1
|
Shakiba Y, Vorobyev PO, Naumenko VA, Kochetkov DV, Zajtseva KV, Valikhov MP, Yusubalieva GM, Gumennaya YD, Emelyanov EA, Semkina AS, Baklaushev VP, Chumakov PM, Lipatova AV. Oncolytic Efficacy of a Recombinant Vaccinia Virus Strain Expressing Bacterial Flagellin in Solid Tumor Models. Viruses 2023; 15:v15040828. [PMID: 37112810 PMCID: PMC10142208 DOI: 10.3390/v15040828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/17/2023] [Accepted: 03/22/2023] [Indexed: 04/29/2023] Open
Abstract
Oncolytic viral therapy is a promising novel approach to cancer treatment. Oncolytic viruses cause tumor regression through direct cytolysis on the one hand and recruiting and activating immune cells on the other. In this study, to enhance the antitumor efficacy of the thymidine kinase-deficient vaccinia virus (VV, Lister strain), recombinant variants encoding bacterial flagellin (subunit B) of Vibrio vulnificus (LIVP-FlaB-RFP), firefly luciferase (LIVP-Fluc-RFP) or red fluorescent protein (LIVP-RFP) were developed. The LIVP-FLuc-RFP strain demonstrated exceptional onco-specificity in tumor-bearing mice, detected by the in vivo imaging system (IVIS). The antitumor efficacy of these variants was explored in syngeneic murine tumor models (B16 melanoma, CT26 colon cancer and 4T1 breast cancer). After intravenous treatment with LIVP-FlaB-RFP or LIVP-RFP, all mice tumor models exhibited tumor regression, with a prolonged survival rate in comparison with the control mice. However, superior oncolytic activity was observed in the B16 melanoma models treated with LIVP-FlaB-RFP. Tumor-infiltrated lymphocytes and the cytokine analysis of the serum and tumor samples from the melanoma-xenografted mice treated with these virus variants demonstrated activation of the host's immune response. Thus, the expression of bacterial flagellin by VV can enhance its oncolytic efficacy against immunosuppressive solid tumors.
Collapse
Affiliation(s)
- Yasmin Shakiba
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Pavel O Vorobyev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Victor A Naumenko
- Department of Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology of the Ministry of Health of the Russian Federation, 119034 Moscow, Russia
| | - Dmitry V Kochetkov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Ksenia V Zajtseva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Marat P Valikhov
- Department of Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology of the Ministry of Health of the Russian Federation, 119034 Moscow, Russia
- Department of Medical Nanobiotechnology, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Gaukhar M Yusubalieva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Federal Research and Clinical Center for Specialized Types of Medical Care and Medical Technologies FMBA of Russia, 115682 Moscow, Russia
| | - Yana D Gumennaya
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Egor A Emelyanov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Alevtina S Semkina
- Department of Medical Nanobiotechnology, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Vladimir P Baklaushev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Federal Research and Clinical Center for Specialized Types of Medical Care and Medical Technologies FMBA of Russia, 115682 Moscow, Russia
| | - Peter M Chumakov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Anastasia V Lipatova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
2
|
Cao D, Song Q, Li J, Chard Dunmall LS, Jiang Y, Qin B, Wang J, Guo H, Cheng Z, Wang Z, Lemoine NR, Lu S, Wang Y. Redirecting anti-Vaccinia virus T cell immunity for cancer treatment by AAV-mediated delivery of the VV B8R gene. Mol Ther Oncolytics 2022; 25:264-275. [PMID: 35615262 PMCID: PMC9114156 DOI: 10.1016/j.omto.2022.04.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 04/21/2022] [Indexed: 11/28/2022] Open
Abstract
Immunotherapies, such as immune checkpoint inhibitors (ICIs) and chimeric antigen receptor-T (CAR-T) cells, are only efficient in a small proportion of tumor patients. One of the major reasons for this is the lack of immune cell infiltration and activation in the tumor microenvironment (TME). Recent research reported that abundant bystander CD8+ T cells targeting viral antigens exist in tumor infiltrates and that virus-specific memory T cells could be recalled to kill tumor cells. Therefore, virus-specific memory T cells may be effective candidates for tumor immunotherapy. In this study, we established subcutaneous tumor mice models that were pre-immunized with Vaccinia virus (VV) and confirmed that tumor cells with ectopic expression of the viral B8R protein could be recognized and killed by memory T cells. To create a therapeutic delivery system, we designed a recombinant adeno-associated virus (rAAV) with a modified tumor-specific promoter and used it to deliver VV B8R to tumor cells. We observed that rAAV gene therapy can retard tumor growth in VV pre-immunized mice. In summary, our study demonstrates that rAAV containing a tumor-specific promoter to restrict VV B8R gene expression to tumor cells is a potential therapeutic agent for cancer treatment in VV pre-immunized or VV-treated mice bearing tumors.
