1
|
Wang W, Zhang X, Garcia S, Leitch AR, Kovařík A. Intragenomic rDNA variation - the product of concerted evolution, mutation, or something in between? Heredity (Edinb) 2023; 131:179-188. [PMID: 37402824 PMCID: PMC10462631 DOI: 10.1038/s41437-023-00634-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 06/12/2023] [Accepted: 06/12/2023] [Indexed: 07/06/2023] Open
Abstract
The classical model of concerted evolution states that hundreds to thousands of ribosomal DNA (rDNA) units undergo homogenization, making the multiple copies of the individual units more uniform across the genome than would be expected given mutation frequencies and gene redundancy. While the universality of this over 50-year-old model has been confirmed in a range of organisms, advanced high throughput sequencing techniques have also revealed that rDNA homogenization in many organisms is partial and, in rare cases, even apparently failing. The potential underpinning processes leading to unexpected intragenomic variation have been discussed in a number of studies, but a comprehensive understanding remains to be determined. In this work, we summarize information on variation or polymorphisms in rDNAs across a wide range of taxa amongst animals, fungi, plants, and protists. We discuss the definition and description of concerted evolution and describe whether incomplete concerted evolution of rDNAs predominantly affects coding or non-coding regions of rDNA units and if it leads to the formation of pseudogenes or not. We also discuss the factors contributing to rDNA variation, such as interspecific hybridization, meiotic cycles, rDNA expression status, genome size, and the activity of effector genes involved in genetic recombination, epigenetic modifications, and DNA editing. Finally, we argue that a combination of approaches is needed to target genetic and epigenetic phenomena influencing incomplete concerted evolution, to give a comprehensive understanding of the evolution and functional consequences of intragenomic variation in rDNA.
Collapse
Affiliation(s)
- Wencai Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Xianzhi Zhang
- Department of Horticulture, College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Sònia Garcia
- Institut Botànic de Barcelona, IBB (CSIC - Ajuntament de Barcelona), Barcelona, Spain
| | - Andrew R Leitch
- School of Biological and Behavioral Sciences, Queen Mary University of London, London, E1 4NS, UK
| | - Aleš Kovařík
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, CZ-61200, Czech Republic.
| |
Collapse
|
2
|
Ding X, Chen J, Dai C, Shi P, Pan H, Lin Y, Chen Y, Gong L, Chen L, Wu W, Qiu X, Xu J, Huang Z, Liao B. Developing population identification tool based on polymorphism of rDNA for traditional Chinese medicine: Artemisia annua L. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 116:154882. [PMID: 37210961 DOI: 10.1016/j.phymed.2023.154882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/29/2023] [Accepted: 05/12/2023] [Indexed: 05/23/2023]
Abstract
BACKGROUND Artemisia annua, a well-known traditional Chinese medicine, is the main source for production of artemisinin, an anti-malaria drug. A. annua is distributed globally, with great diversity of morphological characteristics and artemisinin contents. Diverse traits among A. annua populations impeded the stable production of artemisinin, which needs an efficient tool to identify strains and assess population genetic homogeneity. PURPOSE In this study, ribosomal DNA (rDNA), were characterized for A. annua for strains identification and population genetic homogeneity assessment. METHODS The ribosomal RNA (rRNA) genes were identified using cmscan and assembled using rDNA unit of LQ-9 as a reference. rDNA among Asteraceae species were compared performing with 45S rDNA. The rDNA copy number was calculated based on sequencing depth. The polymorphisms of rDNA sequences were identified with bam-readcount, and confirmed by Sanger sequencing and restriction enzyme experiment. The ITS2 amplicon sequencing was used to verify the stability of ITS2 haplotype analysis. RESULTS Different from other Asteraceae species, 45S and 5S linked-type rDNA was only found in Artemisia genus. Rich polymorphisms of copy number and sequence of rDNA were identified in A. annua population. The haplotype composition of internal transcribed spacer 2 (ITS2) region which had moderate sequence polymorphism and relative short size was significantly different among A. annua strains. A population discrimination method was developed based on ITS2 haplotype analysis with high-throughput sequencing. CONCLUSION This study provides comprehensive characteristics of rDNA and suggests that ITS2 haplotype analysis is ideal tool for A. annua strain identification and population genetic homogeneity assessment.
Collapse
Affiliation(s)
- Xiaoxia Ding
- Key Laboratory of Quality Evaluation of Chinese Medicine of the Guangdong Provincial Medical Products Administration, the Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Jieting Chen
- Key Laboratory of Quality Evaluation of Chinese Medicine of the Guangdong Provincial Medical Products Administration, the Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Chunyan Dai
- Key Laboratory of Quality Evaluation of Chinese Medicine of the Guangdong Provincial Medical Products Administration, the Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Peiqi Shi
- Key Laboratory of Quality Evaluation of Chinese Medicine of the Guangdong Provincial Medical Products Administration, the Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Hengyu Pan
- Key Laboratory of Quality Evaluation of Chinese Medicine of the Guangdong Provincial Medical Products Administration, the Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Yanqi Lin
- Key Laboratory of Quality Evaluation of Chinese Medicine of the Guangdong Provincial Medical Products Administration, the Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Yikang Chen
- Key Laboratory of Quality Evaluation of Chinese Medicine of the Guangdong Provincial Medical Products Administration, the Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Lu Gong
- Key Laboratory of Quality Evaluation of Chinese Medicine of the Guangdong Provincial Medical Products Administration, the Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Linming Chen
- Guangzhou Huibiao Testing Technology Center, Guangzhou 510700, China
| | - Wenguang Wu
- Key Laboratory of Quality Evaluation of Chinese Medicine of the Guangdong Provincial Medical Products Administration, the Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Xiaohui Qiu
- Key Laboratory of Quality Evaluation of Chinese Medicine of the Guangdong Provincial Medical Products Administration, the Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Jiang Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Zhihai Huang
- Key Laboratory of Quality Evaluation of Chinese Medicine of the Guangdong Provincial Medical Products Administration, the Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| | - Baosheng Liao
- Key Laboratory of Quality Evaluation of Chinese Medicine of the Guangdong Provincial Medical Products Administration, the Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| |
Collapse
|
3
|
Garcia S, Pascual-Díaz JP, Krumpolcová A, Kovarík A. Analysis of 5S rDNA Genomic Organization Through the RepeatExplorer2 Pipeline: A Simplified Protocol. Methods Mol Biol 2023; 2672:501-512. [PMID: 37335496 DOI: 10.1007/978-1-0716-3226-0_30] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
The ribosomal RNA genes (rDNA) are universal genome components with a housekeeping function, given the crucial role of ribosomal RNA in the synthesis of ribosomes and thus for life-on-Earth. Therefore, their genomic organization is of considerable interest for biologists, in general. Ribosomal RNA genes have also been largely used to establish phylogenetic relationships, and to identify allopolyploid or homoploid hybridization.Here, we demonstrate how high-throughput sequencing data, through graph clustering implemented in RepeatExplorer2 pipeline ( https://repeatexplorer-elixir.cerit-sc.cz/galaxy/ ), can be helpful to decipher the genomic organization of 5S rRNA genes. We show that the linear shapes of cluster graphs are reminiscent to the linked organization of 5S and 35S rDNA (L-type arrangement) while the circular graphs correspond to their separate arrangement (S-type). We further present a simplified protocol based on the paper by (Garcia et al., Front Plant Sci 11:41, 2020) about the use of graph clustering of 5S rDNA homoeologs (S-type) to identify hybridization events in the species history. We found that the graph complexity (i.e., graph circularity in this case) is related to ploidy and genome complexity, with diploids typically showing circular-shaped graphs while allopolyploids and other interspecific hybrids display more complex graphs, with usually two or more interconnected loops representing intergenic spacers. When a three-genomic comparative clustering analysis from a given hybrid (homoploid/allopolyploid) and its putative progenitor species (diploids) is performed, it is possible to identify the corresponding homoeologous 5S rRNA gene families, and to elucidate the contribution of each putative parental genome to the 5S rDNA pool of the hybrid. Thus, the analysis of 5S rDNA cluster graphs by RepeatExplorer, together with information coming from other sources (e.g., morphology, cytogenetics) is a complementary approach for the determination of allopolyploid or homoploid hybridization and even ancient introgression events.
Collapse
Affiliation(s)
- Sònia Garcia
- Institut Botànic de Barcelona (CSIC - Ajuntament de Barcelona), Barcelona, Spain
| | | | - Alice Krumpolcová
- Department of Molecular Epigenetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Ales Kovarík
- Department of Molecular Epigenetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic.
| |
Collapse
|
4
|
Yücel G, Senderowicz M, Kolano B. The Use of Ribosomal DNA for Comparative Cytogenetics. Methods Mol Biol 2023; 2672:265-284. [PMID: 37335483 DOI: 10.1007/978-1-0716-3226-0_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Fluorescence in situ hybridization (FISH) with ribosomal DNA (rDNA) sequences provides excellent chromosome markers for comparative cytogenetic analyses, especially in non-model plant species. The tandem repeat nature of a sequence and the presence of a highly conserved genic region make rDNA sequences relatively easy to isolate and clone. In this chapter, we describe the use of rDNA as markers for comparative cytogenetics studies. Traditionally, cloned probes labeled with Nick-translation have been used to detect rDNA loci. Recently, pre-labeled oligonucleotides are also employed quite frequently to detect both 35S and 5S rDNA loci. Ribosomal DNA sequences, together with other DNA probes in FISH/GISH or with fluorochromes such as CMA3 banding or silver staining, are very useful tools in comparative analyses of plant karyotypes.
