1
|
Cropano C, Place I, Manzanares C, Do Canto J, Lübberstedt T, Studer B, Thorogood D. Characterization and practical use of self-compatibility in outcrossing grass species. ANNALS OF BOTANY 2021; 127:841-852. [PMID: 33755100 PMCID: PMC8225281 DOI: 10.1093/aob/mcab043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/12/2021] [Accepted: 03/18/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Self-incompatibility (SI) systems prevent self-fertilization in several species of Poaceae, many of which are economically important forage, bioenergy and turf grasses. Self-incompatibility ensures cross-pollination and genetic diversity but restricts the ability to fix useful genetic variation. In most inbred crops it is possible to develop high-performing homozygous parental lines by self-pollination, which then enables the creation of F1 hybrid varieties with higher performance, a phenomenon known as heterosis. The inability to fully exploit heterosis in outcrossing grasses is partially responsible for lower levels of improvement in breeding programmes compared with inbred crops. However, SI can be overcome in forage grasses to create self-compatible populations. This is generating interest in understanding the genetical basis of self-compatibility (SC), its significance for reproductive strategies and its exploitation for crop improvement, especially in the context of F1 hybrid breeding. SCOPE We review the literature on SI and SC in outcrossing grass species. We review the currently available genomic tools and approaches used to discover and characterize novel SC sources. We discuss opportunities barely explored for outcrossing grasses that SC facilitates. Specifically, we discuss strategies for wide SC introgression in the context of the Lolium-Festuca complex and the use of SC to develop immortalized mapping populations for the dissection of a wide range of agronomically important traits. The germplasm available is a valuable practical resource and will aid understanding the basis of inbreeding depression and hybrid vigour in key temperate forage grass species. CONCLUSIONS A better understanding of the genetic control of additional SC loci offers new insight into SI systems, their evolutionary origins and their reproductive significance. Heterozygous outcrossing grass species that can be readily selfed facilitate studies of heterosis. Moreover, SC introduction into a range of grass species will enable heterosis to be exploited in innovative ways in genetic improvement programmes.
Collapse
Affiliation(s)
- Claudio Cropano
- Molecular Plant Breeding, Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland
- Deutsche Saatveredelung AG, Lippstadt, Germany
| | - Iain Place
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK
| | - Chloé Manzanares
- Molecular Plant Breeding, Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland
| | - Javier Do Canto
- Instituto Nacional de Investigación Agropecuaria (INIA), 4500 Tacuarembó, Uruguay
| | | | - Bruno Studer
- Molecular Plant Breeding, Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland
| | - Daniel Thorogood
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK
| |
Collapse
|
2
|
Slatter LM, Barth S, Manzanares C, Velmurugan J, Place I, Thorogood D. A new genetic locus for self-compatibility in the outcrossing grass species perennial ryegrass (Lolium perenne). ANNALS OF BOTANY 2021; 127:715-722. [PMID: 32856713 PMCID: PMC8103805 DOI: 10.1093/aob/mcaa140] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 08/06/2020] [Indexed: 05/14/2023]
Abstract
BACKGROUND Self-incompatibility (SI) is a physiological mechanism that many flowering plants employ to prevent self-fertilization and maintain heterozygosity. In the grass family this is known to be controlled by a two locus (S-Z) system; however, the SI system is intrinsically leaky. Modifier genes of both the S and Z loci and a further locus, T, are known to override SI leading to self-fertilization and self-seed production. This has implications for the ecological and evolutionary success as well as the commercial breeding of grasses. Here we report a study where the genetic control of self-compatibility (SC) was determined from the results of self-pollinating an F2 population of perennial ryegrass from two independently derived inbred lines produced by single-seed descent. METHODS In vitro self-pollinations of 73 fertile plants were analysed. A genetic association analysis was made with a panel of 1863 single-nucleotide polymorphism (SNP) markers, generated through genotype-by-sequencing methodology. Markers were placed on a recombination map of seven linkage groups (LGs) created using Joinmap v.5. The seed set on self- and open-pollinated inflorescences was determined on 143 plants, including the 73 plants analysed for self-pollination response. KEY RESULTS Self-pollinations revealed a bimodal distribution of percentage SC with peaks at 50 and 100 %. A single quantitative trait locus (QTL) was identified with peak association for marker 6S14665z17875_11873 that mapped to LG 6. Peak position was associated with maximum marker segregation distortion. The self-compatible plants were equally fecund after self- and open pollination. CONCLUSIONS This is the first report in the Poaceae family of an SC locus located on LG 6. This new SC QTL discovery, as well as indicating the complex nature of the pollen-stigma recognition process and its evolutionary significance, provides an additional source of SC for breeding perennial ryegrass.