Collapse
Affiliation(s)
- Dujuan Cao
- National Center for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Qianqian Song
- National Center for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Junqi Li
- National Center for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Louisa S. Chard Dunmall
- Centre for Cancer Biomarkers & Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Yuanyuan Jiang
- National Center for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Bin Qin
- National Center for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jianyao Wang
- National Center for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Haoran Guo
- National Center for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Zhenguo Cheng
- National Center for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Zhimin Wang
- National Center for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Nicholas R. Lemoine
- National Center for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
- Centre for Cancer Biomarkers & Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Shuangshuang Lu
- National Center for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yaohe Wang
- National Center for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
- Centre for Cancer Biomarkers & Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, UK
| |
Collapse
|
3
|
Kooti W, Esmaeili Gouvarchin Ghaleh H, Farzanehpour M, Dorostkar R, Jalali Kondori B, Bolandian M. Oncolytic Viruses and Cancer, Do You Know the Main Mechanism? Front Oncol 2022; 11:761015. [PMID: 35004284 PMCID: PMC8728693 DOI: 10.3389/fonc.2021.761015] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 11/22/2021] [Indexed: 12/28/2022] Open
Abstract
The global rate of cancer has increased in recent years, and cancer is still a threat to human health. Recent developments in cancer treatment have yielded the understanding that viruses have a high potential in cancer treatment. Using oncolytic viruses (OVs) is a promising approach in the treatment of malignant tumors. OVs can achieve their targeted treatment effects through selective cell death and induction of specific antitumor immunity. Targeting tumors and the mechanism for killing cancer cells are among the critical roles of OVs. Therefore, evaluating OVs and understanding their precise mechanisms of action can be beneficial in cancer therapy. This review study aimed to evaluate OVs and the mechanisms of their effects on cancer cells.
Collapse
Affiliation(s)
- Wesam Kooti
- Applied Virology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | | - Mahdieh Farzanehpour
- Applied Virology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ruhollah Dorostkar
- Applied Virology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Bahman Jalali Kondori
- Department of Anatomical Sciences, Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran.,Baqiyatallah Research Center for Gastroenterology and Liver Diseases (BRCGL), Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Masoumeh Bolandian
- Applied Virology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Vasileva N, Ageenko A, Dmitrieva M, Nushtaeva A, Mishinov S, Kochneva G, Richter V, Kuligina E. Double Recombinant Vaccinia Virus: A Candidate Drug against Human Glioblastoma. Life (Basel) 2021; 11:life11101084. [PMID: 34685455 PMCID: PMC8538059 DOI: 10.3390/life11101084] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/07/2021] [Accepted: 10/12/2021] [Indexed: 11/26/2022] Open
Abstract
Glioblastoma is one of the most aggressive brain tumors. Given the poor prognosis of this disease, novel methods for glioblastoma treatment are needed. Virotherapy is one of the most actively developed approaches for cancer therapy today. VV-GMCSF-Lact is a recombinant vaccinia virus with deletions of the viral thymidine kinase and growth factor genes and insertions of the granulocyte–macrophage colony-stimulating factor and oncotoxic protein lactaptin genes. The virus has high cytotoxic activity against human cancer cells of various histogenesis and antitumor efficacy against breast cancer. In this work, we show VV-GMCSF-Lact to be a promising therapeutic agent for glioblastoma treatment. VV-GMCSF-Lact effectively decreases the viability of glioblastoma cells of both immortalized and patient-derived cultures in vitro, crosses the blood–brain barrier, selectively replicates into orthotopically transplanted human glioblastoma when intravenously injected, and inhibits glioblastoma xenograft and metastasis growth when injected intratumorally.
Collapse
Affiliation(s)
- Natalia Vasileva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Akad. Lavrentiev Ave. 8, 630090 Novosibirsk, Russia; (A.A.); (M.D.); (A.N.); (V.R.); (E.K.)
- LLC “Oncostar”, R&D Department, Ingenernaya Street 23, 630090 Novosibirsk, Russia
- Correspondence: ; Tel.: +7-(913)-949-6585
| | - Alisa Ageenko
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Akad. Lavrentiev Ave. 8, 630090 Novosibirsk, Russia; (A.A.); (M.D.); (A.N.); (V.R.); (E.K.)
| | - Maria Dmitrieva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Akad. Lavrentiev Ave. 8, 630090 Novosibirsk, Russia; (A.A.); (M.D.); (A.N.); (V.R.); (E.K.)
| | - Anna Nushtaeva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Akad. Lavrentiev Ave. 8, 630090 Novosibirsk, Russia; (A.A.); (M.D.); (A.N.); (V.R.); (E.K.)
| | - Sergey Mishinov
- Novosibirsk Research Institute of Traumatology and Orthopedics n.a. Ya.L. Tsivyan, Department of Neurosurgery, Frunze Street 17, 630091 Novosibirsk, Russia;
| | - Galina Kochneva
- The State Research Center of Virology and Biotechnology “VECTOR”, Department of Molecular Virology of Flaviviruses and Viral Hepatitis, Novosibirsk Region, 630559 Koltsovo, Russia;
| | - Vladimir Richter
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Akad. Lavrentiev Ave. 8, 630090 Novosibirsk, Russia; (A.A.); (M.D.); (A.N.); (V.R.); (E.K.)
| | - Elena Kuligina
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Akad. Lavrentiev Ave. 8, 630090 Novosibirsk, Russia; (A.A.); (M.D.); (A.N.); (V.R.); (E.K.)