Collapse
Affiliation(s)
- Gülru Yücel
- Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ondokuz Mayıs University, Samsun, Türkiye
| | - Magdalena Senderowicz
- Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Bożena Kolano
- Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland.
| |
Collapse
|
5
|
Sidharthan VK, Rajeswari V, Vanamala G, Baranwal VK. Revisiting the amalgaviral landscapes in plant transcriptomes expands the host range of plant amalgaviruses. Virology 2022; 577:65-73. [PMID: 36308887 DOI: 10.1016/j.virol.2022.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/09/2022] [Accepted: 10/16/2022] [Indexed: 11/19/2022]
Abstract
Plant amalgaviruses are monopartite, double-stranded RNA viruses, capable of vertical transmission through seeds. An attempt to revisit plant transcriptome-assembled contigs for amalgaviral sequences identified 40 putative novel amalgaviruses in 35 plant species, nearly doubling the number of plant amalgaviruses. Of the 35 plant species, 33 are reported to host amalgaviruses for the first time, including a pteridophytic and two gymnospermic species. Coding-complete genomes of all identified viruses were recovered and the putative +1 programmed ribosomal frameshift (PRF) sites were determined. Genomes of 35 identified amalgaviruses contained the conserved +1 PRF motif 'UUU_CGN', while variant versions were predicted in five genomes. Phylogenetic analysis grouped pteridophyte- and gymnosperm-infecting amalgaviruses together in divergent sub-clades while few of the related angiosperm-infecting amalgaviruses infect members of the same plant family, reiterating the co-evolution of plant amalgaviruses and their hosts. The current study paves way for further studies on understanding biological properties of identified viruses.
Collapse
Affiliation(s)
- V Kavi Sidharthan
- Division of Genetics and Tree Improvement, Institute of Forest Biodiversity (ICFRE), Hyderabad, India.
| | - V Rajeswari
- Department of Crop Physiology, Tamil Nadu Agricultural University, Coimbatore, India
| | - Gayatri Vanamala
- Division of Genetics and Tree Improvement, Institute of Forest Biodiversity (ICFRE), Hyderabad, India
| | - V K Baranwal
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, India.
| |
Collapse
|
6
|
Targueta CP, Gatto KP, Vittorazzi SE, Recco-Pimentel SM, Lourenço LB. High diversity of 5S ribosomal DNA and evidence of recombination with the satellite DNA PcP190 in frogs. Gene 2022; 851:147015. [DOI: 10.1016/j.gene.2022.147015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/25/2022] [Accepted: 10/25/2022] [Indexed: 11/04/2022]
|
7
|
The Divergence of Chromosome Structures and 45S Ribosomal DNA Organization in Cucumis debilis Inferred by Comparative Molecular Cytogenetic Mapping. PLANTS 2022; 11:plants11151960. [PMID: 35956438 PMCID: PMC9370355 DOI: 10.3390/plants11151960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/09/2022] [Accepted: 07/14/2022] [Indexed: 11/16/2022]
Abstract
Cucumis debilis W.J.de Wilde & Duyfjes is an annual and monoecious plant. This species is endemic to Southeast Asia, particularly Vietnam. However, C. debilis is rarely studied, and no detailed information is available regarding its basic chromosome number, 45S ribosomal DNA (rDNA) status, and divergence among other Cucumis species. In this study, we characterized the morphological characters and determined and investigated the basic chromosome number and chromosomal distribution of 45S rDNA of C. debilis using the fluorescent in situ hybridization (FISH) technique. A maximum likelihood tree was constructed by combining the chloroplast and internal transcribed spacer of 45S rDNAs to infer its relationship within Cucumis. C. debilis had an oval fruit shape, green fruit peel, and protrusion-like white spots during the immature fruit stage. FISH analysis using 45S rDNA probe showed three pairs of 45S rDNA loci located at the terminal region in C. debilis, similar to C. hystrix. Meanwhile, two, two, and five pairs of 45S rDNA loci were observed for C. melo, C. metuliferus, and C. sativus, respectively. One melon (P90) and cucumber accessions exhibited different chromosomal localizations compared with other members of Cucumis. The majority of Cucumis species showed the terminal location of 45S rDNA, but melon P90 and cucumber exhibited terminal–interstitial and all interstitial orientations of 45S rDNA loci. Based on molecular cytogenetics and phylogenetic evidence, C. debilis is more closely related to cucumber than melon. Therefore, C. debilis may serve as a potential parental accession for genetic improvement of cucumber through interspecific hybridization.
Collapse
|
8
|
Lee SH, Kim J, Park HS, Koo H, Waminal NE, Pellerin RJ, Shim H, Lee HO, Kim E, Park JY, Yu HS, Kim HH, Lee J, Yang TJ. Genome structure and diversity among Cynanchum wilfordii accessions. BMC PLANT BIOLOGY 2022; 22:4. [PMID: 34979940 PMCID: PMC8722063 DOI: 10.1186/s12870-021-03390-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 12/06/2021] [Indexed: 05/08/2023]
Abstract
BACKGROUND Cynanchum wilfordii (Cw) and Cynanchum auriculatum (Ca) have long been used in traditional medicine and as functional food in Korea and China, respectively. They have diverse medicinal functions, and many studies have been conducted, including pharmaceutical efficiency and metabolites. Especially, Cw is regarded as the most famous medicinal herb in Korea due to its menopausal symptoms relieving effect. Despite the high demand for Cw in the market, both species are cultivated using wild resources with rare genomic information. RESULTS We collected 160 Cw germplasm from local areas of Korea and analyzed their morphological diversity. Five Cw and one Ca of them, which were morphologically diverse, were sequenced, and nuclear ribosomal DNA (nrDNA) and complete plastid genome (plastome) sequences were assembled and annotated. We investigated the genomic characteristics of Cw as well as the genetic diversity of plastomes and nrDNA of Cw and Ca. The Cw haploid nuclear genome was approximately 178 Mbp. Karyotyping revealed the juxtaposition of 45S and 5S nrDNA on one of 11 chromosomes. Plastome sequences revealed 1226 interspecies polymorphisms and 11 Cw intraspecies polymorphisms. The 160 Cw accessions were grouped into 21 haplotypes based on seven plastome markers and into 108 haplotypes based on seven nuclear markers. Nuclear genotypes did not coincide with plastome haplotypes that reflect the frequent natural outcrossing events. CONCLUSIONS Cw germplasm had a huge morphological diversity, and their wide range of genetic diversity was revealed through the investigation with 14 molecular markers. The morphological and genomic diversity, chromosome structure, and genome size provide fundamental genomic information for breeding of undomesticated Cw plants.
