1
|
Xu Q, Luo Y, Chao Z, Zhang J, Liu X, Tu D, Guo Q, Sun R, Wang F, Fang M. Discovery of Potential Candidate Genes for Coat Colour in Wuzhishan Pigs by Integrating SNPs and mRNA Expression Analysis. Animals (Basel) 2024; 14:3493. [PMID: 39682458 DOI: 10.3390/ani14233493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/22/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
Despite identifying genes regulating the coat colour in Western pig breeds, the genetic basis of the coat colour in Chinese indigenous pigs is still not understood due to the diversity of indigenous breeds and their genetic differences from exotic pigs. In this study, 215 Wuzhishan pigs with three coat colour patterns (white, black, and black-back/white-belly) were used to conduct a genome-wide association analysis. We found that genes responsible for the coat colour in the Wuzhishan breed are located on chromosome 8. Ninety-seven genome-wide significant SNPs are related to the animal's coat colour. Using a haplotype-sharing analysis, we narrowed the potential candidate region to a 10.1 Mb interval encompassing only one gene, RAPGEF2, which participates in the regulation of melanogenesis. Two additional candidate genes, PDGFRA and KIT, are located within 1 Mb of the genome-wide significant SNPs. Gene ontology analysis and literature mining suggest that these candidate genes are associated with the animal's coat colour. mRNA expression results revealed that RAPGEF2 and PDGFRA had significantly higher expressions in black pigs than in white pigs and higher expressions in black skin than in white skin from the same black-back/white-belly pigs. These results suggest that RAPGEF2 and PDGFRA are potential candidate genes regulating the coat colour in Wuzhishan pigs. Interestingly, mutations of KIT (a gene duplication and a G to A substitution at the splicing site in intron 17) were detected in white Wuzhishan pigs but not in black-back/white-belly or black pigs, suggesting a close genetic relationship between white Wuzhishan pigs and Western white pig breeds. In summary, these results indicate that the expression of RAPGEF2 and PDGFRA may cause the coat colour variation by influencing the deposition of melanin, while the mutation of KIT causes the white coat colour. Our results may provide a theoretical basis for the breeding of white coat colour Wuzhishan pigs, and shed light on the complex genetic background of coat colour variations in indigenous Chinese pig breeds.
Collapse
Affiliation(s)
- Qiao Xu
- Jiangxi Provincial Key Laboratory of Poultry Genetic Improvement, Institute of Biological Technology, Nanchang Normal University, Nanchang 330032, China
| | - Yabiao Luo
- National Engineering Laboratory for Animal Breeding, MOA Key Laboratory of Animal Genetics and Breeding, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, Frontiers Science Center for Molecular Design Breeding, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Zhe Chao
- Institute of Animal Sciences and Veterinary, Hainan Academy of Agricultural Sciences, Haikou 571100, China
| | - Jibin Zhang
- Department of Cell and Molecular Biology, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Xiaolei Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education & Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Danqin Tu
- Jiangxi Provincial Key Laboratory of Poultry Genetic Improvement, Institute of Biological Technology, Nanchang Normal University, Nanchang 330032, China
| | - Qin Guo
- Jiangxi Provincial Key Laboratory of Poultry Genetic Improvement, Institute of Biological Technology, Nanchang Normal University, Nanchang 330032, China
| | - Ruiping Sun
- Institute of Animal Sciences and Veterinary, Hainan Academy of Agricultural Sciences, Haikou 571100, China
| | - Feng Wang
- Institute of Animal Sciences and Veterinary, Hainan Academy of Agricultural Sciences, Haikou 571100, China
| | - Meiying Fang
- National Engineering Laboratory for Animal Breeding, MOA Key Laboratory of Animal Genetics and Breeding, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, Frontiers Science Center for Molecular Design Breeding, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- Sanya Institute of China Agricultural University, Sanya 572025, China
| |
Collapse
|
2
|
Kinoshita K, Tanabe K, Nakamura Y, Nishijima KI, Suzuki T, Okuzaki Y, Mizushima S, Wang MS, Khan SU, Xu K, Jamal MA, Wei T, Zhao H, Su Y, Sun F, Liu G, Zhu F, Zhao HY, Wei HJ. PGC-based cryobanking, regeneration through germline chimera mating, and CRISPR/Cas9-mediated TYRP1 modification in indigenous Chinese chickens. Commun Biol 2024; 7:1127. [PMID: 39271811 PMCID: PMC11399235 DOI: 10.1038/s42003-024-06775-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
Primordial germ cells (PGCs) are vital for producing sperm and eggs and are crucial for conserving chicken germplasm and creating genetically modified chickens. However, efforts to use PGCs for preserving native chicken germplasm and genetic modification via CRISPR/Cas9 are limited. Here we show that we established 289 PGC lines from eight Chinese chicken populations with an 81.6% success rate. We regenerated Piao chickens by repropagating cryopreserved PGCs and transplanting them into recipient chickens, achieving a 12.7% efficiency rate. These regenerated chickens carried mitochondrial DNA from female donor PGC and the rumplessness mutation from both male and female donors. Additionally, we created the TYRP1 (tyrosinase-related protein 1) knockout (KO) PGC lines via CRISPR/Cas9. Transplanting KO cells into male recipients and mating them with wild-type hens produced four TYRP1 KO chickens with brown plumage due to reduced eumelanin production. Our work demonstrates efficient PGC culture, cryopreservation, regeneration, and gene editing in chickens.
Collapse
Affiliation(s)
- Keiji Kinoshita
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, 650201, China
| | - Kumiko Tanabe
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, 650201, China
| | - Yoshiaki Nakamura
- Laboratory of Animal Breeding and Genetics, Graduate School of Integrated Sciences for Life and School of Applied Biological Science, Hiroshima University, Hiroshima, 739-8528, Japan
| | - Ken-Ichi Nishijima
- Avian Bioscience Research Center, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601, Japan
| | - Takayuki Suzuki
- Department of Biology, Graduate School of Science, Osaka Metropolitan University, Osaka, 558-8585, Japan
| | - Yuya Okuzaki
- Avian Bioscience Research Center, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601, Japan
| | - Shusei Mizushima
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Ming-Shan Wang
- State Key Laboratory of Genetic resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Sami Ullah Khan
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, 650201, China
| | - Kaixiang Xu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, 650201, China
| | - Muhammad Ameen Jamal
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, 650201, China
- State Key Laboratory of Genetic resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Taiyun Wei
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, 650201, China
| | - Heng Zhao
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, 650201, China
| | - Yanhua Su
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, 650201, China
| | - Feizhou Sun
- National Center for Preservation of Animal Genetic Resources, National Animal Husbandry Service, Beijing, 100125, China
| | - Gang Liu
- National Center for Preservation of Animal Genetic Resources, National Animal Husbandry Service, Beijing, 100125, China
| | - Fangxian Zhu
- National Center for Preservation of Animal Genetic Resources, National Animal Husbandry Service, Beijing, 100125, China
| | - Hong-Ye Zhao
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, 650201, China.
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, 650201, China.
| | - Hong-Jiang Wei
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, 650201, China.
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, 650201, China.
- State Key Laboratory of Genetic resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
| |
Collapse
|
3
|
Xing L, Lu X, Zhang W, Wang Q, Zhang W. Genetic Structure and Genome-Wide Association Analysis of Growth and Reproductive Traits in Fengjing Pigs. Animals (Basel) 2024; 14:2449. [PMID: 39272234 PMCID: PMC11394163 DOI: 10.3390/ani14172449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/15/2024] [Accepted: 08/20/2024] [Indexed: 09/15/2024] Open
Abstract
The Fengjing pig is one of the local pig breed resources in China and has many excellent germplasm characteristics. However, research on its genome is lacking. To explore the degree of genetic diversity of the Fengjing pig and to deeply explore its excellent traits, this study took Fengjing pigs as the research object and used the Beadchip Array Infinium iSelect-96|XT KPS_PorcineBreedingChipV2 for genotyping. We analyzed the genetic diversity, relatedness, inbreeding coefficient, and population structure within the Fengjing pig population. Our findings revealed that the proportion of polymorphic markers (PN) was 0.469, and the effective population size was 6.8. The observed and expected heterozygosity were 0.301 and 0.287, respectively. The G-matrix results indicated moderate relatedness within the population, with certain individuals exhibiting closer genetic relationships. The NJ evolutionary tree classified Fengjing boars into five family lines. The average inbreeding coefficient based on ROH was 0.318, indicating a high level of inbreeding. GWAS identified twenty SNPs significantly associated with growth traits (WW, 2W, and 4W) and reproductive traits (TNB and AWB). Notably, WNT8B, RAD21, and HAO1 emerged as candidate genes influencing 2W, 4W, and TNB, respectively. Genes such as WNT8B were verified by querying the PigBiobank database. In conclusion, this study provides a foundational reference for the conservation and utilization of Fengjing pig germplasm resources and offers insights for future molecular breeding efforts in Fengjing pigs.
Collapse
Affiliation(s)
- Lei Xing
- Shanghai Animal Disease Control Center, Shanghai 201103, China
| | - Xuelin Lu
- Shanghai Animal Disease Control Center, Shanghai 201103, China
| | - Wengang Zhang
- Shanghai Animal Disease Control Center, Shanghai 201103, China
| | - Qishan Wang
- Department of Animal Science, College of Animal Sciences, Zhejiang University, Hangzhou 310030, China
| | - Weijian Zhang
- Shanghai Animal Disease Control Center, Shanghai 201103, China
| |
Collapse
|
4
|
Barmentlo NWG, Meirmans PG, Stiver WH, Yarkovich JG, McCann BE, Piaggio AJ, Wright D, Smyser TJ, Bosse M. Natural selection on feralization genes contributed to the invasive spread of wild pigs throughout the United States. Mol Ecol 2024; 33:e17383. [PMID: 38747342 DOI: 10.1111/mec.17383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/23/2024] [Accepted: 04/30/2024] [Indexed: 06/07/2024]
Abstract
Despite a long presence in the contiguous United States (US), the distribution of invasive wild pigs (Sus scrofa × domesticus) has expanded rapidly since the 1980s, suggesting a more recent evolutionary shift towards greater invasiveness. Contemporary populations of wild pigs represent exoferal hybrid descendants of domestic pigs and European wild boar, with such hybridization expected to enrich genetic diversity and increase the adaptive potential of populations. Our objective was to characterize how genetic enrichment through hybridization increases the invasiveness of populations by identifying signals of selection and the ancestral origins of selected loci. Our study focused on invasive wild pigs within Great Smoky Mountains National Park, which represents a hybrid population descendent from the admixture of established populations of feral pigs and an introduction of European wild boar to North America. Accordingly, we genotyped 881 wild pigs with multiple high-density single-nucleotide polymorphism (SNP) arrays. We found 233 markers under putative selection spread over 79 regions across 16 out of 18 autosomes, which contained genes involved in traits affecting feralization. Among these, genes were found to be related to skull formation and neurogenesis, with two genes, TYRP1 and TYR, also encoding for crucial melanogenesis enzymes. The most common haplotypes associated with regions under selection for the Great Smoky Mountains population were also common among other populations throughout the region, indicating a key role of putatively selective variants in the fitness of invasive populations. Interestingly, many of these haplotypes were absent among European wild boar reference genotypes, indicating feralization through genetic adaptation.
Collapse
Affiliation(s)
- Niek W G Barmentlo
- Section Ecology & Evolution, Amsterdam Institute for Life and Environment (A-LIFE), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Patrick G Meirmans
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | - Blake E McCann
- Theodore Roosevelt National Park, Medora, North Dakota, USA
| | | | - Dominic Wright
- Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Timothy J Smyser
- USDA APHIS WS National Wildlife Research Center, Fort Collins, Colorado, USA
| | - Mirte Bosse
- Section Ecology & Evolution, Amsterdam Institute for Life and Environment (A-LIFE), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Wageningen University & Research - Animal Breeding and Genomics, Wageningen, The Netherlands
| |
Collapse
|
5
|
Guo P, Chen J, Luo L, Zhang X, Li X, Huang Y, Wu Z, Tian Y. Identification of Differentially Expressed Genes and microRNAs in the Gray and White Feather Follicles of Shitou Geese. Animals (Basel) 2024; 14:1508. [PMID: 38791725 PMCID: PMC11117251 DOI: 10.3390/ani14101508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
The Shitou goose, a highly recognized indigenous breed with gray plumage originating from Chaozhou Raoping in Guangdong Province, China, is renowned for being the largest goose species in the country. Notably, during the pure breeding process of Shitou geese, approximately 2% of the offspring in each generation unexpectedly exhibited white plumage. To better understand the mechanisms underlying white plumage color formation in Shitou geese, we conducted a comparative transcriptome analysis between white and gray feather follicles, aiming to identify key genes and microRNAs that potentially regulate white plumage coloration in this unique goose breed. Our results revealed a number of pigmentation genes, encompassing TYR, TYRP1, EDNRB2, MLANA, SOX10, SLC45A2, GPR143, TRPM1, OCA2, ASIP, KIT, and SLC24A5, which were significantly down-regulated in the white feather follicles of Shitou geese. Among these genes, EDNRB2 and KIT emerged as the most promising candidate genes for white plumage coloration in Shitou geese. Additionally, our analysis also uncovered 46 differentially expressed miRNAs. Of these, miR-144-y may play crucial roles in the regulation of feather pigmentation. Furthermore, the expression of novel-m0086-5p, miR-489-y, miR-223-x, miR-7565-z, and miR-3535-z exhibits a significant negative correlation with the expression of pigmentation genes including TYRP1, EDNRB2, MLANA, SOX10, TRPM1, and KIT, suggesting these miRNAs may indirectly regulate the expression of these genes, thereby influencing feather color. Our findings provide valuable insights into the genetic mechanisms underlying white plumage coloration in Shitou geese and contribute to the broader understanding of avian genetics and coloration research.
