1
|
Florez-Rueda AM, Fiscalini F, Roth M, Grossniklaus U, Städler T. Endosperm and Seed Transcriptomes Reveal Possible Roles for Small RNA Pathways in Wild Tomato Hybrid Seed Failure. Genome Biol Evol 2021; 13:6278300. [PMID: 34009298 PMCID: PMC8358227 DOI: 10.1093/gbe/evab107] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2021] [Indexed: 01/10/2023] Open
Abstract
Crosses between the wild tomato species Solanum peruvianum and Solanum chilense result in hybrid seed failure (HSF), characterized by endosperm misdevelopment and embryo arrest. We previously showed that genomic imprinting, the parent-of-origin–dependent expression of alleles, is perturbed in the hybrid endosperm, with many of the normally paternally expressed genes losing their imprinted status. Here, we report transcriptome-based analyses of gene and small RNA (sRNA) expression levels. We identified 2,295 genes and 387 sRNA clusters as differentially expressed when comparing reciprocal hybrid seed to seeds and endosperms from the two within-species crosses. Our analyses uncovered a pattern of overdominance in endosperm gene expression in both hybrid cross directions, in marked contrast to the patterns of sRNA expression in whole seeds. Intriguingly, patterns of increased gene expression resemble the previously reported increased maternal expression proportions in hybrid endosperms. We identified physical clusters of sRNAs; differentially expressed sRNAs exhibit reduced transcript abundance in hybrid seeds of both cross directions. Moreover, sRNAs map to genes coding for key proteins involved in epigenetic regulation of gene expression, suggesting a regulatory feedback mechanism. We describe examples of genes that appear to be targets of sRNA-mediated gene silencing; in these cases, reduced sRNA abundance is concomitant with increased gene expression in hybrid seeds. Our analyses also show that S. peruvianum dominance impacts gene and sRNA expression in hybrid seeds. Overall, our study indicates roles for sRNA-mediated epigenetic regulation in HSF between closely related wild tomato species.
Collapse
Affiliation(s)
- Ana Marcela Florez-Rueda
- Department of Plant and Microbial Biology & Zurich-Basel Plant Science Center, University of Zurich, 8008 Zurich, Switzerland.,Institute of Integrative Biology & Zurich-Basel Plant Science Center, ETH Zurich, 8092 Zurich, Switzerland
| | - Flurin Fiscalini
- Department of Plant and Microbial Biology & Zurich-Basel Plant Science Center, University of Zurich, 8008 Zurich, Switzerland
| | - Morgane Roth
- Institute of Integrative Biology & Zurich-Basel Plant Science Center, ETH Zurich, 8092 Zurich, Switzerland
| | - Ueli Grossniklaus
- Department of Plant and Microbial Biology & Zurich-Basel Plant Science Center, University of Zurich, 8008 Zurich, Switzerland
| | - Thomas Städler
- Institute of Integrative Biology & Zurich-Basel Plant Science Center, ETH Zurich, 8092 Zurich, Switzerland
| |
Collapse
|
2
|
Florez-Rueda AM, Scharmann M, Roth M, Städler T. Population Genomics of the "Arcanum" Species Group in Wild Tomatoes: Evidence for Separate Origins of Two Self-Compatible Lineages. FRONTIERS IN PLANT SCIENCE 2021; 12:624442. [PMID: 33815438 PMCID: PMC8018279 DOI: 10.3389/fpls.2021.624442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 02/24/2021] [Indexed: 05/07/2023]
Abstract
Given their diverse mating systems and recent divergence, wild tomatoes (Solanum section Lycopersicon) have become an attractive model system to study ecological divergence, the build-up of reproductive barriers, and the causes and consequences of the breakdown of self-incompatibility. Here we report on a lesser-studied group of species known as the "Arcanum" group, comprising the nominal species Solanum arcanum, Solanum chmielewskii, and Solanum neorickii. The latter two taxa are self-compatible but are thought to self-fertilize at different rates, given their distinct manifestations of the morphological "selfing syndrome." Based on experimental crossings and transcriptome sequencing of a total of 39 different genotypes from as many accessions representing each species' geographic range, we provide compelling evidence for deep genealogical divisions within S. arcanum; only the self-incompatible lineage known as "var. marañón" has close genealogical ties to the two self-compatible species. Moreover, there is evidence under multiple inference schemes for different geographic subsets of S. arcanum var. marañón being closest to S. chmielewskii and S. neorickii, respectively. To broadly characterize the population-genomic consequences of these recent mating-system transitions and their associated speciation events, we fit demographic models indicating strong reductions in effective population size, congruent with reduced nucleotide and S-locus diversity in the two independently derived self-compatible species.