Collapse
Affiliation(s)
- Sae Hyun Lee
- Department of Agriculture, Forestry and Bioresources, Plant Genomics & Breeding Institute, College of Agriculture & Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Jiseok Kim
- Department of Agriculture, Forestry and Bioresources, Plant Genomics & Breeding Institute, College of Agriculture & Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Hyun-Seung Park
- Department of Agriculture, Forestry and Bioresources, Plant Genomics & Breeding Institute, College of Agriculture & Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - HyunJin Koo
- Department of Agriculture, Forestry and Bioresources, Plant Genomics & Breeding Institute, College of Agriculture & Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Nomar Espinosa Waminal
- Department of Life Sciences, Chromosome Research Institute, Sahmyook University, Seoul, 01795, Republic of Korea
| | - Remnyl Joyce Pellerin
- Department of Life Sciences, Chromosome Research Institute, Sahmyook University, Seoul, 01795, Republic of Korea
| | - Hyeonah Shim
- Department of Agriculture, Forestry and Bioresources, Plant Genomics & Breeding Institute, College of Agriculture & Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Hyun-Oh Lee
- Phyzen Genomics Institute, Seongnam, 13558, Republic of Korea
| | - Eunbi Kim
- Department of Agriculture, Forestry and Bioresources, Plant Genomics & Breeding Institute, College of Agriculture & Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Jee Young Park
- Department of Agriculture, Forestry and Bioresources, Plant Genomics & Breeding Institute, College of Agriculture & Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Hong Seob Yu
- Department of Agriculture, Forestry and Bioresources, Plant Genomics & Breeding Institute, College of Agriculture & Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Hyun Hee Kim
- Department of Life Sciences, Chromosome Research Institute, Sahmyook University, Seoul, 01795, Republic of Korea
| | - Jeonghoon Lee
- National Institute of Horticultural and Herbal Science, RDA, Eumseong, 27709, Republic of Korea
| | - Tae-Jin Yang
- Department of Agriculture, Forestry and Bioresources, Plant Genomics & Breeding Institute, College of Agriculture & Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
| |
Collapse
|
9
|
Rosselló JA, Maravilla AJ, Rosato M. The Nuclear 35S rDNA World in Plant Systematics and Evolution: A Primer of Cautions and Common Misconceptions in Cytogenetic Studies. FRONTIERS IN PLANT SCIENCE 2022; 13:788911. [PMID: 35283933 PMCID: PMC8908318 DOI: 10.3389/fpls.2022.788911] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 01/27/2022] [Indexed: 05/04/2023]
Abstract
The ubiquitous presence of rRNA genes in nuclear, plastid, and mitochondrial genomes has provided an opportunity to use genomic markers to infer patterns of molecular and organismic evolution as well as to assess systematic issues throughout the tree of life. The number, size, location, and activity of the 35S rDNA cistrons in plant karyotypes have been used as conventional cytogenetic landmarks. Their scrutiny has been useful to infer patterns of chromosomal evolution and the data have been used as a proxy for assessing species discrimination, population differentiation and evolutionary relationships. The correct interpretation of rDNA markers in plant taxonomy and evolution is not free of drawbacks given the complexities derived from the lability of the genetic architecture, the diverse patterns of molecular change, and the fate and evolutionary dynamics of the rDNA units in hybrids and polyploid species. In addition, the terminology used by independent authors is somewhat vague, which often complicates comparisons. To date, no efforts have been reported addressing the potential problems and limitations involved in generating, utilizing, and interpreting the data from the 35S rDNA in cytogenetics. This review discusses the main technical and conceptual limitations of these rDNA markers obtained by cytological and karyological experimental work, in order to clarify biological and evolutionary inferences postulated in a systematic and phylogenetic context. Also, we provide clarification for some ambiguity and misconceptions in terminology usually found in published work that may help to improve the usage of the 35S ribosomal world in plant evolution.
Collapse
|
10
|
Hemleben V, Grierson D, Borisjuk N, Volkov RA, Kovarik A. Personal Perspectives on Plant Ribosomal RNA Genes Research: From Precursor-rRNA to Molecular Evolution. FRONTIERS IN PLANT SCIENCE 2021; 12:797348. [PMID: 34992624 PMCID: PMC8724763 DOI: 10.3389/fpls.2021.797348] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/26/2021] [Indexed: 06/13/2023]
Abstract
The history of rDNA research started almost 90 years ago when the geneticist, Barbara McClintock observed that in interphase nuclei of maize the nucleolus was formed in association with a specific region normally located near the end of a chromosome, which she called the nucleolar organizer region (NOR). Cytologists in the twentieth century recognized the nucleolus as a common structure in all eukaryotic cells, using both light and electron microscopy and biochemical and genetic studies identified ribosomes as the subcellular sites of protein synthesis. In the mid- to late 1960s, the synthesis of nuclear-encoded rRNA was the only system in multicellular organisms where transcripts of known function could be isolated, and their synthesis and processing could be studied. Cytogenetic observations of NOR regions with altered structure in plant interspecific hybrids and detailed knowledge of structure and function of rDNA were prerequisites for studies of nucleolar dominance, epistatic interactions of rDNA loci, and epigenetic silencing. In this article, we focus on the early rDNA research in plants, performed mainly at the dawn of molecular biology in the 60 to 80-ties of the last century which presented a prequel to the modern genomic era. We discuss - from a personal view - the topics such as synthesis of rRNA precursor (35S pre-rRNA in plants), processing, and the organization of 35S and 5S rDNA. Cloning and sequencing led to the observation that the transcribed and processed regions of the rRNA genes vary enormously, even between populations and species, in comparison with the more conserved regions coding for the mature rRNAs. Epigenetic phenomena and the impact of hybridization and allopolyploidy on rDNA expression and homogenization are discussed. This historical view of scientific progress and achievements sets the scene for the other articles highlighting the immense progress in rDNA research published in this special issue of Frontiers in Plant Science on "Molecular organization, evolution, and function of ribosomal DNA."
Collapse
Affiliation(s)
- Vera Hemleben
- Center of Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany
| | - Donald Grierson
- Plant and Crop Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, United Kingdom
| | - Nikolai Borisjuk
- School of Life Sciences, Huaiyin Normal University, Huai'an, China
| | - Roman A. Volkov
- Department of Molecular Genetics and Biotechnology, Yuriy Fedkovych Chernivtsi National University, Chernivtsi, Ukraine
| | - Ales Kovarik
- Laboratory of Molecular Epigenetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czechia
| |
Collapse
|
11
|
Garewal N, Goyal N, Pathania S, Kaur J, Singh K. Gauging the trends of pseudogenes in plants. Crit Rev Biotechnol 2021; 41:1114-1129. [PMID: 33993808 DOI: 10.1080/07388551.2021.1901648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Pseudogenes, the debilitated parts of ancient genes, were previously scrapped off as junk or discarded genes with no functional significance. Pseudogenes have come under scrutiny for their functionality, since recent studies have unveiled their importance in the regulation of their corresponding parent genes and various biological mechanisms. Despite the enormous occurrence of pseudogenes in plants, the lack of experimental validation has contributed toward their unresolved roles in gene regulation. Contrarily, most of the studies associated with gene regulation have been mainly reported for humans, mice, and other mammalian genomes. Consequently, in order to present a cumulative report on plant-based pseudogenes research, an attempt has been made to assemble multiple studies presenting the pseudogene classification, the prediction and the determination of comparative accuracies of various computational pipelines, and recent trends in analyzing their biological functions, and regulatory mechanisms. This review represents the classical, as well as the recent advances on pseudogene identification and their potential roles in transcriptional regulation, which could possibly invigorate the quality of genome annotation, evolutionary analysis, and complexity surrounding the regulatory pathways in plants. Thus, when the ambiguous boundary girdling the pseudogenes eventually recedes on account of their explicit orchestration role, research in flora would no longer saunter compared to that on fauna.
Collapse
Affiliation(s)
- Naina Garewal
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Neetu Goyal
- Department of Biotechnology, Panjab University, Chandigarh, India
| | | | - Jagdeep Kaur
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Kashmir Singh
- Department of Biotechnology, Panjab University, Chandigarh, India
| |
Collapse
|
12
|
Su D, Chen L, Sun J, Zhang L, Gao R, Li Q, Han Y, Li Z. Comparative Chromosomal Localization of 45S and 5S rDNA Sites in 76 Purple-Fleshed Sweet Potato Cultivars. PLANTS 2020; 9:plants9070865. [PMID: 32650507 PMCID: PMC7412053 DOI: 10.3390/plants9070865] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 06/30/2020] [Accepted: 07/06/2020] [Indexed: 12/13/2022]
Abstract
In recent years, the purple-fleshed sweet potato has attracted more attention because of its high nutritional value. The cytogenetics of this crop is relatively unexplored, limiting our knowledge on its genetic diversity. Therefore, we conducted cytogenetic analysis of 76 purple-fleshed sweet potato cultivars to analyze the chromosome structure and distribution of 45S and 5S rDNA. We noted that only 62 cultivars had 90 chromosomes, and the others were aneuploid with 88, 89, 91, or 92 chromosomes. The number of 45S rDNA in the 76 cultivars varied from 16 to 21; these sites showed different signal sizes and intensities and were localized at the chromosomal termini or satellite. The number of 5S rDNA was relatively stable; 74 cultivars showed six sites located at the chromosomal sub-terminal or near the centromere. Only the ‘Quanzishu 96’ and ‘Yuzixiang 10’ showed seven and five 5S rDNA sites, respectively. Additionally, both parent cultivars of ‘Quanzishu 96’ showed 18 45S and six 5S rDNA sites. Overall, our results indicate a moderate diversity in the distribution pattern of rDNAs. Our findings provide comprehensive cytogenetic information for the identification of sweet potato chromosomes, which can be useful for developing a high-quality germplasm resource.
Collapse
Affiliation(s)
- Dan Su
- Institute of Integrative Plant Biology, Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Science, Jiangsu Normal University, Xuzhou 221100, China; (D.S.); (L.C.); (J.S.); (L.Z.)
| | - Lei Chen
- Institute of Integrative Plant Biology, Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Science, Jiangsu Normal University, Xuzhou 221100, China; (D.S.); (L.C.); (J.S.); (L.Z.)
| | - Jianying Sun
- Institute of Integrative Plant Biology, Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Science, Jiangsu Normal University, Xuzhou 221100, China; (D.S.); (L.C.); (J.S.); (L.Z.)
| | - Luyue Zhang
- Institute of Integrative Plant Biology, Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Science, Jiangsu Normal University, Xuzhou 221100, China; (D.S.); (L.C.); (J.S.); (L.Z.)
| | - Runfei Gao
- Jiangsu Xuhuai Regional Xuzhou Institute of Agricultural Sciences/Sweetpotato Research Institute, Chinese Academy of Agricultural Sciences, Xuzhou 221100, China; (R.G.); (Q.L.)
| | - Qiang Li
- Jiangsu Xuhuai Regional Xuzhou Institute of Agricultural Sciences/Sweetpotato Research Institute, Chinese Academy of Agricultural Sciences, Xuzhou 221100, China; (R.G.); (Q.L.)
| | - Yonghua Han
- Institute of Integrative Plant Biology, Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Science, Jiangsu Normal University, Xuzhou 221100, China; (D.S.); (L.C.); (J.S.); (L.Z.)
