1
|
Cao F, Chen Y, Wang X, Wu LM, Tian M, Li HY, Si HB, Shen B. Therapeutic effect and potential mechanisms of intra-articular injections of miR-140-5p on early-stage osteoarthritis in rats. Int Immunopharmacol 2021; 96:107786. [PMID: 34162150 DOI: 10.1016/j.intimp.2021.107786] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/29/2021] [Accepted: 05/12/2021] [Indexed: 02/08/2023]
Abstract
MicroRNAs (miRs) receive extensive attention in osteoarthritis (OA) pathogenesis in recent years, and our previous study confirmed that an intra-articular injection (IAJ) of miR-140-5p alleviates early-stage OA (EOA) progression in rats. This study aims to investigate the therapeutic effect and potential mechanisms of single IAJ (SIAJ) of miR-140-5p on different stage OA and multiple IAJs (MIAJ) of miR-140-5p on EOA. Firstly, the OA model was surgically induced in rats, nine were treated with IAJ of Cy5-miR-140-5p at one week after surgery, and fluorescence distribution was analyzed at different times. Then, 72 rats were treated with SIAJ of miR-140-5p at different stages or MIAJ of miR-140-5p at one week after surgery, and OA progression was evaluated macroscopically and histologically at different times. Finally, the downstream targets and underlying molecular mechanisms of miR-140-5p were predicted by bioinformatics and partially validated. As a result, the intra-articularly injected miR-140-5p entered cartilage and could be taken up by chondrocytes rapidly. IAJ(s) of miR-140-5p improved the behavioral scores, chondrocyte number, cartilage thickness, and pathological scores to varying degrees. Specifically, the earlier a SIAJ of miR-140-5p was administrated, the better the therapeutic effect; meanwhile, MIAJ of miR-140-5p exhibited a better therapeutic effect than SIAJ on EOA. Eighty-four potential target genes and mechanisms of rno-miR-140-5p were predicted, and the effect of miR-140-5p on the potential target genes VEGFA and JAG1 was experimentally validated. Collectively, IAJs of miR-140-5p effectively alleviate EOA progression by modulating multiple biological processes and pathways in rats, representing a promising therapeutic for EOA.
Collapse
Affiliation(s)
- Fei Cao
- Orthopedic Research Institute & Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China; Department of Orthopedics, Chengdu First People's Hospital, Chengdu 610041, China
| | - Yang Chen
- Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xing Wang
- Orthopedic Research Institute & Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Li-Min Wu
- Orthopedic Research Institute & Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Mei Tian
- Department of Ultrasound, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Han-Yu Li
- Clinical Medicine of Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou 646000, China
| | - Hai-Bo Si
- Orthopedic Research Institute & Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Bin Shen
- Orthopedic Research Institute & Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
2
|
Kumar V, Rahman M, Gahtori P, Al-Abbasi F, Anwar F, Kim HS. Current status and future directions of hepatocellular carcinoma-targeted nanoparticles and nanomedicine. Expert Opin Drug Deliv 2020; 18:673-694. [PMID: 33295218 DOI: 10.1080/17425247.2021.1860939] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Hepatocellular carcinoma (HCC) is a major health problem worldwide. Conventional therapies covering either chemotherapy or combination therapy still have sub-optimal responses with significant adverse effects and toxicity. Moreover, tumor cells usually acquire resistance quickly for traditional approaches, limiting their use in HCC. Interest in nanomedicine due to minimal systemic toxicity and a high degree of target-specific drug-delivery have pulled the attention of health scientists in this area of therapeutics. AREA COVERED The review covers the incidence and epidemiology of HCC, proposed molecular drug targets, mechanistic approach and emergence of nanomedicines including nanoparticles, lipidic nanoparticles, vesicular-based nanocarrier, virus-like particles with momentous therapeutic aspects including biocompatibility, and toxicity of nanocarriers along with conclusions and future perspective, with an efficient approach to safely cross physiological barriers to reach the target site for treating liver cancer. EXPERT OPINION Remarkable outcomes have recently been observed for the therapeutic efficacy of nanocarriers with respect to a specific drug target against the treatment of HCC by existing under trial drugs.