Collapse
|
3
|
Srivastava A, Murugaiyan J, Garcia JAL, De Corte D, Hoetzinger M, Eravci M, Weise C, Kumar Y, Roesler U, Hahn MW, Grossart HP. Combined Methylome, Transcriptome and Proteome Analyses Document Rapid Acclimatization of a Bacterium to Environmental Changes. Front Microbiol 2020; 11:544785. [PMID: 33042055 PMCID: PMC7522526 DOI: 10.3389/fmicb.2020.544785] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 08/18/2020] [Indexed: 11/13/2022] Open
Abstract
Polynucleobacter asymbioticus strain QLW-P1DMWA-1T represents a group of highly successful heterotrophic ultramicrobacteria that is frequently very abundant (up to 70% of total bacterioplankton) in freshwater habitats across all seven continents. This strain was originally isolated from a shallow Alpine pond characterized by rapid changes in water temperature and elevated UV radiation due to its location at an altitude of 1300 m. To elucidate the strain’s adjustment to fluctuating environmental conditions, we recorded changes occurring in its transcriptomic and proteomic profiles under contrasting experimental conditions by simulating thermal conditions in winter and summer as well as high UV irradiation. To analyze the potential connection between gene expression and regulation via methyl group modification of the genome, we also analyzed its methylome. The methylation pattern differed between the three treatments, pointing to its potential role in differential gene expression. An adaptive process due to evolutionary pressure in the genus was deduced by calculating the ratios of non-synonymous to synonymous substitution rates for 20 Polynucleobacter spp. genomes obtained from geographically diverse isolates. The results indicate purifying selection.
Collapse
Affiliation(s)
- Abhishek Srivastava
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Stechlin, Germany.,Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Jayaseelan Murugaiyan
- Centre for Infectious Medicine, Institute for Animal Health and Environmental Hygiene, Freie Universität Berlin, Berlin, Germany.,Department of Biotechnology, SRM University-AP, Guntur, India
| | - Juan A L Garcia
- Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Daniele De Corte
- Research and Development Center for Marine Biosciences, Japan Agency for Marine-Earth Science and Technology, Yokosuka, Japan
| | - Matthias Hoetzinger
- Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - Murat Eravci
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Christoph Weise
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Yadhu Kumar
- Eurofins Genomics Europe Sequencing GmbH, Konstanz, Germany
| | - Uwe Roesler
- Centre for Infectious Medicine, Institute for Animal Health and Environmental Hygiene, Freie Universität Berlin, Berlin, Germany
| | - Martin W Hahn
- Research Department for Limnology, University of Innsbruck, Mondsee, Austria
| | - Hans-Peter Grossart
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Stechlin, Germany.,Institute for Biochemistry and Biology, Potsdam University, Potsdam, Germany
| |
Collapse
|
4
|
Zhao W, Sun YQ, Pan J, Sullivan AR, Arnold ML, Mao JF, Wang XR. Effects of landscapes and range expansion on population structure and local adaptation. THE NEW PHYTOLOGIST 2020; 228:330-343. [PMID: 32323335 DOI: 10.1111/nph.16619] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 04/15/2020] [Indexed: 05/25/2023]
Abstract
Understanding the origin and distribution of genetic diversity across landscapes is critical for predicting the future of organisms in changing climates. This study investigated how adaptive and demographic forces have shaped diversity and population structure in Pinus densata, a keystone species on Qinghai-Tibetan Plateau (QTP). We examined the distribution of genomic diversity across the range of P. densata using exome capture sequencing. We applied spatially explicit tests to dissect the impacts of allele surfing, geographic isolation and environmental gradients on population differentiation and forecasted how this genetic legacy may limit the persistence of P. densata in future climates. We found that allele surfing from range expansion could explain the distribution of 39% of the c. 48 000 genotyped single nucleotide polymorphisms (SNPs). Uncorrected, these allele frequency clines severely confounded inferences of selection. After controlling for demographic processes, isolation-by-environment explained 9.2-19.5% of the genetic structure, with c. 4.0% of loci being affected by selection. Allele surfing and genotype-environment associations resulted in genomic mismatch under projected climate scenarios. We illustrate that significant local adaptation, when coupled with reduced diversity as a result of demographic history, constrains potential evolutionary response to climate change. The strong signal of genomic vulnerability in P. densata may be representative for other QTP endemics.
