1
|
Liu D, Li T, Liu L, Che X, Li X, Liu C, Wu G. Adeno-associated virus therapies: Pioneering solutions for human genetic diseases. Cytokine Growth Factor Rev 2024:S1359-6101(24)00078-9. [PMID: 39322487 DOI: 10.1016/j.cytogfr.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/13/2024] [Accepted: 09/15/2024] [Indexed: 09/27/2024]
Abstract
Adeno-associated virus (AAV) has emerged as a fundamental component in the gene therapy landscape, widely acknowledged for its effectiveness in therapeutic gene delivery. The success of AAV-based therapies, such as Luxturna and Zolgensma, underscores their potential as a leading vector in gene therapy. This article provides an in-depth review of the development and mechanisms of AAV vector-based therapies, offering a comprehensive analysis of the latest clinical trial outcomes in central nervous system (CNS) diseases, ocular conditions, and hemophilia, where AAV therapies have shown promising results. Additionally, we discusse the selection of administration methods and serotypes tailored to specific diseases. Our objective is to showcase the innovative applications and future potential of AAV-based gene therapy, laying the groundwork for continued clinical advancements.
Collapse
Affiliation(s)
- Dequan Liu
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Tian Li
- School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Lei Liu
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Xiangyu Che
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Xiaorui Li
- Department of oncology, Cancer Hospital of Dalian University of Technology, Shenyang 110042, China.
| | - Chang Liu
- Department of thoracic surgery, Shenyang Tenth People's Hospital, Shenyang 110042, China.
| | - Guangzhen Wu
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
| |
Collapse
|
2
|
López-Canul M, He Q, Sasson T, Ettaoussi M, Gregorio DD, Ochoa-Sanchez R, Catoire H, Posa L, Rouleau G, Beaulieu JM, Comai S, Gobbi G. Selective Enhancement of REM Sleep in Male Rats through Activation of Melatonin MT 1 Receptors Located in the Locus Ceruleus Norepinephrine Neurons. J Neurosci 2024; 44:e0914232024. [PMID: 38744530 PMCID: PMC11255427 DOI: 10.1523/jneurosci.0914-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 04/03/2024] [Accepted: 04/06/2024] [Indexed: 05/16/2024] Open
Abstract
Sleep disorders affect millions of people around the world and have a high comorbidity with psychiatric disorders. While current hypnotics mostly increase non-rapid eye movement sleep (NREMS), drugs acting selectively on enhancing rapid eye movement sleep (REMS) are lacking. This polysomnographic study in male rats showed that the first-in-class selective melatonin MT1 receptor partial agonist UCM871 increases the duration of REMS without affecting that of NREMS. The REMS-promoting effects of UCM871 occurred by inhibiting, in a dose-response manner, the firing activity of the locus ceruleus (LC) norepinephrine (NE) neurons, which express MT1 receptors. The increase of REMS duration and the inhibition of LC-NE neuronal activity by UCM871 were abolished by MT1 pharmacological antagonism and by an adeno-associated viral (AAV) vector, which selectively knocked down MT1 receptors in the LC-NE neurons. In conclusion, MT1 receptor agonism inhibits LC-NE neurons and triggers REMS, thus representing a novel mechanism and target for REMS disorders and/or psychiatric disorders associated with REMS impairments.
Collapse
Affiliation(s)
- Martha López-Canul
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montreal, Quebec H3A 1A1, Canada
| | - Qianzi He
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montreal, Quebec H3A 1A1, Canada
| | - Tania Sasson
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montreal, Quebec H3A 1A1, Canada
| | - Mohamed Ettaoussi
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montreal, Quebec H3A 1A1, Canada
| | - Danilo De Gregorio
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montreal, Quebec H3A 1A1, Canada
- IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Rafael Ochoa-Sanchez
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montreal, Quebec H3A 1A1, Canada
| | - Helene Catoire
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Luca Posa
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montreal, Quebec H3A 1A1, Canada
| | - Guy Rouleau
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Jean Martin Beaulieu
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario M5G 2C8, Canada
| | - Stefano Comai
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montreal, Quebec H3A 1A1, Canada
- IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua 35131, Italy
- Department of Biomedical Sciences, University of Padua, Padua 35131, Italy
| | - Gabriella Gobbi
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montreal, Quebec H3A 1A1, Canada
- Research Institute, McGill University Health Center, McGill University, Montreal, Quebec H3A 1A1, Canada
| |
Collapse
|
3
|
Rosenberg JB, Fung EK, Dyke JP, De BP, Lou H, Kelly JM, Reejhsinghani L, Ricart Arbona RJ, Sondhi D, Kaminsky SM, Cartier N, Hinderer C, Hordeaux J, Wilson JM, Ballon DJ, Crystal RG. Positron Emission Tomography Quantitative Assessment of Off-Target Whole-Body Biodistribution of I-124-Labeled Adeno-Associated Virus Capsids Administered to Cerebral Spinal Fluid. Hum Gene Ther 2023; 34:1095-1106. [PMID: 37624734 PMCID: PMC10659018 DOI: 10.1089/hum.2023.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/09/2023] [Indexed: 08/27/2023] Open
Abstract
Based on studies in experimental animals demonstrating that administration of adeno-associated virus (AAV) vectors to the cerebrospinal fluid (CSF) is an effective route to transfer genes to the nervous system, there are increasing number of clinical trials using the CSF route to treat nervous system disorders. With the knowledge that the CSF turns over four to five times daily, and evidence in experimental animals that at least some of CSF administered AAV vectors are distributed to systemic organs, we asked: with AAV administration to the CSF, what fraction of the total dose remains in the nervous system and what fraction goes off target and is delivered systemically? To quantify the biodistribution of AAV capsids immediately after administration, we covalently labeled AAV capsids with iodine 124 (I-124), a cyclotron generated positron emitter, enabling quantitative positron emission tomography scanning of capsid distribution for up to 96 h after AAV vector administration. We assessed the biodistribution to nonhuman primates of I-124-labeled capsids from different AAV clades, including 9 (clade F), rh.10 (E), PHP.eB (F), hu68 (F), and rh91(A). The analysis demonstrated that 60-90% of AAV vectors administered to the CSF through either the intracisternal or intrathecal (lumbar) routes distributed systemically to major organs. These observations have potentially significant clinical implications regarding accuracy of AAV vector dosing to the nervous system, evoking systemic immunity at levels similar to that with systemic administration, and potential toxicity of genes designed to treat nervous system disorders being expressed in non-nervous system organs. Based on these data, individuals in clinical trials using AAV vectors administered to the CSF should be monitored for systemic as well as nervous system adverse events and CNS dosing considerations should account for a significant AAV systemic distribution.
Collapse
Affiliation(s)
| | - Edward K. Fung
- Department of Radiology, Citigroup Biomedical Imaging Center; Weill Cornell Medicine, New York, New York, USA
| | - Jonathan P. Dyke
- Department of Radiology, Citigroup Biomedical Imaging Center; Weill Cornell Medicine, New York, New York, USA
| | | | | | - James M. Kelly
- Department of Radiology, Citigroup Biomedical Imaging Center; Weill Cornell Medicine, New York, New York, USA
| | - Layla Reejhsinghani
- Department of Radiology, Citigroup Biomedical Imaging Center; Weill Cornell Medicine, New York, New York, USA
| | - Rodolfo J. Ricart Arbona
- Center for Comparative Medicine and Pathology, Memorial Sloan Kettering Cancer Center and Weill Cornell Medicine, New York, New York, USA
| | | | | | - Nathalie Cartier
- Neurogencell INSERM U1127 Paris Brain Institute, Paris Sorbonne University, Paris, France; and
| | - Christian Hinderer
- Gene Therapy Program, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Juliette Hordeaux
- Gene Therapy Program, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - James M. Wilson
- Gene Therapy Program, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Douglas J. Ballon
- Department of Genetic Medicine
- Department of Radiology, Citigroup Biomedical Imaging Center; Weill Cornell Medicine, New York, New York, USA
| | | |
Collapse
|
4
|
Choi SE, Rahman A, Ayoub T, Botelho O, Lee G, Gazdzinski LM, Wheeler AL, Weksberg R, Guger SL, Schachar RJ, Ito S, Hitzler J, Nieman BJ. High-frequency ultrasound-guided intrathecal injections in a young mouse model: Targeting the central nervous system in drug delivery. J Neurosci Methods 2023; 386:109778. [PMID: 36572156 DOI: 10.1016/j.jneumeth.2022.109778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/12/2022] [Accepted: 12/22/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Intrathecal injections provide important access to the central nervous system for delivery of anesthetic, analgesic or chemotherapeutic drugs that do not otherwise cross the blood-brain barrier. The administration of drugs via this route in animal models is challenging due to an inability to visualize the small target space during injection. Successful drug delivery therefore requires expertise in indirectly assessing vertebral and spinal cord anatomy and gaining advanced procedural skills. These factors are especially compounded in small animals such as mice (the most common mammalian model) and in investigations modeling pediatric drug delivery, where the animal is even smaller. NEW METHOD To address these issues, we have developed a method in which high-frequency ultrasound imaging is used to visualize and target the lumbar intrathecal space for injections. The technique is demonstrated in mice as young as postnatal day 16. To evaluate the method, a gadolinium-based magnetic resonance imaging (MRI) contrast agent was injected intrathecally, and subsequent brain delivery was verified post-injection by MRI. RESULTS Successful intrathecal injections of the MRI contrast agent showed distribution to the brain. In this study, we achieved a targeting success rate of 80% in 20 animals. COMPARISON WITH EXISTING METHODS AND CONCLUSION We expect that the new method will be convenient for drug delivery to the central nervous system in rodent research and provide higher reliability than unguided approaches, an essential contribution that will enable intrathecal delivery in pediatric mouse models.
