1
|
Razumova OV, Divashuk MG, Alexandrov OS, Karlov GI. GISH painting of the Y chromosomes suggests advanced phases of sex chromosome evolution in three dioecious Cannabaceae species (Humulus lupulus, H. japonicus, and Cannabis sativa). PROTOPLASMA 2023; 260:249-256. [PMID: 35595927 DOI: 10.1007/s00709-022-01774-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
In plants, dioecy is relatively rare, and it involves sex chromosome systems that often developed independently over time. These characteristics make dioecious plants an attractive model to study sex chromosome evolution. To clarify the patterns of plant sex chromosome evolution, studies should be performed on a wide range of dioecious species. It is interesting to study the sex chromosomes in related species that evolved during a long period of independent sex chromosome evolution. The Cannabaceae family includes three dioecious species with heteromorphic sex chromosomes. Cannabis sativa and Humulus lupulus use the XX/XY chromosome system, whereas Humulus japonicus contains multiple sex chromosomes (XX/XY1Y2). To better understand sex chromosome evolution and the level of genomic divergence of these three related species, we undertook self-GISH and comparative GISH analyses. The self-GISH allowed visualization of the Y chromosomes of C. sativa, H. lupulus, and H. japonicus. The self-GISH signal was distributed along the entire Y chromosome, excluding the pseudo-autosomal region (PAR). Our results indicate that the male-specific region of the Y chromosome (MSY) spans the overwhelming majority of the Y chromosomes of all three species studied. The self-GISH results reveal the accumulation of repetitive DNA sequences in the Y chromosomes of all three species studied. This sequences presented in autosomes and/or chromosome X at a lower copy number than in Y. In comparative GISH experiments where the probe DNA of one species was applied to another species, a weak signal was exclusively detected on 45S rDNA sites, indicating a high level of genomic differentiation of the species used in this study. We demonstrate small PAR size and opposing large MSY and its positions on Y chromosomes. We also found that these genomes are highly differentiated. Furthermore, the data obtained in this study indicate a long period of independent and advanced sex chromosome evolution. Our study provides a valuable basis for future genomic studies of sex and suggests that the Cannabaceae family offers a promising model to study sex chromosome evolution.
Collapse
Affiliation(s)
- Olga V Razumova
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya 42, Moscow, 127550, Russia
| | - Mikhail G Divashuk
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya 42, Moscow, 127550, Russia
| | - Oleg S Alexandrov
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya 42, Moscow, 127550, Russia
| | - Gennady I Karlov
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya 42, Moscow, 127550, Russia.
| |
Collapse
|
2
|
Manzano S, Megías Z, Martínez C, García A, Aguado E, Chileh T, López-Alonso D, García-Maroto F, Kejnovský E, Široký J, Kubát Z, Králová T, Vyskot B, Jamilena M. Overexpression of a flower-specific aerolysin-like protein from the dioecious plant Rumex acetosa alters flower development and induces male sterility in transgenic tobacco. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 89:58-72. [PMID: 27599169 DOI: 10.1111/tpj.13322] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 08/23/2016] [Accepted: 08/24/2016] [Indexed: 05/07/2023]
Abstract
Sex determination in Rumex acetosa, a dioecious plant with a complex XY1 Y2 sex chromosome system (females are XX and males are XY1 Y2 ), is not controlled by an active Y chromosome but depends on the ratio between the number of X chromosomes and autosomes. To gain insight into the molecular mechanisms of sex determination, we generated a subtracted cDNA library enriched in genes specifically or predominantly expressed in female floral buds in early stages of development, when sex determination mechanisms come into play. In the present paper, we report the molecular and functional characterization of FEM32, a gene encoding a protein that shares a common architecture with proteins in different plants, animals, bacteria and fungi of the aerolysin superfamily; many of these function as β pore-forming toxins. The expression analysis, assessed by northern blot, RT-PCR and in situ hybridization, demonstrates that this gene is specifically expressed in flowers in both early and late stages of development, although its transcripts accumulate much more in female flowers than in male flowers. The ectopic expression of FEM32 under both the constitutive promoter 35S and the flower-specific promoter AP3 in transgenic tobacco showed no obvious alteration in vegetative development but was able to alter floral organ growth and pollen fertility. The 35S::FEM32 and AP3::FEM32 transgenic lines showed a reduction in stamen development and pollen viability, as well as a diminution in fruit set, fruit development and seed production. Compared with other floral organs, pistil development was, however, enhanced in plants overexpressing FEM32. According to these effects, it is likely that FEM32 functions in Rumex by arresting stamen and pollen development during female flower development. The aerolysin-like pore-forming proteins of eukaryotes are mainly involved in defence mechanisms against bacteria, fungi and insects and are also involved in apoptosis and programmed cell death (PCD), a mechanism that could explain the role of FEM32 in Rumex sex determination.