Collapse
Affiliation(s)
- Wei Zhao
- Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, 100083, Beijing, China
- Department of Ecology and Environmental Science, UPSC, Umeå University, SE-901 87, Umeå, Sweden
| | - Yan-Qiang Sun
- Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, 100083, Beijing, China
| | - Jin Pan
- Department of Ecology and Environmental Science, UPSC, Umeå University, SE-901 87, Umeå, Sweden
| | - Alexis R Sullivan
- Department of Ecology and Environmental Science, UPSC, Umeå University, SE-901 87, Umeå, Sweden
| | - Michael L Arnold
- Department of Genetics, University of Georgia, Athens, GA, 30602-7223, USA
| | - Jian-Feng Mao
- Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, 100083, Beijing, China
| | - Xiao-Ru Wang
- Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, 100083, Beijing, China
- Department of Ecology and Environmental Science, UPSC, Umeå University, SE-901 87, Umeå, Sweden
| |
Collapse
|
5
|
Differences in Effective Ploidy Drive Genome-Wide Endosperm Expression Polarization and Seed Failure in Wild Tomato Hybrids. Genetics 2019; 212:141-152. [PMID: 30902809 DOI: 10.1534/genetics.119.302056] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 03/18/2019] [Indexed: 01/24/2023] Open
Abstract
Parental imbalances in the endosperm leading to impaired development and eventual hybrid seed failure are common causes of postzygotic isolation in flowering plants. Endosperm sensitivity to parental dosage is reflected by canonical phenotypes of "parental excess" in reciprocal interploid crosses. Moreover, parental-excess traits are also evident in many homoploid interspecific crosses, potentially reflecting among-lineage variation in "effective ploidy" driven by endosperm properties. However, the genetic basis of effective ploidy is unknown and genome-wide expression perturbations in parental-excess endosperms from homoploid crosses have yet to be reported. The tomato clade (Solanum section Lycopersicon), encompassing closely related diploids with partial-to-complete hybrid seed failure, provides outstanding opportunities to study these issues. Here, we compared replicated endosperm transcriptomes from six crosses within and among three wild tomato lineages. Strikingly, strongly inviable hybrid crosses displayed conspicuous, asymmetric expression perturbations that mirror previously characterized parental-excess phenotypes. Solanum peruvianum, the species inferred to have evolved higher effective ploidy than the other two, drove expression landscape polarization between maternal and paternal roles. This global expression divergence was mirrored in functionally important gene families such as MADS-box transcription factors and E3 ubiquitin ligases, and revealed differences in cell cycle tuning that match phenotypic differences in developing endosperm and mature seed size between reciprocal crosses. Our work starts to uncover the complex interactions between expression divergence, parental conflict, and hybrid seed failure that likely contributed to plant diversity.
Collapse
|
6
|
Roth M, Florez-Rueda AM, Paris M, Städler T. Wild tomato endosperm transcriptomes reveal common roles of genomic imprinting in both nuclear and cellular endosperm. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 95:1084-1101. [PMID: 29953688 DOI: 10.1111/tpj.14012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 06/01/2018] [Accepted: 06/20/2018] [Indexed: 05/06/2023]
Abstract
Genomic imprinting is a conspicuous feature of the endosperm, a triploid tissue nurturing the embryo and synchronizing angiosperm seed development. An unknown subset of imprinted genes (IGs) is critical for successful seed development and should have highly conserved functions. Recent genome-wide studies have found limited conservation of IGs among distantly related species, but there is a paucity of data from closely related lineages. Moreover, most studies focused on model plants with nuclear endosperm development, and comparisons with properties of IGs in cellular-type endosperm development are lacking. Using laser-assisted microdissection, we characterized parent-specific expression in the cellular endosperm of three wild tomato lineages (Solanum section Lycopersicon). We identified 1025 candidate IGs and 167 with putative homologs previously identified as imprinted in distantly related taxa with nuclear-type endosperm. Forty-two maternally expressed genes (MEGs) and 17 paternally expressed genes (PEGs) exhibited conserved imprinting status across all three lineages, but differences in power to assess imprinted expression imply that the actual degree of conservation might be higher than that directly estimated (20.7% for PEGs and 10.4% for MEGs). Regardless, the level of shared imprinting status was higher for PEGs than for MEGs, indicating dissimilar evolutionary trajectories. Expression-level data suggest distinct epigenetic modulation of MEGs and PEGs, and gene ontology analyses revealed MEGs and PEGs to be enriched for different functions. Importantly, our data provide evidence that MEGs and PEGs interact in modulating both gene expression and the endosperm cell cycle, and uncovered conserved cellular functions of IGs uniting taxa with cellular- and nuclear-type endosperm.