Collapse
Affiliation(s)
- Pengyun Guo
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (P.G.); (L.L.); (X.Z.); (X.L.); (Y.H.); (Y.T.)
| | - Junpeng Chen
- Shantou Baisha Research Institute of Original Species of Poultry and Stock, Shantou 515800, China;
| | - Lei Luo
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (P.G.); (L.L.); (X.Z.); (X.L.); (Y.H.); (Y.T.)
| | - Xumeng Zhang
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (P.G.); (L.L.); (X.Z.); (X.L.); (Y.H.); (Y.T.)
| | - Xiujin Li
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (P.G.); (L.L.); (X.Z.); (X.L.); (Y.H.); (Y.T.)
| | - Yunmao Huang
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (P.G.); (L.L.); (X.Z.); (X.L.); (Y.H.); (Y.T.)
| | - Zhongping Wu
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (P.G.); (L.L.); (X.Z.); (X.L.); (Y.H.); (Y.T.)
| | - Yunbo Tian
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (P.G.); (L.L.); (X.Z.); (X.L.); (Y.H.); (Y.T.)
| |
Collapse
|
6
|
Peterson SM, Watowich MM, Renner LM, Martin S, Offenberg E, Lea A, Montague MJ, Higham JP, Snyder-Mackler N, Neuringer M, Ferguson B. Genetic variants in melanogenesis proteins TYRP1 and TYR are associated with the golden rhesus macaque phenotype. G3 (BETHESDA, MD.) 2023; 13:jkad168. [PMID: 37522525 PMCID: PMC10542561 DOI: 10.1093/g3journal/jkad168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/09/2023] [Accepted: 07/12/2023] [Indexed: 08/01/2023]
Abstract
Nonhuman primates (NHPs) are vital translational research models due to their high genetic, physiological, and anatomical homology with humans. The "golden" rhesus macaque (Macaca mulatta) phenotype is a naturally occurring, inherited trait with a visually distinct pigmentation pattern resulting in light blonde colored fur. Retinal imaging also reveals consistent hypopigmentation and occasional foveal hypoplasia. Here, we describe the use of genome-wide association in 2 distinct NHP populations to identify candidate variants in genes linked to the golden phenotype. Two missense variants were identified in the Tyrosinase-related protein 1 gene (Asp343Gly and Leu415Pro) that segregate with the phenotype. An additional and distinct association was also found with a Tyrosinase variant (His256Gln), indicating the light-colored fur phenotype can result from multiple genetic mechanisms. The implicated genes are related through their contribution to the melanogenesis pathway. Variants in these 2 genes are known to cause pigmentation phenotypes in other species and to be associated with oculocutaneous albinism in humans. The novel associations presented in this study will permit further investigations into the role these proteins and variants play in the melanogenesis pathway and model the effects of genetic hypopigmentation and altered melanogenesis in a naturally occurring nonhuman primate model.
Collapse
Affiliation(s)
- Samuel M Peterson
- Division of Genetics, Oregon National Primate Research Center, Beaverton, OR 97006, USA
| | - Marina M Watowich
- Department of Biology, University of Washington, Seattle, WA 98195, USA
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ 85281, USA
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | - Lauren M Renner
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR 97006, USA
| | - Samantha Martin
- Division of Genetics, Oregon National Primate Research Center, Beaverton, OR 97006, USA
| | - Emma Offenberg
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ 85281, USA
| | - Amanda Lea
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
- Child and Brain Development Program, Canadian Institute for Advanced Research, Toronto, ON M5G 1M1, Canada
| | - Michael J Montague
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - James P Higham
- Department of Anthropology, New York University, New York, NY 10003, USA
| | - Noah Snyder-Mackler
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ 85281, USA
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
- School for Human Evolution & Social Change, Arizona State University, Tempe, AZ 85281, USA
| | - Martha Neuringer
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR 97006, USA
- Casey Eye Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Betsy Ferguson
- Division of Genetics, Oregon National Primate Research Center, Beaverton, OR 97006, USA
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR 97006, USA
| |
Collapse
|
7
|
Wagatsuma T, Suzuki E, Shiotsu M, Sogo A, Nishito Y, Ando H, Hashimoto H, Petris MJ, Kinoshita M, Kambe T. Pigmentation and TYRP1 expression are mediated by zinc through the early secretory pathway-resident ZNT proteins. Commun Biol 2023; 6:403. [PMID: 37072620 PMCID: PMC10113262 DOI: 10.1038/s42003-023-04640-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/28/2023] [Indexed: 04/20/2023] Open
Abstract
Tyrosinase (TYR) and tyrosinase-related proteins 1 and 2 (TYRP1 and TYRP2) are essential for pigmentation. They are generally classified as type-3 copper proteins, with binuclear copper active sites. Although there is experimental evidence for a copper cofactor in TYR, delivered via the copper transporter, ATP7A, the presence of copper in TYRP1 and TYRP2 has not been demonstrated. Here, we report that the expression and function of TYRP1 requires zinc, mediated by ZNT5-ZNT6 heterodimers (ZNT5-6) or ZNT7-ZNT7 homodimers (ZNT7). Loss of ZNT5-6 and ZNT7 function results in hypopigmentation in medaka fish and human melanoma cells, and is accompanied by immature melanosomes and reduced melanin content, as observed in TYRP1 dysfunction. The requirement of ZNT5-6 and ZNT7 for TYRP1 expression is conserved in human, mouse, and chicken orthologs. Our results provide novel insights into the pigmentation process and address questions regarding metalation in tyrosinase protein family.
Collapse
Affiliation(s)
- Takumi Wagatsuma
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
| | - Eisuke Suzuki
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
| | - Miku Shiotsu
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
| | - Akiko Sogo
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Yukina Nishito
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
| | - Hideya Ando
- Department of Applied Chemistry and Biotechnology, Okayama University of Science, Okayama, 700-0005, Japan
| | - Hisashi Hashimoto
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi, 464-8602, Japan
| | - Michael J Petris
- Departments of Ophthalmology, University of Missouri, Columbia, MO, 65211, USA
- Biochemistry, University of Missouri, Columbia, MO, 65211, USA
- Bond Life Sciences Center, Columbia, MO, 65211, USA
| | - Masato Kinoshita
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Taiho Kambe
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan.
| |
Collapse
|
8
|
Vaishnav S, Chauhan A, Ajay A, Saini BL, Kumar S, Kumar A, Bhushan B, Gaur GK. Allelic to genome wide perspectives of swine genetic variation to litter size and its component traits. Mol Biol Rep 2023; 50:3705-3721. [PMID: 36642776 DOI: 10.1007/s11033-022-08168-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 12/01/2022] [Indexed: 01/17/2023]
Abstract
Litter size is a complex and sex limited trait that depends on various biological, managemental and environmental factors. Owing to its low heritability it is inefficaciously selected by traditional methods. However, due to higher heritability of ovulation rate and embryo survival, selection based on component traits of litter size is advocated. QTL analysis and candidate gene approach are among the various supplementary/alternate strategies for selection of litter size. QTL analysis is aimed at identifying genomic regions affecting trait of interest significantly. Candidate gene approach necessitates identification of genes potentially affecting the trait. There are various genes that significantly affect litter size and its component traits viz. ESR, LEP, BF, IGFBP, RBP4, PRLR, CTNNAL1, WNT10B, TCF12, DAZ, and RNF4. These genes affect litter size in a complex interacting manner. Lately, genome wide association study (GWAS) have been utilized to unveil the genetic and biological background of litter traits, and elucidate the genes governing litter size. Favorable SNPs in these genes have been identified and offers a scope for inclusion in selection programs thereby increasing breeding efficiency and profit in pigs. The review provides a comprehensive coverage of investigations carried out globally to unravel the genetic variation in litter size and its component traits in pigs, both at allelic and genome wide level. It offers a current perspective on different strategies including the profiling of candidate genes, QTLs, and genome wide association studies as an aid to efficient selection for litter size and its component traits.
Collapse
Affiliation(s)
| | - Anuj Chauhan
- Indian Veterinary Research Institute, Bareilly, India.
| | - Argana Ajay
- Indian Veterinary Research Institute, Bareilly, India
| | | | - Subodh Kumar
- Indian Veterinary Research Institute, Bareilly, India
| | - Amit Kumar
- Indian Veterinary Research Institute, Bareilly, India
| | | | | |
Collapse
|
9
|
Zheng S, Xu P, Wu Z, Zhang H, Li D, Liu S, Liu B, Ren J, Chen H, Huang M. Genetic structure and domestication footprints of the tusk, coat color, and ear morphology in East Chinese pigs. J Genet Genomics 2022; 49:1053-1063. [PMID: 35413463 DOI: 10.1016/j.jgg.2022.03.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 12/29/2022]
Abstract
The domestication and artificial selection of wild boars have led to dramatic morphological and behavioral changes, especially in East Chinese (ECN) pigs. Here, we provide insights into the population structure and current genetic diversity of representative ECN pig breeds. We identify a 500-kb region containing six tooth development-relevant genes with almost completely different haplotypes between ECN pigs and Chinese wild boars or European domestic pigs. Notably, the c.195A>G missense mutation in exon 2 of AMBN may cause alterations in its protein structure associated with tusk degradation in ECN pigs. In addition, ESR1 may play an important role in the reproductive performance of ECN pigs. A major haplotype of the large lop ear-related MSRB3 gene and eight alleles in the deafness-related GRM7 gene may affect ear morphology and hearing in ECN pigs. Interestingly, we find that the two-end black (TEB) coat color in Jinhua pigs is most likely caused by EDNRB with genetic mechanisms different from other Chinese TEB pigs. This study identifies key loci that may be artificially selected in Chinese native pigs related to the tusk, coat color, and ear morphology, thus providing new insights into the genetic mechanisms of domesticated pigs.
Collapse
Affiliation(s)
- Sumei Zheng
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Pan Xu
- School of Animal Science and Technology, Jiangsu Agri-animal Husbandry Vocational College, Taizhou, Jiangsu 225300, China
| | - Zhongping Wu
- Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - Hui Zhang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Desen Li
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Shaojuan Liu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Bingbing Liu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Jun Ren
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Hao Chen
- College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, Jiangxi 330013, China.
| | - Min Huang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong 510642, China.
| |
Collapse
|
10
|
Fontanesi L. Genetics and genomics of pigmentation variability in pigs: A review. Livest Sci 2022. [DOI: 10.1016/j.livsci.2022.105079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
11
|
Brown AR, Comai K, Mannino D, McCullough H, Donekal Y, Meyers HC, Graves CW, Seidel HS. A community-science approach identifies genetic variants associated with three color morphs in ball pythons (Python regius). PLoS One 2022; 17:e0276376. [PMID: 36260636 PMCID: PMC9581371 DOI: 10.1371/journal.pone.0276376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 10/05/2022] [Indexed: 11/13/2022] Open
Abstract
Color morphs in ball pythons (Python regius) provide a unique and largely untapped resource for understanding the genetics of coloration in reptiles. Here we use a community-science approach to investigate the genetics of three color morphs affecting production of the pigment melanin. These morphs-Albino, Lavender Albino, and Ultramel-show a loss of melanin in the skin and eyes, ranging from severe (Albino) to moderate (Lavender Albino) to mild (Ultramel). To identify genetic variants causing each morph, we recruited shed skins of pet ball pythons via social media, extracted DNA from the skins, and searched for putative loss-of-function variants in homologs of genes controlling melanin production in other vertebrates. We report that the Albino morph is associated with missense and non-coding variants in the gene TYR. The Lavender Albino morph is associated with a deletion in the gene OCA2. The Ultramel morph is associated with a missense variant and a putative deletion in the gene TYRP1. Our study is one of the first to identify genetic variants associated with color morphs in ball pythons and shows that pet samples recruited from the community can provide a resource for genetic studies in this species.