Collapse
Affiliation(s)
- Sun Eui Choi
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, ON, Canada; Translational Medicine, Hospital for Sick Children Research Institute, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.
| | - Anum Rahman
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, ON, Canada; Translational Medicine, Hospital for Sick Children Research Institute, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Tiffany Ayoub
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, ON, Canada; Translational Medicine, Hospital for Sick Children Research Institute, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Owen Botelho
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, ON, Canada; Translational Medicine, Hospital for Sick Children Research Institute, Toronto, ON, Canada
| | - Gail Lee
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, ON, Canada; Translational Medicine, Hospital for Sick Children Research Institute, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Lisa M Gazdzinski
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, ON, Canada; Neuroscience and Mental Health, Hospital for Sick Children Research Institute, Toronto, ON, Canada
| | - Anne L Wheeler
- Neuroscience and Mental Health, Hospital for Sick Children Research Institute, Toronto, ON, Canada; Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Rosanna Weksberg
- Developmental and Stem Cell Biology, Hospital for Sick Children Research Institute, Toronto, ON, Canada; Department of Pediatrics, University of Toronto, Toronto, ON, Canada; Institutes of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Sharon L Guger
- Department of Psychology, Hospital for Sick Children, Toronto, ON, Canada
| | - Russell J Schachar
- Institutes of Medical Science, University of Toronto, Toronto, ON, Canada; Psychiatry Research, Hospital for Sick Children, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, ON, Canada
| | - Shinya Ito
- Translational Medicine, Hospital for Sick Children Research Institute, Toronto, ON, Canada; Clinical Pharmacology and Toxicology, Hospital for Sick Children, Toronto, ON, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Johann Hitzler
- Developmental and Stem Cell Biology, Hospital for Sick Children Research Institute, Toronto, ON, Canada; Department of Pediatrics, University of Toronto, Toronto, ON, Canada; Division of Haematology/Oncology, Hospital for Sick Children, Toronto, ON, Canada
| | - Brian J Nieman
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, ON, Canada; Translational Medicine, Hospital for Sick Children Research Institute, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada; Ontario Institute for Cancer Research, ON, Canada
| |
Collapse
|
5
|
Chandran J, Chowdhury EA, Perkinton M, Jamier T, Sutton D, Wu S, Dobson C, Shah DK, Chessell I, Meno-Tetang GML. Assessment of AAV9 distribution and transduction in rats after administration through Intrastriatal, Intracisterna magna and Lumbar Intrathecal routes. Gene Ther 2023; 30:132-141. [PMID: 35637286 DOI: 10.1038/s41434-022-00346-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 04/12/2022] [Accepted: 05/11/2022] [Indexed: 11/09/2022]
Abstract
Challenges in obtaining efficient transduction of brain and spinal cord following systemic AAV delivery have led to alternative administration routes being used in clinical trials that directly infuse the virus into the CNS. However, data comparing different direct AAV injections into the brain remain limited making it difficult to choose optimal routes. Here we tested both AAV9-egfp and AAV9-fLuc delivery via intrastriatal (IST), intracisterna magna (ICM) and lumbar intrathecal (LIT) routes in adult rats and assessed vector distribution and transduction in brain, spinal cord and peripheral tissues. We find that IST infusion leads to robust transgene expression in the striatum, thalamus and cortex with lower peripheral tissue transduction and anti-AAV9 capsid titers compared to ICM or LIT. ICM delivery provided strong GFP and luciferase expression across more brain regions than the other routes and similar expression in the spinal cord to LIT injections, which itself largely failed to transduce the rat brain. Our data highlight the strengths and weaknesses of each direct CNS delivery route which will help with future clinical targeting.
Collapse
Affiliation(s)
- Jayanth Chandran
- Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Ekram Ahmed Chowdhury
- Department of Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, NY, USA
| | | | - Tanguy Jamier
- Neuroscience, Biopharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Daniel Sutton
- Clinical Pharmacology and Safety Science, Biopharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Shengjia Wu
- Department of Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, NY, USA
| | - Claire Dobson
- Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Dhaval K Shah
- Department of Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, NY, USA
| | - Iain Chessell
- Neuroscience, Biopharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | | |
Collapse
|
6
|
Khang M, Bindra RS, Mark Saltzman W. Intrathecal delivery and its applications in leptomeningeal disease. Adv Drug Deliv Rev 2022; 186:114338. [PMID: 35561835 DOI: 10.1016/j.addr.2022.114338] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 04/26/2022] [Accepted: 05/06/2022] [Indexed: 12/22/2022]
Abstract
Intrathecal delivery (IT) of opiates into the cerebrospinal fluid (CSF) for anesthesia and pain relief has been used clinically for decades, but this relatively straightforward approach of bypassing the blood-brain barrier has been underutilized for other indications because of its lack of utility in delivering small lipid-soluble drugs. However, emerging evidence suggests that IT drug delivery be an efficacious strategy for the treatment of cancers in which there is leptomeningeal spread of disease. In this review, we discuss CSF flow dynamics and CSF clearance pathways in the context of intrathecal delivery. We discuss human and animal studies of several new classes of therapeutic agents-cellular, protein, nucleic acid, and nanoparticle-based small molecules-that may benefit from IT delivery. The complexity of the CSF compartment presents several key challenges in predicting biodistribution of IT-delivered drugs. New approaches and strategies are needed that can overcome the high rates of turnover in the CSF to reach specific tissues or cellular targets.
Collapse
|
7
|
Xu J, Xuan A, Liu Z, Li Y, Zhu J, Yao Y, Yu T, Zhu D. An Approach to Maximize Retrograde Transport Based on the Spatial Distribution of Motor Endplates in Mouse Hindlimb Muscles. Front Cell Neurosci 2021; 15:707982. [PMID: 34456685 PMCID: PMC8385196 DOI: 10.3389/fncel.2021.707982] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/16/2021] [Indexed: 11/13/2022] Open
Abstract
Knowledge regarding the relationship between muscles and the corresponding motor neurons would allow therapeutic genes to transport into specific spinal cord segments. Retrograde tracing technique by targeting the motor endplate (MEP), a highly specialized structure that offers direct access to the spinal motor neurons, has been used to elucidate the connectivity between skeletal muscles and the innervating motor neuron pools. However, current injection strategies mainly based on blind injection or the local MEP region might lead to an underestimation of the motor neuron number due to the uneven distribution of MEP in skeletal muscles. In this work, we proposed a novel intramuscular injection strategy based on the 3D distribution of the MEPs in skeletal muscles, applied the 3D intramuscular injection to the gastrocnemius and tibialis anterior for retrograde tracing of the corresponding motor neurons, and compared this with the existing injection strategy. The intramuscular diffusion of the tracer demonstrated that 3D injection could maximize the retrograde transport by ensuring a greater uptake of the tracer by the MEP region. In combination with optical clearing and imaging, we performed 3D mapping and quantification of the labeled motor neurons and confirmed that 3D injection could label more motor neurons than the current injection method. It is expected that 3D intramuscular injection strategy will help elucidate the connective relationship between muscles and motor neurons faithfully and becomes a promising tool in the development of gene therapy strategies for motor neuron diseases.
Collapse
Affiliation(s)
- Jianyi Xu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China.,MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Ang Xuan
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China.,MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Zhang Liu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China.,MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Yusha Li
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China.,MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Jingtan Zhu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China.,MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Yingtao Yao
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China.,MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Tingting Yu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China.,MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Dan Zhu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China.,MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
8
|
Torregrosa T, Lehman S, Hana S, Marsh G, Xu S, Koszka K, Mastrangelo N, McCampbell A, Henderson CE, Lo SC. Use of CRISPR/Cas9-mediated disruption of CNS cell type genes to profile transduction of AAV by neonatal intracerebroventricular delivery in mice. Gene Ther 2021; 28:456-468. [PMID: 33612827 PMCID: PMC8376643 DOI: 10.1038/s41434-021-00223-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 12/01/2020] [Accepted: 01/15/2021] [Indexed: 12/26/2022]
Abstract
Adeno-associated virus (AAV) transduction efficiency and tropism are conventionally determined by high expression of a fluorescent reporter gene. Emerging data has suggested that such conventional methods may underestimate AAV transduction for cells in which reporter expression from AAV vectors is undetectable. To explore an alternative method that captures AAV transduction in cells in which low expression of a cargo is sufficient for the intended activity, we sought after CRISPR/Cas9-mediated gene disruption. In this study, we use AAV to deliver CRISPR/guide RNA designed to abolish the genes NeuN, GFAP, or MOG expressed specifically in neurons, astrocytes, or oligodendrocytes respectively in the central nervous system (CNS) of mice. Abrogated expression of these cell-type-specific genes can be measured biochemically in CNS subregions and provides quantitative assessment of AAV transduction in these CNS cell types. By using this method, we compared CNS transduction of AAV9, AAV-PHP.B, and AAV-PHP.eB delivered via intracerebroventricular injection (ICV) in neonatal mice. We found both AAV-PHP.B and AAV-PHP.eB resulted in marked disruption of the NeuN gene by CRISPR/Cas9, significantly greater than AAV9 in several brain regions and spinal cord. In contrast, only modest disruption of the GFAP gene and the MOG gene was observed by all three AAV variants. Since the procedure of ICV circumvents the blood-brain barrier, our data suggests that, independent of their ability to cross the blood-brain barrier, AAV-PHP.B variants also exhibit remarkably improved neuronal transduction in the CNS. We anticipate this approach will facilitate profiling of AAV cellular tropism in murine CNS.
Collapse
|
9
|
Adeno-Associated Viral Vectors as Versatile Tools for Parkinson's Research, Both for Disease Modeling Purposes and for Therapeutic Uses. Int J Mol Sci 2021; 22:ijms22126389. [PMID: 34203739 PMCID: PMC8232322 DOI: 10.3390/ijms22126389] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 12/17/2022] Open
Abstract
It is without any doubt that precision medicine therapeutic strategies targeting neurodegenerative disorders are currently witnessing the spectacular rise of newly designed approaches based on the use of viral vectors as Trojan horses for the controlled release of a given genetic payload. Among the different types of viral vectors, adeno-associated viruses (AAVs) rank as the ones most commonly used for the purposes of either disease modeling or for therapeutic strategies. Here, we reviewed the current literature dealing with the use of AAVs within the field of Parkinson’s disease with the aim to provide neuroscientists with the advice and background required when facing a choice on which AAV might be best suited for addressing a given experimental challenge. Accordingly, here we will be summarizing some insights on different AAV serotypes, and which would be the most appropriate AAV delivery route. Next, the use of AAVs for modeling synucleinopathies is highlighted, providing potential readers with a landscape view of ongoing pre-clinical and clinical initiatives pushing forward AAV-based therapeutic approaches for Parkinson’s disease and related synucleinopathies.
Collapse
|
10
|
Weinholtz CA, Castle MJ. Intersectional targeting of defined neural circuits by adeno-associated virus vectors. J Neurosci Res 2021; 99:981-990. [PMID: 33341969 PMCID: PMC8786212 DOI: 10.1002/jnr.24774] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 11/04/2020] [Accepted: 11/24/2020] [Indexed: 12/20/2022]
Abstract
The mammalian nervous system is a complex network of interconnected cells. We review emerging techniques that use the axonal transport of adeno-associated virus (AAV) vectors to dissect neural circuits. These intersectional approaches specifically target AAV-mediated gene expression to discrete neuron populations based on their axonal connectivity, including: (a) neurons with one defined output, (b) neurons with one defined input, (c) neurons with one defined input and one defined output, and (d) neurons with two defined inputs or outputs. The number of labeled neurons can be directly controlled to trace axonal projections and examine cellular morphology. These approaches can precisely target the expression of fluorescent reporters, optogenetic ion channels, chemogenetic receptors, disease-associated proteins, and other factors to defined neural circuits in mammals ranging from mice to macaques, and thereby provide a powerful new means to understand the structure and function of the nervous system.