Collapse
Affiliation(s)
- Vikas Kumar
- Natural Product Drug Discovery Laboratory, Department of Pharmaceutical Sciences, Shalom Institute of Health Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences, Allahabad, India
| | - Mahfoozur Rahman
- Natural Product Drug Discovery Laboratory, Department of Pharmaceutical Sciences, Shalom Institute of Health Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences, Allahabad, India
| | - Prashant Gahtori
- School of Pharmacy, Graphic Era Hill University Dehradun 248002, Uttarakhand, India
| | - Fahad Al-Abbasi
- Department of Biochemistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Firoz Anwar
- Department of Biochemistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hyung Sik Kim
- School of Pharmacy, Sungkyunkwan University, Jangan-gu, Suwon 16419, 2066, Seobu-ro, Korea
| |
Collapse
|
3
|
Wang B, Huang T, Fang Q, Zhang X, Yuan J, Li M, Ge H. Bone-protective and anti-tumor effect of baicalin in osteotropic breast cancer via induction of apoptosis. Breast Cancer Res Treat 2020; 184:711-721. [PMID: 32939591 DOI: 10.1007/s10549-020-05904-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 08/29/2020] [Indexed: 11/25/2022]
Abstract
PURPOSE Research suggested that bone is the specific target organ for breast cancer metastasis. The related tumor causes significant morbidity due to a reduction in quality of life and physical function. Increased osteoclast function is implicated in the bone microenvironment during the outgrowth of breast cancer. In the present experimental study, we examined the potential bone-protective effect of baicalin osteotropic breast Cancer and explored the possible mechanism of action. METHODS In vitro cell viability effect of baicalin was assessed on the breast cancer cell lines (MDA-MB-231 and MCF-7). We also estimated the in vitro osteoclast and bone resorption. Further, baicalin-regulated osteoblastogenesis and osteoclastogenesis were also estimated in vitro. Finally, the role of the baicalin in the expansion of osteolytic bone disease was scrutinized in a breast cancer bone metastases model. RESULTS Baicalin significantly (p < 0.001) downregulated the viability of murine and human cancer cell lines and diminished the osteoclastogenesis of osteoclast progenitors via estimation with the help of qRT-PCR. Baicalin showed the downregulation in the mRNA expression of OCN and ALP. Baicalin reduced the TRAP-positive cells in the presence of RANKL. Baicalin considerably upregulated the cytochrome c secretion into the cytoplasm. Baicalin markedly increased the DNA fragmentation, caspase-3, caspase-8, and caspase-9. Baicalin significantly (p < 0.001) reduced the metastatic growth of MDA-MB-231 cells,preserving the bone mass in a bone metastasis model. CONCLUSION Collectively, we can conclude that these results highlight the bone-protective effect of baicalin, which also highlighted the anti-tumor effect; further research is needed into the likely effects on bone health in the bone metastases and osteoporosis populations, such as post-menopausal women with breast cancer.
Collapse
Affiliation(s)
- Bangmin Wang
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, 450008, Henan, China
| | - Tao Huang
- Department of Galactophore, The Affiliated Tumor Hospital of Zhengzhou University, Zhengzhou, 450008, Henan, China
| | - Qigen Fang
- Department of Thyroid, The Affiliated Tumor Hospital of Zhengzhou University, Zhengzhou, 450008, Henan, China
| | - Xu Zhang
- Department of Thyroid, The Affiliated Tumor Hospital of Zhengzhou University, Zhengzhou, 450008, Henan, China
| | - Junhui Yuan
- Department of Radiology, The Affiliated Tumor Hospital of Zhengzhou University, Zhengzhou, 450008, Henan, China
| | - Mengjie Li
- Department of Stomatology, Zhengzhou Stomatologic Hospital, Zhengzhou, 450008, Henan, China
| | - Hong Ge
- Department of Thyroid, The Affiliated Tumor Hospital of Zhengzhou University, Zhengzhou, 450008, Henan, China.