Collapse
Affiliation(s)
- Morgane Roth
- Plant Ecological Genetics, Institute of Integrative Biology & Zurich-Basel Plant Science Center, ETH Zurich, 8092, Zurich, Switzerland
| | - Ana M Florez-Rueda
- Plant Ecological Genetics, Institute of Integrative Biology & Zurich-Basel Plant Science Center, ETH Zurich, 8092, Zurich, Switzerland
| | - Margot Paris
- Plant Ecological Genetics, Institute of Integrative Biology & Zurich-Basel Plant Science Center, ETH Zurich, 8092, Zurich, Switzerland
| | - Thomas Städler
- Plant Ecological Genetics, Institute of Integrative Biology & Zurich-Basel Plant Science Center, ETH Zurich, 8092, Zurich, Switzerland
| |
Collapse
|
7
|
Grivet D, Avia K, Vaattovaara A, Eckert AJ, Neale DB, Savolainen O, González-Martínez SC. High rate of adaptive evolution in two widespread European pines. Mol Ecol 2017; 26:6857-6870. [PMID: 29110402 DOI: 10.1111/mec.14402] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 09/14/2017] [Accepted: 09/25/2017] [Indexed: 12/18/2022]
Abstract
Comparing related organisms with differing ecological requirements and evolutionary histories can shed light on the mechanisms and drivers underlying genetic adaptation. Here, by examining a common set of hundreds of loci, we compare patterns of nucleotide diversity and molecular adaptation of two European conifers (Scots pine and maritime pine) living in contrasted environments and characterized by distinct population genetic structure (low and clinal in Scots pine, high and ecotypic in maritime pine) and demographic histories. We found higher nucleotide diversity in Scots pine than in maritime pine, whereas rates of new adaptive substitutions (ωa ), as estimated from the distribution of fitness effects, were similar across species and among the highest found in plants. Sample size and population genetic structure did not appear to have resulted in significant bias in estimates of ωa . Moreover, population contraction-expansion dynamics for each species did not affect differentially the rate of adaptive substitution in these two pines. Several methodological and biological factors may underlie the unusually high rate of adaptive evolution of Scots pine and maritime pine. By providing two new case studies with contrasting evolutionary histories, we contribute to disentangling the multiple factors potentially affecting adaptive evolution in natural plant populations.
Collapse
Affiliation(s)
- Delphine Grivet
- Department of Forest Ecology and Genetics, Forest Research Centre, INIA-CIFOR, Madrid, Spain.,Sustainable Forest Management Research Institute, INIA - University of Valladolid, Palencia, Spain
| | - Komlan Avia
- Department of Ecology and Genetics and Biocenter Oulu, University of Oulu, Oulu, Finland.,Algal Genetics Group, UMR 8227, CNRS, Sorbonne Universités, UPMC, Station Biologique Roscoff, Roscoff, France.,UMI 3614 Evolutionary Biology and Ecology of Algae, CNRS, Sorbonne Universités, UPMC, Pontificia Universidad Católica de Chile, Universidad Austral de Chile, Station Biologique Roscoff, Roscoff, France
| | - Aleksia Vaattovaara
- Department of Ecology and Genetics and Biocenter Oulu, University of Oulu, Oulu, Finland.,Division of Plant Biology, Department of Biosciences, Viikki Plant Science Centre (ViPS), University of Helsinki, Helsinki, Finland
| | - Andrew J Eckert
- Department of Biology, Virginia Commonwealth University, Richmond, VA, USA
| | - David B Neale
- Department of Plant Sciences, University of California at Davis, Davis, CA, USA
| | - Outi Savolainen
- Department of Ecology and Genetics and Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Santiago C González-Martínez
- Department of Forest Ecology and Genetics, Forest Research Centre, INIA-CIFOR, Madrid, Spain.,Sustainable Forest Management Research Institute, INIA - University of Valladolid, Palencia, Spain.,BIOGECO, INRA, Univ. Bordeaux, Cestas, France
| |
Collapse
|
8
|
Koopmann B, Müller J, Tellier A, Živković D. Fisher–Wright model with deterministic seed bank and selection. Theor Popul Biol 2017; 114:29-39. [DOI: 10.1016/j.tpb.2016.11.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 11/18/2016] [Accepted: 11/22/2016] [Indexed: 01/30/2023]