Collapse
Affiliation(s)
- Susana Manzano
- Grupo de investigación 'Genética de hortícolas' (BIO293), Centro de Investigación en Biotencología Agroalimentaria (BITAL), Agrifood Campus of International Excellence (CeiA3), Universidad de Almería, 04120, Almería, Spain
| | - Zoraida Megías
- Grupo de investigación 'Genética de hortícolas' (BIO293), Centro de Investigación en Biotencología Agroalimentaria (BITAL), Agrifood Campus of International Excellence (CeiA3), Universidad de Almería, 04120, Almería, Spain
| | - Cecilia Martínez
- Grupo de investigación 'Genética de hortícolas' (BIO293), Centro de Investigación en Biotencología Agroalimentaria (BITAL), Agrifood Campus of International Excellence (CeiA3), Universidad de Almería, 04120, Almería, Spain
| | - Alicia García
- Grupo de investigación 'Genética de hortícolas' (BIO293), Centro de Investigación en Biotencología Agroalimentaria (BITAL), Agrifood Campus of International Excellence (CeiA3), Universidad de Almería, 04120, Almería, Spain
| | - Encarnación Aguado
- Grupo de investigación 'Genética de hortícolas' (BIO293), Centro de Investigación en Biotencología Agroalimentaria (BITAL), Agrifood Campus of International Excellence (CeiA3), Universidad de Almería, 04120, Almería, Spain
| | - Tarik Chileh
- Grupo de investigación 'Biotecnología de productos naturales', BITAL, CeiA3, Universidad de Almería, 04120, Almería, Spain
| | - Diego López-Alonso
- Grupo de investigación 'Biotecnología de productos naturales', BITAL, CeiA3, Universidad de Almería, 04120, Almería, Spain
| | - Federico García-Maroto
- Grupo de investigación 'Biotecnología de productos naturales', BITAL, CeiA3, Universidad de Almería, 04120, Almería, Spain
| | - Eduard Kejnovský
- Department of Plant Developmental Genetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic
| | - Jiří Široký
- Department of Plant Developmental Genetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic
| | - Zdeněk Kubát
- Grupo de investigación 'Genética de hortícolas' (BIO293), Centro de Investigación en Biotencología Agroalimentaria (BITAL), Agrifood Campus of International Excellence (CeiA3), Universidad de Almería, 04120, Almería, Spain
- Department of Plant Developmental Genetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic
| | - Tereza Králová
- Grupo de investigación 'Genética de hortícolas' (BIO293), Centro de Investigación en Biotencología Agroalimentaria (BITAL), Agrifood Campus of International Excellence (CeiA3), Universidad de Almería, 04120, Almería, Spain
- Department of Plant Developmental Genetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic
| | - Boris Vyskot
- Department of Plant Developmental Genetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic
| | - Manuel Jamilena
- Grupo de investigación 'Genética de hortícolas' (BIO293), Centro de Investigación en Biotencología Agroalimentaria (BITAL), Agrifood Campus of International Excellence (CeiA3), Universidad de Almería, 04120, Almería, Spain
| |
Collapse
|
3
|
Golenberg EM, West NW. Hormonal interactions and gene regulation can link monoecy and environmental plasticity to the evolution of dioecy in plants. AMERICAN JOURNAL OF BOTANY 2013; 100:1022-37. [PMID: 23538873 DOI: 10.3732/ajb.1200544] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Most models for dioecy in flowering plants assume that dioecy arises directly from hermaphroditism through a series of independent feminizing and masculinizing mutations that become chromosomally linked. However, dioecy appears to evolve most frequently through monoecious grades. The major genetic models do not explain the evolution of unisexual flowers in monoecious and submonoecious populations, nor do they account for environmentally induced sexual plasticity. In this review, we explore the roles of environmental stress and hormones on sex determination, and propose a model that can explain the evolution of dioecy through monoecy, and the mechanisms of environmental sex