Collapse
Affiliation(s)
- Lucy M Slatter
- Institute of Biological, Environmental and Rural Sciences, Gogerddan, Aberystwyth University, Aberystwyth, UK
- KWS UK Ltd, Thriplow, Royston, Hertfordshire, UK
| | - Susanne Barth
- Teagasc, Crops Environment and Land Use Programme, Oak Park Research Centre, Carlow, Ireland
| | - Chloe Manzanares
- ETH Zurich, Department of Environmental Systems Science, Universitätstrasse 2, 8092 Zürich, Switzerland
| | - Janaki Velmurugan
- Teagasc, Crops Environment and Land Use Programme, Oak Park Research Centre, Carlow, Ireland
- APC Microbiome Institute, Biosciences Building, University College Cork, Ireland
| | - Iain Place
- Institute of Biological, Environmental and Rural Sciences, Gogerddan, Aberystwyth University, Aberystwyth, UK
| | - Daniel Thorogood
- Institute of Biological, Environmental and Rural Sciences, Gogerddan, Aberystwyth University, Aberystwyth, UK
- For correspondence. E-mail
| |
Collapse
|
3
|
Chen S, Jia J, Cheng L, Zhao P, Qi D, Yang W, Liu H, Dong X, Li X, Liu G. Transcriptomic Analysis Reveals a Comprehensive Calcium- and Phytohormone-Dominated Signaling Response in Leymus chinensis Self-Incompatibility. Int J Mol Sci 2019; 20:E2356. [PMID: 31085987 PMCID: PMC6539167 DOI: 10.3390/ijms20092356] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 05/09/2019] [Accepted: 05/09/2019] [Indexed: 12/31/2022] Open
Abstract
Sheepgrass (Leymus chinensis (Trin.) Tzvel.) is an economically and ecologically important forage in the grass family. Self-incompatibility (SI) limits its seed production due to the low seed-setting rate after self-pollination. However, investigations into the molecular mechanisms of sheepgrass SI are lacking. Therefore, microscopic observation of pollen germination and pollen tube growth, as well as transcriptomic analyses of pistils after self- and cross-pollination, were performed. The results indicated that pollen tube growth was rapidly inhibited from 10 to 30 min after self-pollination and subsequently stopped but preceded normally after cross-pollination. Time course comparative transcriptomics revealed different transcriptome dynamics between self- and cross-pollination. A pool of SI-related signaling genes and pathways was generated, including genes related to calcium (Ca2+) signaling, protein phosphorylation, plant hormone, reactive oxygen species (ROS), nitric oxide (NO), cytoskeleton, and programmed cell death (PCD). A putative SI response molecular model in sheepgrass was presented. The model shows that SI may trigger a comprehensive calcium- and phytohormone-dominated signaling cascade and activate PCD, which may explain the rapid inhibition of self-pollen tube growth as observed by cytological analyses. These results provided new insight into the molecular mechanisms of sheepgrass (grass family) SI.