|
9
|
Stam R, Scheikl D, Tellier A. The wild tomato species Solanum chilense shows variation in pathogen resistance between geographically distinct populations. PeerJ 2017; 5:e2910. [PMID: 28133579 PMCID: PMC5248578 DOI: 10.7717/peerj.2910] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 12/08/2016] [Indexed: 12/13/2022] Open
Abstract
Wild tomatoes are a valuable source of disease resistance germplasm for tomato (Solanum lycopersicum) breeders. Many species are known to possess a certain degree of resistance against certain pathogens; however, evolution of resistance traits is yet poorly understood. For some species, like Solanum chilense, both differences in habitat and within species genetic diversity are very large. Here we aim to investigate the occurrence of spatially heterogeneous coevolutionary pressures between populations of S. chilense. We investigate the phenotypic differences in disease resistance within S. chilense against three common tomato pathogens (Alternaria solani, Phytophthora infestans and a Fusarium sp.) and confirm high degrees of variability in resistance properties between selected populations. Using generalised linear mixed models, we show that disease resistance does not follow the known demographic patterns of the species. Models with up to five available climatic and geographic variables are required to best describe resistance differences, confirming the complexity of factors involved in local resistance variation. We confirm that within S. chilense, resistance properties against various pathogens show a mosaic pattern and do not follow environmental patterns, indicating the strength of local pathogen pressures. Our study can form the basis for further investigations of the genetic traits involved.
Collapse
Affiliation(s)
- Remco Stam
- Section of Population Genetics, Technical University of Munich, Freising, Germany
| | - Daniela Scheikl
- Section of Population Genetics, Technical University of Munich, Freising, Germany
| | - Aurélien Tellier
- Section of Population Genetics, Technical University of Munich, Freising, Germany
| |
Collapse
|
10
|
Gharbi E, Martínez JP, Benahmed H, Fauconnier ML, Lutts S, Quinet M. Salicylic acid differently impacts ethylene and polyamine synthesis in the glycophyte Solanum lycopersicum and the wild-related halophyte Solanum chilense exposed to mild salt stress. PHYSIOLOGIA PLANTARUM 2016; 158:152-67. [PMID: 27105808 DOI: 10.1111/ppl.12458] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 02/26/2016] [Accepted: 03/16/2016] [Indexed: 05/22/2023]
Abstract
This study aimed to determine the effects of exogenous application of salicylic acid (SA) on the toxic effects of salt in relation to ethylene and polyamine synthesis, and to correlate these traits with the expression of genes involved in ethylene and polyamine metabolism in two tomato species differing in their sensitivity to salt stress, Solanum lycopersicum cv Ailsa Craig and its wild salt-resistant relative Solanum chilense. In S. chilense, treatment with 125 mM NaCl improved plant growth, increased production of ethylene, endogenous salicylic acid and spermine. The production was related to a modification of expression of genes involved in ethylene and polyamine metabolism. In contrast, salinity decreased plant growth in S. lycopersicum without affecting endogenous ethylene, salicylic or polyamine concentrations. Exogenous application of salicylic acid at 0.01 mM enhanced shoot growth in both species and affected ethylene and polyamine production in S. chilense. Concomitant application of NaCl and salicylic acid improved osmotic adjustment, thus suggesting that salt and SA may act in synergy on osmolyte synthesis. However, the beneficial impact of exogenous application of salicylic acid was mitigated by salt stress since NaCl impaired endogenous SA accumulation in the shoot and salicylic acid did not improve plant growth in salt-treated plants. Our results thus revealed that both species respond differently to salinity and that salicylic acid, ethylene and polyamine metabolisms are involved in salt resistance in S. chilense.