- LLC “Oncostar”, R&D Department, Ingenernaya Street 23, 630090 Novosibirsk, Russia
| |
Collapse
|
5
|
Ahmed J, Chard LS, Yuan M, Wang J, Howells A, Li Y, Li H, Zhang Z, Lu S, Gao D, Wang P, Chu Y, Al Yaghchi C, Schwartz J, Alusi G, Lemoine N, Wang Y. A new oncolytic V accinia virus augments antitumor immune responses to prevent tumor recurrence and metastasis after surgery. J Immunother Cancer 2021; 8:jitc-2019-000415. [PMID: 32217766 PMCID: PMC7206973 DOI: 10.1136/jitc-2019-000415] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2019] [Indexed: 01/02/2023] Open
Abstract
Background Local recurrence and remote metastasis are major challenges to overcome in order to improve the survival of patients with cancer after surgery. Oncolytic viruses are a particularly attractive option for prevention of postsurgical disease as they offer a non-toxic treatment option that can directly target residual tumor deposits and beneficially modulate the systemic immune environment that is suppressed post surgery and allows residual disease escape from control. Here, we report that a novel Vaccinia virus (VV), VVΔTKΔN1L (with deletion of both thymidine kinase (TK) and N1L genes) armed with interleukin 12 (IL-12), can prolong postoperative survival when used as a neoadjuvant treatment in different murine and hamster surgical models of cancer. Methods A tumor-targeted replicating VV with deletion of TK gene and N1L gene (VVΔTKΔN1L) was created. This virus was armed rationally with IL-12. The effect of VVΔTKΔN1L and VVΔTKΔN1L-IL12 on modulation of the tumor microenvironment and induction of tumor-specific immunity as well the feasibility and safety as a neoadjuvant agent for preventing recurrence and metastasis after surgery were assessed in several clinically relevant models. Results VVΔTKΔN1L can significantly prolong postoperative survival when used as a neoadjuvant treatment in three different surgery-induced metastatic models of cancer. Efficacy was critically dependent on elevation of circulating natural killer cells that was achieved by virus-induced cytokine production from cells infected with N1L-deleted, but not N1L-intact VV. This effect was further enhanced by arming VVΔTKΔN1L with IL-12, a potent antitumor cytokine. Five daily treatments with VVΔTKΔN1L-IL12 before surgery dramatically improved postsurgical survival. VVΔTKΔN1L armed with human IL-12 completely prevented tumor recurrence in surgical models of head and neck cancer in Syrian hamsters. Conclusions These data provide a proof of concept for translation of the regime into clinical trials. VVΔTKΔN1L-IL12 is a promising agent for use as an adjuvant to surgical treatment of solid tumors.
Collapse
Affiliation(s)
- Jahangir Ahmed
- Centre for Biomarkers & Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Louisa S Chard
- Centre for Biomarkers & Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Ming Yuan
- Centre for Biomarkers & Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Jiwei Wang
- National Centre for International Research in Cell and Gene Therapy, Zhengzhou University, Zhengzhou, Henan, China
| | - Anwen Howells
- Centre for Biomarkers & Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Yuenan Li
- National Centre for International Research in Cell and Gene Therapy, Zhengzhou University, Zhengzhou, Henan, China
| | - Haoze Li
- National Centre for International Research in Cell and Gene Therapy, Zhengzhou University, Zhengzhou, Henan, China
| | - Zhongxian Zhang
- National Centre for International Research in Cell and Gene Therapy, Zhengzhou University, Zhengzhou, Henan, China
| | - Shuangshuang Lu
- National Centre for International Research in Cell and Gene Therapy, Zhengzhou University, Zhengzhou, Henan, China
| | - Dongling Gao
- National Centre for International Research in Cell and Gene Therapy, Zhengzhou University, Zhengzhou, Henan, China
| | - Pengju Wang
- National Centre for International Research in Cell and Gene Therapy, Zhengzhou University, Zhengzhou, Henan, China
| | - Yongchao Chu
- National Centre for International Research in Cell and Gene Therapy, Zhengzhou University, Zhengzhou, Henan, China
| | - Chadwan Al Yaghchi
- Centre for Biomarkers & Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Joel Schwartz
- University of Illinois at Chicago, Chicago, Illinois, USA.,University of Illinois at Chicago, Chicago, Illinois, USA
| | - Ghassan Alusi
- Centre for Biomarkers & Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Nicholas Lemoine
- Centre for Biomarkers & Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Yaohe Wang
- Centre for Biomarkers & Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, UK
| |
Collapse
|
6
|
Wang N, Wang J, Zhang Z, Cao H, Yan W, Chu Y, Chard Dunmall LS, Wang Y. A novel vaccinia virus enhances anti-tumor efficacy and promotes a long-term anti-tumor response in a murine model of colorectal cancer. Mol Ther Oncolytics 2021; 20:71-81. [PMID: 33575472 PMCID: PMC7851495 DOI: 10.1016/j.omto.2020.11.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 11/11/2020] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is one of the leading causes of mortality and morbidity in the world, and there remains an urgent need to develop long-lasting therapies to treat CRC and prevent recurrence in patients. Oncolytic virus therapy (OVT) has demonstrated remarkable efficacy in a number of different cancer models. Here, we report a novel vaccinia virus (VV)-based OVT for treatment of CRC. The novel VV, based on the recently reported novel VVLΔTKΔN1L virus, was armed with the pleiotropic cytokine interleukin-21 (IL-21) to enhance anti-tumor immune responses stimulated after viral infection of tumor cells. Compared with an unarmed virus, VVLΔTKΔN1L-mIL-21 had a superior anti-tumor efficacy in murine CMT93 subcutaneous CRC models in vivo, mediated mainly by CD8+ T cells. Treatment resulted in development of long-term immunity against CMT93 tumor cells, as evidenced by prevention of disease recurrence. These results demonstrate that VVLΔTKΔN1L-mIL-21 is a promising therapeutic agent for treatment of CRC.