Collapse
Affiliation(s)
- Shuangyan Chen
- Key Laboratory of Plant Resources, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China.
| | - Junting Jia
- Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
| | - Liqin Cheng
- Key Laboratory of Plant Resources, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China.
| | - Pincang Zhao
- College of management science and engineering, Hebei University of Economics and Business, Shijiazhuang 050061, China.
| | - Dongmei Qi
- Key Laboratory of Plant Resources, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China.
| | - Weiguang Yang
- Key Laboratory of Plant Resources, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China.
| | - Hui Liu
- Key Laboratory of Plant Resources, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China.
| | - Xiaobing Dong
- Key Laboratory of Plant Resources, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China.
| | - Xiaoxia Li
- Key Laboratory of Plant Resources, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China.
| | - Gongshe Liu
- Key Laboratory of Plant Resources, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China.
| |
Collapse
|
4
|
Do Canto J, Studer B, Frei U, Lübberstedt T. Fine mapping a self-fertility locus in perennial ryegrass. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:817-827. [PMID: 29247258 DOI: 10.1007/s00122-017-3038-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 12/11/2017] [Indexed: 05/25/2023]
Abstract
A self-fertility locus was fine mapped to a 1.6 cM region on linkage group 5 in a perennial ryegrass population. This locus was the main determinant of pollen self-compatibility. In grasses, self-incompatibility (SI) is characterized by a two-loci gametophytic (S and Z) mechanism acting together in the recognition and inhibition of self-pollen. Mutations affecting the expression of SI have been reported in a few grass species. In perennial ryegrass (Lolium perenne L.), a mutation independent from S and Z, and mapping on linkage group 5 (LG 5), was previously reported to produce self-fertile plants. Here, we describe fine mapping of the self-fertility (SF) gene in a perennial ryegrass population and determine whether there is any effect of other genomic regions on the pollen compatibility. The phenotypic segregation of SF showed a bimodal distribution with one mean at 49% pollen compatibility and the other at 91%. Marker-trait association analysis showed that only markers on LG 5 were significantly associated with the trait. A single gene model explained 82% of the observed variability and no effects of the other regions were detected. Using segregation and linkage analysis, the SF locus was located to a 1.6 cM region on LG 5. The flanking marker sequences were aligned to rice and Brachypodium distachyon reference genomes to estimate the physical distance. We provide markers tightly linked to SF that can be used for introgression of this trait into advanced breeding germplasm. Moreover, our results represent a further step towards the identification of the SF gene in LG 5.
Collapse
Affiliation(s)
- Javier Do Canto
- Department of Agronomy, Iowa State University, 1204 Agronomy Hall, Ames, IA, 50011‑1010, USA.
- Instituto Nacional de Investigación Agropecuaria (INIA), Estación Experimental INIA Tacuarembó, Ruta 5 km 386, Tacuarembó, Uruguay.
| | - Bruno Studer
- Molecular Plant Breeding, Institute of Agricultural Sciences, ETH Zurich, Universitaetstrasse 2, 8092, Zurich, Switzerland
| | - Ursula Frei
- Department of Agronomy, Iowa State University, 1204 Agronomy Hall, Ames, IA, 50011‑1010, USA
| | - Thomas Lübberstedt
- Department of Agronomy, Iowa State University, 1204 Agronomy Hall, Ames, IA, 50011‑1010, USA
| |
Collapse
|
5
|
Do Canto J, Studer B, Lubberstedt T. Overcoming self-incompatibility in grasses: a pathway to hybrid breeding. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2016; 129:1815-29. [PMID: 27577253 DOI: 10.1007/s00122-016-2775-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 08/24/2016] [Indexed: 05/24/2023]
Abstract
Allogamous grasses exhibit an effective two-locus gametophytic self-incompatibility (SI) system, limiting the range of breeding techniques applicable for cultivar development. Current breeding methods based on populations are characterized by comparably low genetic gains for important traits such as biomass yield. To implement more efficient breeding schemes, the overall understanding of the SI system is crucial as are the mechanisms involved in the breakdown of SI. Self-fertile variants in outcrossing grasses have been studied, and the current level of knowledge includes approximate gene locations, linked molecular markers and first hypotheses on their mode of action. Environmental conditions increasing seed set upon self-pollination have also been described. Even though some strategies were proposed to take advantage of self-fertility, there have, so far, not been changes in the methods applied in cultivar development for allogamous grasses. In this review, we describe the current knowledge about self-fertility in allogamous grasses and outline strategies to incorporate this trait for implementation in synthetic and hybrid breeding schemes.