determination. Environmental stresses elicit hormones that allow plants to mediate the negative effects of the stresses. Many of these same hormones are involved in the regulation of floral developmental genes. Recent studies have elucidated the mechanisms whereby these hormones interact and can act as switchpoints in regulatory pathways. Consequently, differential concentrations of plant hormones can regulate whole developmental pathways, providing a mechanism for differential development within isogenic individuals such as seen in monoecious plants. Sex-determining genes in such systems will evolve to generate clusters of coexpressed suites. Coexpression rather than coinheritance of gender-specific genes will define the sexual developmental fate. Therefore, selection for gender type will drive evolution of the regulatory sequences of such genes rather than their synteny. Subsequent mutations to hyper- or hyposensitive alleles within the hormone response pathway can result in segregating dioecious populations. Simultaneously, such developmental systems will remain sensitive to external stimuli that modify hormone responses.
Collapse
Affiliation(s)
- Edward M Golenberg
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA.
| | | |
Collapse
|
4
|
Accumulation of Y-specific satellite DNAs during the evolution of Rumex acetosa sex chromosomes. Mol Genet Genomics 2008; 281:249-59. [PMID: 19085011 DOI: 10.1007/s00438-008-0405-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2008] [Accepted: 11/08/2008] [Indexed: 10/21/2022]
Abstract
The study of the molecular structure of young heteromorphic sex chromosomes of plants has shed light on the evolutionary forces that control the differentiation of the X and Y during the earlier stages of their evolution. We have used the model plant Rumex acetosa, a dioecious species with multiple sex chromosomes, 2n = 12 + XX female and 2n = 12 + XY(1)Y(2) male, to analyse the significance of repetitive DNA accumulation during the differentiation of the Y. A bulk segregant analysis (BSA) approach allowed us to identify and isolate random amplified polymorphic DNA (RAPD) markers linked to the sex chromosomes. From a total of 86 RAPD markers in the parents, 6 markers were found to be linked to the Ys and 1 to the X. Two of the Y-linked markers represent two AT-rich satellite DNAs (satDNAs), named RAYSII and RAYSIII, that share about 80% homology, as well as with RAYSI, another satDNA of R. acetosa. Fluorescent in situ hybridisation demonstrated that RAYSII is specific for Y(1), whilst RAYSIII is located in different clusters along Y(1) and Y(2). The two satDNAs were only detected in the genome of the dioecious species with XX/XY(1)Y(2) multiple sex chromosome systems in the subgenus Acetosa, but were absent from other dioecious species with an XX/XY system of the subgenera Acetosa or Acetosella, as well as in gynodioecious or hermaphrodite species of the subgenera Acetosa, Rumex and Platypodium. Phylogenetic analysis with different cloned monomers of RAYSII and RAYSIII from both R. acetosa and R. papillaris indicate that these two satDNAs are completely separated from each other, and from RAYSI, in both species. The three Y-specific satDNAs, however, evolved from an ancestral satDNA with repeating units of 120 bp, through intermediate satDNAs of 360 bp. The data therefore support the idea that Y-chromosome differentiation and heterochromatinisation in the Rumex species having a multiple sex chromosome system have occurred by different amplification events from a common ancestral satDNA. Since dioecious species with multiple XX/XY(1)Y(2) sex chromosome systems of the section Acetosa appear to have evolved from dioecious species with an XX/XY system, the amplification of tandemly repetitive elements in the Ys of the section Acetosa is a recent evolutionary process that has contributed to an increase in the size and differentiation of the already non-recombining Y chromosomes.