Collapse
Affiliation(s)
- Chase A. Weinholtz
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| | - Michael J. Castle
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
11
|
Liu D, Zhu M, Zhang Y, Diao Y. Crossing the blood-brain barrier with AAV vectors. Metab Brain Dis 2021; 36:45-52. [PMID: 33201426 DOI: 10.1007/s11011-020-00630-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 10/12/2020] [Indexed: 12/26/2022]
Abstract
Central nervous system (CNS) diseases are some of the most difficult to treat because the blood-brain barrier (BBB) almost entirely limits the passage of many therapeutic drugs into the CNS. Gene therapy based on the adeno-associated virus (AAV) vector has the potential to overcome this problem. For example, an AAV serotype AAV9 has been widely studied for its ability to cross the BBB to transduce astrocytes, but its efficiency is limited. The emergence of AAV directed evolution technology provides a solution, and the variants derived from AAV9 directed evolution have been shown to have significantly higher crossing efficiency than AAV9. However, the mechanisms by which AAV crosses the BBB are still unclear. In this review, we focus on recent advances in crossing the blood-brain barrier with AAV vectors. We first review the AAV serotypes that can be applied to treating CNS diseases. Recent progress in possible AAV crossing the BBB and transduction mechanisms are then summarized. Finally, the methods to improve the AAV transduction efficiency are discussed.
Collapse
Affiliation(s)
- Dan Liu
- School of Biomedical Sciences, College of Chemical Engineering, Huaqiao University, Xiamen, Fujian, China.
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, China.
| | - Mingyang Zhu
- School of Biomedical Sciences, College of Chemical Engineering, Huaqiao University, Xiamen, Fujian, China
| | - Yuqian Zhang
- School of Biomedical Sciences, College of Chemical Engineering, Huaqiao University, Xiamen, Fujian, China
| | - Yong Diao
- School of Biomedical Sciences, College of Chemical Engineering, Huaqiao University, Xiamen, Fujian, China
| |
Collapse
|
12
|
Ballon DJ, Rosenberg JB, Fung EK, Nikolopoulou A, Kothari P, De BP, He B, Chen A, Heier LA, Sondhi D, Kaminsky SM, Mozley PD, Babich JW, Crystal RG. Quantitative Whole-Body Imaging of I-124-Labeled Adeno-Associated Viral Vector Biodistribution in Nonhuman Primates. Hum Gene Ther 2020; 31:1237-1259. [PMID: 33233962 PMCID: PMC7769048 DOI: 10.1089/hum.2020.116] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 09/03/2020] [Indexed: 12/19/2022] Open
Abstract
A method is presented for quantitative analysis of the biodistribution of adeno-associated virus (AAV) gene transfer vectors following in vivo administration. We used iodine-124 (I-124) radiolabeling of the AAV capsid and positron emission tomography combined with compartmental modeling to quantify whole-body and organ-specific biodistribution of AAV capsids from 1 to 72 h following administration. Using intravenous (IV) and intracisternal (IC) routes of administration of AAVrh.10 and AAV9 vectors to nonhuman primates in the absence or presence of anticapsid immunity, we have identified novel insights into initial capsid biodistribution and organ-specific capsid half-life. Neither I-124-labeled AAVrh.10 nor AAV9 administered intravenously was detected at significant levels in the brain relative to the administered vector dose. Approximately 50% of the intravenously administered labeled capsids were dispersed throughout the body, independent of the liver, heart, and spleen. When administered by the IC route, the labeled capsid had a half-life of ∼10 h in the cerebral spinal fluid (CSF), suggesting that by this route, the CSF serves as a source with slow diffusion into the brain. For both IV and IC administration, there was significant influence of pre-existing anticapsid immunity on I-124-capsid biodistribution. The methodology facilitates quantitative in vivo viral vector dosimetry, which can serve as a technique for evaluation of both on- and off-target organ biodistribution, and potentially accelerate gene therapy development through rapid prototyping of novel vector designs.
Collapse
Affiliation(s)
- Douglas J. Ballon
- Department of Radiology, Citigroup Biomedical Imaging Center
- Department of Genetic Medicine
| | | | - Edward K. Fung
- Department of Radiology, Citigroup Biomedical Imaging Center
| | | | - Paresh Kothari
- Department of Radiology, Citigroup Biomedical Imaging Center
| | | | - Bin He
- Department of Radiology, Citigroup Biomedical Imaging Center
| | | | - Linda A. Heier
- Department of Radiology; Weill Cornell Medical College, New York, New York, USA
| | | | | | | | - John W. Babich
- Department of Radiology, Citigroup Biomedical Imaging Center
| | | |
Collapse
|
13
|
Stewart CE, Kan CFK, Stewart BR, Sanicola HW, Jung JP, Sulaiman OAR, Wang D. Machine intelligence for nerve conduit design and production. J Biol Eng 2020; 14:25. [PMID: 32944070 PMCID: PMC7487837 DOI: 10.1186/s13036-020-00245-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 08/13/2020] [Indexed: 02/08/2023] Open
Abstract
Nerve guidance conduits (NGCs) have emerged from recent advances within tissue engineering as a promising alternative to autografts for peripheral nerve repair. NGCs are tubular structures with engineered biomaterials, which guide axonal regeneration from the injured proximal nerve to the distal stump. NGC design can synergistically combine multiple properties to enhance proliferation of stem and neuronal cells, improve nerve migration, attenuate inflammation and reduce scar tissue formation. The aim of most laboratories fabricating NGCs is the development of an automated process that incorporates patient-specific features and complex tissue blueprints (e.g. neurovascular conduit) that serve as the basis for more complicated muscular and skin grafts. One of the major limitations for tissue engineering is lack of guidance for generating tissue blueprints and the absence of streamlined manufacturing processes. With the rapid expansion of machine intelligence, high dimensional image analysis, and computational scaffold design, optimized tissue templates for 3D bioprinting (3DBP) are feasible. In this review, we examine the translational challenges to peripheral nerve regeneration and where machine intelligence can innovate bottlenecks in neural tissue engineering.
Collapse
Affiliation(s)
- Caleb E. Stewart
- Current Affiliation: Department of Neurosurgery, Louisiana State University Health Sciences Center, Shreveport Louisiana, USA
| | - Chin Fung Kelvin Kan
- Current Affiliation: Department of General Surgery, Brigham and Women’s Hospital, Boston, MA 02115 USA
| | - Brody R. Stewart
- Current Affiliation: Department of Surgery, Mayo Clinic College of Medicine, Rochester, MN 55905 USA
| | - Henry W. Sanicola
- Current Affiliation: Department of Neurosurgery, Louisiana State University Health Sciences Center, Shreveport Louisiana, USA
| | - Jangwook P. Jung
- Department of Biological Engineering, Louisiana State University, Baton Rouge, LA 70803 USA
| | - Olawale A. R. Sulaiman
- Ochsner Neural Injury & Regeneration Laboratory, Ochsner Clinic Foundation, New Orleans, LA 70121 USA
- Department of Neurosurgery, Ochsner Clinic Foundation, New Orleans, 70121 USA
| | - Dadong Wang
- Quantitative Imaging Research Team, Data 61, Commonwealth Scientific and Industrial Research Organization, Marsfield, NSW 2122 Australia
| |
Collapse
|
14
|
Pagès G, Giménez-Llort L, García-Lareu B, Ariza L, Navarro M, Casas C, Chillón M, Bosch A. Intrathecal AAVrh10 corrects biochemical and histological hallmarks of mucopolysaccharidosis VII mice and improves behavior and survival. Hum Mol Genet 2020; 28:3610-3624. [PMID: 31511867 DOI: 10.1093/hmg/ddz220] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/28/2019] [Accepted: 08/29/2019] [Indexed: 12/28/2022] Open
Abstract
Mucopolysaccharidosis (MPS) type VII is a lysosomal storage disease caused by ß-glucuronidase deficiency, prompting glycosaminoglycan accumulation in enlarged vesicles, leading to peripheral and neuronal dysfunction. Here, we present a gene therapy strategy using lumbar puncture of AAVrh10 encoding human β-glucuronidase (AAVrh10-GUSB) to adult MPS VII mice. This minimally invasive technique efficiently delivers the recombinant vector to the cerebrospinal fluid (CSF) with a single intrathecal injection. We show that AAVrh10 delivery to the CSF allows global, stable transduction of CNS structures. In addition, drainage of AAVrh10-GUSB from the CSF to the bloodstream resulted in the transduction of somatic organs such as liver, which provided a systemic β-glucuronidase source sufficient to achieve serum enzyme activity comparable to wild type mice. ß-glucuronidase levels were enough to correct biochemical and histopathological hallmarks of the disease in the CNS and somatic organs at short and long term. Moreover, the progression of the bone pathology was also reduced. Importantly, the biochemical correction led to a significant improvement in the physical, cognitive and emotional characteristics of MPS VII mice, and doubling their life span. Our strategy may have implications for gene therapy in patients with lysosomal storage diseases.
Collapse
Affiliation(s)
- G Pagès
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Barcelona 08193, Spain
| | - L Giménez-Llort
- Institute of Neurosciences, Universitat Autònoma de Barcelona, Barcelona 08193, Spain.,Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, Barcelona 08193, Spain
| | - B García-Lareu
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Barcelona 08193, Spain.,Institute of Neurosciences, Universitat Autònoma de Barcelona, Barcelona 08193, Spain
| | - L Ariza
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Barcelona 08193, Spain
| | - M Navarro
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, Barcelona 08193, Spain.,Department of Animal Health and Anatomy, Universitat Autònoma de Barcelona, Barcelona 08193, Spain
| | - C Casas
- Institute of Neurosciences, Universitat Autònoma de Barcelona, Barcelona 08193, Spain.,Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Barcelona 08193, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - M Chillón
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Barcelona 08193, Spain.,Institute of Neurosciences, Universitat Autònoma de Barcelona, Barcelona 08193, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.,Vall d'Hebron Research Institute (VHIR), Barcelona 08035, Spain
| | - A Bosch
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Barcelona 08193, Spain.,Institute of Neurosciences, Universitat Autònoma de Barcelona, Barcelona 08193, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.,Vall d'Hebron Research Institute (VHIR), Barcelona 08035, Spain
| |
Collapse
|
15
|
Sargiannidou I, Kagiava A, Kleopa KA. Gene therapy approaches targeting Schwann cells for demyelinating neuropathies. Brain Res 2020; 1728:146572. [PMID: 31790684 DOI: 10.1016/j.brainres.2019.146572] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 11/12/2019] [Accepted: 11/26/2019] [Indexed: 11/27/2022]
Abstract
Charcot-Marie-Tooth disease (CMT) encompasses numerous genetically heterogeneous inherited neuropathies, which together are one of the commonest neurogenetic disorders. Axonal CMT types result from mutations in neuronally expressed genes, whereas demyelinating CMT forms mostly result from mutations in genes expressed by myelinating Schwann cells. The demyelinating forms are the most common, and may be caused by dominant mutations and gene dosage effects (as in CMT1), as well as by recessive mutations and loss of function mechanisms (as in CMT4). The discovery of causative genes and increasing insights into molecular mechanisms through the study of experimental disease models has provided the basis for the development of gene therapy approaches. For demyelinating CMT, gene silencing or gene replacement strategies need to be targeted to Schwann cells. Progress in gene replacement for two different CMT forms, including CMT1X caused by GJB1 gene mutations, and CMT4C, caused by SH3TC2 gene mutations, has been made through the use of a myelin-specific promoter to restrict expression in Schwann cells, and by lumbar intrathecal delivery of lentiviral viral vectors to achieve more widespread biodistribution in the peripheral nervous system. This review summarizes the molecular-genetic mechanisms of selected demyelinating CMT neuropathies and the progress made so far, as well as the remaining challenges in the path towards a gene therapy to treat these disorders through the use of optimal gene therapy tools including clinically translatable delivery methods and adeno-associated viral (AAV) vectors.