Collapse
Affiliation(s)
- Javier Do Canto
- Department of Agronomy, Iowa State University, 2104 Agronomy Hall, Ames, IA, 50011-1010, USA.
- National Institute of Agricultural Research, INIA, Route 5 km 386, Tacuarembo, Uruguay.
| | - Bruno Studer
- Forage Crop Genetics, Institute of Agricultural Sciences, ETH Zurich, LFW Building, University Street 2, Zurich, 8092, Switzerland
| | - Thomas Lubberstedt
- Department of Agronomy, Iowa State University, 2104 Agronomy Hall, Ames, IA, 50011-1010, USA
| |
Collapse
|
6
|
Klaas M, Yang B, Bosch M, Thorogood D, Manzanares C, Armstead IP, Franklin FCH, Barth S. Progress towards elucidating the mechanisms of self-incompatibility in the grasses: further insights from studies in Lolium. ANNALS OF BOTANY 2011; 108:677-85. [PMID: 21798860 PMCID: PMC3170160 DOI: 10.1093/aob/mcr186] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Accepted: 06/10/2011] [Indexed: 05/09/2023]
Abstract
BACKGROUND AND SCOPE Self-incompatibility (SI) in flowering plants ensures the maintenance of genetic diversity by ensuring outbreeding. Different genetic and mechanistic systems of SI among flowering plants suggest either multiple origins of SI or considerable evolutionary diversification. In the grasses, SI is based on two loci, S and Z, which are both polyallelic: an incompatible reaction occurs only if both S and Z alleles are matched in individual pollen with alleles of the pistil on which they alight. Such incompatibility is referred to as gametophytic SI (GSI). The mechanics of grass GSI is poorly understood relative to the well-characterized S-RNase-based single-locus GSI systems (Solanaceae, Rosaceae, Plantaginaceae), or the Papaver recognition system that triggers a calcium-dependent signalling network culminating in programmed cell death. There is every reason to suggest that the grass SI system represents yet another mechanism of SI. S and Z loci have been mapped using isozymes to linkage groups C1 and C2 of the Triticeae consensus maps in Secale, Phalaris and Lolium. Recently, in Lolium perenne, in order to finely map and identify S and Z, more closely spaced markers have been developed based on cDNA and repeat DNA sequences, in part from genomic regions syntenic between the grasses. Several genes tightly linked to the S and Z loci were identified, but so far no convincing candidate has emerged. RESEARCH AND PROGRESS From subtracted Lolium immature stigma cDNA libraries derived from S and Z genotyped individuals enriched for SI potential component genes, kinase enzyme domains, a calmodulin-dependent kinase and a peptide with several calcium (Ca(2+)) binding domains were identified. Preliminary findings suggest that Ca(2+) signalling and phosphorylation may be involved in Lolium GSI. This is supported by the inhibition of Lolium SI by Ca(2+) channel blockers lanthanum (La(3+)) and verapamil, and by findings of increased phosphorylation activity during an SI response.