- Correspondence: (Y.H.); (Z.L.); Tel.: +86-0516-8350-0083 (Y.H. & Z.L.)
| | - Zongyun Li
- Institute of Integrative Plant Biology, Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Science, Jiangsu Normal University, Xuzhou 221100, China; (D.S.); (L.C.); (J.S.); (L.Z.)
- Correspondence: (Y.H.); (Z.L.); Tel.: +86-0516-8350-0083 (Y.H. & Z.L.)
| |
Collapse
|
13
|
Falistocco E, Ferradini N. Advances in the cytogenetics of Annonaceae, the case of Annona cherimola L. Genome 2020; 63:357-364. [PMID: 32364813 DOI: 10.1139/gen-2019-0172] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Annonaceae represent the largest extant family among the early divergent angiosperms. Despite the long-standing interest in its evolutionary and taxonomic aspects, cytogenetic studies on this family remain extremely few even on economically important species. With this study, we realized a detailed characterization of the chromosomes of Annona cherimola (2n = 14) by a combination of in situ hybridization techniques, fluorochrome banding, and karyomorphological analysis. FISH revealed that 45S and 5S rDNA sites are co-localized in correspondence to the secondary constrictions of the SAT-chromosome pair. Some hypotheses on the organization of the linked 45S and 5S rDNA repeats have been made. FISH with Arabidopsis-type telomeric arrays demonstrated that the A. cherimola telomeres are constituted by TTTAGGG sequences and that they are exclusively localized at the extremities of chromosomes. An insight into the chromosome structure of A. cherimola was obtained by the self-GISH procedure which revealed highly repeated DNA sequences localized in the centromeric regions of all chromosomes. The correspondence of s-GISH signals with DAPI banding suggests that these sequences are the principal component of the centromeric heterochromatin of this species. The karyotype of A. cherimola here described is proposed as the basic reference karyotype for successive investigations in Annonaceae.
Collapse
Affiliation(s)
- Egizia Falistocco
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno, 06121 Perugia, Italy.,Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno, 06121 Perugia, Italy
| | - Nicoletta Ferradini
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno, 06121 Perugia, Italy.,Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno, 06121 Perugia, Italy
| |
Collapse
|
14
|
Sevilleno SS, Ju YH, Kim JS, Mancia FH, Byeon EJ, Cabahug RA, Hwang YJ. Cytogenetic analysis of Bienertia sinuspersici Akhani as the first step in genome sequencing. Genes Genomics 2020; 42:337-345. [PMID: 31902107 DOI: 10.1007/s13258-019-00908-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 12/18/2019] [Indexed: 10/25/2022]
Abstract
BACKGROUND C4 plants are efficient in suppressing photorespiration and enhancing carbon gain as compared to C3 plants. Bienertia sinuspersici Akhani is one of the few species in the family Amaranthaceae that can perform C4 photosynthesis within individual chlorenchyma cells, without the conventional Kranz anatomy in its leaf. This plant is salt-tolerant and is well-adapted to thrive in hot and humid climates. To date, there have been no reported cytogenetic analyses yet on this species. OBJECTIVE This study aims to provide a cytogenetic analysis of B. sinuspersici as the first step in genome sequencing. METHODS Fluorescence in situ hybridization (FISH) karyotype analysis was conducted using the metaphase chromosomes of B. sinuspersici probed with 5S and 45S rDNA and Arabidopsis-type telomeric repeats. RESULTS Results of the cytogenetic analysis confirmed that B. sinuspersici has 2n = 2x = 18 consisting of nine pairs of metacentric chromosomes. Two loci of 45S rDNA were found on the distal regions of the short arm of chromosome 7. Nine loci of 5S rDNA were found in the pericentromeric regions of chromosomes 1, 3, 4, 6, and 8, which also colocalized with Arabidopsis-type telomeric repeats; while four loci in the interstitial regions of chromosome 5 and 8 can be observed. The single locus of 5S rDNA that was found in chromosome 8 appears to be hemizygous. CONCLUSION The FISH karyotype analysis, based on the combination of rDNAs, telomeric tandem repeat markers and C0t DNA chromosome landmarks, allowed efficient chromosome identification and provided useful information in characterizing the genome of B. sinuspersici.
Collapse
Affiliation(s)
| | - Yoon Ha Ju
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA
| | - Jung Sun Kim
- Genetics Division, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, 54874, Republic of Korea
| | - Franklin Hinosa Mancia
- Department of Environmental Horticulture, Sahmyook University, Seoul, 01795, Republic of Korea
| | - Eun Ju Byeon
- Genetics Division, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, 54874, Republic of Korea
| | - Raisa Aone Cabahug
- Chromosome Research Institute, Sahmyook University, Seoul, 01795, Republic of Korea
| | - Yoon-Jung Hwang
- Department of Convergence Science, Sahmyook University, Seoul, 01795, Republic of Korea.
| |
Collapse
|
15
|
Zhou HC, Waminal NE, Kim HH. In silico mining and FISH mapping of a chromosome-specific satellite DNA in Capsicum annuum L. Genes Genomics 2019; 41:1001-1006. [PMID: 31134590 DOI: 10.1007/s13258-019-00832-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 05/15/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND A large proportion of eukaryote nuclear genomes is composed of repetitive DNA. Tracing the dynamics of repetitive elements in the genomes of related taxa can reveal important information about their phylogenic relationships as well as traits that have become distinct to a lineage. OBJECTIVE Study the genomic abundance and chromosomal location of repetitive DNA in Capsicum annuum L. to understand the repeat dynamics. METHOD We quantified repeated DNA content in the C. annuum genome using the RepeatExplorer pipeline. RESULTS About 42% of the C. annuum genome dataset comprised repetitive elements. Of these, 0.011, 0.98, 3.09, and 0.024% represented high and low confidence satellite repeats, putative long-terminal repeats (LTRs), and rDNA sequences, respectively. One novel high confidence 167-bp satellite repeat with a genomic proportion of 0.011%, Ca167TR, was identified. Furthermore, FISH with Ca167TR on metaphase chromosomes of C. annuum revealed signals in the subtelomeric regions of the short and long arms of chromosome 3 and 4, respectively. CONCLUSION Further understanding of the origin and associated functions of Ca167TR and other repeats in Capsicum will give us insights into the genomic relationships and functions of the genome.
Collapse
Affiliation(s)
- Hui Chao Zhou
- Department of Life Sciences, Chromosome Research Institute, Sahmyook University, Seoul, 01795, Republic of Korea
| | - Nomar Espinosa Waminal
- Department of Life Sciences, Chromosome Research Institute, Sahmyook University, Seoul, 01795, Republic of Korea
| | - Hyun Hee Kim
- Department of Life Sciences, Chromosome Research Institute, Sahmyook University, Seoul, 01795, Republic of Korea.
| |
Collapse
|
16
|
Wang W, Wan T, Becher H, Kuderova A, Leitch IJ, Garcia S, Leitch AR, Kovařík A. Remarkable variation of ribosomal DNA organization and copy number in gnetophytes, a distinct lineage of gymnosperms. ANNALS OF BOTANY 2019; 123:767-781. [PMID: 30265284 PMCID: PMC6526317 DOI: 10.1093/aob/mcy172] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 09/04/2018] [Indexed: 05/10/2023]
Abstract
INTRODUCTION Gnetophytes, comprising the genera Ephedra, Gnetum and Welwitschia, are an understudied, enigmatic lineage of gymnosperms with a controversial phylogenetic relationship to other seed plants. Here we examined the organization of ribosomal DNA (rDNA) across representative species. METHODS We applied high-throughput sequencing approaches to isolate and reconstruct rDNA units and to determine their intragenomic homogeneity. In addition, fluorescent in situ hybridization and Southern blot hybridization techniques were used to reveal the chromosome and genomic organization of rDNA. KEY RESULTS The 5S and 35S rRNA genes were separate (S-type) in Gnetum montanum, Gnetum gnemon and Welwitschia mirabilis and linked (L-type) in Ephedra altissima. There was considerable variability in 5S rDNA abundance, ranging from as few as ~4000 (W. mirabilis) to >100 000 (G. montanum) copies. A similar large variation was also observed in 5S rDNA locus numbers (two to 16 sites per diploid cell). 5S rRNA pseudogenes were interspersed between functional genes forming a single unit in E. altissima and G. montanum. Their copy number was comparable or even higher than that of functional 5S rRNA genes. In E. altissima internal transcribed spacers of 35S rDNA were long and intrinsically repetitive while in G. montanum and W. mirabilis they were short without the subrepeats. CONCLUSIONS Gnetophytes are distinct from other gymnosperms and angiosperms as they display surprisingly large variability in rDNA organization and rDNA copy and locus numbers between genera, with no relationship between copy numbers and genome sizes apparent. Concerted evolution of 5S rDNA units seems to have led to the amplification of 5S pseudogenes in both G. montanum and E. altissima. Evolutionary patterns of rDNA show both gymnosperm and angiosperm features underlining the diversity of the group.