Collapse
Affiliation(s)
- Emna Gharbi
- Groupe de Recherche en Physiologie Végétale (GRPV), Earth and Life Institute - Agronomy (ELI-A), Université Catholique de Louvain, Louvain-la-Neuve, Belgium
- Laboratoire d'Ecologie Végétale, Faculté des Sciences, Université de Tunis El Manar, Tunis, Tunisia
| | - Juan-Pablo Martínez
- Laboratorio de Fisiología Vegetal, Instituto de Investigaciones Agropecuarias (INIA - La Cruz), La Cruz, Chile
| | - Hela Benahmed
- Laboratoire d'Ecologie Végétale, Faculté des Sciences, Université de Tunis El Manar, Tunis, Tunisia
| | - Marie-Laure Fauconnier
- Unité de Chimie Générale et Organique, Faculté des Sciences Agronomiques, Université de Liège, Liège, Belgium
| | - Stanley Lutts
- Groupe de Recherche en Physiologie Végétale (GRPV), Earth and Life Institute - Agronomy (ELI-A), Université Catholique de Louvain, Louvain-la-Neuve, Belgium.
| | - Muriel Quinet
- Groupe de Recherche en Physiologie Végétale (GRPV), Earth and Life Institute - Agronomy (ELI-A), Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
11
|
Böndel KB, Lainer H, Nosenko T, Mboup M, Tellier A, Stephan W. North–South Colonization Associated with Local Adaptation of the Wild Tomato SpeciesSolanum chilense. Mol Biol Evol 2015; 32:2932-43. [DOI: 10.1093/molbev/msv166] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
12
|
Labate JA, Robertson LD, Strickler SR, Mueller LA. Genetic structure of the four wild tomato species in the Solanum peruvianum s.l. species complex. Genome 2014; 57:169-80. [PMID: 24884691 DOI: 10.1139/gen-2014-0003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The most diverse wild tomato species Solanum peruvianum sensu lato (s.l.) has been reclassified into four separate species: Solanum peruvianum sensu stricto (s.s.), Solanum corneliomuelleri, Solanum huaylasense, and Solanum arcanum. However, reproductive barriers among the species are incomplete and this can lead to discrepancies regarding genetic identity of germplasm. We used genotyping by sequencing (GBS) of S. peruvianum s.l., Solanum neorickii, and Solanum chmielewskii to develop tens of thousands of mapped single nucleotide polymorphisms (SNPs) to analyze genetic relationships within and among species. The data set was condensed to 14,043 SNPs with no missing data across 46 sampled plants. Origins of accessions were mapped using geographical information systems (GIS). Isolation by distance, pairwise genetic distances, and number of clusters were estimated using population genetics approaches. Isolation by distance was strongly supported, especially between interspecific pairs. Eriopersicon (S. peruvianum s.s., S. corneliomuelleri, S. huaylasense) and Arcanum (S. arcanum, S. neorickii, S. chmielewskii) species groups were genetically distinct, except for S. huaylasense which showed 50% membership proportions in each group. Solanum peruvianum and S. corneliomuelleri were not significantly differentiated from each other. Many thousands of SNP markers were identified that could potentially be used to distinguish pairs of species, including S. peruvianum versus S. corneliomuelleri, if they are verified on larger numbers of samples. Diagnostic markers will be valuable for delimiting morphologically similar and interfertile species in germplasm management. Approximately 12% of the SNPs rejected a genome-wide test of selective neutrality based on differentiation among species of S. peruvianum s.l. These are candidates for more comprehensive studies of microevolutionary processes within this species complex.
Collapse
Affiliation(s)
- Joanne A Labate
- a Plant Genetic Resources Unit, US Department of Agriculture, Agricultural Research Service, 630 W. North Street, Geneva, NY 14456, USA
| | | | | | | |
Collapse
|
13
|
Mezmouk S, Ross-Ibarra J. The pattern and distribution of deleterious mutations in maize. G3 (BETHESDA, MD.) 2014; 4:163-71. [PMID: 24281428 PMCID: PMC3887532 DOI: 10.1534/g3.113.008870] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 11/19/2013] [Indexed: 12/19/2022]
Abstract
Most nonsynonymous mutations are thought to be deleterious because of their effect on protein sequence and are expected to be removed or kept at low frequency by the action of natural selection. Nonetheless, the effect of positive selection on linked sites or drift in small or inbred populations may also impact the evolution of deleterious alleles. Despite their potential to affect complex trait phenotypes, deleterious alleles are difficult to study precisely because they are often at low frequency. Here, we made use of genome-wide genotyping data to characterize deleterious variants in a large panel of maize inbred lines. We show that, despite small effective population sizes and inbreeding, most putatively deleterious SNPs are indeed at low frequencies within individual genetic groups. We find that genes associated with a number of complex traits are enriched for deleterious variants. Together, these data are consistent with the dominance model of heterosis, in which complementation of numerous low-frequency, weak deleterious variants contribute to hybrid vigor.