Collapse
Affiliation(s)
- Manfred Klaas
- National University of Ireland Maynooth, Plant Cell Laboratory, Maynooth, Ireland
| | - Bicheng Yang
- Teagasc Crops, Environment and Land Use Programme, Oak Park Research Centre, Carlow, Ireland
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Plas Gogerddan, Aberystwyth, Ceredigion, SY23 3EB, UK
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Maurice Bosch
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Plas Gogerddan, Aberystwyth, Ceredigion, SY23 3EB, UK
| | - Daniel Thorogood
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Plas Gogerddan, Aberystwyth, Ceredigion, SY23 3EB, UK
| | - Chloe Manzanares
- Teagasc Crops, Environment and Land Use Programme, Oak Park Research Centre, Carlow, Ireland
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Plas Gogerddan, Aberystwyth, Ceredigion, SY23 3EB, UK
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Ian P. Armstead
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Plas Gogerddan, Aberystwyth, Ceredigion, SY23 3EB, UK
| | - F. C. H. Franklin
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Susanne Barth
- Teagasc Crops, Environment and Land Use Programme, Oak Park Research Centre, Carlow, Ireland
| |
Collapse
|
7
|
Yang B, Thorogood D, Armstead IP, Franklin FCH, Barth S. Identification of genes expressed during the self-incompatibility response in perennial ryegrass (Lolium perenne L.). PLANT MOLECULAR BIOLOGY 2009; 70:709-23. [PMID: 19484189 DOI: 10.1007/s11103-009-9501-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2008] [Accepted: 05/16/2009] [Indexed: 05/25/2023]
Abstract
Self-incompatibility (SI) in Lolium perenne is controlled gametophytically by the S-Z two-locus system. S and Z loci mapped to L. perenne linkage groups 1 and 2, respectively, with their corresponding putative-syntenic regions on rice chromosome 5 (R5) and R4. None of the gene products of S and Z have yet been identified. SI cDNA libraries were developed to enrich for SI expressed genes in L. perenne. Transcripts were identified from the SI libraries that were orthologous to sequences on rice R4 and R5. These represent potential SI candidate genes. Altogether ten expressed SI candidate genes were identified. A rapid increase in gene expression within two minutes after pollen-stigma contact was revealed, reaching a maximum between 2 and 10 min. The potential involvement of these genes in the SI reactions is discussed.
Collapse
Affiliation(s)
- Bicheng Yang
- Teagasc Crops Research Centre, Oak Park, Carlow, Ireland
| | | | | | | | | |
Collapse
|
8
|
Yang B, Thorogood D, Armstead I, Barth S. How far are we from unravelling self-incompatibility in grasses? THE NEW PHYTOLOGIST 2008; 178:740-753. [PMID: 18373516 DOI: 10.1111/j.1469-8137.2008.02421.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The genetic and physiological mechanisms involved in limiting self-fertilization in angiosperms, referred to as self-incompatibility (SI), have significant effects on population structure and have potential diversification and evolutionary consequences. Up to now, details of the underlying genetic control and physiological basis of SI have been elucidated in two different gametophytic SI (GSI) systems, the S-RNase SI and the Papaver SI systems, and the sporophytic SI (SSI) system (Brassica). In the grass family (Poaceae), which contains all the cereal and major forage crops, SI has been known for half a century to be controlled gametophytically by two multiallelic and independent loci, S and Z. But still none of the gene products for S and Z is known and only limited information on related biochemical responses is available. Here we compare current knowledge of grass SI with that of other well-characterized SI systems and speculate about the relationship between SSI and grass SI. Additionally, we discuss comparative mapping as a tool for the further investigation of grass SI.
Collapse
Affiliation(s)
- Bicheng Yang
- Teagasc Crops Research Centre, Oak Park, Carlow, Ireland
- Institute of Grassland and Environmental Research, Aberystwyth, Ceredigion SY23 3EB, UK
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Danny Thorogood
- Institute of Grassland and Environmental Research, Aberystwyth, Ceredigion SY23 3EB, UK
| | - Ian Armstead
- Institute of Grassland and Environmental Research, Aberystwyth, Ceredigion SY23 3EB, UK
| | - Susanne Barth
- Teagasc Crops Research Centre, Oak Park, Carlow, Ireland
| |
Collapse
|
9
|
|
10
|
Thorogood D, Armstead IP, Turner LB, Humphreys MO, Hayward MD. Identification and mode of action of self-compatibility loci in Lolium perenne L. Heredity (Edinb) 2005; 94:356-63. [PMID: 15454949 DOI: 10.1038/sj.hdy.6800582] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The two-locus gametophytic incompatibility system in perennial ryegrass (Lolium perenne L.) is not always fully effective: obligate selfing of plants sieves self-compatible pollen mutants, and self-fertility becomes fixed in subsequent generations. Self-compatibility (SC) was investigated in an F2 family. In vitro self-pollinations were analysed and recorded and plants were classified as being either partially or fully compatible. Distorted segregation ratios of markers on linkage group (LG) 5 were found, which indicate the possible presence of a gametophytic SC locus. Interval linkage analysis of pollen compatibility after selfing confirmed that this distortion was due to a locus (T) analogous to the S5 locus of rye. However, even though markers in this region were, on average, less than 1 cM apart, the minimum number of plants possessing the unfavoured allele was never less than 6% for any marker locus. We proved that this was because of the presence of another SC locus, exhibiting gametophytic selection, segregating in this population and identified by interval mapping analysis of compatibility classes of in vitro self-pollinations. This locus was located on LG1, and probably corresponds to the S locus. We show that the T locus, a relic of a multilocus system, functions through interaction with the S locus: F2 segregation of incompatibility phenotypes and linked markers demonstrated that the S/t pollen genotype combination, expected to be compatible on selfing, was sometimes incompatible. Further evidence is presented to show that this interaction must be dependent on yet another locus located on LG2. A prime candidate would be the Z incompatibility locus.