Collapse
Affiliation(s)
- Wencai Wang
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Tao Wan
- Key Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen and Chinese Academy of Sciences, Shenzen, PR China
- Sino-Africa Joint Research Center, Chinese Academy of Science, Wuhan, PR China
| | - Hannes Becher
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Alena Kuderova
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic
| | - Ilia J Leitch
- Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, UK
| | - Sònia Garcia
- Institut Botànic de Barcelona (IBB-CSIC-ICUB), Passeig del Migdia s/n, Parc de Montjuïc, Barcelona, Catalonia, Spain
| | - Andrew R Leitch
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Aleš Kovařík
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic
- For correspondence. E-mail
| |
Collapse
|
17
|
Zhou HC, Pellerin RJ, Waminal NE, Yang TJ, Kim HH. Pre-labelled oligo probe-FISH karyotype analyses of four Araliaceae species using rDNA and telomeric repeat. Genes Genomics 2019; 41:839-847. [PMID: 30903554 DOI: 10.1007/s13258-019-00786-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 01/08/2019] [Indexed: 11/24/2022]
Abstract
BACKGROUND The family Araliaceae contains many medicinal species including ginseng of which the whole genome sequencing analyses have been going on these days. OBJECTIVE To characterize the chromosomal distribution of 5S and 45S rDNAs and telomeric repeat in four ginseng related species of Aralia elata (Miq.) Seem., Dendropanax morbiferus H. Lév., Eleutherococcus sessiliflorus (Rupr. Et Maxim.) Seem., Kalopanax septemlobus (Thunb. ex A.Murr.) Koidz. METHOD Pre-labelled oligoprobe (PLOP)-fluorescence in situ hybridization (FISH) was carried out. RESULTS The chromosome number of A. elata was 2n = 24, whereas that of the other three species of D. morbiferus, E. sessiliflorus, and K. septemlobus was 2n = 48, corresponding to diploid and tetraploid, respectively, based on the basic chromosome number x = 12 in Araliaceae. In all four species, one pair of 5S signals were detected in the proximal regions of the short arms of chromosome 3, whereas in K. septemlobus, the 5S rDNA signals localized in the subtelomeric region of short arm of chromosome 3, while all the 45S rDNA signals localized at the paracentromeric region of the short arm of chromosome 1. And the telomeric repeat signals were detected at the telomeric region of both short and long arms of most chromosomes. CONCLUSION The PLOP-FISH was very effective compared with conventional FISH method. These results provide useful comparative cytogenetic information to better understand the genome structure of each species and will be useful to trace the history of ginseng genomic constitution.
Collapse
Affiliation(s)
- Hui Chao Zhou
- Department of Life Sciences, Chromosome Research Institute, Sahmyook University, Seoul, 01795, Republic of Korea
| | - Remnyl Joyce Pellerin
- Department of Life Sciences, Chromosome Research Institute, Sahmyook University, Seoul, 01795, Republic of Korea
| | - Nomar Espinosa Waminal
- Department of Life Sciences, Chromosome Research Institute, Sahmyook University, Seoul, 01795, Republic of Korea
| | - Tae-Jin Yang
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea.
| | - Hyun Hee Kim
- Department of Life Sciences, Chromosome Research Institute, Sahmyook University, Seoul, 01795, Republic of Korea.
| |
Collapse
|
18
|
Waminal NE, Pellerin RJ, Kim NS, Jayakodi M, Park JY, Yang TJ, Kim HH. Rapid and Efficient FISH using Pre-Labeled Oligomer Probes. Sci Rep 2018; 8:8224. [PMID: 29844509 PMCID: PMC5974128 DOI: 10.1038/s41598-018-26667-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 05/17/2018] [Indexed: 12/29/2022] Open
Abstract
Fluorescence in situ hybridization (FISH) is used to visualize the distribution of DNA elements within a genome. Conventional methods for FISH take 1-2 days. Here, we developed a simplified, rapid FISH technique using pre-labeled oligonucleotide probes (PLOPs) and tested the procedure using 18 PLOPs from 45S and 5S rDNA, Arabidopsis-type telomere, and newly-identified Panax ginseng-specific tandem repeats. The 16 developed rDNA PLOPs can be universally applied to plants and animals. The telomere PLOPs can be utilized in most plants with Arabidopsis-type telomeres. The ginseng-specific PLOP can be used to distinguish P. ginseng from related Panax species. Differential labeling of PLOPs allowed us to simultaneously visualize different target loci while reducing the FISH hybridization time from ~16 h to 5 min. PLOP-FISH is efficient, reliable, and rapid, making it ideal for routine analysis, especially of newly sequenced genomes using either universal or specific targets, such as novel tandem repeats identified from whole-genome sequencing data.
Collapse
Affiliation(s)
- Nomar Espinosa Waminal
- Chromosome Research Institute, Department of Life Science, Sahmyook University, Seoul, 01795, Korea.,Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Korea
| | - Remnyl Joyce Pellerin
- Chromosome Research Institute, Department of Life Science, Sahmyook University, Seoul, 01795, Korea
| | - Nam-Soo Kim
- Department of Molecular Biosciences, Kangwon National University, Chuncheon, 24341, Korea
| | - Murukarthick Jayakodi
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Korea
| | - Jee Young Park
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Korea
| | - Tae-Jin Yang
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Korea.
| | - Hyun Hee Kim
- Chromosome Research Institute, Department of Life Science, Sahmyook University, Seoul, 01795, Korea.
| |
Collapse
|
19
|
Garcia S, Kovařík A, Leitch AR, Garnatje T. Cytogenetic features of rRNA genes across land plants: analysis of the Plant rDNA database. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 89:1020-1030. [PMID: 27943584 DOI: 10.1111/tpj.13442] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 11/22/2016] [Accepted: 11/24/2016] [Indexed: 05/09/2023]
Abstract
The online resource http://www.plantrdnadatabase.com/ stores information on the number, chromosomal locations and structure of the 5S and 18S-5.8S-26S (35S) ribosomal DNAs (rDNA) in plants. This resource was exploited to study relationships between rDNA locus number, distribution, the occurrence of linked (L-type) and separated (S-type) 5S and 35S rDNA units, chromosome number, genome size and ploidy level. The analyses presented summarise current knowledge on rDNA locus numbers and distribution in plants. We analysed 2949 karyotypes, from 1791 species and 86 plant families, and performed ancestral character state reconstructions. The ancestral karyotype (2n = 16) has two terminal 35S sites and two interstitial 5S sites, while the median (2n = 24) presents four terminal 35S sites and three interstitial 5S sites. Whilst 86.57% of karyotypes show S-type organisation (ancestral condition), the L-type arrangement has arisen independently several times during plant evolution. A non-terminal position of 35S rDNA was found in about 25% of single-locus karyotypes, suggesting that terminal locations are not essential for functionality and expression. Single-locus karyotypes are very common, even in polyploids. In this regard, polyploidy is followed by subsequent locus loss. This results in a decrease in locus number per monoploid genome, forming part of the diploidisation process returning polyploids to a diploid-like state over time.
Collapse
Affiliation(s)
- Sònia Garcia
- Institut Botànic de Barcelona (IBB-CSIC-ICUB), Passeig del Migdia s/n, 08038, Barcelona, Catalonia, Spain
| | - Ales Kovařík
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, Brno, 612 65, Czech Republic
| | - Andrew R Leitch
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK
| | - Teresa Garnatje
- Institut Botànic de Barcelona (IBB-CSIC-ICUB), Passeig del Migdia s/n, 08038, Barcelona, Catalonia, Spain
| |
Collapse
|
20
|
Liu H, Cao F, Yin T, Chen Y. A Highly Dense Genetic Map for Ginkgo biloba Constructed Using Sequence-Based Markers. FRONTIERS IN PLANT SCIENCE 2017; 8:1041. [PMID: 28663754 PMCID: PMC5471298 DOI: 10.3389/fpls.2017.01041] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 05/30/2017] [Indexed: 05/19/2023]
Abstract
Ginkgo biloba L. is a well-known living gymnosperm fossil that has medicinal and ornamental value. In this study, a high density genetic map was constructed with megagametophytes of 94 seeds from a single Ginkgo tree by employing the specific-locus amplified fragment (SLAF) sequencing technique. The average sequencing depth was 11.20×, which yielded 538,031 high-quality SLAFs. Among these SLAFs, 204,361 were heterozygous in the maternal tree and segregated in the progeny. The established map contained 12,263 SLAFs that were assigned to 12 linkage groups (LGs). The number of LGs on this map equaled the number of chromosomes in Ginkgo. The total map length was 1,671.77 cM, with an average distance of 0.89 cM between adjacent marker bins. Map evaluation based on the haplotype map and the heat map validated the high quality of the established map. Because Ginkgo is an economically and biologically important tree, strenuous efforts have been exerted to sequence its genome. This new map, built using sequence-based markers, will serve in the future as a fundamental platform for anchoring sequence assemblies along Ginkgo chromosomes. This map also provides a desirable platform for various genetic studies of Ginkgo, including gene/quantitative trait locus mapping and marker-aided selection.