- Department of Radiology, The Affiliated Tumor Hospital of Zhengzhou University, Zhengzhou, 450008, Henan, China.
| |
Collapse
|
4
|
Adipose-derived stromal cell secretome reduces TNFα-induced hypertrophy and catabolic markers in primary human articular chondrocytes. Stem Cell Res 2019; 38:101463. [PMID: 31108390 DOI: 10.1016/j.scr.2019.101463] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/07/2019] [Accepted: 05/13/2019] [Indexed: 12/26/2022] Open
Abstract
Recent clinical trials show the efficacy of Adipose-derived Stromal Cells (ASCs) in contrasting the osteoarthritis scenario. Since it is quite accepted that ASCs act predominantly through a paracrine mechanism, their secretome may represent a valid therapeutic substitute. The aim of this study was to investigate the effects of ASC conditioned medium (ASC-CM) on TNFα-stimulated human primary articular chondrocytes (CHs). CHs were treated with 10 ng/ml TNFα and/or ASC-CM (1:5 recipient:donor cell ratio). ASC-CM treatment blunted TNFα-induced hypertrophy, reducing the levels of Osteocalcin (-37%), Collagen X (-18%) and MMP-13 activity (-61%). In addition, it decreased MMP-3 activity by 59%. We showed that the reduction of MMP activity correlates to the abundance of TIMPs (Tissue Inhibitors of MMPs) in ASC secretome (with TIMP-1 exceeding 200 ng/ml and TIMP-2/3 in the ng/ml range) rather than to a direct down-modulation of the expression and/or release of these proteases. In addition, ASC secretome contains high levels of other cartilage protecting factors, i.e. OPG and DKK-1. ASC-CM comprises cartilage-protecting factors and exerts anti-hypertrophic and anti-catabolic effects on TNFα-stimulated CHs in vitro. Our results support a future use of this cell-derived but cell-free product as a therapeutic approach in the management of osteoarthritis.
Collapse
|
5
|
Rai MF, Pham CT. Intra-articular drug delivery systems for joint diseases. Curr Opin Pharmacol 2018; 40:67-73. [PMID: 29625332 DOI: 10.1016/j.coph.2018.03.013] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 03/24/2018] [Indexed: 12/20/2022]
Abstract
Intra-articular (IA) injections directly deliver high concentrations of therapeutics to the joint space and are routinely used in various musculoskeletal conditions such as osteoarthritis (OA) and rheumatoid arthritis (RA). However, current IA-injected drugs are rapidly cleared and do not significantly affect the course of joint disease. In this review, we highlight recent developments in IA therapy, with a special emphasis on current and emerging therapeutic carriers and their potential to deliver disease-modifying treatment modalities for arthritis. Recent IA approaches concentrate on platforms that are safe with efficient tissue penetration, and readily translatable for controlled and sustained delivery of therapeutic agents. Gene therapy delivered by viral or non-viral vectors and cell-based therapy for cartilage preservation and regeneration are being intensively explored.
Collapse
Affiliation(s)
- Muhammad Farooq Rai
- Department of Orthopedic Surgery, Musculoskeletal Research Center, Washington University School of Medicine, 660 South Euclid Avenue, Box 8233, Saint Louis, MO 63110, USA; Department of Cell Biology and Physiology, Washington University School of Medicine, 660 South Euclid Avenue, Box 8233, Saint Louis, MO 63110, USA.
| | - Christine Tn Pham
- Department of Medicine, Division of Rheumatology, 660 South Euclid Avenue, Box 8045, Saint Louis, MO 63110, USA.