Collapse
Affiliation(s)
- D Thorogood
- Institute of Grassland and Environmental Research, Plas Gogerddan, Aberystwyth, Ceredigion SY23 3EB, UK.
| | | | | | | | | |
Collapse
|
11
|
Hackauf B, Wehling P. Approaching the self-incompatibility locus Z in rye (Secale cereale L.) via comparative genetics. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2005; 110:832-845. [PMID: 15717193 DOI: 10.1007/s00122-004-1869-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2004] [Accepted: 11/01/2004] [Indexed: 05/24/2023]
Abstract
Using barley and wheat expressed sequence tags as well as rice genomic sequence and mapping information, we revisited the genomic region encompassing the self-incompatibility (SI) locus Z on rye chromosome 2RL applying a comparative approach. We were able to arrange 12 novel sequence-tagged site (STS) markers around Z, spanning a genetic distance of 32.3 cM, with the closest flanking markers mapping at a distance of 0.5 cM and 1.0 cM from Z, respectively, and one marker cosegregating with Z, in a testcross population of 204 progeny. Two overlapping rice bacterial artifical chromosomes (BACs), OSJNBa0070O11 and OSJNBa0010D21, were found to carry rice orthologs of the three rye STS markers from the 1.5-cM interval encompassing Z. The STS-marker orthologs on these rice BACs span less than 125,000 bp of the rice genome. The STS marker TC116908 cosegregated with Z in a mapping population and revealed a high degree of polymorphism among a random sample of rye plants of various origin. TC116908 was shown via Southern hybridization to correspond to gene no. 10 (OSJNBa0070O11.10) on rice BAC OSJNBa0070O11. Reverse transcription-PCR with a TC116908-specific primer pair resulted in the amplification of a fragment of the expected size from the rye pistil but not from leaf cDNA. OSJNBa0070O11.10 was found to show a highly significant sequence similarity to AtUBP22, a ubiquitin-specific protease (UBP). TC116908 likely represents a putative UBP gene that is specifically expressed in rye pistils and cosegregates with Z. Given that the ubiquitination of proteins is emerging as a general mechanism involved in different SI systems of plants, TC116908 appears to be a promising target for further investigation with respect to its relation to the SI system of the grasses.
Collapse
Affiliation(s)
- B Hackauf
- Federal Centre for Breeding Research on Cultivated Plants, Institute of Agricultural Crops, Rudolf-Schick-Platz 3a, 18190, Gross Lüsewitz, Germany
| | | |
Collapse
|
12
|
Thorogood D, Kaiser WJ, Jones JG, Armstead I. Self-incompatibility in ryegrass 12. Genotyping and mapping the S and Z loci of Lolium perenne L. Heredity (Edinb) 2002; 88:385-90. [PMID: 11986876 DOI: 10.1038/sj.hdy.6800071] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2001] [Accepted: 01/15/2002] [Indexed: 11/09/2022] Open
Abstract
Perennial ryegrass (Lolium perenne L.) is an outcrossing, wind-pollinated species exhibiting a gametophytic two-locus system of self-incompatibility (S and Z). The two incompatibility loci were genotyped in a cross between a doubled-haploid plant crossed as the female parent with a normal heterozygous plant. The S and Z loci were found to segregate in the expected 1:1 ratio and also segregated independently. The two loci were mapped to linkage groups one and two respectively, in accordance with the Triticeae consensus map. In addition, there were notable associations between the segregation of particular alleles mapping to the S locus region of linkage group 1 and those mapping to the WG889/CDO920 loci region of linkage group 3 which resulted in significant segregation distortions. No such associations were found between the Z locus and this region or any other region of the genome. The L. perenne S and Z loci showed conserved synteny with the equivalent loci in rye (Secale cereale L.).