Collapse
Affiliation(s)
- Autumn R. Brown
- Department of Biology, Eastern Michigan University, Ypsilanti, MI, United States of America
| | - Kaylee Comai
- Department of Biology, Eastern Michigan University, Ypsilanti, MI, United States of America
| | - Dominic Mannino
- Department of Biology, Eastern Michigan University, Ypsilanti, MI, United States of America
| | - Haily McCullough
- Department of Biology, Eastern Michigan University, Ypsilanti, MI, United States of America
| | - Yamini Donekal
- Department of Biology, Eastern Michigan University, Ypsilanti, MI, United States of America
| | - Hunter C. Meyers
- Department of Biology, Eastern Michigan University, Ypsilanti, MI, United States of America
| | - Chiron W. Graves
- Department of Biology, Eastern Michigan University, Ypsilanti, MI, United States of America
- * E-mail: (CWG); (HSS)
| | - Hannah S. Seidel
- Department of Biology, Eastern Michigan University, Ypsilanti, MI, United States of America
- * E-mail: (CWG); (HSS)
| | - The BIO306W Consortium
- Department of Biology, Eastern Michigan University, Ypsilanti, MI, United States of America
| |
Collapse
|
12
|
Chang Wu Z, Wang Y, Huang X, Wu S, Bao W. A genome-wide association study of important reproduction traits in large white pigs. Gene 2022; 838:146702. [PMID: 35772658 DOI: 10.1016/j.gene.2022.146702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 06/13/2022] [Accepted: 06/24/2022] [Indexed: 11/04/2022]
Abstract
Augmenting the reproductive efficiency of sows remains the predominant challenge in the swine industry. This work was aimed at scrutinizing vital genetic markers for reproductive traits in this animal. This entailed probing of the records of vital attributes of Large White pigs (n = 695) inclusive of the total number of born (TNB), number of born alive (NBA), number of weaned pigs (NWP), number of healthy births (NHS), total litter weight of piglets born alive (BALWT), weaning litter weight (WNWT), and corrected litter weight at 21 days (W21). A genome-wide association study (GWAS) for the four litter traits and three traits of litter weight in the Denmark Large White population then ensued. We discovered seven significantly related SNPs and eleven potential candidate genes (e.g., TUSC3, THRB for TNB; STT3B for NBA). The subsequent functional enrichment analysis of these genes showed that the significant gene were associated with steroid hormone receptor activity. Our findings indicated that the genes TUSC3, THRB and STT3B probably contribute to litter traits in this population. This work reveals genetic mechanisms of reproduction traits and also supports ensuing genetic improvement employing marker-assisted selection in Large White pigs.
Collapse
Affiliation(s)
- Zheng Chang Wu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, P. R. China; College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, P. R. China.
| | - Yifu Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, P. R. China.
| | - Xiaoguo Huang
- Jiangsu Engineering Research Centre for Molecular Breeding of Pig, Changzhou 215000, Jiangsu Province, China.
| | - Shenglong Wu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, P. R. China.
| | - Wenbin Bao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, P. R. China.
| |
Collapse
|
13
|
Ding R, Zhuang Z, Qiu Y, Ruan D, Wu J, Ye J, Cao L, Zhou S, Zheng E, Huang W, Wu Z, Yang J. Identify known and novel candidate genes associated with backfat thickness in Duroc pigs by large-scale genome-wide association analysis. J Anim Sci 2022; 100:6509022. [PMID: 35034121 PMCID: PMC8867564 DOI: 10.1093/jas/skac012] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 01/14/2022] [Indexed: 01/18/2023] Open
Abstract
Backfat thickness (BFT) is complex and economically important traits in the pig industry, since it reflects fat deposition and can be used to measure the carcass lean meat percentage in pigs. In this study, all 6,550 pigs were genotyped using the Geneseek Porcine 50K SNP Chip to identify SNPs related to BFT and to search for candidate genes through genome-wide association analysis in two Duroc populations. In total, 80 SNPs, including 39 significant and 41 suggestive SNPs, and 6 QTLs were identified significantly associated with the BFT. In addition, 9 candidate genes, including a proven major gene MC4R, 3 important candidate genes (RYR1, HMGA1, and NUDT3) which were previously described as related to BFT, and 5 novel candidate genes (SIRT2, NKAIN2, AMH, SORCS1, and SORCS3) were found based on their potential functional roles in BFT. The functions of candidate genes and gene set enrichment analysis indicate that most important pathways are related to energy homeostasis and adipogenesis. Finally, our data suggest that most of the candidate genes can be directly used for genetic improvement through molecular markers, except that the MC4R gene has an antagonistic effect on growth rate and carcass lean meat percentage in breeding. Our results will advance our understanding of the complex genetic architecture of BFT traits and laid the foundation for additional genetic studies to increase carcass lean meat percentage of pig through marker-assisted selection and/or genomic selection.
Collapse
Affiliation(s)
- Rongrong Ding
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, 510642, P. R. China,Guangdong Wens Breeding Swine Technology Co., Ltd., Guangdong, 527400, P. R. China
| | - Zhanwei Zhuang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, 510642, P. R. China
| | - Yibin Qiu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, 510642, P. R. China
| | - Donglin Ruan
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, 510642, P. R. China
| | - Jie Wu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, 510642, P. R. China
| | - Jian Ye
- Guangdong Wens Breeding Swine Technology Co., Ltd., Guangdong, 527400, P. R. China
| | - Lu Cao
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, 510642, P. R. China
| | - Shenping Zhou
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, 510642, P. R. China
| | - Enqin Zheng
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, 510642, P. R. China,Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, 510642, P. R. China
| | - Wen Huang
- Department of Animal Science, Michigan State University, East Lansing, MI, USA
| | - Zhenfang Wu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, 510642, P. R. China,Guangdong Wens Breeding Swine Technology Co., Ltd., Guangdong, 527400, P. R. China,Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, 510642, P. R. China
| | - Jie Yang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, 510642, P. R. China,Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, 510642, P. R. China,Corresponding authors:
| |
Collapse
|
14
|
Huang M, Zhang H, Wu ZP, Wang XP, Li DS, Liu SJ, Zheng SM, Yang LJ, Liu BB, Li GX, Jiang YC, Chen H, Ren J. Whole-genome resequencing reveals genetic structure and introgression in Pudong White pigs. Animal 2021; 15:100354. [PMID: 34543995 DOI: 10.1016/j.animal.2021.100354] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 08/10/2021] [Accepted: 08/13/2021] [Indexed: 10/20/2022] Open
Abstract
Pudong White (PDW) pigs, historically originating from Shanghai, are the only Chinese indigenous pigs characterised by their completely white coats, with the exception of Rongchang pigs. However, there is limited information concerning their overall genetic structure or relationship with other breeds, especially the East Chinese (ECN) and European pigs. To uncover the genetic structure, selection signatures, and potential exotic introgression in PDW pigs, we sampled 15 PDW pigs using whole-genome sequencing (~20×). We then conducted in-depth population genetic analyses in 320 pigs from 27 global pig groups, namely, European wild boars, Chinese wild boars, and outgroup. Neighbour-joining tree and principal component analysis confirmed that PDW pigs belonged to the ecotype of ECN pigs. Both f3, D-statistics, and structure analysis showed that PDW pigs shared apparent alleles with Large White (LW) pigs. Three statistics, rIBD, a haplotype heat map and copy number variation, further indicated that PDW pigs shared apparent alleles with LW pigs at the KIT Proto-Oncogene, Receptor Tyrosine Kinase (KIT) and PARG-MARCHF8 loci, suggesting that the lineage of European pigs in PDW originated from LW pigs. After further detecting the KIT mutations in different pig breeds, PDW was confirmed to have the same duplication region 1, duplication region 2, and the splicing mutation on intron 17 of KIT as LW pigs that determine the white coat colour phenotype in European white pigs. We hypothesised that LW pigs were imported to China ∼110-160 years ago according to the admixture time estimate and then crossed with ECN pigs, resulting in the introgression of the KIT alleles that produce the white coat colour phenotype in the PDW pig breed. To our knowledge, this study presents the first thorough description of the genetic structure of PDW pigs via whole-genome resequencing data; moreover, the results provide a basis for the national project for the conservation of this unique Chinese local population.
Collapse
Affiliation(s)
- M Huang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong Province, China
| | - H Zhang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong Province, China
| | - Z P Wu
- Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, China
| | - X P Wang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong Province, China
| | - D S Li
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong Province, China
| | - S J Liu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong Province, China
| | - S M Zheng
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong Province, China
| | - L J Yang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong Province, China
| | - B B Liu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong Province, China
| | - G X Li
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong Province, China
| | - Y C Jiang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong Province, China
| | - H Chen
- College of Life Science, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi Province, China.
| | - J Ren
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong Province, China
| |
Collapse
|
15
|
Ding R, Qiu Y, Zhuang Z, Ruan D, Wu J, Zhou S, Ye J, Cao L, Hong L, Xu Z, Zheng E, Li Z, Wu Z, Yang J. Genome-wide association studies reveals polygenic genetic architecture of litter traits in Duroc pigs. Theriogenology 2021; 173:269-278. [PMID: 34403972 DOI: 10.1016/j.theriogenology.2021.08.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/08/2021] [Accepted: 08/09/2021] [Indexed: 01/02/2023]
Abstract
With continuous improvement of sow litter size, breeders are gradually paying more attention to the quality of litter traits that directly impact the production efficiency of pig companies, such as the rate of piglets born alive (RBA) and the rate of healthy births (RHB). The objectives of this study are to dissect the genetic basis of litter traits in pig and to identify valuable genes and genetic markers, especially pleiotropic, for pig breeding. Herein, 1140 Duroc pigs and 2046 reproduction records, 5 litter traits, including the number of healthy births (NHB), number of deformed fetuses (NDF), number of stillborn (NSB), RBA, and RHB, were used in this study. Subsequently, a genome-wide association study (GWAS) was performed for the five litter traits in the first two parities from two Duroc populations. A total of 76 significantly related SNPs and 10 potential candidate genes (CAV1, DAB2, FGF12, FHOD3, DYNC2H1, GRHL1, TCTN3, PYROXD2, MMP8, MMP13, and PGR) were detected, including 13 pleiotropic SNPs that affected more than one litter trait. Finally, the functional enrichment analysis of functional genes that were closest to these significant SNPs indicated that most of the significant pathways were associated with hormone secretion and embryo and organ development. This study advances our understanding of the genetic mechanisms of litter traits, especially the survival rate of piglets born, and provides an opportunity to increase the quality of litter using marker-assisted selection or genomic selection in pigs.
Collapse
Affiliation(s)
- Rongrong Ding
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, 510642, PR China; Guangdong Wens Breeding Swine Technology Co., Ltd., Guangdong, 527400, PR China
| | - Yibin Qiu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, 510642, PR China
| | - Zhanwei Zhuang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, 510642, PR China
| | - Donglin Ruan
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, 510642, PR China
| | - Jie Wu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, 510642, PR China
| | - Shenping Zhou
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, 510642, PR China
| | - Jian Ye
- Guangdong Wens Breeding Swine Technology Co., Ltd., Guangdong, 527400, PR China
| | - Lu Cao
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, 510642, PR China
| | - Linjun Hong
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, 510642, PR China
| | - Zheng Xu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, 510642, PR China
| | - Enqin Zheng
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, 510642, PR China; Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, 510642, PR China
| | - Zicong Li
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, 510642, PR China; Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, 510642, PR China
| | - Zhenfang Wu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, 510642, PR China; Guangdong Wens Breeding Swine Technology Co., Ltd., Guangdong, 527400, PR China; Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, 510642, PR China.
| | - Jie Yang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, 510642, PR China; Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, 510642, PR China.
| |
Collapse
|
16
|
Bâlteanu VA, Cardoso TF, Amills M, Luigi-Sierra MG, Egerszegi I, Anton I, Zsolnai A. Red and blond Mangalitza pigs display a signature of divergent directional selection in the SLC45A2 gene. Anim Genet 2020; 52:66-77. [PMID: 33316088 DOI: 10.1111/age.13031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2020] [Indexed: 12/11/2022]
Abstract
The Mangalitza lard-type pig breed is well known for its fat appearance and curly hair, and it is mainly distributed in Eastern Europe. Four main lines were created in the nineteenth century by artificial selection: Blond Mangalitza, Black Mangalitza, Swallow-Belly Mangalitza and Red Mangalitza. The Swallow-Belly line has a black coat combined with yellow-blond throat and underbelly. In the current work, we aimed to investigate if the colourations of Mangalitza pigs are genetically determined by one or a few loci whose frequencies have been modified by artificial selection. The results of selection scans, with HapFLK and BayeScan, and of a GWAS for coat colour highlighted the existence of one region on SSC16 (18-20 Mb) with potential effects on hair pigmentation (Red vs. Blond contrast). The analysis of the gene content of this region allowed us to detect the solute carrier family 45 member 2 (SLC45A2) locus as a candidate gene for this trait. The polymorphism of the SLC45A2 locus has been associated with reduced levels or the absence of melanin in several mammalian species. The genotyping of four missense polymorphisms evidenced that rs341599992:G > A and rs693695020:G > A SNPs are strongly but not fully associated with the red and blond coat colours of Mangalitza pigs, a result that was confirmed by performing a haplotype association test. The near fixation of alternative SLC45A2 genotypes in Red and Blond Mangalitza pigs provides a compelling example of the consequences of a divergent directional selection for coat colour in a domestic species.