Collapse
|
5
|
Jamilena M, Mariotti B, Manzano S. Plant sex chromosomes: molecular structure and function. Cytogenet Genome Res 2008; 120:255-64. [PMID: 18504355 DOI: 10.1159/000121075] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2007] [Indexed: 11/19/2022] Open
Abstract
Recent molecular and genomic studies carried out in a number of model dioecious plant species, including Asparagus officinalis, Carica papaya, Silene latifolia, Rumex acetosa and Marchantia polymorpha, have shed light on the molecular structure of both homomorphic and heteromorphic sex chromosomes, and also on the gene functions they have maintained since their evolution from a pair of autosomes. The molecular structure of sex chromosomes in species from different plant families represents the evolutionary pathway followed by sex chromosomes during their evolution. The degree of Y chromosome degeneration that accompanies the suppression of recombination between the Xs and Ys differs among species. The primitive Ys of A. officinalis and C. papaya have only diverged from their homomorphic Xs in a short male-specific and non-recombining region (MSY), while the heteromorphic Ys of S. latifolia, R. acetosa and M. polymorpha have diverged from their respective Xs. As in the Y chromosomes of mammals and Drosophila, the accumulation of repetitive DNA, including both transposable elements and satellite DNA, has played an important role in the divergence and size enlargement of plant Ys, and consequently in reducing gene density. Nevertheless, the degeneration process in plants does not appear to have reached the Y-linked genes. Although a low gene density has been found in the sequenced Y chromosome of M. polymorpha, most of its genes are essential and are expressed in the vegetative and reproductive organs in both male and females. Similarly, most of the Y-linked genes that have been isolated and characterized up to now in S. latifolia are housekeeping genes that have X-linked homologues, and are therefore expressed in both males and females. Only one of them seems to be degenerate with respect to its homologous region in the X. Sequence analysis of larger regions in the homomorphic X and Y chromosomes of papaya and asparagus, and also in the heteromorphic sex chromosomes of S. latifolia and R. acetosa, will reveal the degenerative changes that the Y-linked gene functions have experienced during sex chromosome evolution.
Collapse
Affiliation(s)
- M Jamilena
- Departamento de Biología Aplicada, Area de Genética, Escuela Politécnica Superior, Universidad de Almería, Almería, Spain.
| | | | | |
Collapse
|
6
|
Abstract
Sex determination systems in plants have evolved many times from hermaphroditic ancestors (including monoecious plants with separate male and female flowers on the same individual), and sex chromosome systems have arisen several times in flowering plant evolution. Consistent with theoretical models for the evolutionary transition from hermaphroditism to monoecy, multiple sex determining genes are involved, including male-sterility and female-sterility factors. The requirement that recombination should be rare between these different loci is probably the chief reason for the genetic degeneration of Y chromosomes. Theories for Y chromosome degeneration are reviewed in the light of recent results from genes on plant sex chromosomes.
Collapse
Affiliation(s)
- Deborah Charlesworth
- Institute of Cell, Animal and Population Biology, University of Edinburgh, Ashworth Laboratory King's Buildings, West Mains Road, Edinburgh EH9 3JT, Scotland, UK.
| |
Collapse
|
7
|
Abstract
The majority of flowering plants produce flowers that are "perfect." These flowers are both staminate (with stamens) and pistillate (with one or more carpels). In a small number of species, there is spatial separation of the sexual organs either as monoecy, where the male and female organs are carried on separate flowers on the same plant, or dioecy, where male and female flowers are carried on separate male (staminate) or female (pistillate) individuals. Sex determination systems in plants, leading to unisexuality as monoecy or dioecy, have evolved independently many times. In dioecious plant species, the point of divergence from the hermaphrodite pattern shows wide variation between species, implying that the genetic bases are very different. This review considers monoecious and dioecious flowering plants and focuses on the underlying genetic and molecular mechanisms. We propose that dioecy arises either from monoecy as an environmentally unstable system controlled by plant growth substances or from hermaphroditism where the underlying mechanisms are highly stable and control does not involve plant growth substances.
Collapse
Affiliation(s)
- C Ainsworth
- Plant Molecular Biology Laboratory, Wye College, University of London, Kent, United Kingdom
| | | | | |
Collapse
|