Collapse
|
21
|
Yu S, Lemos B. A Portrait of Ribosomal DNA Contacts with Hi-C Reveals 5S and 45S rDNA Anchoring Points in the Folded Human Genome. Genome Biol Evol 2016; 8:3545-3558. [PMID: 27797956 PMCID: PMC5203791 DOI: 10.1093/gbe/evw257] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Ribosomal RNAs (rRNAs) account for >60% of all RNAs in eukaryotic cells and are encoded in the ribosomal DNA (rDNA) arrays. The rRNAs are produced from two sets of loci: the 5S rDNA array resides exclusively on human chromosome 1, whereas the 45S rDNA array resides on the short arm of five human acrocentric chromosomes. The 45S rDNA gives origin to the nucleolus, the nuclear organelle that is the site of ribosome biogenesis. Intriguingly, 5S and 45S rDNA arrays exhibit correlated copy number variation in lymphoblastoid cells (LCLs). Here we examined the genomic architecture and repeat content of the 5S and 45S rDNA arrays in multiple human genome assemblies (including PacBio MHAP assembly) and ascertained contacts between the rDNA arrays and the rest of the genome using Hi-C datasets from two human cell lines (erythroleukemia K562 and lymphoblastoid cells). Our analyses revealed that 5S and 45S arrays each have thousands of contacts in the folded genome, with rDNA-associated regions and genes dispersed across all chromosomes. The rDNA contact map displayed conserved and disparate features between two cell lines, and pointed to specific chromosomes, genomic regions, and genes with evidence of spatial proximity to the rDNA arrays; the data also showed a lack of direct physical interaction between the 5S and 45S rDNA arrays. Finally, the analysis identified an intriguing organization in the 5S array with Alu and 5S elements adjacent to one another and organized in opposite orientation along the array. Portraits of genome folding centered on the ribosomal DNA array could help understand the emergence of concerted variation, the control of 5S and 45S expression, as well as provide insights into an organelle that contributes to the spatial localization of human chromosomes during interphase.
Collapse
Affiliation(s)
- Shoukai Yu
- Program in Molecular and Integrative Physiological Sciences, Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Bernardo Lemos
- Program in Molecular and Integrative Physiological Sciences, Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| |
Collapse
|
22
|
Wang W, Ma L, Becher H, Garcia S, Kovarikova A, Leitch IJ, Leitch AR, Kovarik A. Astonishing 35S rDNA diversity in the gymnosperm species Cycas revoluta Thunb. Chromosoma 2015; 125:683-99. [PMID: 26637996 PMCID: PMC5023732 DOI: 10.1007/s00412-015-0556-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 11/05/2015] [Indexed: 11/28/2022]
Abstract
In all eukaryotes, the highly repeated 35S ribosomal DNA (rDNA) sequences encoding 18S-5.8S-26S ribosomal RNA (rRNA) typically show high levels of intragenomic uniformity due to homogenisation processes, leading to concerted evolution of 35S rDNA repeats. Here, we compared 35S rDNA divergence in several seed plants using next generation sequencing and a range of molecular and cytogenetic approaches. Most species showed similar 35S rDNA homogeneity indicating concerted evolution. However, Cycas revoluta exhibits an extraordinary diversity of rDNA repeats (nucleotide sequence divergence of different copies averaging 12 %), influencing both the coding and non-coding rDNA regions nearly equally. In contrast, its rRNA transcriptome was highly homogeneous suggesting that only a minority of genes (<20 %) encode functional rRNA. The most common SNPs were C > T substitutions located in symmetrical CG and CHG contexts which were also highly methylated. Both functional genes and pseudogenes appear to cluster on chromosomes. The extraordinary high levels of 35S rDNA diversity in C. revoluta, and probably other species of cycads, indicate that the frequency of repeat homogenisation has been much lower in this lineage, compared with all other land plant lineages studied. This has led to the accumulation of methylation-driven mutations and pseudogenisation. Potentially, the reduced homology between paralogs prevented their elimination by homologous recombination, resulting in long-term retention of rDNA pseudogenes in the genome.
Collapse
Affiliation(s)
- Wencai Wang
- School of Biological and Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK
| | - Lu Ma
- School of Biological and Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK
| | - Hannes Becher
- School of Biological and Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK
| | - Sònia Garcia
- Laboratori de Botànica-Unitat associada CSIC, Facultat de Farmàcia, Universitat de Barcelona, 08028, Barcelona, Catalonia, Spain
| | - Alena Kovarikova
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, CZ-61265, Czech Republic
| | - Ilia J Leitch
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AB, UK
| | - Andrew R Leitch
- School of Biological and Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK
| | - Ales Kovarik
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, CZ-61265, Czech Republic.
| |
Collapse
|
23
|
Kim K, Lee SC, Lee J, Yu Y, Yang K, Choi BS, Koh HJ, Waminal NE, Choi HI, Kim NH, Jang W, Park HS, Lee J, Lee HO, Joh HJ, Lee HJ, Park JY, Perumal S, Jayakodi M, Lee YS, Kim B, Copetti D, Kim S, Kim S, Lim KB, Kim YD, Lee J, Cho KS, Park BS, Wing RA, Yang TJ. Complete chloroplast and ribosomal sequences for 30 accessions elucidate evolution of Oryza AA genome species. Sci Rep 2015; 5:15655. [PMID: 26506948 PMCID: PMC4623524 DOI: 10.1038/srep15655] [Citation(s) in RCA: 149] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 09/30/2015] [Indexed: 12/15/2022] Open
Abstract
Cytoplasmic chloroplast (cp) genomes and nuclear ribosomal DNA (nR) are the primary sequences used to understand plant diversity and evolution. We introduce a high-throughput method to simultaneously obtain complete cp and nR sequences using Illumina platform whole-genome sequence. We applied the method to 30 rice specimens belonging to nine Oryza species. Concurrent phylogenomic analysis using cp and nR of several of specimens of the same Oryza AA genome species provides insight into the evolution and domestication of cultivated rice, clarifying three ambiguous but important issues in the evolution of wild Oryza species. First, cp-based trees clearly classify each lineage but can be biased by inter-subspecies cross-hybridization events during speciation. Second, O. glumaepatula, a South American wild rice, includes two cytoplasm types, one of which is derived from a recent interspecies hybridization with O. longistminata. Third, the Australian O. rufipogan-type rice is a perennial form of O. meridionalis.