Collapse
Affiliation(s)
- D Thorogood
- Institute of Grassland and Environmental Research, Plas Gogerddan, Aberystwyth, Ceredigion, SY23 3EB, UK.
| | | | | | | |
Collapse
|
13
|
Li X, Guo R, Pedersen C, Hayman D, Langridge P. Physical localization of rRNA genes by two-colour fluorescent in-situ hybridization and sequence analysis of the 5S rRNA gene in Phalaris coerulescens. Hereditas 1997; 126:289-94. [PMID: 9350142 DOI: 10.1111/j.1601-5223.1997.00289.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The 18S-5.8S-26S rDNA and 5S rDNA loci have been mapped physically by fluorescent in-situ hybridization to the chromosomes of Phalaris coerulescens. The biotin-labelled heterologous 18S-5.8S-26S rRNA probe (pTa71) detected one locus, which corresponded to the secondary constriction (nucleolar organizer) on the long arm of the satellited chromosome II. The homologous 5S rDNA probe (Bam2.12) detected two pairs of 5S rRNA gene clusters which were localized at two different non-satellited chromosomes, one near the telomere on the short arm of the chromosome I, which is the largest chromosome of the complement, and the other about 42% out on the long arm of the chromosome III. A BamHI fragment containing the 5S rRNA gene, has been isolated and characterized. The 5S rDNA repeat unit is 309 bp in length, consisting of 121 bp highly conserved coding region and 188 bp variable spacer region. The karyotype of Phalaris coerulescens is characterized by the similar size of chromosomes within the group 2, group 3, or group 4. This study represents the first step towards the understanding the genome organization of Phalaris coerulescens and provides reliable markers for chromosome identification in this grass, an important species as a model system for the study of self-incompatibility in grasses.
Collapse
Affiliation(s)
- X Li
- Centre for Cereal Biotechnology, Waite Institute, University of Adelaide, Glen Osmond, Australia
| | | | | | | | | |
Collapse
|
14
|
|
15
|
Franklin F, Lawrence M, Franklin-Tong V. Cell and Molecular Biology of Self-Incompatibility in Flowering Plants. ACTA ACUST UNITED AC 1995. [DOI: 10.1016/s0074-7696(08)62485-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
|
16
|
Self-incompatibility in ryegrass. XI. Number and frequency of alleles in a cultivar of Lolium perenne L. Heredity (Edinb) 1994. [DOI: 10.1038/hdy.1994.132] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
17
|
Ecology of two cytotypes ofButomus umbellatus I. Karyology and breeding behaviour. ACTA ACUST UNITED AC 1993. [DOI: 10.1007/bf02853305] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
18
|
Mayo O, Leach CR. Quantitatively determined self-incompatibility. 5. Detection of multi-locus systems. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 1993; 86:562-566. [PMID: 24193703 DOI: 10.1007/bf00838709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/1992] [Accepted: 11/19/1992] [Indexed: 06/02/2023]
Abstract
Multi-locus self-incompatibility systems may be distinguished from single-locus systems by reciprocal differences in backcrosses and between crossed progeny of individual clearly compatible crosses. Such crosses are extremely laborious, so other methods have been suggested. In this note, it is shown that the coefficient of crossability is not a useful discriminant of self-incompatibility, as indeed should be expected from the properties of multi-locus systems, and that linkage methods are also unlikely to be successful. Until more self-incompatibility genes have had their sequences characterised, there is no substitute for the traditional genetical methods.
Collapse
Affiliation(s)
- O Mayo
- CSIRO Division of Animal Production, PO Box 239, 2148, Blacktown, NSW, Australia
| | | |
Collapse
|