Collapse
Affiliation(s)
- Na Wang
- National Centre for International Research in Cell and Gene Therapy, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, China
| | - Jiwei Wang
- National Centre for International Research in Cell and Gene Therapy, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, China
| | - Zhe Zhang
- National Centre for International Research in Cell and Gene Therapy, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, China
| | - Hua Cao
- ENT Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, China
| | - Wenli Yan
- National Centre for International Research in Cell and Gene Therapy, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, China
| | - Yongchao Chu
- National Centre for International Research in Cell and Gene Therapy, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, China
| | - Louisa S. Chard Dunmall
- Centre for Biomarkers & Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Yaohe Wang
- National Centre for International Research in Cell and Gene Therapy, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, China
- Centre for Biomarkers & Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK
| |
Collapse
|
7
|
Marelli G, Chard Dunmall LS, Yuan M, Di Gioia C, Miao J, Cheng Z, Zhang Z, Liu P, Ahmed J, Gangeswaran R, Lemoine N, Wang Y. A systemically deliverable Vaccinia virus with increased capacity for intertumoral and intratumoral spread effectively treats pancreatic cancer. J Immunother Cancer 2021; 9:e001624. [PMID: 33500259 PMCID: PMC7839893 DOI: 10.1136/jitc-2020-001624] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Pancreatic cancer remains one of the most lethal cancers and is refractory to immunotherapeutic interventions. Oncolytic viruses are a promising new treatment option, but current platforms demonstrate limited efficacy, especially for inaccessible and metastatic cancers that require systemically deliverable therapies. We recently described an oncolytic vaccinia virus (VV), VVLΔTKΔN1L, which has potent antitumor activity, and a regime to enhance intravenous delivery of VV by pharmacological inhibition of pharmacological inhibition of PI3 Kinase δ (PI3Kδ) to prevent virus uptake by macrophages. While these platforms improve the clinical prospects of VV, antitumor efficacy must be improved. METHODS VVLΔTKΔN1L was modified to improve viral spread within and between tumors via viral B5R protein modification, which enhanced production of the extracellular enveloped virus form of VV. Antitumor immunity evoked by viral treatment was improved by arming the virus with interleukin-21, creating VVL-21. Efficacy, functional activity and synergy with α-programmed cell death protein 1 (α-PD1) were assessed after systemic delivery to murine and Syrian hamster models of pancreatic cancer. RESULTS VVL-21 could reach tumors after systemic delivery and demonstrated antitumor efficacy in subcutaneous, orthotopic and disseminated models of pancreatic cancer. The incorporation of modified B5R improved intratumoural accumulation of VV. VVL-21 treatment increased the numbers of effector CD8+ T cells within the tumor, increased circulating natural killer cells and was able to polarize macrophages to an M1 phenotype in vivo and in vitro. Importantly, treatment with VVL-21 sensitized tumors to the immune checkpoint inhibitor α-PD1. CONCLUSIONS Intravenously administered VVL-21 successfully remodeled the suppressive tumor-microenvironment to promote antitumor immune responses and improve long-term survival in animal models of pancreatic cancer. Importantly, treatment with VVL-21 sensitized tumors to the immune checkpoint inhibitor α-PD1. Combination of PI3Kδ inhibition, VVL-21 and α-PD1 creates an effective platform for treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Giulia Marelli
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Louisa S Chard Dunmall
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Ming Yuan
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Carmela Di Gioia
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Jinxin Miao
- National Centre for International Research in Cell and Gene Therapy, Zhengzhou University, Zhengzhou, Henan, China
- Academy of Chinese Medicine Science, Henan University of Chinese Medicine, Zhengzhou 450000, Henan Province, People's Republic of China
| | - Zhenguo Cheng
- National Centre for International Research in Cell and Gene Therapy, Zhengzhou University, Zhengzhou, Henan, China
| | - Zhongxian Zhang
- National Centre for International Research in Cell and Gene Therapy, Zhengzhou University, Zhengzhou, Henan, China
| | - Peng Liu
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Jahangir Ahmed
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Rathi Gangeswaran
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Nicholas Lemoine
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, UK
- National Centre for International Research in Cell and Gene Therapy, Zhengzhou University, Zhengzhou, Henan, China
| | - Yaohe Wang
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, UK
- National Centre for International Research in Cell and Gene Therapy, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
8
|
Kojima R, Aubel D, Fussenegger M. Building sophisticated sensors of extracellular cues that enable mammalian cells to work as "doctors" in the body. Cell Mol Life Sci 2020; 77:3567-3581. [PMID: 32185403 PMCID: PMC7452942 DOI: 10.1007/s00018-020-03486-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/27/2020] [Accepted: 02/17/2020] [Indexed: 12/24/2022]