Collapse
Affiliation(s)
- Sofiane Mezmouk
- Department of Plant Sciences, University of California–Davis, Davis, California 95616
| | - Jeffrey Ross-Ibarra
- Department of Plant Sciences, University of California–Davis, Davis, California 95616
- Center for Population Biology and Genome Center, University of California–Davis, Davis, California 95616
| |
Collapse
|
14
|
Paape T, Bataillon T, Zhou P, J Y Kono T, Briskine R, Young ND, Tiffin P. Selection, genome-wide fitness effects and evolutionary rates in the model legume Medicago truncatula. Mol Ecol 2013; 22:3525-38. [PMID: 23773281 DOI: 10.1111/mec.12329] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 02/22/2013] [Accepted: 03/12/2013] [Indexed: 12/15/2022]
Abstract
Sequence data for >20 000 annotated genes from 56 accessions of Medicago truncatula were used to identify potential targets of positive selection, the determinants of evolutionary rate variation and the relative importance of positive and purifying selection in shaping nucleotide diversity. Based upon patterns of intraspecific diversity and interspecific divergence, c. 50-75% of nonsynonymous polymorphisms are subject to strong purifying selection and 1% of the sampled genes harbour a signature of positive selection. Combining polymorphism with expression data, we estimated the distribution of fitness effects and found that the proportion of deleterious mutations is significantly greater for expressed genes than for genes with undetected transcripts (nonexpressed) in a previous RNA-seq experiment and greater for broadly expressed genes than those expressed in only a single tissue. Expression level is the strongest correlate of evolutionary rates at nonsynonymous sites, and despite multiple genomic features being significantly correlated with evolutionary rates, they explain less than 20% of the variation in nonsynonymous rates (dN) and <15% of the variation in either synonymous rates (dS) or dN:dS. Among putative targets of selection were genes involved in defence against pathogens and herbivores, genes with roles in mediating the relationship with rhizobial symbionts and one-third of annotated histone-lysine methyltransferases. Adaptive evolution of the methyltransferases suggests that positive selection in gene expression may have occurred through evolution of enzymes involved in epigenetic modification.
Collapse
Affiliation(s)
- Timothy Paape
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, 8057, Switzerland
| | | | | | | | | | | | | |
Collapse
|
15
|
Mboup M, Fischer I, Lainer H, Stephan W. Trans-species polymorphism and allele-specific expression in the CBF gene family of wild tomatoes. Mol Biol Evol 2012; 29:3641-52. [PMID: 22787283 DOI: 10.1093/molbev/mss176] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Abiotic stresses such as drought, extreme temperatures, and salinity have a strong impact on plant adaptation. They act as selective forces on plant physiology and morphology. These selective pressures leave characteristic footprints that can be detected at the DNA sequence level using population genetic tools. On the basis of a candidate gene approach, we investigated signatures of adaptation in two wild tomato species, Solanum peruvianum and S. chilense. These species are native to western South America and constitute a model system for studying adaptation, due to their ability to colonize diverse habitats and the available genetic resources. We have determined the selective forces acting on the C-repeat binding factor (CBF) gene family, which consists of three genes, and is known to be involved in tolerance to abiotic stresses, in particular in cold tolerance. We also analyzed the expression pattern of these genes after drought and cold stresses. We found that CBF3 evolves under very strong purifying selection, CBF2 is under balancing selection in some populations of both species (S. peruvianum/Quicacha and S. chilense/Nazca) maintaining a trans-species polymorphism, and CBF1 is a pseudogene. In contrast to previous studies of cultivated tomatoes showing that only CBF1 was cold induced, we found that all three CBF genes are cold induced in wild tomatoes. All three genes are also drought induced. CBF2 exhibits an allele-specific expression pattern associated with the trans-species polymorphism.