| |
Collapse
|
6
|
Bhattacharya K, Sacchetti C, Costa PM, Sommertune J, Brandner BD, Magrini A, Rosato N, Bottini N, Bottini M, Fadeel B. Nitric Oxide Dependent Degradation of Polyethylene Glycol-Modified Single-Walled Carbon Nanotubes: Implications for Intra-Articular Delivery. Adv Healthc Mater 2018; 7:e1700916. [PMID: 29334180 DOI: 10.1002/adhm.201700916] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 11/18/2017] [Indexed: 01/08/2023]
Abstract
Polyethylene glycol (PEG)-modified carbon nanotubes have been successfully employed for intra-articular delivery in mice without systemic or local toxicity. However, the fate of the delivery system itself remains to be understood. In this study 2 kDa PEG-modified single-walled carbon nanotubes (PNTs) are synthesized, and trafficking and degradation following intra-articular injection into the knee-joint of healthy mice are studied. Using confocal Raman microspectroscopy, PNTs can be imaged in the knee-joint and are found to either egress from the synovial cavity or undergo biodegradation over a period of 3 weeks. Raman analysis discloses that PNTs are oxidatively degraded mainly in the chondrocyte-rich cartilage and meniscus regions while PNTs can also be detected in the synovial membrane regions, where macrophages can be found. Furthermore, using murine chondrocyte (ATDC-5) and macrophage (RAW264.7) cell lines, biodegradation of PNTs in activated, nitric oxide (NO)-producing chondrocytes, which is blocked upon pharmacological inhibition of inducible nitric oxide synthase (iNOS), can be shown. Biodegradation of PNTs in macrophages is also noted, but after a longer period of incubation. Finally, cell-free degradation of PNTs upon incubation with the peroxynitrite-generating compound, SIN-1 is demonstrated. The present study paves the way for the use of PNTs as delivery systems in the treatment of diseases of the joint.
Collapse
Affiliation(s)
- Kunal Bhattacharya
- Nanosafety & Nanomedicine Laboratory‐NNL Division of Molecular Toxicology Institute of Environmental Medicine Karolinska Institutet 171 77 Stockholm Sweden
| | - Cristiano Sacchetti
- Division of Cellular Biology La Jolla Institute for Allergy and Immunology La Jolla CA 92037 USA
- Department of Medicine, and Clinical and Translational Research Institute University of California San Diego La Jolla CA 92037 USA
| | - Pedro M. Costa
- Nanosafety & Nanomedicine Laboratory‐NNL Division of Molecular Toxicology Institute of Environmental Medicine Karolinska Institutet 171 77 Stockholm Sweden
| | - Jens Sommertune
- Unit for Chemistry Materials and Surfaces RISE Research Institute of Sweden 114 86 Stockholm Sweden
| | - Birgit D. Brandner
- Unit for Chemistry Materials and Surfaces RISE Research Institute of Sweden 114 86 Stockholm Sweden
| | - Andrea Magrini
- Department of Biopathology and Imaging Diagnostics University of Rome Tor Vergata Rome 00173 Italy
| | - Nicola Rosato
- Department of Experimental Medicine and Surgery University of Rome Tor Vergata Rome 00173 Italy
| | - Nunzio Bottini
- Division of Cellular Biology La Jolla Institute for Allergy and Immunology La Jolla CA 92037 USA
- Department of Medicine, and Clinical and Translational Research Institute University of California San Diego La Jolla CA 92037 USA
| | - Massimo Bottini
- Department of Experimental Medicine and Surgery University of Rome Tor Vergata Rome 00173 Italy
- Sanford Burnham Prebys Medical Discovery Institute La Jolla CA 92037 USA
| | - Bengt Fadeel
- Nanosafety & Nanomedicine Laboratory‐NNL Division of Molecular Toxicology Institute of Environmental Medicine Karolinska Institutet 171 77 Stockholm Sweden
| |
Collapse
|