Collapse
Affiliation(s)
- Irene Sargiannidou
- Neuroscience Laboratory, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - Alexia Kagiava
- Neuroscience Laboratory, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - Kleopas A Kleopa
- Neuroscience Laboratory, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, Nicosia, Cyprus; Neurology Clinics, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, Nicosia, Cyprus.
| |
Collapse
|
16
|
Zeng Y, Qian H, Wu Z, Marangoni D, Sieving PA, Bush RA. AAVrh-10 transduces outer retinal cells in rodents and rabbits following intravitreal administration. Gene Ther 2019; 26:386-398. [PMID: 31308478 PMCID: PMC11388630 DOI: 10.1038/s41434-019-0094-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 04/09/2019] [Accepted: 04/28/2019] [Indexed: 01/11/2023]
Abstract
Recombinant adeno-associated virus (rAAV) has been widely used for gene delivery in animal models and successfully applied in clinical trials for treating inherited retinal disease. Although subretinal delivery of AAVs can effectively transduce photoreceptors and/or retinal pigmental epithelium (RPE), cells most affected by inherited retinal diseases, the procedure is invasive and complicated, and only delivers the gene to a limited retinal area. AAVs can also be delivered intravitreally to the retina, a much less invasive nonsurgical procedure. However, intravitreal administration of non-modified AAV serotypes tends to transduce only ganglion cells and inner nuclear layer cells. To date, most non-modified AAV serotypes that have been identified are incapable of efficiently transducing photoreceptors and/or RPE when delivered intravitreally. In this study, we investigate the retinal tropism of AAVrh10 vector administered by intravitreal injection to mouse, rat, and rabbit eyes. Our results demonstrate that AAVrh10 is capable of transducing not only inner retinal cells, but also outer retinal cells in all three species, though the transduction efficiency in rabbit was low. In addition, AAVrh10 preferentially transduced outer retinal cells in mouse models of retinal disease. Therefore, AAVrh10 vector could be a useful candidate to intravitreally deliver genes to photoreceptor and RPE cells.
Collapse
Affiliation(s)
- Yong Zeng
- Section on Translational Research for Retinal and Macular Degeneration, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Haohua Qian
- National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Zhijian Wu
- National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Dario Marangoni
- Section on Translational Research for Retinal and Macular Degeneration, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Paul A Sieving
- Section on Translational Research for Retinal and Macular Degeneration, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
- National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ronald A Bush
- Section on Translational Research for Retinal and Macular Degeneration, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
17
|
Rashnonejad A, Amini Chermahini G, Gündüz C, Onay H, Aykut A, Durmaz B, Baka M, Su Q, Gao G, Özkınay F. Fetal Gene Therapy Using a Single Injection of Recombinant AAV9 Rescued SMA Phenotype in Mice. Mol Ther 2019; 27:2123-2133. [PMID: 31543414 DOI: 10.1016/j.ymthe.2019.08.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 07/28/2019] [Accepted: 08/12/2019] [Indexed: 12/31/2022] Open
Abstract
Symptoms of spinal muscular atrophy (SMA) disease typically begin in the late prenatal or the early postnatal period of life. The intrauterine (IU) correction of gene expression, fetal gene therapy, could offer effective gene therapy approach for early onset diseases. Hence, the overall goal of this study was to investigate the efficacy of human survival motor neuron (hSMN) gene expression after IU delivery in SMA mouse embryos. First, we found that IU-intracerebroventricular (i.c.v.) injection of adeno-associated virus serotype-9 (AAV9)-EGFP led to extensive expression of EGFP protein in different parts of the CNS with a great number of transduced neural stem cells. Then, to implement the fetal gene therapy, mouse fetuses received a single i.c.v. injection of a single-stranded (ss) or self-complementary (sc) AAV9-SMN vector that led to a lifespan of 93 (median of 63) or 171 (median 105) days for SMA mice. The muscle pathology and number of the motor neurons also improved in both study groups, with slightly better results coming from scAAV treatment. Consequently, fetal gene therapy may provide an alternative therapeutic approach for treating inherited diseases such as SMA that lead to prenatal death or lifelong irreversible damage.
Collapse
Affiliation(s)
| | | | - Cumhur Gündüz
- Department of Medical Biology, Faculty of Medicine, Ege University, Izmir 35100, Turkey
| | - Hüseyin Onay
- Department of Medical Genetics, Faculty of Medicine, Ege University, Izmir 35100, Turkey
| | - Ayça Aykut
- Department of Medical Genetics, Faculty of Medicine, Ege University, Izmir 35100, Turkey
| | - Burak Durmaz
- Department of Medical Genetics, Faculty of Medicine, Ege University, Izmir 35100, Turkey
| | - Meral Baka
- Department of Histology and Embryology, Faculty of Medicine, Ege University, Izmir 35100, Turkey
| | - Qin Su
- The Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Guangping Gao
- The Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Ferda Özkınay
- Department of Medical Genetics, Faculty of Medicine, Ege University, Izmir 35100, Turkey
| |
Collapse
|
18
|
Morató X, Luján R, Gonçalves N, Watanabe M, Altafaj X, Carvalho AL, Fernández-Dueñas V, Cunha RA, Ciruela F. Metabotropic glutamate type 5 receptor requires contactin-associated protein 1 to control memory formation. Hum Mol Genet 2019; 27:3528-3541. [PMID: 30010864 DOI: 10.1093/hmg/ddy264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 07/09/2018] [Indexed: 12/31/2022] Open
Abstract
The hippocampus is a key brain region for memory formation. Metabotropic glutamate type 5 receptors (mGlu5R) are strongly expressed in CA1 pyramidal neurons and fine-tune synaptic plasticity. Accordingly, mGlu5R pharmacological manipulation may represent an attractive therapeutic strategy to manage hippocampal-related neurological disorders. Here, by means of a membrane yeast two-hybrid screening, we identified contactin-associated protein 1 (Caspr1), a type I transmembrane protein member of the neurexin family, as a new mGlu5R partner. We report that mGlu5R and Caspr1 co-distribute and co-assemble both in heterologous expression systems and in rat brain. Furthermore, downregulation of Caspr1 in rat hippocampal primary cultures decreased mGlu5R-mediated signaling. Finally, silencing Caspr1 expression in the hippocampus impaired the impact of mGlu5R on spatial memory. Our results indicate that Caspr1 plays a pivotal role controlling mGlu5R function in hippocampus-dependent memory formation. Hence, this new protein-protein interaction may represent novel target for neurological disorders affecting hippocampal glutamatergic neurotransmission.
Collapse
Affiliation(s)
- Xavier Morató
- Unitat de Farmacologia, Departament Patologia i Terapèutica Experimental, Facultat de Medicina, IDIBELL, Universitat de Barcelona, L'Hospitalet de Llobregat, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - Rafael Luján
- IDINE, Departamento de Ciencias Médicas, Facultad de Medicina, Universidad Castilla-La Mancha, Albacete, Spain
| | - Nélio Gonçalves
- CNC-Center for Neurosciences and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Masahiko Watanabe
- Department of Anatomy, Hokkaido University School of Medicine, Sapporo, Japan
| | - Xavier Altafaj
- Unitat de Farmacologia, Departament Patologia i Terapèutica Experimental, Facultat de Medicina, IDIBELL, Universitat de Barcelona, L'Hospitalet de Llobregat, Spain
| | - Ana Luísa Carvalho
- CNC-Center for Neurosciences and Cell Biology, University of Coimbra, Coimbra, Portugal.,Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Víctor Fernández-Dueñas
- Unitat de Farmacologia, Departament Patologia i Terapèutica Experimental, Facultat de Medicina, IDIBELL, Universitat de Barcelona, L'Hospitalet de Llobregat, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - Rodrigo A Cunha
- CNC-Center for Neurosciences and Cell Biology, University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Francisco Ciruela
- Unitat de Farmacologia, Departament Patologia i Terapèutica Experimental, Facultat de Medicina, IDIBELL, Universitat de Barcelona, L'Hospitalet de Llobregat, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
19
|
Jensen MP, Barker RA. Disease-Modification in Huntington's Disease: Moving Away from a Single-Target Approach. J Huntingtons Dis 2019; 8:9-22. [PMID: 30636742 DOI: 10.3233/jhd-180320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
To date, no candidate intervention has demonstrated a disease-modifying effect in Huntington's disease, despite promising results in preclinical studies. In this commentary we discuss disease-modifying therapies that have been trialled in Huntington's disease and speculate that these failures may be attributed, in part, to the assumption that a single drug selectively targeting one aspect of disease pathology will be universally effective, regardless of disease stage or "subtype". We therefore propose an alternative approach for effective disease-modification that uses 1) a combination approach rather than monotherapy, and 2) targets the disease process early on - before it is clinically manifest. Finally, we will consider whether this change in approach that we propose will be relevant in the future given the recent shift to targeting more proximal disease processes-e.g., huntingtin gene expression; a timely question given Roche's recent decision to take on the clinical development of a promising new drug candidate in Huntington's disease, IONIS-HTTRx.