Collapse
Affiliation(s)
- V A Bâlteanu
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăştur 3-5, Cluj-Napoca, 400372, Romania
| | - T F Cardoso
- Department of Animal Genetics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Bellaterra, 08193, Spain.,CAPES Foundation, Ministry of Education of Brazil, Brasilia, 7004020, Brazil
| | - M Amills
- Department of Animal Genetics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Bellaterra, 08193, Spain.,Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain
| | - M G Luigi-Sierra
- Department of Animal Genetics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Bellaterra, 08193, Spain
| | - I Egerszegi
- Szent István University, Páter Károly u. 1, Gödöllő, 2100, Hungary
| | - I Anton
- NARIC-Research Institute for Animal Breeding, Nutrition and Meat Science, Gesztenyés u. 1, Herceghalom, 2053, Hungary
| | - A Zsolnai
- NARIC-Research Institute for Animal Breeding, Nutrition and Meat Science, Gesztenyés u. 1, Herceghalom, 2053, Hungary
| |
Collapse
|
17
|
Kiener S, Kehl A, Loechel R, Langbein-Detsch I, Müller E, Bannasch D, Jagannathan V, Leeb T. Novel Brown Coat Color (Cocoa) in French Bulldogs Results from a Nonsense Variant in HPS3. Genes (Basel) 2020; 11:genes11060636. [PMID: 32526956 PMCID: PMC7349258 DOI: 10.3390/genes11060636] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/05/2020] [Accepted: 06/08/2020] [Indexed: 12/30/2022] Open
Abstract
Brown or chocolate coat color in many mammalian species is frequently due to variants at the B locus or TYRP1 gene. In dogs, five different TYRP1 loss-of-function alleles have been described, which explain the vast majority of dogs with brown coat color. Recently, breeders and genetic testing laboratories identified brown French Bulldogs that did not carry any of the known mutant TYRP1 alleles. We sequenced the genome of a TYRP1+/+ brown French Bulldog and compared the data to 655 other canine genomes. A search for private variants revealed a nonsense variant in HPS3, c.2420G>A or p.(Trp807*). The brown dog was homozygous for the mutant allele at this variant. The HPS3 gene encodes a protein required for the correct biogenesis of lysosome-related organelles, including melanosomes. Variants in the human HPS3 gene cause Hermansky–Pudlak syndrome 3, which involves a mild form of oculocutaneous albinism and prolonged bleeding time. A variant in the murine Hps3 gene causes brown coat color in the cocoa mouse mutant. We genotyped a cohort of 373 French Bulldogs and found a strong association of the homozygous mutant HPS3 genotype with the brown coat color. The genotype–phenotype association and the comprehensive knowledge on HPS3 function from other species strongly suggests that HPS3:c.2420G>A is the causative variant for the observed brown coat color in French Bulldogs. In order to clearly distinguish HPS3-related from the TYRP1-related brown coat color, and in line with the murine nomenclature, we propose to designate this dog phenotype as “cocoa”, and the mutant allele as HPS3co.
Collapse
Affiliation(s)
- Sarah Kiener
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland; (S.K.); (D.B.); (V.J.)
- Dermfocus, University of Bern, 3001 Bern, Switzerland
| | - Alexandra Kehl
- Laboklin, 97688 Bad Kissingen, Germany; (A.K.); (I.L.-D.); (E.M.)
| | | | | | - Elisabeth Müller
- Laboklin, 97688 Bad Kissingen, Germany; (A.K.); (I.L.-D.); (E.M.)
| | - Danika Bannasch
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland; (S.K.); (D.B.); (V.J.)
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Vidhya Jagannathan
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland; (S.K.); (D.B.); (V.J.)
- Dermfocus, University of Bern, 3001 Bern, Switzerland
| | - Tosso Leeb
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland; (S.K.); (D.B.); (V.J.)
- Dermfocus, University of Bern, 3001 Bern, Switzerland
- Correspondence: ; Tel.: +41-3163-123-26
| |
Collapse
|
18
|
Transcriptional Differences of Coding and Non-Coding Genes Related to the Absence of Melanocyte in Skins of Bama Pig. Genes (Basel) 2019; 11:genes11010047. [PMID: 31905971 PMCID: PMC7017308 DOI: 10.3390/genes11010047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/16/2019] [Accepted: 12/22/2019] [Indexed: 01/31/2023] Open
Abstract
Skin is the body’s largest organ, and the main function of skin is to protect underlying organs from possible external damage. Melanocytes play an important role in skin pigmentation. The Bama pig has a “two-end-black” phenotype with different coat colors across skin regions, e.g., white skin (without melanocytes) and black skin (with melanocytes), which could be a model to investigate skin-related disorders, specifically loss of melanocytes. Here, we generated expression profiles of mRNAs and long noncoding RNAs in Bama pig skins with different coat colors. In total, 14,900 mRNAs and 7549 lncRNAs were expressed. Overall, 2338 mRNAs/113 lncRNAs with FDR-adjusted p-value ≤ 0.05 were considered to be differentially expressed (DE) mRNAs/lncRNAs, with 1305 down-regulated mRNAs and 1033 up-regulated mRNAs in white skin with|log2(fold change)| > 1. The genes down-regulated in white skin were associated with pigmentation, melanocyte–keratinocyte interaction, and keratin, while up-regulated ones were mainly associated with cellular energy metabolisms. Furthermore, those DE lncRNAs were predicted to be implicated in pigmentation, keratin synthesis and cellular energy metabolism. In general, this study provides insight into the transcriptional difference involved in melanocyte-loss-induced keratinocyte changes and promotes the Bama pig as a biomedical model in skin research.
Collapse
|
19
|
Vaish U, Kumar AA, Varshney S, Ghosh S, Sengupta S, Sood C, Kar HK, Sharma P, Natarajan VT, Gokhale RS, Rani R. Micro RNAs upregulated in Vitiligo skin play an important role in its aetiopathogenesis by altering TRP1 expression and keratinocyte-melanocytes cross-talk. Sci Rep 2019; 9:10079. [PMID: 31300697 PMCID: PMC6625998 DOI: 10.1038/s41598-019-46529-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 07/01/2019] [Indexed: 01/20/2023] Open
Abstract
Translation of genes is regulated by many factors including microRNAs (miRNAs). miRNA profiling of lesional and non-lesional epidermal RNA from 18 vitiligo patients revealed significant upregulation of 29 miRNAs in the lesional epidermis, of which 6 miRNAs were transfected in normal human epidermal keratinocytes (NHEKs) to study their downstream effects using quantitative proteomics. Many proteins involved in oxidative stress, Vesicle trafficking, Cellular apoptosis, Mitochondrial proteins and Keratins were regulated after miRNA transfections in the keratinocytes. However, tyrosinase related protein-1 (TRP1/TYRP1), a melanogenesis protein, was consistently downregulated in NHEKs by all the six miRNAs tested, which was quite intriguing. TRP1 was also downregulated in lesional epidermis compared with non-lesional epidermis. Since melanocytes synthesize and transfer melanosomes to the surrounding keratinocytes, we hypothesized that downregulation of TRP1 in NHEKs may have a role in melanosome transfer, which was confirmed by our co-culture experiments. Downregulation of TRP1 in keratinocytes negatively affected the melanosome transfer from melanocytes to keratinocytes resulting in melanin accumulation which may be leading to melanin induced cytotoxicity in melanocytes. Regulation of key processes involved in aetiopathogenesis of vitiligo along with TRP1 suggests that miRNAs act in an integrated manner which may be detrimental for the loss of melanocytes in vitiligo.
Collapse
Affiliation(s)
| | | | - Swati Varshney
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road, Sukhdev Vihar, New Delhi, 110025, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-IGIB, Mathura Road, Sukhdev Vihar, New Delhi, 110025, India
| | - Shreya Ghosh
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road, Sukhdev Vihar, New Delhi, 110025, India
| | - Shantanu Sengupta
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road, Sukhdev Vihar, New Delhi, 110025, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-IGIB, Mathura Road, Sukhdev Vihar, New Delhi, 110025, India
| | - Chandni Sood
- National Institute of Immunology, New Delhi, 110067, India
| | - Hemanta K Kar
- Dr. Ram Manohar Lohia Hospital, New Delhi, 110001, India
| | - Pankaj Sharma
- Dr. Ram Manohar Lohia Hospital, New Delhi, 110001, India
| | - Vivek T Natarajan
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road, Sukhdev Vihar, New Delhi, 110025, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-IGIB, Mathura Road, Sukhdev Vihar, New Delhi, 110025, India
| | - Rajesh S Gokhale
- National Institute of Immunology, New Delhi, 110067, India.,CSIR-Institute of Genomics & Integrative Biology, Mathura Road, Sukhdev Vihar, New Delhi, 110025, India
| | - Rajni Rani
- National Institute of Immunology, New Delhi, 110067, India.
| |
Collapse
|
20
|
Chen D, Wu P, Yang Q, Wang K, Zhou J, Yang X, Jiang A, Shen L, Xiao W, Jiang Y, Zhu L, Li X, Tang G. Genome-wide association study for backfat thickness at 100 kg and loin muscle thickness in domestic pigs based on genotyping by sequencing. Physiol Genomics 2019; 51:261-266. [PMID: 31100035 DOI: 10.1152/physiolgenomics.00008.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Both backfat thickness at 100 kg (B100) and loin muscle thickness (LMT) are economically important traits in pigs. In this study, a total of 1,200 pigs (600 Landrace and 600 Yorkshire pigs) were examined with genotyping by sequencing. A total of 345,570 single nucleotide polymorphisms (SNPs) were obtained from 1,200 pigs. Then, a single marker regression test was used to conduct a genome-wide association study for B100 and LMT. A total of 8 and 90 significant SNPs were detected for LMT and B100, respectively. Interestingly, two shared significant loci [located at Sus scrofa chromosome (SSC) 6: 149876694 and SSC12: 46226580] were detected in two breeds for B100. Furthermore, three potential candidate genes were found for LMT and B100. The positional candidate gene FAM3C (SSC18: 25573656, P = 2.48 × 10-9), which controls the survival, growth, and differentiation of tissues and cells, was found for LMT in Landrace pigs. At SSC9: 6.78-6.82 Mb in Landrace pigs, the positional candidate gene, INPPL1, which has a negative regulatory effect on diet-induced obesity and is involved in the regulation of insulin function, was found for B100. The candidate gene, RAB35, which regulates the adipocyte glucose transporter SLC2A4/GLUT4, was identified at approximately SSC14: 40.09-40.13 Mb in Yorkshire pigs. The results of this GWAS will greatly advance our understanding of the genetic architecture of the LMT and B100 traits. However, these identified loci and genes need to be further verified in more pig populations, and their functions also need to be validated by more biological experiments in pigs.
Collapse
Affiliation(s)
- Dejuan Chen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University , Chengdu, Sichuan , China
| | - Pingxian Wu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University , Chengdu, Sichuan , China
| | - Qiang Yang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University , Chengdu, Sichuan , China
| | - Kai Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University , Chengdu, Sichuan , China
| | - Jie Zhou
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University , Chengdu, Sichuan , China
| | - Xidi Yang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University , Chengdu, Sichuan , China
| | - Anan Jiang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University , Chengdu, Sichuan , China
| | - Linyuan Shen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University , Chengdu, Sichuan , China
| | - Weihang Xiao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University , Chengdu, Sichuan , China
| | - Yanzhi Jiang
- College of Life Science, Sichuan Agricultural University, Yaan, Sichuan , China
| | - Li Zhu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University , Chengdu, Sichuan , China
| | - Xuewei Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University , Chengdu, Sichuan , China
| | - Guoqing Tang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University , Chengdu, Sichuan , China
| |
Collapse
|
21
|
Wu Z, Deng Z, Huang M, Hou Y, Zhang H, Chen H, Ren J. Whole-Genome Resequencing Identifies KIT New Alleles That Affect Coat Color Phenotypes in Pigs. Front Genet 2019; 10:218. [PMID: 30949195 PMCID: PMC6436083 DOI: 10.3389/fgene.2019.00218] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 02/27/2019] [Indexed: 12/13/2022] Open
Abstract
The Duroc × (Landrace × Large White) hybrid pig (DLY) is the most popular commercial pig used in the Chinese pig industry. DLY pigs are usually white but sometimes show colored phenotypes. Colored DLY pigs are not favored by slaughterhouses and retailers, thus causing certain economic losses to farmers in China. In this study, we first conducted a genome-wide association study and RNA sequencing to demonstrate that KIT variants are responsible for diversifying coat color phenotypes segregating in a DLY population. We then defined the precise sizes and locations of four duplications (DUP1-4), four candidate causative mutations at the KIT locus, in the pig reference genome using the whole-genome sequence data of representative colored individuals. The sequence data also enabled us to identify a list of new KIT alleles. By investigating the association between these new alleles and coat color phenotypes, we provide further evidence that DUP2 is another causative mutation for the solid white coat color in pigs. DUP1 (the KIT gene duplication), DUP2 and the splice mutation are all required for the manifestation of a solid white coat color. DUP4 had a more significant effect on the formation of the belt phenotype compared with DUP3. Given the necessity of DUP2 for the solid white coat color, we detected IN/IN homozygotes lacking DUP2 in Large White and Landrace pigs and found that French Landrace pigs had the highest frequency (8.98%) of IN/IN individuals. This study not only advances our understanding of the molecular mechanism of the color phenotype in pigs, but also establishes a simple and accurate method for the screening of KIT IN/IN homozygotes in Large White and Landrace that would cause colored DLY pigs.
