", UMR7199 CNRS-Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - Antoine Kichler
- Laboratoire "Vecteurs: Synthèse et Applications Thérapeutiques", UMR7199 CNRS-Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| |
Collapse
|