Abstract
Mammalian cells are inherently capable of sensing extracellular environmental signals and activating complex biological functions on demand. Advances in synthetic biology have made it possible to install additional capabilities, which can allow cells to sense the presence of custom biological molecules and provide defined outputs on demand. When implanted/infused in patients, such engineered cells can work as intrabody "doctors" that diagnose disease states and produce and deliver therapeutic molecules when and where necessary. The key to construction of such theranostic cells is the development of a range of sensor systems for detecting various extracellular environmental cues that can be rewired to custom outputs. In this review, we introduce the state-of-art engineering principles utilized in the design of sensor systems to detect soluble factors and also to detect specific cell contact, and we discuss their potential role in treating intractable diseases by delivering appropriate therapeutic functions on demand. We also discuss the challenges facing these emerging technologies.
Collapse
Affiliation(s)
- Ryosuke Kojima
- Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
- PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan.
| | - Dominque Aubel
- IUTA Département Génie Biologique, Université Claude Bernard Lyon 1, Boulevard du 11 Novembre 1918, 69622, Villeurbanne Cedex, France
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zurich, Mattenstrasse 26, 4058, Basel, Switzerland.
- Faculty of Science, University of Basel, Mattenstrasse 26, 4058, Basel, Switzerland.
| |
Collapse
|
9
|
Maroun JW, Penza V, Weiskittel TM, Schulze AJ, Russell SJ. Collateral Lethal Effects of Complementary Oncolytic Viruses. MOLECULAR THERAPY-ONCOLYTICS 2020; 18:236-246. [PMID: 32728612 PMCID: PMC7369514 DOI: 10.1016/j.omto.2020.06.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 06/19/2020] [Indexed: 12/22/2022]
Abstract
Virus-infected cells release type 1 interferons, which induce an antiviral state in neighboring cells. Naturally occurring viruses are therefore equipped with stealth replication strategies to limit virus sensing and/or with combat strategies to prevent or reverse the antiviral state. Here we show that oncolytic viruses with simple RNA genomes whose spread was suppressed in tumor cells pretreated with interferon were able to replicate efficiently when the cells were coinfected with a poxvirus known to encode a diversity of innate immune combat proteins. In vivo the poxvirus was shown to reverse the intratumoral antiviral state, rescuing RNA virus replication in an otherwise restrictive syngeneic mouse tumor model leading to antitumor efficacy. Pairing of complementary oncolytic viruses is a promising strategy to enhance the antitumor activity of this novel class of anticancer drugs.
Collapse
Affiliation(s)
- Justin W Maroun
- Department of Molecular Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA.,Medical Scientist Training Program, Mayo Clinic Alix School of Medicine, Rochester, MN, USA
| | - Velia Penza
- Department of Molecular Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Taylor M Weiskittel
- Department of Molecular Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA.,Medical Scientist Training Program, Mayo Clinic Alix School of Medicine, Rochester, MN, USA
| | - Autumn J Schulze
- Department of Molecular Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Stephen J Russell
- Department of Molecular Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| |
Collapse
|
10
|
Pelin A, Boulton S, Tamming LA, Bell JC, Singaravelu R. Engineering vaccinia virus as an immunotherapeutic battleship to overcome tumor heterogeneity. Expert Opin Biol Ther 2020; 20:1083-1097. [PMID: 32297534 DOI: 10.1080/14712598.2020.1757066] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Immunotherapy is a rapidly evolving area of cancer therapeutics aimed at driving a systemic immune response to fight cancer. Oncolytic viruses (OVs) are at the cutting-edge of innovation in the immunotherapy field. Successful OV platforms must be effective in reshaping the tumor microenvironment and controlling tumor burden, but also be highly specific to avoid off-target side effects. Large DNA viruses, like vaccinia virus (VACV), have a large coding capacity, enabling the encoding of multiple immunostimulatory transgenes to reshape the tumor immune microenvironment. VACV-based OVs have shown promising results in both pre-clinical and clinical studies, including safe and efficient intravenous delivery to metastatic tumors. AREA COVERED This review summarizes attenuation strategies to generate a recombinant VACV with optimal tumor selectivity and immunogenicity. In addition, we discuss immunomodulatory transgenes that have been introduced into VACV and summarize their effectiveness in controlling tumor burden. EXPERT OPINION VACV encodes several immunomodulatory genes which aid the virus in overcoming innate and adaptive immune responses. Strategic deletion of these virulence factors will enable an optimal balance between viral persistence and immunogenicity, robust tumor-specific expression of payloads and promotion of a systemic anti-cancer immune response. Rational selection of therapeutic transgenes will maximize the efficacy of OVs and their synergy in combinatorial immunotherapy schemes.