Collapse
Affiliation(s)
- Zhongping Wu
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Zheng Deng
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Min Huang
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Yong Hou
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Hui Zhang
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Hao Chen
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Jun Ren
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
22
|
Transcriptomic Analysis of Coding Genes and Non-Coding RNAs Reveals Complex Regulatory Networks Underlying the Black Back and White Belly Coat Phenotype in Chinese Wuzhishan Pigs. Genes (Basel) 2019; 10:genes10030201. [PMID: 30866582 PMCID: PMC6470719 DOI: 10.3390/genes10030201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 02/21/2019] [Accepted: 02/27/2019] [Indexed: 01/03/2023] Open
Abstract
Coat color is one of the most important characteristics for distinguishing Chinese indigenous pig breeds. In Wuzhishan pigs, the animals have black on the back and white on the abdomen. However, the molecular genetic basis of this phenotype is unclear. In this study, we used high-throughput RNA sequencing to compare expression profiles of coding and non-coding RNAs from white and black skin samples obtained from individual Wuzhishan pigs. The expression profiling revealed that 194 lncRNAs (long non-coding RNAs), 189 mRNAs (messenger RNAs), and 162 miRNAs (microRNAs) had significantly different levels of expression (|log2 fold change| > 1, p-value < 0.05) in white and black skin. Compared to RNA levels in black skin, white skin had higher levels of expression of 185 lncRNAs, 181 mRNAs, and 23 miRNAs and lower levels of expression of 9 lncRNAs, 8 mRNAs, and 139 miRNAs. Functional analysis suggested that the differentially expressed transcripts are involved in biological processes such as melanin biosynthesis, pigmentation and tyrosine metabolism. Several key genes involved in melanogenesis, including MLANA, PMEL, TYR, TYRP1, DTC, TRPM1 and CAMK2A, had significantly different levels of expression in the two skin tissues. Potential lncRNA–miRNA–gene interactions were also examined. A total of 15 lncRNAs, 11 miRNAs and 7 genes formed 23 lncRNA–miRNA–gene pairs, suggesting that complex regulatory networks of coding and non-coding genes underlie the coat color trait in Wuzhishan pigs. Our study provides a foundation for understanding how lncRNA, miRNA and genes interact to regulate coat color in black-back/white-belly pigs. We also constructed lncRNA–miRNA–gene interaction networks to elucidate the complex molecular mechanisms underlying skin physiology and melanogenesis. The results extend our knowledge about the diversity of coat color among different domestic animals and provide a foundation for studying novel mechanisms that control coat color in Chinese indigenous pigs.
Collapse
|
23
|
Li J, Bed’hom B, Marthey S, Valade M, Dureux A, Moroldo M, Péchoux C, Coville J, Gourichon D, Vieaud A, Dorshorst B, Andersson L, Tixier‐Boichard M. A missense mutation in
TYRP1
causes the chocolate plumage color in chicken and alters melanosome structure. Pigment Cell Melanoma Res 2018; 32:381-390. [DOI: 10.1111/pcmr.12753] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Revised: 09/19/2018] [Accepted: 10/02/2018] [Indexed: 12/30/2022]
Affiliation(s)
- Jingyi Li
- Department of Animal and Poultry Sciences Virginia Tech Blacksburg Virginia
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences Texas A&M University College Station Texas
| | - Bertrand Bed’hom
- GABI, AgroParisTech, INRA Université Paris‐Saclay Jouy‐en‐Josas France
| | - Sylvain Marthey
- GABI, AgroParisTech, INRA Université Paris‐Saclay Jouy‐en‐Josas France
| | - Mathieu Valade
- GABI, AgroParisTech, INRA Université Paris‐Saclay Jouy‐en‐Josas France
| | - Audrey Dureux
- GABI, AgroParisTech, INRA Université Paris‐Saclay Jouy‐en‐Josas France
| | - Marco Moroldo
- GABI, AgroParisTech, INRA Université Paris‐Saclay Jouy‐en‐Josas France
| | - Christine Péchoux
- GABI, AgroParisTech, INRA Université Paris‐Saclay Jouy‐en‐Josas France
| | - Jean‐Luc Coville
- GABI, AgroParisTech, INRA Université Paris‐Saclay Jouy‐en‐Josas France
| | | | - Agathe Vieaud
- GABI, AgroParisTech, INRA Université Paris‐Saclay Jouy‐en‐Josas France
| | - Ben Dorshorst
- Department of Animal and Poultry Sciences Virginia Tech Blacksburg Virginia
| | - Leif Andersson
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences Texas A&M University College Station Texas
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology Uppsala University Uppsala Sweden
- Department of Animal Breeding and Genetics Swedish University of Agricultural Sciences Uppsala Sweden
| | | |
Collapse
|
24
|
Wang C, Wang X, Tang J, Chen H, Zhang J, Li Y, Lei S, Ji H, Yang B, Ren J, Ding N. Genome-wide association studies for two exterior traits in Chinese Dongxiang spotted pigs. Anim Sci J 2018; 89:868-875. [DOI: 10.1111/asj.13003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 01/11/2018] [Indexed: 12/29/2022]
Affiliation(s)
- Chengbin Wang
- State Key Laboratory of Pig Genetic Improvement and Production Technology; Jiangxi Agricultural University; Nanchang China
| | - Xiaopeng Wang
- State Key Laboratory of Pig Genetic Improvement and Production Technology; Jiangxi Agricultural University; Nanchang China
| | - Jianhong Tang
- State Key Laboratory of Pig Genetic Improvement and Production Technology; Jiangxi Agricultural University; Nanchang China
| | - Hao Chen
- State Key Laboratory of Pig Genetic Improvement and Production Technology; Jiangxi Agricultural University; Nanchang China
| | - Junjie Zhang
- State Key Laboratory of Pig Genetic Improvement and Production Technology; Jiangxi Agricultural University; Nanchang China
| | - Yiping Li
- State Key Laboratory of Pig Genetic Improvement and Production Technology; Jiangxi Agricultural University; Nanchang China
| | - Shengrong Lei
- National Conservation Farm of Dongxiang Spotted Pigs; Dongxiang China
| | - Huayuan Ji
- Institute of Animal Husbandry and Veterinary; Jiangxi Academy of Agricultural Science; Nanchang China
| | - Bin Yang
- State Key Laboratory of Pig Genetic Improvement and Production Technology; Jiangxi Agricultural University; Nanchang China
| | - Jun Ren
- State Key Laboratory of Pig Genetic Improvement and Production Technology; Jiangxi Agricultural University; Nanchang China
| | - Nengshui Ding
- State Key Laboratory of Pig Genetic Improvement and Production Technology; Jiangxi Agricultural University; Nanchang China
| |
Collapse
|
25
|
Song X, Xu C, Liu Z, Yue Z, Liu L, Yang T, Cong B, Yang F. Comparative Transcriptome Analysis of Mink (Neovison vison) Skin Reveals the Key Genes Involved in the Melanogenesis of Black and White Coat Colour. Sci Rep 2017; 7:12461. [PMID: 28963476 PMCID: PMC5622100 DOI: 10.1038/s41598-017-12754-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 09/14/2017] [Indexed: 11/24/2022] Open
Abstract
Farmed mink (Neovison vison) is one of the most important fur-bearing species worldwide, and coat colour is a crucial qualitative characteristic that contributes to the economic value of the fur. To identify additional genes that may play important roles in coat colour regulation, Illumina/Solexa high-throughput sequencing technology was used to catalogue the global gene expression profiles in mink skin with two different coat colours (black and white). RNA-seq analysis indicated that a total of 12,557 genes were differentially expressed in black versus white minks, with 3,530 genes up-regulated and 9,027 genes down-regulated in black minks. Significant differences were not observed in the expression of MC1R and TYR between the two different coat colours, and the expression of ASIP was not detected in the mink skin of either coat colour. The expression levels of KITLG, LEF1, DCT, TYRP1, PMEL, Myo5a, Rab27a and SLC7A11 were validated by qRT-PCR, and the results were consistent with RNA-seq analysis. This study provides several candidate genes that may be associated with the development of two coat colours in mink skin. These results will expand our understanding of the complex molecular mechanisms underlying skin physiology and melanogenesis in mink and will provide a foundation for future studies.
Collapse
Affiliation(s)
- Xingchao Song
- Key Laboratory of Special Economic Animal Genetic Breeding and Reproduction, Ministry of Agriculture, State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China
| | - Chao Xu
- Key Laboratory of Special Economic Animal Genetic Breeding and Reproduction, Ministry of Agriculture, State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China
| | - Zongyue Liu
- Key Laboratory of Special Economic Animal Genetic Breeding and Reproduction, Ministry of Agriculture, State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China
| | - Zhigang Yue
- Key Laboratory of Special Economic Animal Genetic Breeding and Reproduction, Ministry of Agriculture, State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China
| | - Linling Liu
- Key Laboratory of Special Economic Animal Genetic Breeding and Reproduction, Ministry of Agriculture, State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China
| | - Tongao Yang
- Key Laboratory of Special Economic Animal Genetic Breeding and Reproduction, Ministry of Agriculture, State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China
| | - Bo Cong
- Key Laboratory of Special Economic Animal Genetic Breeding and Reproduction, Ministry of Agriculture, State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China
| | - Fuhe Yang
- Key Laboratory of Special Economic Animal Genetic Breeding and Reproduction, Ministry of Agriculture, State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China.
| |
Collapse
|
26
|
Wu X, Tan Z, Shen L, Yang Q, Cheng X, Liao K, Bai L, Shuai S, Li M, Li X, Zhang S, Zhu L. Coat colour phenotype of Qingyu pig is associated with polymorphisms of melanocortin receptor 1 gene. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2016; 30:938-943. [PMID: 28002929 PMCID: PMC5495671 DOI: 10.5713/ajas.16.0376] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 08/10/2016] [Accepted: 12/10/2016] [Indexed: 11/27/2022]
Abstract
Objective Qingyu pig, a Chinese indigenous pig breed, exhibits two types of coat colour phenotypes, including pure black and white with black spotting respectively. Melanocortin receptor 1 (MC1R) and agouti signaling protein (ASIP) are two widely reported pivotal genes that significantly affect the regulation of coat colour. The objectives of this study were to investigate whether the polymorphisms of these two genes are associated with coat colour and analyze the molecular mechanism of the coat colour separation in Qingyu pig. Methods We studied the phenotype segregation and used polymerase chain reaction amplification and Sanger sequencing to investigate the polymorphism of MC1R and ASIP in 121 Qingyu pigs, consisting of 115 black and 6 white with black spotted pigs. Results Coat colour of Qingyu pig is associated with the polymorphisms of MC1R but not ASIP. We only found 2 haplotypes, EQY and Eqy, based on the 13 observed mutations from MC1R gene. Among which, Eqy presented a recessive inheritance mode in black spotted Qingyu pigs. Further analysis revealed a g.462–463CC insertion that caused a frameshift mutation and a premature stop codon, thus changed the first transmembrane domain completely and lost the remaining six transmembrane domains. Altogether, our results strongly support that the variety of Qingyu pig’s coat colour is related to MC1R. Conclusion Our findings indicated that black coat colour in Qingyu pig was dominant to white with black spotted phenotype and MC1R gene polymorphism was associated with coat colour separation in Qingyu pig.
Collapse
Affiliation(s)
- Xiaoqian Wu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhendong Tan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Linyuan Shen
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Qiong Yang
- Department of Animal Husbandry and Veterinary Medicine, Chengdu Agricultural College, Chengdu 611130, China
| | - Xiao Cheng
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Kun Liao
- Pasturage Station of Tongjiang Agriculture Bbureau, Tongjiang, 636718, China
| | - Lin Bai
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Surong Shuai
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Mingzhou Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Xuewei Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Shunhua Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Li Zhu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
27
|
Yang Y, Tang Z, Fan X, Xu K, Mu Y, Zhou R, Li K. Transcriptome analysis revealed chimeric RNAs, single nucleotide polymorphisms and allele-specific expression in porcine prenatal skeletal muscle. Sci Rep 2016; 6:29039. [PMID: 27352850 PMCID: PMC4926253 DOI: 10.1038/srep29039] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 06/14/2016] [Indexed: 01/28/2023] Open
Abstract
Prenatal skeletal muscle development genetically determines postnatal muscle characteristics such as growth and meat quality in pigs. However, the molecular mechanisms underlying prenatal skeletal muscle development remain unclear. Here, we performed the first genome-wide analysis of chimeric RNAs, single nuclear polymorphisms (SNPs) and allele-specific expression (ASE) in prenatal skeletal muscle in pigs. We identified 14,810 protein coding genes and 163 high-confidence chimeric RNAs expressed in prenatal skeletal muscle. More than 94.5% of the chimeric RNAs obeyed the canonical GT/AG splice rule and were trans-splicing events. Ten and two RNAs were aligned to human and mouse chimeric transcripts, respectively. We detected 106,457 high-quality SNPs (6,955 novel), which were mostly (89.09%) located within QTLs for production traits. The high proportion of non-exonic SNPs revealed the incomplete annotation status of the current swine reference genome. ASE analysis revealed that 11,300 heterozygous SNPs showed allelic imbalance, whereas 131 ASE variants were located in the chimeric RNAs. Moreover, 4 ASE variants were associated with various economically relevant traits of pigs. Taken together, our data provide a source for studies of chimeric RNAs and biomarkers for pig breeding, while illuminating the complex transcriptional events underlying prenatal skeletal muscle development in mammals.