Collapse
Affiliation(s)
- Melanie P Jensen
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Roger A Barker
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.,Cambridge Stem Cell Institute, Cambridge, UK
| |
Collapse
|
20
|
Castle MJ, Cheng Y, Asokan A, Tuszynski MH. Physical positioning markedly enhances brain transduction after intrathecal AAV9 infusion. SCIENCE ADVANCES 2018; 4:eaau9859. [PMID: 30443600 PMCID: PMC6235539 DOI: 10.1126/sciadv.aau9859] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 10/15/2018] [Indexed: 05/10/2023]
Abstract
Several neurological disorders may benefit from gene therapy. However, even when using the lead vector candidate for intrathecal administration, adeno-associated virus serotype 9 (AAV9), the strength and distribution of gene transfer to the brain are inconsistent. On the basis of preliminary observations that standard intrathecal AAV9 infusions predominantly drive reporter gene expression in brain regions where gravity might cause cerebrospinal fluid to settle, we tested the hypothesis that counteracting vector "settling" through animal positioning would enhance vector delivery to the brain. When rats are either inverted in the Trendelenburg position or continuously rotated after intrathecal AAV9 infusion, we find (i) a significant 15-fold increase in the number of transduced neurons, (ii) a marked increase in gene delivery to cortical regions, and (iii) superior animal-to-animal consistency of gene expression. Entorhinal, prefrontal, frontal, parietal, hippocampal, limbic, and basal forebrain neurons are extensively transduced: 95% of transduced cells are neurons, and greater than 70% are excitatory. These findings provide a novel and simple method for broad gene delivery to the cortex and are of substantial relevance to translational programs for neurological disorders, including Alzheimer's disease and related dementias, stroke, and traumatic brain injury.
Collapse
Affiliation(s)
- Michael J. Castle
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yuhsiang Cheng
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Aravind Asokan
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Mark H. Tuszynski
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
- Veterans Administration Medical Center, San Diego, CA 92161, USA
| |
Collapse
|
21
|
Wang D, Li J, Tran K, Burt DR, Zhong L, Gao G. Slow Infusion of Recombinant Adeno-Associated Viruses into the Mouse Cerebrospinal Fluid Space. Hum Gene Ther Methods 2018; 29:75-85. [PMID: 29596011 DOI: 10.1089/hgtb.2017.250] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Recombinant adeno-associated viruses (rAAVs) are the leading in vivo gene delivery platform, and have been extensively studied in gene therapy targeting various tissues, including the central nervous system (CNS). A single-bolus rAAV injection to the cerebrospinal fluid (CSF) space has been widely used to target the CNS, but it suffers from several drawbacks, such as leakage to peripheral tissues. Here, a protocol is described using an osmotic pump to infuse rAAV slowly into the mouse CSF space. Compared to the single-bolus injection technique, pump infusion can lead to higher CNS transduction and lower transduction in the peripheral tissues.
Collapse
Affiliation(s)
- Dan Wang
- 1 Horae Gene Therapy Center, University of Massachusetts Medical School , Worcester, Massachusetts.,2 Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School , Worcester, Massachusetts.,3 Department of Microbiology and Physiological Systems, University of Massachusetts Medical School , Worcester, Massachusetts
| | - Jia Li
- 1 Horae Gene Therapy Center, University of Massachusetts Medical School , Worcester, Massachusetts.,2 Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School , Worcester, Massachusetts
| | - Karen Tran
- 1 Horae Gene Therapy Center, University of Massachusetts Medical School , Worcester, Massachusetts.,2 Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School , Worcester, Massachusetts
| | - Daniel R Burt
- 1 Horae Gene Therapy Center, University of Massachusetts Medical School , Worcester, Massachusetts.,2 Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School , Worcester, Massachusetts
| | - Li Zhong
- 1 Horae Gene Therapy Center, University of Massachusetts Medical School , Worcester, Massachusetts.,2 Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School , Worcester, Massachusetts.,3 Department of Microbiology and Physiological Systems, University of Massachusetts Medical School , Worcester, Massachusetts
| | - Guangping Gao
- 1 Horae Gene Therapy Center, University of Massachusetts Medical School , Worcester, Massachusetts.,2 Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School , Worcester, Massachusetts.,3 Department of Microbiology and Physiological Systems, University of Massachusetts Medical School , Worcester, Massachusetts.,4 Viral Vector Core, University of Massachusetts Medical School , Worcester, Massachusetts.,5 West China Hospital, Sichuan University , Chengdu, China
| |
Collapse
|
22
|
Adeno-associated virus serotype rh10 is a useful gene transfer vector for sensory nerves that innervate bone in immunodeficient mice. Sci Rep 2017; 7:17428. [PMID: 29233995 PMCID: PMC5727257 DOI: 10.1038/s41598-017-17393-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 11/19/2017] [Indexed: 12/31/2022] Open
Abstract
Adeno-associated virus (AAV) is frequently used to manipulate gene expression in the sensory nervous system for the study of pain mechanisms. Although some serotypes of AAV are known to have nerve tropism, whether AAV can distribute to sensory nerves that innervate the bone or skeletal tissue has not been shown. This information is crucial, since bone pain, including cancer-induced bone pain, is an area of high importance in pain biology. In this study, we found that AAVrh10 transduces neurons in the spinal cord and dorsal root ganglia of immunodeficient mice with higher efficacy than AAV2, 5, 6, 8, and 9 when injected intrathecally. Additionally, AAVrh10 has tropism towards sensory neurons in skeletal tissue, such as bone marrow and periosteum, while it occasionally reaches the sensory nerve fibers in the mouse footpad. Moreover, AAVrh10 has higher tropic affinity to large myelinated and small peptidergic sensory neurons that innervate bone, compared to small non-peptidergic sensory neurons that rarely innervate bone. Taken together, these results suggest that AAVrh10 is a useful gene delivery vector to target the sensory nerves innervating bone. This finding may lead to a greater understanding of the molecular mechanisms of chronic bone pain and cancer-induced bone pain.
Collapse
|
23
|
Li D, Liu C, Yang C, Wang D, Wu D, Qi Y, Su Q, Gao G, Xu Z, Guo Y. Slow Intrathecal Injection of rAAVrh10 Enhances its Transduction of Spinal Cord and Therapeutic Efficacy in a Mutant SOD1 Model of ALS. Neuroscience 2017; 365:192-205. [PMID: 29024785 DOI: 10.1016/j.neuroscience.2017.10.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 09/15/2017] [Accepted: 10/01/2017] [Indexed: 01/24/2023]
Abstract
Mutant SOD1 causes amyotrophic lateral sclerosis (ALS) by a dominant gain of toxicity. Previous studies have demonstrated therapeutic potential of mutant SOD1-RNAi delivered by intrathecal (IT) injection of recombinant adeno-associated virus (rAAV). However, optimization of delivery is needed to overcome the high degree of variation in the transduction efficiency and therapeutic efficacy. Here, on the basis of our previously defined, efficient IT injection method, we investigated the influence of injection speed on transduction efficiency in the central nervous system (CNS). We demonstrate that slow IT injection results in higher transduction of spinal cord and dorsal root ganglia (DRG) while fast IT injection leads to higher transduction of brain and peripheral organs. To test how these effects influence the outcome of RNAi therapy, we used slow and fast IT injection to deliver rAAVrh10-GFP-amiR-SOD1, a rAAV vector that expresses GFP and an artificial miRNA targeting SOD1, in SOD1-G93A mice. Both slow and fast IT injection produced therapeutic efficacy but the slow injection trended slightly toward a better outcome than the fast injection. These results demonstrate that IT injection speed influences the predominance of gene delivery at different CNS sites and should be taken into consideration in future therapeutic trials involving IT injection.
Collapse
Affiliation(s)
- Dongxiao Li
- Department of Neurology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, Hebei 050000, China
| | - Chong Liu
- Department of Neurology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, Hebei 050000, China
| | - Chunxing Yang
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School Worcester, MA 01605, USA
| | - Dan Wang
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Dongxia Wu
- Department of Neurology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, Hebei 050000, China
| | - Yinkuang Qi
- Department of Neurology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, Hebei 050000, China
| | - Qin Su
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA; Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| | - Zuoshang Xu
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School Worcester, MA 01605, USA.
| | - Yansu Guo
- Department of Neurology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, Hebei 050000, China; Key Laboratory of Hebei Neurology, Shijiazhuang, Hebei 050000, China.
| |
Collapse
|
24
|
Hordeaux J, Dubreil L, Robveille C, Deniaud J, Pascal Q, Dequéant B, Pailloux J, Lagalice L, Ledevin M, Babarit C, Costiou P, Jamme F, Fusellier M, Mallem Y, Ciron C, Huchet C, Caillaud C, Colle MA. Long-term neurologic and cardiac correction by intrathecal gene therapy in Pompe disease. Acta Neuropathol Commun 2017; 5:66. [PMID: 28874182 PMCID: PMC5585940 DOI: 10.1186/s40478-017-0464-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 08/07/2017] [Indexed: 11/10/2022] Open
Abstract
Pompe disease is a lysosomal storage disorder caused by acid-α-glucosidase (GAA) deficiency, leading to glycogen storage. The disease manifests as a fatal cardiomyopathy in infantile form. Enzyme replacement therapy (ERT) has recently prolonged the lifespan of these patients, revealing a new natural history. The neurologic phenotype and the persistence of selective muscular weakness in some patients could be attributed to the central nervous system (CNS) storage uncorrected by ERT. GAA-KO 6neo/6neo mice were treated with a single intrathecal administration of adeno-associated recombinant vector (AAV) mediated gene transfer of human GAA at 1 month and their neurologic, neuromuscular, and cardiac function was assessed for 1 year. We demonstrate a significant functional neurologic correction in treated animals from 4 months onward, a neuromuscular improvement from 9 months onward, and a correction of the hypertrophic cardiomyopathy at 12 months. The regions most affected by the disease i.e. the brainstem, spinal cord, and the left cardiac ventricular wall all show enzymatic, biochemical and histological correction. Muscle glycogen storage is not affected by the treatment, thus suggesting that the restoration of muscle functionality is directly related to the CNS correction. This unprecedented global and long-term CNS and cardiac cure offer new perspectives for the management of patients.