Collapse
Affiliation(s)
- Adrian Pelin
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute , Ottawa, Ontario, Canada.,Department of Biochemistry, Microbiology, and Immunology, University of Ottawa , Ottawa, Ontario, Canada
| | - Stephen Boulton
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute , Ottawa, Ontario, Canada.,Department of Biochemistry, Microbiology, and Immunology, University of Ottawa , Ottawa, Ontario, Canada
| | - Levi A Tamming
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute , Ottawa, Ontario, Canada.,Department of Biochemistry, Microbiology, and Immunology, University of Ottawa , Ottawa, Ontario, Canada
| | - John C Bell
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute , Ottawa, Ontario, Canada.,Department of Biochemistry, Microbiology, and Immunology, University of Ottawa , Ottawa, Ontario, Canada
| | - Ragunath Singaravelu
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute , Ottawa, Ontario, Canada.,Department of Biochemistry, Microbiology, and Immunology, University of Ottawa , Ottawa, Ontario, Canada
| |
Collapse
|
11
|
Shchelkunov SN, Razumov IA, Kolosova IV, Romashchenko AV, Zavjalov EL. Virotherapy of the Malignant U87 Human Glioblastoma in the Orthotopic Xenotransplantation Mouse SCID Model. DOKL BIOCHEM BIOPHYS 2018; 478:30-33. [PMID: 29536305 DOI: 10.1134/s1607672918010088] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Indexed: 11/23/2022]
Abstract
The possibility of glioblastoma virotherapy at intravenous injection of the LIVP-GFP recombinant virus was studied in experimental model of orthotopic xenotransplantation of human glioblastoma cell line U87 to SCID laboratory mice. The LIVP-GFP recombinant virus deficient for thymidine kinase exhibited a significantly greater oncolytic capacity than the original LIVP virus, and an intravenous injection of LIVP-GFP at the early stages of tumorigenesis in mouse brain in most cases resulted in the lysis of the tumor.
Collapse
Affiliation(s)
- S N Shchelkunov
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630090, Russia. .,Vector State Research Center of Virology and Biotechnology, Koltsovo, Novosibirsk oblast, 633159, Russia. .,Novosibirsk State University, Novosibirsk, 630090, Russia.
| | - I A Razumov
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - I V Kolosova
- Vector State Research Center of Virology and Biotechnology, Koltsovo, Novosibirsk oblast, 633159, Russia
| | - A V Romashchenko
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - E L Zavjalov
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630090, Russia
| |
Collapse
|
12
|
Howells A, Marelli G, Lemoine NR, Wang Y. Oncolytic Viruses-Interaction of Virus and Tumor Cells in the Battle to Eliminate Cancer. Front Oncol 2017; 7:195. [PMID: 28944214 PMCID: PMC5596080 DOI: 10.3389/fonc.2017.00195] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 08/15/2017] [Indexed: 12/13/2022] Open
Abstract
Oncolytic viruses (OVs) are an emerging treatment option for many cancer types and have recently been the focus of extensive research aiming to develop their therapeutic potential. The ultimate aim is to design a virus which can effectively replicate within the host, specifically target and lyse tumor cells and induce robust, long lasting tumor-specific immunity. There are a number of viruses which are either naturally tumor-selective or can be modified to specifically target and eliminate tumor cells. This means they are able to infect only tumor cells and healthy tissue remains unharmed. This specificity is imperative in order to reduce the side effects of oncolytic virotherapy. These viruses can also be modified by various methods including insertion and deletion of specific genes with the aim of improving their efficacy and safety profiles. In this review, we have provided an overview of the various virus species currently being investigated for their oncolytic potential and the positive and negative effects of a multitude of modifications used to increase their infectivity, anti-tumor immunity, and treatment safety, in particular focusing on the interaction of tumor cells and OVs.