Collapse
Affiliation(s)
- Kyunghee Kim
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea.,Phyzen Genome Institute, 501-1, Gwanak Century Tower, Kwanak-gu, Seoul, 151-836, Republic of Korea
| | - Sang-Choon Lee
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea
| | - Junki Lee
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea
| | - Yeisoo Yu
- Phyzen Genome Institute, 501-1, Gwanak Century Tower, Kwanak-gu, Seoul, 151-836, Republic of Korea.,Arizona Genomics Institute, School of Plant Sciences, The University of Arizona, Tucson, Arizona, 85721, USA
| | - Kiwoung Yang
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea.,Department of Horticulture, Sunchon National University, Suncheon, 540-950, Republic of Korea
| | - Beom-Soon Choi
- Phyzen Genome Institute, 501-1, Gwanak Century Tower, Kwanak-gu, Seoul, 151-836, Republic of Korea
| | - Hee-Jong Koh
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea
| | - Nomar Espinosa Waminal
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea
| | - Hong-Il Choi
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea
| | - Nam-Hoon Kim
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea
| | - Woojong Jang
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea
| | - Hyun-Seung Park
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea
| | - Jonghoon Lee
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea
| | - Hyun Oh Lee
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea.,Phyzen Genome Institute, 501-1, Gwanak Century Tower, Kwanak-gu, Seoul, 151-836, Republic of Korea
| | - Ho Jun Joh
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea
| | - Hyeon Ju Lee
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea
| | - Jee Young Park
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea
| | - Sampath Perumal
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea
| | - Murukarthick Jayakodi
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea
| | - Yun Sun Lee
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea
| | - Backki Kim
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea
| | - Dario Copetti
- Arizona Genomics Institute, School of Plant Sciences, The University of Arizona, Tucson, Arizona, 85721, USA
| | - Soonok Kim
- Biological and Genetic Resources Assessment Division, National Institute of Biological Resources, Incheon, 404-170, Republic of Korea
| | - Sunggil Kim
- Department of Plant Biotechnology, Biotechnology Research Institute, Chonnam National University, Gwangju, 500-757, Republic of Korea
| | - Ki-Byung Lim
- Department of Horticultural Science, Kyungpook National University, Daegu, 702-701, Republic of Korea
| | - Young-Dong Kim
- Department of Life Science, Hallym University, Chuncheon, Kangwon-do, 200-702, Republic of Korea
| | - Jungho Lee
- Green Plant Institute, #2-202 Biovalley, 89 Seoho-ro, Kwonseon-gu, Suwon, Republic of Korea
| | - Kwang-Su Cho
- Highland Agriculture Research Institute, National Institute of Crop Science, Rural Development Administration, Pyeongchang-gun, Kangwon-do, 232-955, Republic of Korea
| | - Beom-Seok Park
- Department of Agricultural Biotechnology, National Academy of Agricultural Science, Rural Development Administration, Jeonju, 560-500, Republic of Korea
| | - Rod A Wing
- Arizona Genomics Institute, School of Plant Sciences, The University of Arizona, Tucson, Arizona, 85721, USA
| | - Tae-Jin Yang
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea
| |
Collapse
|
24
|
Roa F, Guerra M. Non-Random Distribution of 5S rDNA Sites and Its Association with 45S rDNA in Plant Chromosomes. Cytogenet Genome Res 2015; 146:243-9. [PMID: 26489031 DOI: 10.1159/000440930] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2015] [Indexed: 11/19/2022] Open
Abstract
5S and 45S rDNA sites are the best mapped chromosome regions in eukaryotic chromosomes. In this work, a database was built gathering information about the position and number of 5S rDNA sites in 784 plant species, aiming to identify patterns of distribution along the chromosomes and its correlation with the position of 45S rDNA sites. Data revealed that in most karyotypes (54.5%, including polyploids) two 5S rDNA sites (a single pair) are present, with 58.7% of all sites occurring in the short arm, mainly in the proximal region. In karyotypes of angiosperms with only 1 pair of sites (single sites) they are mostly found in the proximal region (52.0%), whereas in karyotypes with multiple sites the location varies according to the average chromosome size. Karyotypes with multiple sites and small chromosomes (<3 µm) often display proximal sites, while medium-sized (between 3 and 6 µm) and large chromosomes (>6 µm) more commonly show terminal or interstitial sites. In species with holokinetic chromosomes, the modal value of sites per karyotype was also 2, but they were found mainly in a terminal position. Adjacent 5S and 45S rDNA sites were often found in the short arm, reflecting the preferential distribution of both sites in this arm. The high frequency of genera with at least 1 species with adjacent 5S and 45S sites reveals that this association appeared several times during angiosperm evolution, but it has been maintained only rarely as the dominant array in plant genera.
Collapse
|
25
|
Galián JA, Rosato M, Rosselló JA. Incomplete sequence homogenization in 45S rDNA multigene families: intermixed IGS heterogeneity within the single NOR locus of the polyploid species Medicago arborea (Fabaceae). ANNALS OF BOTANY 2014; 114:243-51. [PMID: 24925322 PMCID: PMC4111382 DOI: 10.1093/aob/mcu115] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 05/02/2014] [Indexed: 05/04/2023]
Abstract
BACKGROUND AND AIMS Ribosomal sequences have become the classical example of the genomic homogenization of nuclear multigene families. Despite theoretical advantages and modelling predictions that support concerted evolution of the 45S rDNA, several reports have found intragenomic polymorphisms. However, the origins and causes of these rDNA polymorphisms are difficult to assess because seed plants show a wide range of 45S rDNA loci number variation, especially in polyploids. Medicago arborea is a tetraploid species that has a single 45S rDNA locus. This feature makes this species a suitable case study to assess the fate of ribosomal IGS homogenization in polyploid species showing nucleolus organizer region (NOR) reduction. METHODS The intergenic spacer (IGS) region was amplified by long PCR and the fragments were cloned and sequenced by a primer-walking strategy. The physical mapping of the whole and partial IGS variants was assessed by fluorescent in situ hybridization (FISH) and fibre-FISH methods on mitotic chromosomes and extended DNA fibres, respectively. KEY RESULTS Two IGS fragments of 4·8 and 3·5 kb were obtained showing structural features of functional sequences. The shorter variant appears to be a truncated copy of the 4·8 kb fragment that lacks the duplication of the transcription initiation site region and the entire D region. The physical localization of the two IGS variants on metaphase chromosomes and extended DNA fibres using FISH corroborated their joint presence within the same locus. In addition, no spatial structure of the two variants was detected within the NOR. CONCLUSIONS The results suggest that full sequence homogenization is not operating within the NOR locus of M. arborea. The structure of the NOR locus reported here departs from the models of IGS heterogeneity present in plants and caution against assuming the widespread belief that intragenomic ribosomal heterogeneity is mainly due to sequence variation between paralogous loci.
Collapse
Affiliation(s)
- José A Galián
- Jardín Botánico, ICBiBE, Universidad de Valencia, c/Quart 80, E-46008, Valencia, Spain
| | - Marcela Rosato
- Jardín Botánico, ICBiBE, Universidad de Valencia, c/Quart 80, E-46008, Valencia, Spain
| | - Josep A Rosselló
- Jardín Botánico, ICBiBE, Universidad de Valencia, c/Quart 80, E-46008, Valencia, Spain Marimurtra Bot. Garden, Carl Faust Fdn, PO Box 112, E-17300 Blanes, Catalonia, Spain
| |
Collapse
|
26
|
Garcia S, Gálvez F, Gras A, Kovařík A, Garnatje T. Plant rDNA database: update and new features. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2014; 2014:bau063. [PMID: 24980131 PMCID: PMC4075780 DOI: 10.1093/database/bau063] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The Plant rDNA database (www.plantrdnadatabase.com) is an open access online resource providing detailed information on numbers, structures and positions of 5S and 18S-5.8S-26S (35S) ribosomal DNA loci. The data have been obtained from >600 publications on plant molecular cytogenetics, mostly based on fluorescent in situ hybridization (FISH). This edition of the database contains information on 1609 species derived from 2839 records, which means an expansion of 55.76 and 94.45%, respectively. It holds the data for angiosperms, gymnosperms, bryophytes and pteridophytes available as of June 2013. Information from publications reporting data for a single rDNA (either 5S or 35S alone) and annotation regarding transcriptional activity of 35S loci now appears in the database. Preliminary analyses suggest greater variability in the number of rDNA loci in gymnosperms than in angiosperms. New applications provide ideograms of the species showing the positions of rDNA loci as well as a visual representation of their genome sizes. We have also introduced other features to boost the usability of the Web interface, such as an application for convenient data export and a new section with rDNA–FISH-related information (mostly detailing protocols and reagents). In addition, we upgraded and/or proofread tabs and links and modified the website for a more dynamic appearance. This manuscript provides a synopsis of these changes and developments. Database URL: http://www.plantrdnadatabase.com