Collapse
Affiliation(s)
- Yalan Yang
- The State Key Laboratory for Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R.China
- Agricultural Genome Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, P.R.China
| | - Zhonglin Tang
- The State Key Laboratory for Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R.China
- Agricultural Genome Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, P.R.China
| | - Xinhao Fan
- The State Key Laboratory for Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R.China
| | - Kui Xu
- The State Key Laboratory for Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R.China
| | - Yulian Mu
- The State Key Laboratory for Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R.China
| | - Rong Zhou
- The State Key Laboratory for Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R.China
| | - Kui Li
- The State Key Laboratory for Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R.China
- Agricultural Genome Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, P.R.China
| |
Collapse
|
28
|
Guo X, Su G, Christensen OF, Janss L, Lund MS. Genome-wide association analyses using a Bayesian approach for litter size and piglet mortality in Danish Landrace and Yorkshire pigs. BMC Genomics 2016; 17:468. [PMID: 27317562 PMCID: PMC4912826 DOI: 10.1186/s12864-016-2806-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 05/27/2016] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Litter size and piglet mortality are important traits in pig production. The study aimed to identify quantitative trait loci (QTL) for litter size and mortality traits, including total number of piglets born (TNB), litter size at day 5 (LS5) and mortality rate before day 5 (MORT) in Danish Landrace and Yorkshire pigs by genome-wide association studies (GWAS). METHODS The phenotypic records and genotypes were available in 5,977 Landrace pigs and 6,000 Yorkshire pigs born from 1998 to 2014. A linear mixed model (LM) with a single SNP regression and a Bayesian mixture model (BM) including effects of all SNPs simultaneously were used for GWAS to detect significant QTL association. The response variable used in the GWAS was corrected phenotypic value which was obtained by adjusting original observations for non-genetic effects. For BM, the QTL region was determined by using a novel post-Gibbs analysis based on the posterior mixture probability. RESULTS The detected association patterns from LM and BM models were generally similar. However, BM gave more distinct detection signals than LM. The clearer peaks from BM indicated that the BM model has an advantage in respect of identifying and distinguishing regions of putative QTL. Using BM and QTL region analysis, for the three traits and two breeds a total of 15 QTL regions were identified on SSC1, 2, 3, 6, 7, 9, 13 and 14. Among these QTL regions, 6 regions located on SSC2, 3, 6, 7 and 13 were associated with more than one trait. CONCLUSION This study detected QTL regions associated with litter size and piglet mortality traits in Danish pigs using a novel approach of post-Gibbs analysis based on posterior mixture probability. All of the detected QTL regions overlapped with regions previously reported for reproduction traits. The regions commonly detected in different traits and breeds could be resources for multi-trait and across-bred selection. The proposed novel QTL region analysis method would be a good alternative to detect and define QTL regions.
Collapse
Affiliation(s)
- Xiangyu Guo
- Center for Quantitative Genetics and Genomics, Department of Molecular Biology and Genetics, Aarhus University, DK-8830, Tjele, Denmark
| | - Guosheng Su
- Center for Quantitative Genetics and Genomics, Department of Molecular Biology and Genetics, Aarhus University, DK-8830, Tjele, Denmark.
| | - Ole Fredslund Christensen
- Center for Quantitative Genetics and Genomics, Department of Molecular Biology and Genetics, Aarhus University, DK-8830, Tjele, Denmark
| | - Luc Janss
- Center for Quantitative Genetics and Genomics, Department of Molecular Biology and Genetics, Aarhus University, DK-8830, Tjele, Denmark
| | - Mogens Sandø Lund
- Center for Quantitative Genetics and Genomics, Department of Molecular Biology and Genetics, Aarhus University, DK-8830, Tjele, Denmark
| |
Collapse
|
29
|
Hepp D, Gonçalves GL, Moreira GRP, de Freitas TRO. Epistatic Interaction of the Melanocortin 1 Receptor and Agouti Signaling Protein Genes Modulates Wool Color in the Brazilian Creole Sheep. J Hered 2016; 107:544-52. [PMID: 27288530 DOI: 10.1093/jhered/esw037] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Accepted: 05/29/2016] [Indexed: 02/01/2023] Open
Abstract
Different pigmentation genes have been associated with color diversity in domestic animal species. The melanocortin 1 receptor (MC1R), agouti signaling protein (ASIP), tyrosinase-related protein 1 (TYRP1), and v-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog (KIT) genes are candidate genes responsible for variation in wool color among breeds of sheep. Although the influence of these genes has been described in some breeds, in many others the effect of interactions among genes underlying wool color has not been investigated. The Brazilian Creole sheep is a local breed with a wide variety of wool color, ranging from black to white with several intermediate hues. We analyzed in this study the influence of the genes MC1R, ASIP, TYRP1, and KIT on the control of wool color in this breed. A total of 410 samples were analyzed, including 148 white and 262 colored individuals. The MC1R and ASIP polymorphisms were significantly associated with the segregation of either white or colored wool. The dominant MC1R allele (E(D) p.M73K and p.D121N) was present only in colored animals. All white individuals were homozygous for the MC1R recessive allele (E(+)) and carriers of the duplicated copy of ASIP A gene expression assay showed that only the carrier of the duplicated copy of ASIP produces increased levels in skin, not detectable in the single homozygous copy. These results demonstrate that the epistatic interaction of the genotypes in the MC1R and ASIP gene is responsible for the striking color variation in the Creole breed.
Collapse
Affiliation(s)
- Diego Hepp
- From the Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil (Hepp, Gonçalves, and de Freitas); Instituto de Alta Investigación, Universidad de Tarapacá, Arica, Chile (Gonçalves); Departamento de Zoologia, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil (Moreira); and Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil (Hepp).
| | - Gislene Lopes Gonçalves
- From the Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil (Hepp, Gonçalves, and de Freitas); Instituto de Alta Investigación, Universidad de Tarapacá, Arica, Chile (Gonçalves); Departamento de Zoologia, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil (Moreira); and Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil (Hepp)
| | - Gilson Rudinei Pires Moreira
- From the Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil (Hepp, Gonçalves, and de Freitas); Instituto de Alta Investigación, Universidad de Tarapacá, Arica, Chile (Gonçalves); Departamento de Zoologia, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil (Moreira); and Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil (Hepp)
| | - Thales Renato Ochotorena de Freitas
- From the Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil (Hepp, Gonçalves, and de Freitas); Instituto de Alta Investigación, Universidad de Tarapacá, Arica, Chile (Gonçalves); Departamento de Zoologia, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil (Moreira); and Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil (Hepp)
| |
Collapse
|
30
|
Genetic variations associated with six-white-point coat pigmentation in Diannan small-ear pigs. Sci Rep 2016; 6:27534. [PMID: 27270507 PMCID: PMC4897638 DOI: 10.1038/srep27534] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 05/18/2016] [Indexed: 11/08/2022] Open
Abstract
A common phenotypic difference among domestic animals is variation in coat color. Six-white-point is a pigmentation pattern observed in varying pig breeds, which seems to have evolved through several different mechanistic pathways. Herein, we re-sequenced whole genomes of 31 Diannan small-ear pigs from China and found that the six-white-point coat color in Diannan small-ear pigs is likely regulated by polygenic loci, rather than by the MC1R locus. Strong associations were observed at three loci (EDNRB, CNTLN, and PINK1), which explain about 20 percent of the total coat color variance in the Diannan small-ear pigs. We found a mutation that is highly differentiated between six-white-point and black Diannan small-ear pigs, which is located in a conserved noncoding sequence upstream of the EDNRB gene and is a putative binding site of the CEBPB protein. This study advances our understanding of coat color evolution in Diannan small-ear pigs and expands our traditional knowledge of coat color being a monogenic trait.
Collapse
|
31
|
Wu X, Zhang Y, Shen L, Du J, Luo J, Liu C, Pu Q, Yang R, Li X, Bai L, Tang G, Zhang S, Zhu L. A 6-bp deletion in exon 8 and two mutations in introns of TYRP1 are associated with blond coat color in Liangshan pigs. Gene 2016; 578:132-6. [DOI: 10.1016/j.gene.2015.12.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Revised: 11/26/2015] [Accepted: 12/07/2015] [Indexed: 01/02/2023]
|
32
|
Cirera S, Markakis MN, Kristiansen T, Vissenberg K, Fredholm M, Christensen K, Anistoroaei R. A large insertion in intron 2 of the TYRP1 gene associated with American Palomino phenotype in American mink. Mamm Genome 2016; 27:135-43. [DOI: 10.1007/s00335-016-9620-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 01/31/2016] [Indexed: 02/03/2023]
|
33
|
Liu R, Jin L, Long K, Chai J, Ma J, Tang Q, Tian S, Hu Y, Lin L, Wang X, Jiang A, Li X, Li M. Detection of genetic diversity and selection at the coding region of the melanocortin receptor 1 ( MC1R ) gene in Tibetan pigs and Landrace pigs. Gene 2016; 575:537-542. [DOI: 10.1016/j.gene.2015.09.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 08/13/2015] [Accepted: 09/15/2015] [Indexed: 11/30/2022]
|
34
|
He Y, Li X, Zhang F, Su Y, Hou L, Chen H, Zhang Z, Huang L. Multi-breed genome-wide association study reveals novel loci associated with the weight of internal organs. Genet Sel Evol 2015; 47:87. [PMID: 26576866 PMCID: PMC4647478 DOI: 10.1186/s12711-015-0168-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 10/30/2015] [Indexed: 12/01/2022] Open
Abstract
Background Recently, many genome-wide association studies (GWAS) have been conducted to understand the genetic architecture of economic important traits in farm animals. Pig is widely used as a biomedical animal model for its similarity with humans in terms of organ formation and disease mechanisms. Moreover, understanding the mechanisms that underlie the development of internal organs will impact the productive potential of pigs. Our aim was to uncover new single nucleotide polymorphisms (SNPs) associated with the weight of internal organs and carcass and also potential candidate genes. Methods We performed GWAS for the weight of heart, liver, spleen, kidney and carcass on five pig populations (White Duroc × Erhualian F2 intercross, Sutai population, Laiwu population, Erhualian population and commercial population, for a total of 2650 individuals). Genotype data was produced using the PorcineSNP60 Beadchip array. After quality control, the data was used for association tests under a general linear mixed model. Population stratification was adjusted by including a random polygenic effect based on a matrix of genotypic relationships. A meta-analysis of our GWAS datasets was conducted by summing up the Chi square values across breeds, with the degrees of freedom of the Chi square distribution equal to the effective number of breeds. Results Thirty-nine quantitative trait loci (QTL) located on 15 chromosomes were identified by the single-population GWAS at the suggestive level. Among these, nine QTL surpassed the 5 % genome-wide significance threshold, including four for heart weight on SSC (Sus scrofa chromosome) 2, 4, 7 and 10, two for liver weight on SSC7, two for spleen weight on SSC5 and SSC7 and one for carcass weight on SSC11. The QTL on SSC7 showed pleiotropic effects for heart, liver and spleen weights in the F2 population. In addition, two QTL were detected in several populations, including one on SSC2 for heart weight in the F2 and Sutai populations and one on SSC7 for liver weight in the F2 and Laiwu populations. The meta-analysis detected four novel QTL on SSC1, 3, 8 and 16 for carcass weight. Electronic supplementary material The online version of this article (doi:10.1186/s12711-015-0168-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yuna He
- National Key Laboratory for Swine Genetics, Breeding and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Xinjian Li
- National Key Laboratory for Swine Genetics, Breeding and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Feng Zhang
- National Key Laboratory for Swine Genetics, Breeding and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Ying Su
- National Key Laboratory for Swine Genetics, Breeding and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Lijuan Hou
- National Key Laboratory for Swine Genetics, Breeding and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Hao Chen
- National Key Laboratory for Swine Genetics, Breeding and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Zhiyan Zhang
- National Key Laboratory for Swine Genetics, Breeding and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Lusheng Huang
- National Key Laboratory for Swine Genetics, Breeding and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China.
| |
Collapse
|
35
|
Liao XJ, Li L, Zhang ZY, Long Y, Yang B, Ruan GR, Su Y, Ai HS, Zhang WC, Deng WY, Xiao SJ, Ren J, Ding NS, Huang LS. Susceptibility loci for umbilical hernia in swine detected by genome-wide association. RUSS J GENET+ 2015. [DOI: 10.1134/s1022795415100105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
36
|
Dietrich J, Menzi F, Ammann P, Drögemüller C, Leeb T. A breeding experiment confirms the dominant mode of inheritance of the brown coat colour associated with the (496) Asp TYRP1 allele in goats. Anim Genet 2015; 46:587-8. [PMID: 26153465 DOI: 10.1111/age.12320] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2015] [Indexed: 11/26/2022]
Affiliation(s)
- Joëlle Dietrich
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, 3001, Switzerland.,DermFocus, University of Bern, Bern, 3001, Switzerland.,Swiss Competence Center of Animal Breeding and Genetics, Bern University of Applied Sciences HAFL & Agroscope, University of Bern, Bern, 3001, Switzerland
| | - Fiona Menzi
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, 3001, Switzerland.,DermFocus, University of Bern, Bern, 3001, Switzerland.,Swiss Competence Center of Animal Breeding and Genetics, Bern University of Applied Sciences HAFL & Agroscope, University of Bern, Bern, 3001, Switzerland
| | | | - Cord Drögemüller
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, 3001, Switzerland.,DermFocus, University of Bern, Bern, 3001, Switzerland.,Swiss Competence Center of Animal Breeding and Genetics, Bern University of Applied Sciences HAFL & Agroscope, University of Bern, Bern, 3001, Switzerland
| | - Tosso Leeb
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, 3001, Switzerland.,DermFocus, University of Bern, Bern, 3001, Switzerland.,Swiss Competence Center of Animal Breeding and Genetics, Bern University of Applied Sciences HAFL & Agroscope, University of Bern, Bern, 3001, Switzerland
| |
Collapse
|
37
|
Radke DW, Lee C. Adaptive potential of genomic structural variation in human and mammalian evolution. Brief Funct Genomics 2015; 14:358-68. [PMID: 26003631 DOI: 10.1093/bfgp/elv019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Because phenotypic innovations must be genetically heritable for biological evolution to proceed, it is natural to consider new mutation events as well as standing genetic variation as sources for their birth. Previous research has identified a number of single-nucleotide polymorphisms that underlie a subset of adaptive traits in organisms. However, another well-known class of variation, genomic structural variation, could have even greater potential to produce adaptive phenotypes, due to the variety of possible types of alterations (deletions, insertions, duplications, among others) at different genomic positions and with variable lengths. It is from these dramatic genomic alterations, and selection on their phenotypic consequences, that adaptations leading to biological diversification could be derived. In this review, using studies in humans and other mammals, we highlight examples of how phenotypic variation from structural variants might become adaptive in populations and potentially enable biological diversification. Phenotypic change arising from structural variants will be described according to their immediate effect on organismal metabolic processes, immunological response and physical features. Study of population dynamics of segregating structural variation can therefore provide a window into understanding current and historical biological diversification.