Collapse
|
25
|
Choudhury SR, Hudry E, Maguire CA, Sena-Esteves M, Breakefield XO, Grandi P. Viral vectors for therapy of neurologic diseases. Neuropharmacology 2017; 120:63-80. [PMID: 26905292 PMCID: PMC5929167 DOI: 10.1016/j.neuropharm.2016.02.013] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 02/07/2016] [Accepted: 02/15/2016] [Indexed: 12/21/2022]
Abstract
Neurological disorders - disorders of the brain, spine and associated nerves - are a leading contributor to global disease burden with a shockingly large associated economic cost. Various treatment approaches - pharmaceutical medication, device-based therapy, physiotherapy, surgical intervention, among others - have been explored to alleviate the resulting extent of human suffering. In recent years, gene therapy using viral vectors - encoding a therapeutic gene or inhibitory RNA into a "gutted" viral capsid and supplying it to the nervous system - has emerged as a clinically viable option for therapy of brain disorders. In this Review, we provide an overview of the current state and advances in the field of viral vector-mediated gene therapy for neurological disorders. Vector tools and delivery methods have evolved considerably over recent years, with the goal of providing greater and safer genetic access to the central nervous system. Better etiological understanding of brain disorders has concurrently led to identification of improved therapeutic targets. We focus on the vector technology, as well as preclinical and clinical progress made thus far for brain cancer and various neurodegenerative and neurometabolic disorders, and point out the challenges and limitations that accompany this new medical modality. Finally, we explore the directions that neurological gene therapy is likely to evolve towards in the future. This article is part of the Special Issue entitled "Beyond small molecules for neurological disorders".
Collapse
Affiliation(s)
- Sourav R Choudhury
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01605, USA; Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| | - Eloise Hudry
- Alzheimer's Disease Research Unit, Harvard Medical School & Massachusetts General Hospital, Charlestown, MA 02129, USA.
| | - Casey A Maguire
- Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital and NeuroDiscovery Center, Harvard Medical School, Boston, MA 02114, USA.
| | - Miguel Sena-Esteves
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01605, USA; Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| | - Xandra O Breakefield
- Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital and NeuroDiscovery Center, Harvard Medical School, Boston, MA 02114, USA.
| | - Paola Grandi
- Department of Neurological Surgery, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15219, USA.
| |
Collapse
|
26
|
Improved gene delivery to adult mouse spinal cord through the use of engineered hybrid adeno-associated viral serotypes. Gene Ther 2017; 24:361-369. [PMID: 28440798 PMCID: PMC5472488 DOI: 10.1038/gt.2017.27] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 02/25/2017] [Accepted: 03/03/2017] [Indexed: 12/12/2022]
Abstract
Adeno-associated viral (AAV) vectors are often used in gene therapy for neurological disorders because of its safety profile and promising results in clinical trials. One challenge to AAV gene therapy is effective transduction of large numbers of the appropriate cell type, which can be overcome by modulating the viral capsid through DNA shuffling. Our previous study demonstrates that Rec2, among a family of novel engineered hybrid capsid serotypes (Rec1~4) transduces adipose tissue with far superior efficiency than naturally occurring AAV serotypes. Here we assessed the transduction of adult spinal cord at two different doses of AAV vectors expressing green fluorescent protein (2 × 109 or 4 × 108 viral particles) via intraparenchymal injection at the thoracic vertebral level T9. In comparison to an equal dose of the currently preferable AAV9 serotype, Rec3 serotype transduced a broader region of spinal cord up to approximately 1.5 cm longitudinally, and displayed higher transgene expression and increased maximal transduction rates of astrocytes at either dose and neurons at the lower dose. These novel engineered hybrid vectors could provide powerful tools at lower production costs to manipulate gene expression in spinal cord for mechanistic studies, or provide potent vehicles for gene therapy delivery, such as neurotrophins, to spinal cord.
Collapse
|
27
|
Bey K, Ciron C, Dubreil L, Deniaud J, Ledevin M, Cristini J, Blouin V, Aubourg P, Colle MA. Efficient CNS targeting in adult mice by intrathecal infusion of single-stranded AAV9-GFP for gene therapy of neurological disorders. Gene Ther 2017; 24:325-332. [PMID: 28425480 DOI: 10.1038/gt.2017.18] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 02/17/2017] [Accepted: 02/28/2017] [Indexed: 12/19/2022]
Abstract
Adeno-associated virus (AAV) gene therapy constitutes a powerful tool for the treatment of neurodegenerative diseases. While AAVs are generally administered systemically to newborns in preclinical studies of neurological disorders, in adults the maturity of the blood-brain barrier (BBB) must be considered when selecting the route of administration. Delivery of AAVs into the cerebrospinal fluid (CSF) represents an attractive approach to target the central nervous system (CNS) and bypass the BBB. In this study, we investigated the efficacy of intra-CSF delivery of a single-stranded (ss) AAV9-CAG-GFP vector in adult mice via intracisternal (iCist) or intralumbar (it-Lumb) administration. It-Lumb ssAAV9 delivery resulted in greater diffusion throughout the entire spinal cord and green fluorescent protein (GFP) expression mainly in the cerebellum, cortex and olfactory bulb. By contrast, iCist delivery led to strong GFP expression throughout the entire brain. Comparison of the transduction efficiency of ssAAV9-CAG-GFP versus ssAAV9-SYN1-GFP following it-Lumb administration revealed widespread and specific GFP expression in neurons and motoneurons of the spinal cord and brain when the neuron-specific synapsin 1 (SYN1) promoter was used. Our findings demonstrate that it-Lumb ssAAV9 delivery is a safe and highly efficient means of targeting the CNS in adult mice.
Collapse
Affiliation(s)
- K Bey
- INRA/ONIRIS UMR U703, Animal Pathophysiology and Biotherapy for Muscle and Nervous System Diseases, Nantes, France.,Atlantic Gene Therapies, Nantes, France.,ONIRIS, CS 40706, Nantes-Atlantic National College of Veterinary Medicine, Food Science and Engineering, Bretagne Loire University (UBL), Nantes, France
| | - C Ciron
- INRA/ONIRIS UMR U703, Animal Pathophysiology and Biotherapy for Muscle and Nervous System Diseases, Nantes, France.,Atlantic Gene Therapies, Nantes, France.,ONIRIS, CS 40706, Nantes-Atlantic National College of Veterinary Medicine, Food Science and Engineering, Bretagne Loire University (UBL), Nantes, France
| | - L Dubreil
- INRA/ONIRIS UMR U703, Animal Pathophysiology and Biotherapy for Muscle and Nervous System Diseases, Nantes, France.,Atlantic Gene Therapies, Nantes, France.,ONIRIS, CS 40706, Nantes-Atlantic National College of Veterinary Medicine, Food Science and Engineering, Bretagne Loire University (UBL), Nantes, France
| | - J Deniaud
- INRA/ONIRIS UMR U703, Animal Pathophysiology and Biotherapy for Muscle and Nervous System Diseases, Nantes, France.,Atlantic Gene Therapies, Nantes, France.,ONIRIS, CS 40706, Nantes-Atlantic National College of Veterinary Medicine, Food Science and Engineering, Bretagne Loire University (UBL), Nantes, France
| | - M Ledevin
- INRA/ONIRIS UMR U703, Animal Pathophysiology and Biotherapy for Muscle and Nervous System Diseases, Nantes, France.,Atlantic Gene Therapies, Nantes, France.,ONIRIS, CS 40706, Nantes-Atlantic National College of Veterinary Medicine, Food Science and Engineering, Bretagne Loire University (UBL), Nantes, France
| | - J Cristini
- Department of Neurosurgery, Nantes Hospital, Nantes, France
| | - V Blouin
- INSERM UMR 1089, Atlantic Gene Therapies, Nantes, France
| | - P Aubourg
- INSERM U1169, Thérapie Génique, Génétique, Epigénétique en Neurologie, Endocrinologie et Développement de l'Enfant, Université Paris Sud, CEA, Le Kremlin Bicêtre, France
| | - M-A Colle
- INRA/ONIRIS UMR U703, Animal Pathophysiology and Biotherapy for Muscle and Nervous System Diseases, Nantes, France.,Atlantic Gene Therapies, Nantes, France.,ONIRIS, CS 40706, Nantes-Atlantic National College of Veterinary Medicine, Food Science and Engineering, Bretagne Loire University (UBL), Nantes, France
| |
Collapse
|
28
|
Hahm HS, Broecker F, Kawasaki F, Mietzsch M, Heilbronn R, Fukuda M, Seeberger PH. Automated Glycan Assembly of Oligo-N-Acetyllactosamine and Keratan Sulfate Probes to Study Virus-Glycan Interactions. Chem 2017. [DOI: 10.1016/j.chempr.2016.12.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
29
|
Dashkoff J, Lerner EP, Truong N, Klickstein JA, Fan Z, Mu D, Maguire CA, Hyman BT, Hudry E. Tailored transgene expression to specific cell types in the central nervous system after peripheral injection with AAV9. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2016; 3:16081. [PMID: 27933308 PMCID: PMC5142512 DOI: 10.1038/mtm.2016.81] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 10/22/2016] [Accepted: 10/24/2016] [Indexed: 01/06/2023]
Abstract
The capacity of certain adeno-associated virus (AAV) vectors to cross the blood–brain barrier after intravenous delivery offers a unique opportunity for noninvasive brain delivery. However, without a well-tailored system, the use of a peripheral route injection may lead to undesirable transgene expression in nontarget cells or organs. To refine this approach, the present study characterizes the transduction profiles of new self-complementary AAV9 (scAAV9) expressing the green fluorescent protein (GFP) either under an astrocyte (glial fibrillary acidic (GFA) protein) or neuronal (Synapsin (Syn)) promoter, after intravenous injection of adult mice (2 × 1013 vg/kg). ScAAV9-GFA-GFP and scAAV9-Syn-GFP robustly transduce astrocytes (11%) and neurons (17%), respectively, without aberrant expression leakage. Interestingly, while the percentages of GFP-positive astrocytes with scAAV9-GFA-GFP are similar to the performances observed with scAAV9-CBA-GFP (broadly active promoter), significant higher percentages of neurons express GFP with scAAV9-Syn-GFP. GFP-positive excitatory as well as inhibitory neurons are observed, as well as motor neurons in the spinal cord. Additionally, both activated (GFAP-positive) and resting astrocytes (GFAP-negative) express the reporter gene after scAAV9-GFA-GFP injection. These data thoroughly characterize the gene expression specificity of AAVs fitted with neuronal and astrocyte-selective promoters after intravenous delivery, which will prove useful for central nervous system (CNS) gene therapy approaches in which peripheral expression of transgene is a concern.