Collapse
Affiliation(s)
- Sònia Garcia
- Laboratori de Botànica-Unitat associada CSIC, Facultat de Farmàcia, Universitat de Barcelona, Barcelona, 08028 Catalonia, Spain, BioScripts - Centro de Investigación y Desarrollo de Recursos Científicos, Sevilla, 41012 Andalusia, Spain, Institute of Biophysics, Academy of Sciences of the Czech Republic. Brno, CZ-612 65, Czech Republic and Institut Botànic de Barcelona (IBB-CSIC-ICUB). Barcelona, 08038 Catalonia, Spain
| | - Francisco Gálvez
- Laboratori de Botànica-Unitat associada CSIC, Facultat de Farmàcia, Universitat de Barcelona, Barcelona, 08028 Catalonia, Spain, BioScripts - Centro de Investigación y Desarrollo de Recursos Científicos, Sevilla, 41012 Andalusia, Spain, Institute of Biophysics, Academy of Sciences of the Czech Republic. Brno, CZ-612 65, Czech Republic and Institut Botànic de Barcelona (IBB-CSIC-ICUB). Barcelona, 08038 Catalonia, Spain
| | - Airy Gras
- Laboratori de Botànica-Unitat associada CSIC, Facultat de Farmàcia, Universitat de Barcelona, Barcelona, 08028 Catalonia, Spain, BioScripts - Centro de Investigación y Desarrollo de Recursos Científicos, Sevilla, 41012 Andalusia, Spain, Institute of Biophysics, Academy of Sciences of the Czech Republic. Brno, CZ-612 65, Czech Republic and Institut Botànic de Barcelona (IBB-CSIC-ICUB). Barcelona, 08038 Catalonia, Spain
| | - Aleš Kovařík
- Laboratori de Botànica-Unitat associada CSIC, Facultat de Farmàcia, Universitat de Barcelona, Barcelona, 08028 Catalonia, Spain, BioScripts - Centro de Investigación y Desarrollo de Recursos Científicos, Sevilla, 41012 Andalusia, Spain, Institute of Biophysics, Academy of Sciences of the Czech Republic. Brno, CZ-612 65, Czech Republic and Institut Botànic de Barcelona (IBB-CSIC-ICUB). Barcelona, 08038 Catalonia, Spain
| | - Teresa Garnatje
- Laboratori de Botànica-Unitat associada CSIC, Facultat de Farmàcia, Universitat de Barcelona, Barcelona, 08028 Catalonia, Spain, BioScripts - Centro de Investigación y Desarrollo de Recursos Científicos, Sevilla, 41012 Andalusia, Spain, Institute of Biophysics, Academy of Sciences of the Czech Republic. Brno, CZ-612 65, Czech Republic and Institut Botànic de Barcelona (IBB-CSIC-ICUB). Barcelona, 08038 Catalonia, Spain
| |
Collapse
|
27
|
Galián JA, Rosato M, Rosselló JA. Partial Sequence Homogenization in the 5S Multigene Families May Generate Sequence Chimeras and Spurious Results in Phylogenetic Reconstructions. Syst Biol 2014; 63:219-30. [DOI: 10.1093/sysbio/syt101] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- José A. Galián
- Jardín Botánico, Universidad de Valencia, c/Quart 80, E-46008 Valencia, Spain; and 2Marimurtra Bot. Garden, Carl Faust Fdn., PO Box 112, E-17300 Blanes, Catalonia, Spain
| | - Marcela Rosato
- Jardín Botánico, Universidad de Valencia, c/Quart 80, E-46008 Valencia, Spain; and 2Marimurtra Bot. Garden, Carl Faust Fdn., PO Box 112, E-17300 Blanes, Catalonia, Spain
| | - Josep A. Rosselló
- Jardín Botánico, Universidad de Valencia, c/Quart 80, E-46008 Valencia, Spain; and 2Marimurtra Bot. Garden, Carl Faust Fdn., PO Box 112, E-17300 Blanes, Catalonia, Spain
- Jardín Botánico, Universidad de Valencia, c/Quart 80, E-46008 Valencia, Spain; and 2Marimurtra Bot. Garden, Carl Faust Fdn., PO Box 112, E-17300 Blanes, Catalonia, Spain
| |
Collapse
|
28
|
Dancing together and separate again: gymnosperms exhibit frequent changes of fundamental 5S and 35S rRNA gene (rDNA) organisation. Heredity (Edinb) 2013; 111:23-33. [PMID: 23512008 PMCID: PMC3692318 DOI: 10.1038/hdy.2013.11] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
In higher eukaryotes, the 5S rRNA genes occur in tandem units and are arranged either
separately (S-type arrangement) or linked to other repeated genes, in most cases to rDNA
locus encoding 18S–5.8S–26S genes (L-type arrangement). Here we used Southern
blot hybridisation, PCR and sequencing approaches to analyse genomic organisation of rRNA
genes in all large gymnosperm groups, including Coniferales, Ginkgoales, Gnetales and
Cycadales. The data are provided for 27 species (21 genera). The 5S units linked to the
35S rDNA units occur in some but not all Gnetales, Coniferales and in Ginkgo
(∼30% of the species analysed), while the remaining exhibit separate
organisation. The linked 5S rRNA genes may occur as single-copy insertions or as short
tandems embedded in the 26S–18S rDNA intergenic spacer (IGS). The 5S transcript may
be encoded by the same (Ginkgo, Ephedra) or opposite
(Podocarpus) DNA strand as the 18S–5.8S–26S genes. In addition,
pseudogenised 5S copies were also found in some IGS types. Both L- and S-type units have
been largely homogenised across the genomes. Phylogenetic relationships based on the
comparison of 5S coding sequences suggest that the 5S genes independently inserted IGS at
least three times in the course of gymnosperm evolution. Frequent transpositions and
rearrangements of basic units indicate relatively relaxed selection pressures imposed on
genomic organisation of 5S genes in plants.
Collapse
|
29
|
Barros e Silva A, dos Santos Soares Filho W, Guerra M. Linked 5S and 45S rDNA Sites Are Highly Conserved through the Subfamily Aurantioideae (Rutaceae). Cytogenet Genome Res 2013; 140:62-9. [DOI: 10.1159/000350695] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2012] [Indexed: 11/19/2022] Open
|
30
|
Matsunaga S, Katagiri Y, Nagashima Y, Sugiyama T, Hasegawa J, Hayashi K, Sakamoto T. New insights into the dynamics of plant cell nuclei and chromosomes. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 305:253-301. [PMID: 23890384 DOI: 10.1016/b978-0-12-407695-2.00006-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The plant lamin-like protein NMCP/AtLINC and orthologues of the SUN-KASH complex across the nuclear envelope (NE) show the universality of nuclear structure in eukaryotes. However, depletion of components in the connection complex of the NE in plants does not induce severe defects, unlike in animals. Appearance of the Rabl configuration is not dependent on genome size in plant species. Topoisomerase II and condensin II are not essential for plant chromosome condensation. Plant endoreduplication shares several common characteristics with animals, including involvement of cyclin-dependent kinases and E2F transcription factors. Recent finding regarding endomitosis regulator GIG1 shed light on the suppression mechanism of endomitosis in plants. The robustness of plants, compared with animals, is reflected in their genome redundancy. Spatiotemporal functional analyses using chromophore-assisted light inactivation, super-resolution microscopy, and 4D (3D plus time) imaging will reveal new insights into plant nuclear and chromosomal dynamics.
Collapse
Affiliation(s)
- Sachihiro Matsunaga
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba, Japan.
| | | | | | | | | | | | | |
Collapse
|
31
|
Garcia S, Crhák Khaitová L, Kovařík A. Expression of 5 S rRNA genes linked to 35 S rDNA in plants, their epigenetic modification and regulatory element divergence. BMC PLANT BIOLOGY 2012; 12:95. [PMID: 22716941 PMCID: PMC3409069 DOI: 10.1186/1471-2229-12-95] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 06/20/2012] [Indexed: 05/09/2023]
Abstract
BACKGROUND In plants, the 5 S rRNA genes usually occur as separate tandems (S-type arrangement) or, less commonly, linked to 35 S rDNA units (L-type). The activity of linked genes remains unknown so far. We studied the homogeneity and expression of 5 S genes in several species from family Asteraceae known to contain linked 35 S-5 S units. Additionally, their methylation status was determined using bisulfite sequencing. Fluorescence in situ hybridization was applied to reveal the sub-nuclear positions of rDNA arrays. RESULTS We found that homogenization of L-type units went to completion in most (4/6) but not all species. Two species contained major L-type and minor S-type units (termed L(s)-type). The linked genes dominate 5 S rDNA expression while the separate tandems do not seem to be expressed. Members of tribe Anthemideae evolved functional variants of the polymerase III promoter in which a residing C-box element differs from the canonical angiosperm motif by as much as 30%. On this basis, a more relaxed consensus sequence of a plant C-box: (5'-RGSWTGGGTG-3') is proposed. The 5 S paralogs display heavy DNA methylation similarly as to their unlinked counterparts. FISH revealed the close association of 35 S-5 S arrays with nucleolar periphery indicating that transcription of 5 S genes may occur in this territory. CONCLUSIONS We show that the unusual linked arrangement of 5 S genes, occurring in several plant species, is fully compatible with their expression and functionality. This extraordinary 5 S gene dynamics is manifested at different levels, such as variation in intrachromosomal positions, unit structure, epigenetic modification and considerable divergence of regulatory motifs.
Collapse
MESH Headings
- Animals
- Asteraceae/chemistry
- Asteraceae/genetics
- Asteraceae/metabolism
- Base Sequence
- Consensus Sequence
- DNA Methylation
- DNA, Plant/chemistry
- DNA, Plant/genetics
- DNA, Plant/metabolism
- Epigenesis, Genetic
- Evolution, Molecular
- Gene Expression Regulation, Plant
- Molecular Sequence Data
- Promoter Regions, Genetic
- RNA, Ribosomal/chemistry
- RNA, Ribosomal/genetics
- RNA, Ribosomal/metabolism
- Regulatory Sequences, Nucleic Acid
- Response Elements
- Sequence Alignment
Collapse
Affiliation(s)
- Sònia Garcia
- Laboratori de Botànica, Facultat de Farmàcia, Universitat de Barcelona, Av. Joan XXIII s. n., Barcelona, Catalonia, 08028, Spain
| | - Lucie Crhák Khaitová
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, Brno, CZ-6125, Czech Republic
| | - Aleš Kovařík
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, Brno, CZ-6125, Czech Republic
| |
Collapse
|