Collapse
|
38
|
Liu X, Xiong X, Yang J, Zhou L, Yang B, Ai H, Ma H, Xie X, Huang Y, Fang S, Xiao S, Ren J, Ma J, Huang L. Genome-wide association analyses for meat quality traits in Chinese Erhualian pigs and a Western Duroc × (Landrace × Yorkshire) commercial population. Genet Sel Evol 2015; 47:44. [PMID: 25962760 PMCID: PMC4427942 DOI: 10.1186/s12711-015-0120-x] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 04/09/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Understanding the genetic mechanisms that underlie meat quality traits is essential to improve pork quality. To date, most quantitative trait loci (QTL) analyses have been performed on F2 crosses between outbred pig strains and have led to the identification of numerous QTL. However, because linkage disequilibrium is high in such crosses, QTL mapping precision is unsatisfactory and only a few QTL have been found to segregate within outbred strains, which limits their use to improve animal performance. To detect QTL in outbred pig populations of Chinese and Western origins, we performed genome-wide association studies (GWAS) for meat quality traits in Chinese purebred Erhualian pigs and a Western Duroc × (Landrace × Yorkshire) (DLY) commercial population. METHODS Three hundred and thirty six Chinese Erhualian and 610 DLY pigs were genotyped using the Illumina PorcineSNP60K Beadchip and evaluated for 20 meat quality traits. After quality control, 35 985 and 56 216 single nucleotide polymorphisms (SNPs) were available for the Chinese Erhualian and DLY datasets, respectively, and were used to perform two separate GWAS. We also performed a meta-analysis that combined P-values and effects of 29 516 SNPs that were common to Erhualian, DLY, F2 and Sutai pig populations. RESULTS We detected 28 and nine suggestive SNPs that surpassed the significance level for meat quality in Erhualian and DLY pigs, respectively. Among these SNPs, ss131261254 on pig chromosome 4 (SSC4) was the most significant (P = 7.97E-09) and was associated with drip loss in Erhualian pigs. Our results suggested that at least two QTL on SSC12 and on SSC15 may have pleiotropic effects on several related traits. All the QTL that were detected by GWAS were population-specific, including 12 novel regions. However, the meta-analysis revealed seven novel QTL for meat characteristics, which suggests the existence of common underlying variants that may differ in frequency across populations. These QTL regions contain several relevant candidate genes. CONCLUSIONS These findings provide valuable insights into the molecular basis of convergent evolution of meat quality traits in Chinese and Western breeds that show divergent phenotypes. They may contribute to genetic improvement of purebreds for crossbred performance.
Collapse
Affiliation(s)
- Xianxian Liu
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Xinwei Xiong
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Jie Yang
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Lisheng Zhou
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Bin Yang
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Huashui Ai
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Huanban Ma
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Xianhua Xie
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Yixuan Huang
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Shaoming Fang
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Shijun Xiao
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Jun Ren
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Junwu Ma
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Lusheng Huang
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, 330045, China.
| |
Collapse
|
39
|
Becker D, Otto M, Ammann P, Keller I, Drögemüller C, Leeb T. The brown coat colour of Coppernecked goats is associated with a non-synonymous variant at the TYRP1 locus on chromosome 8. Anim Genet 2015; 46:50-4. [PMID: 25392961 DOI: 10.1111/age.12240] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2014] [Indexed: 12/26/2022]
Abstract
The recent development of a goat SNP genotyping microarray enables genome-wide association studies in this important livestock species. We investigated the genetic basis of the black and brown coat colour in Valais Blacknecked and Coppernecked goats. A genome-wide association analysis using goat SNP50 BeadChip genotypes of 22 cases and 23 controls allowed us to map the locus for the brown coat colour to goat chromosome 8. The TYRP1 gene is located within the associated chromosomal region, and TYRP1 variants cause similar coat colour phenotypes in different species. We thus considered TYRP1 as a strong positional and functional candidate. We resequenced the caprine TYRP1 gene by Sanger and Illumina sequencing and identified two non-synonymous variants, p.Ile478Thr and p.Gly496Asp, that might have a functional impact on the TYRP1 protein. However, based on the obtained pedigree and genotype data, the brown coat colour in these goats is not due to a single recessive loss-of-function allele. Surprisingly, the genotype distribution and the pedigree data suggest that the (496) Asp allele might possibly act in a dominant manner. The (496) Asp allele was present in 77 of 81 investigated Coppernecked goats and did not occur in black goats. This strongly suggests heterogeneity underlying the brown coat colour in Coppernecked goats. Functional experiments or targeted matings will be required to verify the unexpected preliminary findings.
Collapse
Affiliation(s)
- D Becker
- Vetsuisse Faculty, Institute of Genetics, University of Bern, 3001, Bern, Switzerland; Vetsuisse Faculty, DermFocus, University of Bern, 3001, Bern, Switzerland
| | | | | | | | | | | |
Collapse
|
40
|
Ma J, Yang J, Zhou L, Ren J, Liu X, Zhang H, Yang B, Zhang Z, Ma H, Xie X, Xing Y, Guo Y, Huang L. A splice mutation in the PHKG1 gene causes high glycogen content and low meat quality in pig skeletal muscle. PLoS Genet 2014; 10:e1004710. [PMID: 25340394 PMCID: PMC4207639 DOI: 10.1371/journal.pgen.1004710] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 08/26/2014] [Indexed: 11/19/2022] Open
Abstract
Glycolytic potential (GP) in skeletal muscle is economically important in the pig industry because of its effect on pork processing yield. We have previously mapped a major quantitative trait loci (QTL) for GP on chromosome 3 in a White Duroc × Erhualian F2 intercross. We herein performed a systems genetic analysis to identify the causal variant underlying the phenotype QTL (pQTL). We first conducted genome-wide association analyses in the F2 intercross and an F19 Sutai pig population. The QTL was then refined to an 180-kb interval based on the 2-LOD drop method. We then performed expression QTL (eQTL) mapping using muscle transcriptome data from 497 F2 animals. Within the QTL interval, only one gene (PHKG1) has a cis-eQTL that was colocolizated with pQTL peaked at the same SNP. The PHKG1 gene encodes a catalytic subunit of the phosphorylase kinase (PhK), which functions in the cascade activation of glycogen breakdown. Deep sequencing of PHKG1 revealed a point mutation (C>A) in a splice acceptor site of intron 9, resulting in a 32-bp deletion in the open reading frame and generating a premature stop codon. The aberrant transcript induces nonsense-mediated decay, leading to lower protein level and weaker enzymatic activity in affected animals. The mutation causes an increase of 43% in GP and a decrease of>20% in water-holding capacity of pork. These effects were consistent across the F2 and Sutai populations, as well as Duroc × (Landrace × Yorkshire) hybrid pigs. The unfavorable allele exists predominantly in Duroc-derived pigs. The findings provide new insights into understanding risk factors affecting glucose metabolism, and would greatly contribute to the genetic improvement of meat quality in Duroc related pigs. Glycogen storage diseases (GSD) are a group of inherited disorders characterized by storage of excess glycogen, which are mainly caused by the abnormality of a particular enzyme essential for releasing glucose from glycogen. GSD-like conditions have been described in a wide variety of species. Pigs are a valuable model for the study of human GSD. Moreover, pigs affected by GSD usually produce inferior pork with a lower ultimate pH (so-called “acid meat”) and less processing yield due to post-mortem degradation of the excess glycogen. So far, only one causal variant, PRKAG3 R225Q, has been identified for GSD in pigs. Here we reported a loss-of-function mutation in the PHKG1 gene that causes the deficiency of the glycogen breakdown, consequently leading to GSD and acid meat in Duroc-sired pigs. Eliminating the undesirable mutation from the breeding stock by a diagnostic DNA test will greatly reduce the incidence of GSD and significantly improve pork quality and productivity in the pig.
Collapse
Affiliation(s)
- Junwu Ma
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, P.R. China
- * E-mail: (JM); (LH)
| | - Jie Yang
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, P.R. China
| | - Lisheng Zhou
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, P.R. China
| | - Jun Ren
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, P.R. China
| | - Xianxian Liu
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, P.R. China
| | - Hui Zhang
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, P.R. China
| | - Bin Yang
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, P.R. China
| | - Zhiyan Zhang
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, P.R. China
| | - Huanban Ma
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, P.R. China
| | - Xianhua Xie
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, P.R. China
| | - Yuyun Xing
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, P.R. China
| | - Yuanmei Guo
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, P.R. China
| | - Lusheng Huang
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, P.R. China
- * E-mail: (JM); (LH)
| |
Collapse
|
41
|
Dong K, Yao N, Pu Y, He X, Zhao Q, Luan Y, Guan W, Rao S, Ma Y. Genomic scan reveals loci under altitude adaptation in Tibetan and Dahe pigs. PLoS One 2014; 9:e110520. [PMID: 25329542 PMCID: PMC4201535 DOI: 10.1371/journal.pone.0110520] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 09/16/2014] [Indexed: 01/04/2023] Open
Abstract
High altitude environments are of particular interest in the studies of local adaptation as well as their implications in physiology and clinical medicine in human. Some Chinese pig breeds, such as Tibetan pig (TBP) that is well adapted to the high altitude and Dahe pig (DHP) that dwells at the moderate altitude, provide ideal materials to study local adaptation to altitudes. Yet, it is still short of in-depth analysis and understanding of the genetic adaptation to high altitude in the two pig populations. In this study we conducted a genomic scan for selective sweeps using FST to identify genes showing evidence of local adaptations in TBP and DHP, with Wuzhishan pig (WZSP) as the low-altitude reference. Totally, we identified 12 specific selective genes (CCBE1, F2RL1, AGGF1, ZFPM2, IL2, FGF5, PLA2G4A, ADAMTS9, NRBF2, JMJD1C, VEGFC and ADAM19) for TBP and six (OGG1, FOXM, FLT3, RTEL1, CRELD1 and RHOG) for DHP. In addition, six selective genes (VPS13A, GNA14, GDAP1, PARP8, FGF10 and ADAMTS16) were shared by the two pig breeds. Among these selective genes, three (VEGFC, FGF10 and ADAMTS9) were previously reported to be linked to the local adaptation to high altitudes in pigs, while many others were newly identified by this study. Further bioinformatics analysis demonstrated that majority of these selective signatures have some biological functions relevant to the altitude adaptation, for examples, response to hypoxia, development of blood vessels, DNA repair and several hematological involvements. These results suggest that the local adaptation to high altitude environments is sophisticated, involving numerous genes and multiple biological processes, and the shared selective signatures by the two pig breeds may provide an effective avenue to identify the common adaptive mechanisms to different altitudes.
Collapse
Affiliation(s)
- Kunzhe Dong
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Na Yao
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yabin Pu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaohong He
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qianjun Zhao
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yizhao Luan
- Institute for Medical Systems Biology and Department of Medical Statistics and Epidemiology, Guangdong Medical College, Dongguan, China
| | - Weijun Guan
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shaoqi Rao
- Institute for Medical Systems Biology and Department of Medical Statistics and Epidemiology, Guangdong Medical College, Dongguan, China
- * E-mail: (YHM); (SQR)
| | - Yuehui Ma
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- * E-mail: (YHM); (SQR)
| |
Collapse
|
42
|
Xu Y, Zhang XH, Pang YZ. Association of Tyrosinase (TYR) and Tyrosinase-related Protein 1 (TYRP1) with Melanic Plumage Color in Korean Quails (Coturnix coturnix). ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2014; 26:1518-22. [PMID: 25049736 PMCID: PMC4093817 DOI: 10.5713/ajas.2013.13162] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 07/01/2013] [Accepted: 05/30/2013] [Indexed: 11/27/2022]
Abstract
TYR (Tyrosinase) and TYRP1 (Tyrosinase-related protein 1) play crucial roles in determining the coat color of birds. In this paper, we aimed to characterize the relationship of TYR and TYRP1 genes with plumage colors in Korean quails. The SNPs were searched by cDNA sequencing and PCR-SSCP in three plumage color Korean quails (maroon, white and black plumage). Two SNPs (367T→C and 1153C→T) were found in the coding region of TYRP1 gene, but had no significant association with plumage phenotype in Korean quails. The expression of TYR was higher in black plumage quails than that in maroon plumage quails. In contrast, the expression of TYRP1 was lower in black plumage quails than that in maroon plumage quails. This study suggested that the melanic plumage color in Korean quails may be associated with either increased production of TYR or decreased production of TYRP1.