Collapse
Affiliation(s)
- Jonathan Dashkoff
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, Massachusetts, USA; MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| | - Eli P Lerner
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital and Harvard Medical School , Charlestown, Massachusetts, USA
| | - Nhi Truong
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital and Harvard Medical School , Charlestown, Massachusetts, USA
| | - Jacob A Klickstein
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital and Harvard Medical School , Charlestown, Massachusetts, USA
| | - Zhanyun Fan
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital and Harvard Medical School , Charlestown, Massachusetts, USA
| | - Dakai Mu
- Department of Neurology, The Massachusetts General Hospital, and NeuroDiscovery Center, Harvard Medical School , Boston, Massachusetts, USA
| | - Casey A Maguire
- Department of Neurology, The Massachusetts General Hospital, and NeuroDiscovery Center, Harvard Medical School , Boston, Massachusetts, USA
| | - Bradley T Hyman
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital and Harvard Medical School , Charlestown, Massachusetts, USA
| | - Eloise Hudry
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital and Harvard Medical School , Charlestown, Massachusetts, USA
| |
Collapse
|
30
|
Targeting Motor End Plates for Delivery of Adenoviruses: An Approach to Maximize Uptake and Transduction of Spinal Cord Motor Neurons. Sci Rep 2016; 6:33058. [PMID: 27619631 PMCID: PMC5020496 DOI: 10.1038/srep33058] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 08/08/2016] [Indexed: 02/07/2023] Open
Abstract
Gene therapy can take advantage of the skeletal muscles/motor neurons anatomical relationship to restrict gene expression to the spinal cord ventral horn. Furthermore, recombinant adenoviruses are attractive viral-vectors as they permit spatial and temporal modulation of transgene expression. In the literature, however, several inconsistencies exist with regard to the intramuscular delivery parameters of adenoviruses. The present study is an evaluation of the optimal injection sites on skeletal muscle, time course of expression and mice’s age for maximum transgene expression in motor neurons. Targeting motor end plates yielded a 2.5-fold increase in the number of transduced motor neurons compared to injections performed away from this region. Peak adenoviral transgene expression in motor neurons was detected after seven days. Further, greater numbers of transduced motor neurons were found in juvenile (3–7 week old) mice as compared with adults (8+ weeks old). Adenoviral injections produced robust transgene expression in motor neurons and skeletal myofibres. In addition, dendrites of transduced motor neurons were shown to extend well into the white matter where the descending motor pathways are located. These results also provide evidence that intramuscular delivery of adenovirus can be a suitable gene therapy approach to treat spinal cord injury.
Collapse
|
31
|
Alves S, Bode J, Bemelmans AP, von Kalle C, Cartier N, Tews B. Ultramicroscopy as a novel tool to unravel the tropism of AAV gene therapy vectors in the brain. Sci Rep 2016; 6:28272. [PMID: 27320056 PMCID: PMC4913310 DOI: 10.1038/srep28272] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 06/01/2016] [Indexed: 01/07/2023] Open
Abstract
Recombinant adeno-associated viral (AAV) vectors have advanced to the vanguard of gene therapy. Numerous naturally occurring serotypes have been used to target cells in various tissues. There is a strong need for fast and dynamic methods which efficiently unravel viral tropism in whole organs. Ultramicroscopy (UM) is a novel fluorescence microscopy technique that images optically cleared undissected specimens, achieving good resolutions at high penetration depths while being non-destructive. UM was applied to obtain high-resolution 3D analysis of AAV transduction in adult mouse brains, especially in the hippocampus, a region of interest for Alzheimer’s disease therapy. We separately or simultaneously compared transduction efficacies for commonly used serotypes (AAV9 and AAVrh10) using fluorescent reporter expression. We provide a detailed comparative and quantitative analysis of the transduction profiles. UM allowed a rapid analysis of marker fluorescence expression in neurons with intact projections deep inside the brain, in defined anatomical structures. Major hippocampal neuronal transduction was observed with both vectors, with slightly better efficacy for AAV9 in UM. Glial response and synaptic marker expression did not change post transduction.We propose UM as a novel valuable complementary tool to efficiently and simultaneously unravel tropism of different viruses in a single non-dissected adult rodent brain.
Collapse
Affiliation(s)
- Sandro Alves
- INSERM U1169/MIRCen CEA, Fontenay aux Roses 92265, France, Université Paris-Sud, Université Paris-Saclay, Orsay 91400, France
| | - Julia Bode
- Schaller Research Group at the University of Heidelberg and the German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120 Heidelberg, Germany.,Molecular Mechanisms of Tumor Invasion (V077), DKFZ, Im Neuenheimer Feld 581, 69120 Heidelberg, Germany
| | - Alexis-Pierre Bemelmans
- Commissariat à l´Energie Atomique et aux Energies Alternatives (CEA), Départment de la Recherche Fondamentale (DRF), Institut d´Imagerie Biomédicale (I2BM), Molecular Imaging Research Center (MIRCen), Fontenay-aux-Roses, France.,Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud, Université Paris-Saclay, UMR 9199, Neurodegenerative Diseases Laboratory, Fontenay-aux Roses, France
| | - Christof von Kalle
- Department of Translational Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Nathalie Cartier
- INSERM U1169/MIRCen CEA, Fontenay aux Roses 92265, France, Université Paris-Sud, Université Paris-Saclay, Orsay 91400, France
| | - Björn Tews
- Schaller Research Group at the University of Heidelberg and the German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120 Heidelberg, Germany.,Molecular Mechanisms of Tumor Invasion (V077), DKFZ, Im Neuenheimer Feld 581, 69120 Heidelberg, Germany
| |
Collapse
|
32
|
Gurda BL, De Guilhem De Lataillade A, Bell P, Zhu Y, Yu H, Wang P, Bagel J, Vite CH, Sikora T, Hinderer C, Calcedo R, Yox AD, Steet RA, Ruane T, O'Donnell P, Gao G, Wilson JM, Casal M, Ponder KP, Haskins ME. Evaluation of AAV-mediated Gene Therapy for Central Nervous System Disease in Canine Mucopolysaccharidosis VII. Mol Ther 2016; 24:206-216. [PMID: 26447927 PMCID: PMC4817811 DOI: 10.1038/mt.2015.189] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 09/22/2015] [Indexed: 12/11/2022] Open
Abstract
Mucopolysaccharidosis VII (MPS VII) is a lysosomal storage disease arising from mutations in β-d-glucuronidase (GUSB), which results in glycosaminoglycan (GAG) accumulation and a variety of clinical manifestations including neurological disease. Herein, MPS VII dogs were injected intravenously (i.v.) and/or intrathecally (i.t.) via the cisterna magna with AAV9 or AAVrh10 vectors carrying the canine GUSB cDNA. Although i.v. injection alone at 3 days of age resulted in normal cerebrospinal fluid (CSF) GUSB activity, brain tissue homogenates had only ~1 to 6% normal GUSB activity and continued to have elevated GAG storage. In contrast, i.t. injection at 3 weeks of age resulted in CSF GUSB activity 44-fold normal while brain tissue homogenates had >100% normal GUSB activity and reduced GAGs compared with untreated dogs. Markers for secondary storage and inflammation were eliminated in i.t.-treated dogs and reduced in i.v.-treated dogs compared with untreated dogs. Given that i.t.-treated dogs expressed higher levels of GUSB in the CNS tissues compared to those treated i.v., we conclude that i.t. injection of AAV9 or AAVrh10 vectors is more effective than i.v. injection alone in the large animal model of MPS VII.
Collapse
Affiliation(s)
- Brittney L Gurda
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| | | | - Peter Bell
- Gene Therapy Program, Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Yanqing Zhu
- Gene Therapy Program, Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Hongwei Yu
- Gene Therapy Program, Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Ping Wang
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jessica Bagel
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Charles H Vite
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Tracey Sikora
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Department of Medicine, Division of Translational Medicine and Human Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Christian Hinderer
- Gene Therapy Program, Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Roberto Calcedo
- Gene Therapy Program, Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Alexander D Yox
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Richard A Steet
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Therese Ruane
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Patricia O'Donnell
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Guangping Gao
- Gene Therapy Center, University of Massachusetts Medical School, Worcester, Massachusetts, USA; Department of Microbiology and Physiology Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - James M Wilson
- Gene Therapy Program, Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Margret Casal
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Katherine P Ponder
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Mark E Haskins
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
33
|
Tse LV, Moller-Tank S, Asokan A. Strategies to circumvent humoral immunity to adeno-associated viral vectors. Expert Opin Biol Ther 2015; 15:845-55. [PMID: 25985812 DOI: 10.1517/14712598.2015.1035645] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
INTRODUCTION Recent success in gene therapy of certain monogenic diseases in the clinic has infused enthusiasm into the continued development of recombinant adeno-associated viral (AAV) vectors as next-generation biologics. However, progress in clinical trials has also highlighted the challenges posed by the host humoral immune response to AAV vectors. Specifically, while pre-existing neutralizing antibodies (NAbs) limit the cohort of eligible patients, NAb generation following treatment prevents vector re-dosing. AREAS COVERED In this review, we discuss a spectrum of complementary strategies that can help circumvent the host humoral immune response to AAV. EXPERT OPINION Specifically, we present a dual perspective, that is, vector versus host, and highlight the clinical attributes, potential caveats and limitations as well as complementarity associated with the various approaches.
Collapse
Affiliation(s)
- Longping V Tse
- University of North Carolina, Gene Therapy Center , CB#7352, Thurston Building, Chapel Hill, NC 27599 , USA
| | | | | |
Collapse
|
34
|
Sorrentino NC, Maffia V, Strollo S, Cacace V, Romagnoli N, Manfredi A, Ventrella D, Dondi F, Barone F, Giunti M, Graham AR, Huang Y, Kalled SL, Auricchio A, Bacci ML, Surace EM, Fraldi A. A Comprehensive Map of CNS Transduction by Eight Recombinant Adeno-associated Virus Serotypes Upon Cerebrospinal Fluid Administration in Pigs. Mol Ther 2015; 24:276-286. [PMID: 26639405 DOI: 10.1038/mt.2015.212] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 11/22/2015] [Indexed: 12/16/2022] Open
Abstract
Cerebrospinal fluid administration of recombinant adeno-associated viral (rAAV) vectors has been demonstrated to be effective in delivering therapeutic genes to the central nervous system (CNS) in different disease animal models. However, a quantitative and qualitative analysis of transduction patterns of the most promising rAAV serotypes for brain targeting in large animal models is missing. Here, we characterize distribution, transduction efficiency, and cellular targeting of rAAV serotypes 1, 2, 5, 7, 9, rh.10, rh.39, and rh.43 delivered into the cisterna magna of wild-type pigs. rAAV9 showed the highest transduction efficiency and the widest distribution capability among the vectors tested. Moreover, rAAV9 robustly transduced both glia and neurons, including the motor neurons of the spinal cord. Relevant cell transduction specificity of the glia was observed after rAAV1 and rAAV7 delivery. rAAV7 also displayed a specific tropism to Purkinje cells. Evaluation of biochemical and hematological markers suggested that all rAAV serotypes tested were well tolerated. This study provides a comprehensive CNS transduction map in a useful preclinical large animal model enabling the selection of potentially clinically transferable rAAV serotypes based on disease specificity. Therefore, our data are instrumental for the clinical evaluation of these rAAV vectors in human neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Veronica Maffia
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
| | - Sandra Strollo
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
| | - Vincenzo Cacace
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
| | - Noemi Romagnoli
- Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, Bologna, Italy
| | - Anna Manfredi
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
| | - Domenico Ventrella
- Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, Bologna, Italy
| | - Francesco Dondi
- Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, Bologna, Italy
| | - Francesca Barone
- Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, Bologna, Italy
| | - Massimo Giunti
- Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, Bologna, Italy
| | - Anne-Renee Graham
- Shire, Discovery Biology and Translational Research, Lexington, Massachusetts, USA
| | - Yan Huang
- Shire, Discovery Biology and Translational Research, Lexington, Massachusetts, USA
| | - Susan L Kalled
- Shire, Discovery Biology and Translational Research, Lexington, Massachusetts, USA
| | - Alberto Auricchio
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy; Medical Genetics, Department of Translational Medicine, "FEDERICO II" University, Naples, Italy
| | - Maria Laura Bacci
- Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, Bologna, Italy
| | - Enrico Maria Surace
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy; Medical Genetics, Department of Translational Medicine, "FEDERICO II" University, Naples, Italy.