Collapse
Affiliation(s)
- Anwen Howells
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Giulia Marelli
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Nicholas R Lemoine
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom.,National Centre for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yaohe Wang
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom.,National Centre for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
13
|
Toward a world of theranostic medication: Programming biological sentinel systems for therapeutic intervention. Adv Drug Deliv Rev 2016; 105:66-76. [PMID: 27189230 DOI: 10.1016/j.addr.2016.05.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 03/02/2016] [Accepted: 05/05/2016] [Indexed: 12/21/2022]
Abstract
Theranostic systems support diagnostic and therapeutic functions in a single integrated entity and enable precise spatiotemporal control of the generation of therapeutic molecules according to the individual patient's disease state, thereby maximizing the therapeutic outcome and minimizing side effects. These systems can also incorporate reporter systems equipped with a disease-sensing module that can be used to estimate the efficacy of treatment in vivo. Among these reporter systems, biological sentinel systems, such as viruses, bacteria, and mammalian cells, have great potential for use in the development of novel theranostic systems because of their ability to sense a variety of disease markers and secrete various therapeutic molecules. Furthermore, recent advances in biotechnology and synthetic biology have made it possible to treat these biological systems as true programmable entities capable of conducting complex operations, to accurately identify each individual patient's disease state. In this review, we introduce the basic design principles of these rapidly expanding classes of biological sentinel system-based theranostic agents, with a focus on recent advances, and we also discuss potential enabling technologies that can further improve these systems and provide more sophisticated therapeutic interventions in the near future. In addition, we consider the possibility of synergistic use of theranostic agents that use different modalities and discuss the prospects for next-generation theranostic agents.
Collapse
|
14
|
Capitalizing on Cancer Specific Replication: Oncolytic Viruses as a Versatile Platform for the Enhancement of Cancer Immunotherapy Strategies. Biomedicines 2016; 4:biomedicines4030021. [PMID: 28536388 PMCID: PMC5344262 DOI: 10.3390/biomedicines4030021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 08/16/2016] [Accepted: 08/16/2016] [Indexed: 02/07/2023] Open
Abstract
The past decade has seen considerable excitement in the use of biological therapies in treating neoplastic disease. In particular, cancer immunotherapy and oncolytic virotherapy have emerged as two frontrunners in this regard with the first FDA approvals for agents in both categories being obtained in the last 5 years. It is becoming increasingly apparent that these two approaches are not mutually exclusive and that much of the therapeutic benefit obtained from the use of oncolytic viruses (OVs) is in fact the result of their immunotherapeutic function. Indeed, OVs have been shown to recruit and activate an antitumor immune response and much of the current work in this field centers around increasing this activity through strategies such as engineering genes for immunomodulators into OV backbones. Because of their broad immunostimulatory functions, OVs can also be rationally combined with a variety of other immunotherapeutic approaches including cancer vaccination strategies, adoptive cell transfer and checkpoint blockade. Therefore, while they are important therapeutics in their own right, the true power of OVs may lie in their ability to enhance the effectiveness of a wide range of immunotherapies.
Collapse
|
15
|
Yuan M, Webb E, Lemoine NR, Wang Y. CRISPR-Cas9 as a Powerful Tool for Efficient Creation of Oncolytic Viruses. Viruses 2016; 8:72. [PMID: 26959050 PMCID: PMC4810262 DOI: 10.3390/v8030072] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 02/10/2016] [Accepted: 02/10/2016] [Indexed: 01/19/2023] Open
Abstract
The development of oncolytic viruses has led to an emerging new class of cancer therapeutics. Although the safety profile has been encouraging, the transition of oncolytic viruses to the clinical setting has been a slow process due to modifications. Therefore, a new generation of more potent oncolytic viruses needs to be exploited, following our better understanding of the complex interactions between the tumor, its microenvironment, the virus, and the host immune response. The conventional method for creation of tumor-targeted oncolytic viruses is based on homologous recombination. However, the creation of new mutant oncolytic viruses with large genomes remains a challenge due to the multi-step process and low efficiency of homologous recombination. The CRISPR-associated endonuclease Cas9 has hugely advanced the potential to edit the genomes of various organisms due to the ability of Cas9 to target a specific genomic site by a single guide RNA. In this review, we discuss the CRISPR-Cas9 system as an efficient viral editing method for the creation of new oncolytic viruses, as well as its potential future applications in the development of oncolytic viruses. Further, this review discusses the potential of off-target effects as well as CRISPR-Cas9 as a tool for basic research into viral biology.
Collapse
Affiliation(s)
- Ming Yuan
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK.
| | - Eika Webb
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK.
| | - Nicholas Robert Lemoine
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK.
- National Centre for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, Zhengzhou University, Zhengzhou 450052, China.
| | - Yaohe Wang
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK.