Collapse
Affiliation(s)
- Ying Xu
- College of Animal Science, Henan University of Science and Technology, Luoyang, 471003, China
| | - Xiao-Hui Zhang
- College of Animal Science, Henan University of Science and Technology, Luoyang, 471003, China
| | - You-Zhi Pang
- College of Animal Science, Henan University of Science and Technology, Luoyang, 471003, China
| |
Collapse
|
43
|
Utzeri VJ, Ribani A, Fontanesi L. A premature stop codon in theTYRP1gene is associated with brown coat colour in the European rabbit (Oryctolagus cuniculus). Anim Genet 2014; 45:600-3. [DOI: 10.1111/age.12171] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2014] [Indexed: 11/30/2022]
Affiliation(s)
- V. J. Utzeri
- Department of Agricultural and Food Sciences (DISTAL); Division of Animal Sciences; University of Bologna; Viale Fanin 46 40127 Bologna Italy
| | - A. Ribani
- Department of Agricultural and Food Sciences (DISTAL); Division of Animal Sciences; University of Bologna; Viale Fanin 46 40127 Bologna Italy
| | - L. Fontanesi
- Department of Agricultural and Food Sciences (DISTAL); Division of Animal Sciences; University of Bologna; Viale Fanin 46 40127 Bologna Italy
- Centre for Genome Biology; University of Bologna; 40126 Bologna Italy
| |
Collapse
|
44
|
The application of genome-wide SNP genotyping methods in studies on livestock genomes. J Appl Genet 2014; 55:197-208. [PMID: 24566962 DOI: 10.1007/s13353-014-0202-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 01/14/2014] [Accepted: 02/04/2014] [Indexed: 01/07/2023]
Abstract
Animal genomics is currently undergoing dynamic development, which is driven by the flourishing of high-throughput genome analysis methods. Recently, a large number of animals has been genotyped with the use of whole-genome genotyping assays in the course of genomic selection programmes. The results of such genotyping can also be used for studies on different aspects of livestock genome functioning and diversity. In this article, we review the recent literature concentrating on various aspects of animal genomics, including studies on linkage disequilibrium, runs of homozygosity, selection signatures, copy number variation and genetic differentiation of animal populations. Our work is aimed at providing insight into certain achievements of animal genomics and to arouse interest in basic research on the complexity and structure of the genomes of livestock.
Collapse
|
45
|
Wang GD, Xie HB, Peng MS, Irwin D, Zhang YP. Domestication Genomics: Evidence from Animals. Annu Rev Anim Biosci 2014; 2:65-84. [DOI: 10.1146/annurev-animal-022513-114129] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Guo-Dong Wang
- State Key Laboratory of Genetic Resources and Evolution and Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China;
| | - Hai-Bing Xie
- State Key Laboratory of Genetic Resources and Evolution and Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China;
| | - Min-Sheng Peng
- State Key Laboratory of Genetic Resources and Evolution and Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China;
| | - David Irwin
- State Key Laboratory of Genetic Resources and Evolution and Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China;
| | - Ya-Ping Zhang
- State Key Laboratory of Genetic Resources and Evolution and Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China;
| |
Collapse
|
46
|
Mutations in MC1R gene determine black coat color phenotype in Chinese sheep. ScientificWorldJournal 2013; 2013:675382. [PMID: 24082855 PMCID: PMC3776380 DOI: 10.1155/2013/675382] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Accepted: 07/26/2013] [Indexed: 11/24/2022] Open
Abstract
The melanocortin receptor 1 (MC1R) plays a central role in regulation of animal coat color formation. In this study, we sequenced the complete coding region
and parts of the 5′- and 3′-untranslated regions of the MC1R gene in Chinese sheep with completely
white (Large-tailed Han sheep), black (Minxian Black-fur sheep), and brown coat colors (Kazakh Fat-Rumped sheep). The results showed five single nucleotide
polymorphisms (SNPs): two non-synonymous mutations previously associated with coat color (c.218 T>A, p.73 Met>Lys. c.361 G>A, p.121 Asp>Asn)
and three synonymous mutations (c.429 C>T, p.143 Tyr>Tyr; c.600 T>G, p.200 Leu>Leu. c.735 C>T, p.245 Ile>Ile). Meanwhile, all mutations
were detected in Minxian Black-fur sheep. However, the two nonsynonymous mutation sites were not in all studied breeds (Large-tailed Han, Small-tailed Han, Gansu Alpine Merino,
and China Merino breeds), all of which are in white coat. A single haplotype AATGT (haplotype3) was uniquely associated with black coat color in Minxian Black-fur breed (P = 9.72E − 72, chi-square test). The first and second A alleles in this haplotype 3 represent location at 218 and 361 positions, respectively. Our results suggest that the mutations
of MC1R gene are associated with black coat color phenotype in Chinese sheep.
Collapse
|
47
|
Yang B, Zhang W, Zhang Z, Fan Y, Xie X, Ai H, Ma J, Xiao S, Huang L, Ren J. Genome-wide association analyses for fatty acid composition in porcine muscle and abdominal fat tissues. PLoS One 2013; 8:e65554. [PMID: 23762394 PMCID: PMC3676363 DOI: 10.1371/journal.pone.0065554] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 04/26/2013] [Indexed: 01/03/2023] Open
Abstract
Fatty acid composition is an important phenotypic trait in pigs as it affects nutritional, technical and sensory quality of pork. Here, we reported a genome-wide association study (GWAS) for fatty acid composition in the longissimus muscle and abdominal fat tissues of 591 White Duroc×Erhualian F2 animals and in muscle samples of 282 Chinese Sutai pigs. A total of 46 loci surpassing the suggestive significance level were identified on 15 pig chromosomes (SSC) for 12 fatty acids, revealing the complex genetic architecture of fatty acid composition in pigs. Of the 46 loci, 15 on SSC5, 7, 14 and 16 reached the genome-wide significance level. The two most significant SNPs were ss131535508 (P = 2.48×10(-25)) at 41.39 Mb on SSC16 for C20∶0 in abdominal fat and ss478935891 (P = 3.29×10(-13)) at 121.31 Mb on SSC14 for muscle C18∶0. A meta-analysis of GWAS identified 4 novel loci and enhanced the association strength at 6 loci compared to those evidenced in a single population, suggesting the presence of common underlying variants. The longissimus muscle and abdominal fat showed consistent association profiles at most of the identified loci and distinct association signals at several loci. All loci have specific effects on fatty acid composition, except for two loci on SSC4 and SSC7 affecting multiple fatness traits. Several promising candidate genes were found in the neighboring regions of the lead SNPs at the genome-wide significant loci, such as SCD for C18∶0 and C16∶1 on SSC14 and ELOVL7 for C20∶0 on SSC16. The findings provide insights into the molecular basis of fatty acid composition in pigs, and would benefit the final identification of the underlying mutations.
Collapse
Affiliation(s)
- Bin Yang
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, China
| | - Wanchang Zhang
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, China
| | - Zhiyan Zhang
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, China
| | - Yin Fan
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, China
| | - Xianhua Xie
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, China
| | - Huashui Ai
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, China
| | - Junwu Ma
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, China
| | - Shijun Xiao
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, China
| | - Lusheng Huang
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, China
- * E-mail: (LH); (JR)
| | - Jun Ren
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, China
- * E-mail: (LH); (JR)
| |
Collapse
|
48
|
Ma J, Yang J, Zhou L, Zhang Z, Ma H, Xie X, Zhang F, Xiong X, Cui L, Yang H, Liu X, Duan Y, Xiao S, Ai H, Ren J, Huang L. Genome-wide association study of meat quality traits in a White Duroc×Erhualian F2 intercross and Chinese Sutai pigs. PLoS One 2013; 8:e64047. [PMID: 23724019 PMCID: PMC3665833 DOI: 10.1371/journal.pone.0064047] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 04/07/2013] [Indexed: 12/31/2022] Open
Abstract
Thousands of QTLs for meat quality traits have been identified by linkage mapping studies, but most of them lack precise position or replication between populations, which hinder their application in pig breeding programs. To localize QTLs for meat quality traits to precise genomic regions, we performed a genome-wide association (GWA) study using the Illumina PorcineSNP60K Beadchip in two swine populations: 434 Sutai pigs and 933 F2 pigs from a White Duroc×Erhualian intercross. Meat quality traits, including pH, color, drip loss, moisture content, protein content and intramuscular fat content (IMF), marbling and firmness scores in the M. longissimus (LM) and M. semimembranosus (SM) muscles, were recorded on the two populations. In total, 127 chromosome-wide significant SNPs for these traits were identified. Among them, 11 SNPs reached genome-wise significance level, including 1 on SSC3 for pH, 1 on SSC3 and 3 on SSC15 for drip loss, 3 (unmapped) for color a*, and 2 for IMF each on SSC9 and SSCX. Except for 11 unmapped SNPs, 116 significant SNPs fell into 28 genomic regions of approximately 10 Mb or less. Most of these regions corresponded to previously reported QTL regions and spanned smaller intervals than before. The loci on SSC3 and SSC7 appeared to have pleiotropic effects on several related traits. Besides them, a few QTL signals were replicated between the two populations. Further, we identified thirteen new candidate genes for IMF, marbling and firmness, on the basis of their positions, functional annotations and reported expression patterns. The findings will contribute to further identification of the causal mutation underlying these QTLs and future marker-assisted selection in pigs.
Collapse
Affiliation(s)
- Junwu Ma
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, China
| | - Jie Yang
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, China
| | - Lisheng Zhou
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, China
| | - Zhiyan Zhang
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, China
| | - Huanban Ma
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, China
| | - Xianhua Xie
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, China
| | - Feng Zhang
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, China
| | - Xinwei Xiong
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, China
| | - Leilei Cui
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, China
| | - Hui Yang
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, China
| | - Xianxian Liu
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, China
| | - Yanyu Duan
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, China
| | - Shijun Xiao
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, China
| | - Huashui Ai
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, China
| | - Jun Ren
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, China
| | - Lusheng Huang
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, China
- * E-mail:
| |
Collapse
|
49
|
Ai H, Huang L, Ren J. Genetic diversity, linkage disequilibrium and selection signatures in chinese and Western pigs revealed by genome-wide SNP markers. PLoS One 2013; 8:e56001. [PMID: 23409110 PMCID: PMC3567019 DOI: 10.1371/journal.pone.0056001] [Citation(s) in RCA: 172] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2012] [Accepted: 01/03/2013] [Indexed: 11/18/2022] Open
Abstract
To investigate population structure, linkage disequilibrium (LD) pattern and selection signature at the genome level in Chinese and Western pigs, we genotyped 304 unrelated animals from 18 diverse populations using porcine 60 K SNP chips. We confirmed the divergent evolution between Chinese and Western pigs and showed distinct topological structures of the tested populations. We acquired the evidence for the introgression of Western pigs into two Chinese pig breeds. Analysis of runs of homozygosity revealed that historical inbreeding reduced genetic variability in several Chinese breeds. We found that intrapopulation LD extents are roughly comparable between Chinese and Western pigs. However, interpopulation LD is much longer in Western pigs compared with Chinese pigs with average r(2) (0.3) values of 125 kb for Western pigs and only 10.5 kb for Chinese pigs. The finding indicates that higher-density markers are required to capture LD with causal variants in genome-wide association studies and genomic selection on Chinese pigs. Further, we looked across the genome to identify candidate loci under selection using F(ST) outlier tests on two contrast samples: Tibetan pigs versus lowland pigs and belted pigs against non-belted pigs. Interestingly, we highlighted several genes including ADAMTS12, SIM1 and NOS1 that show signatures of natural selection in Tibetan pigs and are likely important for genetic adaptation to high altitude. Comparison of our findings with previous reports indicates that the underlying genetic basis for high-altitude adaptation in Tibetan pigs, Tibetan peoples and yaks is likely distinct from one another. Moreover, we identified the strongest signal of directional selection at the EDNRB loci in Chinese belted pigs, supporting EDNRB as a promising candidate gene for the white belt coat color in Chinese pigs. Altogether, our findings advance the understanding of the genome biology of Chinese and Western pigs.
Collapse
Affiliation(s)
- Huashui Ai
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, China
| | - Lusheng Huang
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, China
- * E-mail: (JR); (LH)
| | - Jun Ren
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, China
- * E-mail: (JR); (LH)
| |
Collapse
|
50
|
Zhang H, Wang Z, Wang S, Li H. Progress of genome wide association study in domestic animals. J Anim Sci Biotechnol 2012; 3:26. [PMID: 22958308 PMCID: PMC3506437 DOI: 10.1186/2049-1891-3-26] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2011] [Accepted: 08/14/2012] [Indexed: 01/29/2023] Open
Abstract
Domestic animals are invaluable resources for study of the molecular architecture of complex traits. Although the mapping of quantitative trait loci (QTL) responsible for economically important traits in domestic animals has achieved remarkable results in recent decades, not all of the genetic variation in the complex traits has been captured because of the low density of markers used in QTL mapping studies. The genome wide association study (GWAS), which utilizes high-density single-nucleotide polymorphism (SNP), provides a new way to tackle this issue. Encouraging achievements in dissection of the genetic mechanisms of complex diseases in humans have resulted from the use of GWAS. At present, GWAS has been applied to the field of domestic animal breeding and genetics, and some advances have been made. Many genes or markers that affect economic traits of interest in domestic animals have been identified. In this review, advances in the use of GWAS in domestic animals are described.
Collapse
Affiliation(s)
- Hui Zhang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture, Harbin, 150030, People's Republic of China.
| | | | | | | |
Collapse
|