| | | |
Collapse
|
35
|
Mohan R, Tosolini A, Morris R. Segmental distribution of the motor neuron columns that supply the rat hindlimb: A muscle/motor neuron tract-tracing analysis targeting the motor end plates. Neuroscience 2015; 307:98-108. [DOI: 10.1016/j.neuroscience.2015.08.030] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 08/14/2015] [Accepted: 08/14/2015] [Indexed: 12/22/2022]
|
36
|
Isaacs CJ, Shinnick JE, Schadt K, Lynch DR, Lin KY. Prospects of gene and cell therapy for managing cardiac complications in Friedreich ataxia. Expert Opin Orphan Drugs 2015. [DOI: 10.1517/21678707.2015.1083854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
37
|
Tanguy Y, Biferi MG, Besse A, Astord S, Cohen-Tannoudji M, Marais T, Barkats M. Systemic AAVrh10 provides higher transgene expression than AAV9 in the brain and the spinal cord of neonatal mice. Front Mol Neurosci 2015; 8:36. [PMID: 26283910 PMCID: PMC4516891 DOI: 10.3389/fnmol.2015.00036] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 07/06/2015] [Indexed: 12/14/2022] Open
Abstract
Systemic delivery of self-complementary (sc) adeno-associated-virus vector of serotype 9 (AAV9) was recently shown to provide robust and widespread gene transfer to the central nervous system (CNS), opening new avenues for practical, and non-invasive gene therapy of neurological diseases. More recently, AAV of serotype rh10 (AAVrh10) was also found highly efficient to mediate CNS transduction after intravenous administration in mice. However, only a few studies compared AAV9 and AAVrh10 efficiencies, particularly in the spinal cord. In this study, we compared the transduction capabilities of AAV9 and AAVrh10 in the brain, the spinal cord, and the peripheral nervous system (PNS) after intravenous delivery in neonatal mice. As reported in previous studies, AAVrh10 achieved either similar or higher transduction than AAV9 in all the examined brain regions. The superiority of AAVrh10 over AAV9 appeared statistically significant only in the medulla and the cerebellum, but a clear trend was also observed in other structures like the hippocampus or the cortex. In contrast to previous studies, we found that AAVrh10 was more efficient than AAV9 for transduction of the dorsal spinal cord and the lower motor neurons (MNs). However, differences between the two serotypes appeared mainly significant at low dose, and surprisingly, increasing the dose did not improve AAVrh10 distribution in the spinal cord, in contrary to AAV9. Similar dose-related differences between transduction efficiency of the two serotypes were also observed in the sciatic nerve. These findings suggest differences in the transduction mechanisms of these two serotypes, which both hold great promise for gene therapy of neurological diseases.
Collapse
Affiliation(s)
- Yannick Tanguy
- Center of Research on Myology, FRE 3617 Centre National de la Recherche Scientifique, UMRS 974 INSERM, French Institute of Myology, Pierre and Marie Curie University Paris, France
| | - Maria G Biferi
- Center of Research on Myology, FRE 3617 Centre National de la Recherche Scientifique, UMRS 974 INSERM, French Institute of Myology, Pierre and Marie Curie University Paris, France
| | - Aurore Besse
- Center of Research on Myology, FRE 3617 Centre National de la Recherche Scientifique, UMRS 974 INSERM, French Institute of Myology, Pierre and Marie Curie University Paris, France
| | - Stephanie Astord
- Center of Research on Myology, FRE 3617 Centre National de la Recherche Scientifique, UMRS 974 INSERM, French Institute of Myology, Pierre and Marie Curie University Paris, France
| | - Mathilde Cohen-Tannoudji
- Center of Research on Myology, FRE 3617 Centre National de la Recherche Scientifique, UMRS 974 INSERM, French Institute of Myology, Pierre and Marie Curie University Paris, France
| | - Thibaut Marais
- Center of Research on Myology, FRE 3617 Centre National de la Recherche Scientifique, UMRS 974 INSERM, French Institute of Myology, Pierre and Marie Curie University Paris, France
| | - Martine Barkats
- Center of Research on Myology, FRE 3617 Centre National de la Recherche Scientifique, UMRS 974 INSERM, French Institute of Myology, Pierre and Marie Curie University Paris, France
| |
Collapse
|
38
|
Hoyng SA, de Winter F, Tannemaat MR, Blits B, Malessy MJA, Verhaagen J. Gene therapy and peripheral nerve repair: a perspective. Front Mol Neurosci 2015; 8:32. [PMID: 26236188 PMCID: PMC4502351 DOI: 10.3389/fnmol.2015.00032] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 07/01/2015] [Indexed: 12/19/2022] Open
Abstract
Clinical phase I/II studies have demonstrated the safety of gene therapy for a variety of central nervous system disorders, including Canavan's, Parkinson's (PD) and Alzheimer's disease (AD), retinal diseases and pain. The majority of gene therapy studies in the CNS have used adeno-associated viral vectors (AAV) and the first AAV-based therapeutic, a vector encoding lipoprotein lipase, is now marketed in Europe under the name Glybera. These remarkable advances may become relevant to translational research on gene therapy to promote peripheral nervous system (PNS) repair. This short review first summarizes the results of gene therapy in animal models for peripheral nerve repair. Secondly, we identify key areas of future research in the domain of PNS-gene therapy. Finally, a perspective is provided on the path to clinical translation of PNS-gene therapy for traumatic nerve injuries. In the latter section we discuss the route and mode of delivery of the vector to human patients, the efficacy and safety of the vector, and the choice of the patient population for a first possible proof-of-concept clinical study.
Collapse
Affiliation(s)
- Stefan A Hoyng
- Department of Neuroregeneration, Netherlands Institute for Neuroscience Amsterdam, Netherlands ; Department of Neurosurgery, Leiden University Medical Center Leiden, Netherlands
| | - Fred de Winter
- Department of Neuroregeneration, Netherlands Institute for Neuroscience Amsterdam, Netherlands ; Department of Neurosurgery, Leiden University Medical Center Leiden, Netherlands
| | - Martijn R Tannemaat
- Department of Neuroregeneration, Netherlands Institute for Neuroscience Amsterdam, Netherlands ; Department of Neurology, Leiden University Medical Center Leiden, Netherlands
| | | | - Martijn J A Malessy
- Department of Neuroregeneration, Netherlands Institute for Neuroscience Amsterdam, Netherlands ; Department of Neurosurgery, Leiden University Medical Center Leiden, Netherlands
| | - Joost Verhaagen
- Department of Neuroregeneration, Netherlands Institute for Neuroscience Amsterdam, Netherlands ; Center for Neurogenomics and Cognition Research, Neuroscience Campus Amsterdam Amsterdam, Netherlands
| |
Collapse
|
39
|
Guo Y, Wang D, Qiao T, Yang C, Su Q, Gao G, Xu Z. A Single Injection of Recombinant Adeno-Associated Virus into the Lumbar Cistern Delivers Transgene Expression Throughout the Whole Spinal Cord. Mol Neurobiol 2015; 53:3235-3248. [PMID: 26050084 DOI: 10.1007/s12035-015-9223-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Accepted: 05/21/2015] [Indexed: 02/04/2023]
Abstract
The lack of methods to deliver transgene expression in spinal cord has hampered investigation of gene function and therapeutic targets for spinal cord diseases. Here, we report that a single intrathecal injection of recombinant adeno-associated virus rhesus-10 (rAAVrh10) into the lumbar cistern led to transgene expression in 60 to 90 % of the cells in the spinal cord. The transgene was expressed in all cell types, including neurons, glia, ependymal cells, and endothelial cells. Additionally, the transgene was expressed in some brain areas up to the frontal cortex and the olfactory bulb. The rAAV was distributed predominantly in the spinal cord, where its genome copy was over ten times that of the peripheral organs. Compared with intravenous injection, another method for rAAV delivery to the broad central nervous system (CNS), the intrathecal injection reduced the dosage of rAAV required to achieve similar or higher levels of transgene expression in the CNS by ~100-fold. Finally, the transduced areas were co-localized with the perivascular spaces of Virchow-Robin, from which the rAAV spreads further into the CNS parenchyma, thus suggesting that rAAV penetrated the CNS parenchyma through this pathway. Taken together, we have defined a fast and efficient method to deliver widespread transgene expression in mature spinal cord in mice. This method can be applied to stably overexpress or silence gene expression in the spinal cord to investigate gene functions in mammalian CNS. Additionally, this method can be applied to validate therapeutic targets for spinal cord diseases.
Collapse
Affiliation(s)
- Yansu Guo
- Department of Neurology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, Hebei, 050000, China.,Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School Worcester, Worcester, MA, 01605, USA
| | - Dan Wang
- Gene Therapy Center, University of Massachusetts Medical School Worcester, Worcester, MA, 01605, USA
| | - Tao Qiao
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School Worcester, Worcester, MA, 01605, USA
| | - Chunxing Yang
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School Worcester, Worcester, MA, 01605, USA
| | - Qin Su
- Gene Therapy Center, University of Massachusetts Medical School Worcester, Worcester, MA, 01605, USA.,Viral Vector Core, University of Massachusetts Medical School Worcester, Worcester, MA, 01605, USA
| | - Guangping Gao
- Gene Therapy Center, University of Massachusetts Medical School Worcester, Worcester, MA, 01605, USA. .,Microbiology and Physiology Systems, University of Massachusetts Medical School Worcester, Worcester, MA, 01605, USA.
| | - Zuoshang Xu
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School Worcester, Worcester, MA, 01605, USA. .,Department of Cell Biology, University of Massachusetts Medical School Worcester, Worcester, MA, 01605, USA. .,Neuroscience Program, University of Massachusetts Medical School Worcester, Worcester, MA, 01605, USA.
| |
Collapse
|