- National Centre for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|
16
|
Zonov E, Kochneva G, Yunusova A, Grazhdantseva A, Richter V, Ryabchikova E. Features of the Antitumor Effect of Vaccinia Virus Lister Strain. Viruses 2016; 8:E20. [PMID: 26771631 PMCID: PMC4728580 DOI: 10.3390/v8010020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 12/30/2015] [Accepted: 01/06/2016] [Indexed: 02/06/2023] Open
Abstract
Oncolytic abilities of vaccinia virus (VACV) served as a basis for the development of various recombinants for treating cancer; however, "natural" oncolytic properties of the virus are not examined in detail. Our study was conducted to know how the genetically unmodified L-IVP strain of VACV produces its antitumor effect. Human A431 carcinoma xenografts in nude mice and murine Ehrlich carcinoma in C57Bl mice were used as targets for VACV, which was injected intratumorally. A set of virological methods, immunohistochemistry, light and electron microscopy was used in the study. We found that in mice bearing A431 carcinoma, the L-IVP strain was observed in visceral organs within two weeks, but rapidly disappeared from the blood. The L-IVP strain caused decrease of sizes in both tumors, however, in different ways. Direct cell destruction by replicating virus plays a main role in regression of A431 carcinoma xenografts, while in Ehrlich carcinoma, which poorly supported VACV replication, the virus induced decrease of mitoses by pushing tumor cells into S-phase of cell cycle. Our study showed that genetically unmodified VACV possesses at least two mechanisms of antitumor effect: direct destruction of tumor cells and suppression of mitoses in tumor cells.
Collapse
Affiliation(s)
- Evgeniy Zonov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences (ICBFM SB RAS), 8 Lavrentiev Avenue, Novosibirsk 630090, Russia.
| | - Galina Kochneva
- State Research Center of Virology and Biotechnology "Vector", Koltsovo 630559, Russia.
| | - Anastasiya Yunusova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences (ICBFM SB RAS), 8 Lavrentiev Avenue, Novosibirsk 630090, Russia.
| | | | - Vladimir Richter
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences (ICBFM SB RAS), 8 Lavrentiev Avenue, Novosibirsk 630090, Russia.
| | - Elena Ryabchikova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences (ICBFM SB RAS), 8 Lavrentiev Avenue, Novosibirsk 630090, Russia.
| |
Collapse
|
17
|
Yaghchi CA, Zhang Z, Alusi G, Lemoine NR, Wang Y. Vaccinia virus, a promising new therapeutic agent for pancreatic cancer. Immunotherapy 2015; 7:1249-58. [PMID: 26595180 PMCID: PMC4976866 DOI: 10.2217/imt.15.90] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The poor prognosis of pancreatic cancer patients signifies a need for radically new therapeutic strategies. Tumor-targeted oncolytic viruses have emerged as attractive therapeutic candidates for cancer treatment due to their inherent ability to specifically target and lyse tumor cells as well as induce antitumor effects by multiple action mechanisms. Vaccinia virus has several inherent features that make it particularly suitable for use as an oncolytic agent. In this review, we will discuss the potential of vaccinia virus in the management of pancreatic cancer in light of our increased understanding of cellular and immunological mechanisms involved in the disease process as well as our extending knowledge in the biology of vaccinia virus.
Collapse
Affiliation(s)
- Chadwan Al Yaghchi
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, UK
| | - Zhongxian Zhang
- National Centre for International Research in Cell & Gene Therapy, Sino-British Research Centre for Molecular Oncology, Zhengzhou University, China
| | - Ghassan Alusi
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, UK
| | - Nicholas R Lemoine
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, UK
- National Centre for International Research in Cell & Gene Therapy, Sino-British Research Centre for Molecular Oncology, Zhengzhou University, China
| | - Yaohe Wang
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, UK
- National Centre for International Research in Cell & Gene Therapy, Sino-British Research Centre for Molecular Oncology, Zhengzhou University, China
| |
Collapse
|
18
|
A marker-free system for highly efficient construction of vaccinia virus vectors using CRISPR Cas9. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2015; 2:15035. [PMID: 26417609 PMCID: PMC4571730 DOI: 10.1038/mtm.2015.35] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 08/05/2015] [Indexed: 02/07/2023]
Abstract
The current method for creation of vaccinia virus (VACV) vectors involves using a selection and purification marker, however inclusion of a gene without therapeutic value in the resulting vector is not desirable for clinical use. The Cre-LoxP system has been used to make marker-free Poxviruses, but the efficiency was very low. To obtain a marker-free VACV vector, we developed marker gene excision systems to modify the thymidine kinase (TK) region and N1L regions using Cre-Loxp and Flp-FRET systems respectively. CRISPR-Cas9 system significantly resulted in a high efficiency (~90%) in generation of marker gene-positive TK-mutant VACV vector. The marker gene (RFP) could be excised from the recombinant virus using Cre recombinase. To make a marker-free VV vector with double gene deletions targeting the TK and N1L gene, we constructed a donor repair vector targeting the N1L gene, which can carry a therapeutic gene and the marker (RFP) that could be excised from the recombinant virus using Flp recombinase. The marker-free system developed here can be used to efficiently construct VACV vectors armed with any therapeutic genes in the TK region or N1L region without marker genes. Our marker-free system platform has significant potential for development of new marker-free VACV vectors for clinical application.
Collapse
|