Collapse
Affiliation(s)
- Mamadou Mboup
- Section of Evolutionary Biology, Department of Biology II, University of Munich, Planegg-Martinsried, Germany.
| | | | | | | |
Collapse
|
16
|
Inference of seed bank parameters in two wild tomato species using ecological and genetic data. Proc Natl Acad Sci U S A 2011; 108:17052-7. [PMID: 21949404 DOI: 10.1073/pnas.1111266108] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Seed and egg dormancy is a prevalent life-history trait in plants and invertebrates whose storage effect buffers against environmental variability, modulates species extinction in fragmented habitats, and increases genetic variation. Experimental evidence for reliable differences in dormancy over evolutionary scales (e.g., differences in seed banks between sister species) is scarce because complex ecological experiments in the field are needed to measure them. To cope with these difficulties, we developed an approximate Bayesian computation (ABC) framework that integrates ecological information on population census sizes in the priors of the parameters, along with a coalescent model accounting simultaneously for seed banks and spatial genetic structuring of populations. We collected SNP data at seven nuclear loci (over 300 SNPs) using a combination of three spatial sampling schemes: population, pooled, and species-wide samples. We provide evidence for the existence of a seed bank in two wild tomato species (Solanum chilense and Solanum peruvianum) found in western South America. Although accounting for uncertainties in ecological data, we infer for each species (i) the past demography and (ii) ecological parameters, such as the germination rate, migration rates, and minimum number of demes in the metapopulation. The inferred difference in germination rate between the two species may reflect divergent seed dormancy adaptations, in agreement with previous population genetic analyses and the ecology of these two sister species: Seeds spend, on average, a shorter time in the soil in the specialist species (S. chilense) than in the generalist species (S. peruvianum).
Collapse
|
17
|
Städler T, Florez-Rueda AM, Paris M. Testing for "snowballing" hybrid incompatibilities in Solanum: impact of ancestral polymorphism and divergence estimates. Mol Biol Evol 2011; 29:31-4. [PMID: 21890474 DOI: 10.1093/molbev/msr218] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Two recent high-profile studies offered empirical evidence for a "snowballing" accumulation of postzygotic incompatibilities in Drosophila and Solanum (tomatoes). Here we present a reanalysis of the Solanum data that is motivated by population genetic principles. Specifically, the high levels of intraspecific nucleotide polymorphism in wild tomato species and presumably large effective population size throughout the divergence history of this clade imply that ancestral polymorphism should be taken into account when evaluating sequence divergence between species. Based on our reanalyses of synonymous-site divergence between the four focal Solanum species and a wide range of ancestral polymorphism, we assessed under which conditions the reported accumulation of seed sterility factors supports the snowball effect. Our results highlight the pivotal impact of levels of ancestral polymorphism and alternate divergence values, and they illustrate that robust tests of the snowball effect in Solanum require genome-wide estimates of divergence.
Collapse
|
18
|
Estimating parameters of speciation models based on refined summaries of the joint site-frequency spectrum. PLoS One 2011; 6:e18155. [PMID: 21637331 PMCID: PMC3102651 DOI: 10.1371/journal.pone.0018155] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Accepted: 02/27/2011] [Indexed: 11/19/2022] Open
Abstract
Understanding the processes and conditions under which populations diverge to give rise to distinct species is a central question in evolutionary biology. Since recently diverged populations have high levels of shared polymorphisms, it is challenging to distinguish between recent divergence with no (or very low) inter-population gene flow and older splitting events with subsequent gene flow. Recently published methods to infer speciation parameters under the isolation-migration framework are based on summarizing polymorphism data at multiple loci in two species using the joint site-frequency spectrum (JSFS). We have developed two improvements of these methods based on a more extensive use of the JSFS classes of polymorphisms for species with high intra-locus recombination rates. First, using a likelihood based method, we demonstrate that taking into account low-frequency polymorphisms shared between species significantly improves the joint estimation of the divergence time and gene flow between species. Second, we introduce a local linear regression algorithm that considerably reduces the computational time and allows for the estimation of unequal rates of gene flow between species. We also investigate which summary statistics from the JSFS allow the greatest estimation accuracy for divergence time and migration rates for low (around 10) and high (around 100) numbers of loci. Focusing on cases with low numbers of loci and high intra-locus recombination rates we show that our methods for the estimation of divergence time and migration rates are more precise than existing approaches.
Collapse
|