1
|
Lecomte L, Árnyasi M, Ferchaud A, Kent M, Lien S, Stenløkk K, Sylvestre F, Bernatchez L, Mérot C. Investigating structural variant, indel and single nucleotide polymorphism differentiation between locally adapted Atlantic salmon populations. Evol Appl 2024; 17:e13653. [PMID: 38495945 PMCID: PMC10940791 DOI: 10.1111/eva.13653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/14/2023] [Accepted: 01/13/2024] [Indexed: 03/19/2024] Open
Abstract
Genomic structural variants (SVs) are now recognized as an integral component of intraspecific polymorphism and are known to contribute to evolutionary processes in various organisms. However, they are inherently difficult to detect and genotype from readily available short-read sequencing data, and therefore remain poorly documented in wild populations. Salmonid species displaying strong interpopulation variability in both life history traits and habitat characteristics, such as Atlantic salmon (Salmo salar), offer a prime context for studying adaptive polymorphism, but the contribution of SVs to fine-scale local adaptation has yet to be explored. Here, we performed a comparative analysis of SVs, single nucleotide polymorphisms (SNPs) and small indels (<50 bp) segregating in the Romaine and Puyjalon salmon, two putatively locally adapted populations inhabiting neighboring rivers (Québec, Canada) and showing pronounced variation in life history traits, namely growth, fecundity, and age at maturity and smoltification. We first catalogued polymorphism using a hybrid SV characterization approach pairing both short- (16X) and long-read sequencing (20X) for variant discovery with graph-based genotyping of SVs across 60 salmon genomes, along with characterization of SNPs and small indels from short reads. We thus identified 115,907 SVs, 8,777,832 SNPs and 1,089,321 short indels, with SVs covering 4.8 times more base pairs than SNPs. All three variant types revealed a highly congruent population structure and similar patterns of F ST and density variation along the genome. Finally, we performed outlier detection and redundancy analysis (RDA) to identify variants of interest in the putative local adaptation of Romaine and Puyjalon salmon. Genes located near these variants were enriched for biological processes related to nervous system function, suggesting that observed variation in traits such as age at smoltification could arise from differences in neural development. This study therefore demonstrates the feasibility of large-scale SV characterization and highlights its relevance for salmonid population genomics.
Collapse
Affiliation(s)
- Laurie Lecomte
- Institut de Biologie Intégrative et des Systèmes (IBIS)Université LavalQuébecCanada
- Département de BiologieUniversité LavalQuébecCanada
| | - Mariann Árnyasi
- Department of Animal and Aquacultural Sciences (IHA), Faculty of Life Sciences (BIOVIT), Centre for Integrative Genetics (CIGENE)Norwegian University of Life Sciences (NMBU)ÅsNorway
| | - Anne‐Laure Ferchaud
- Institut de Biologie Intégrative et des Systèmes (IBIS)Université LavalQuébecCanada
- Département de BiologieUniversité LavalQuébecCanada
- Present address:
Parks Canada, Office of the Chief Ecosystem ScientistQuébecQCCanada
| | - Matthew Kent
- Department of Animal and Aquacultural Sciences (IHA), Faculty of Life Sciences (BIOVIT), Centre for Integrative Genetics (CIGENE)Norwegian University of Life Sciences (NMBU)ÅsNorway
| | - Sigbjørn Lien
- Department of Animal and Aquacultural Sciences (IHA), Faculty of Life Sciences (BIOVIT), Centre for Integrative Genetics (CIGENE)Norwegian University of Life Sciences (NMBU)ÅsNorway
| | - Kristina Stenløkk
- Department of Animal and Aquacultural Sciences (IHA), Faculty of Life Sciences (BIOVIT), Centre for Integrative Genetics (CIGENE)Norwegian University of Life Sciences (NMBU)ÅsNorway
| | - Florent Sylvestre
- Institut de Biologie Intégrative et des Systèmes (IBIS)Université LavalQuébecCanada
- Département de BiologieUniversité LavalQuébecCanada
| | - Louis Bernatchez
- Institut de Biologie Intégrative et des Systèmes (IBIS)Université LavalQuébecCanada
- Département de BiologieUniversité LavalQuébecCanada
| | - Claire Mérot
- Institut de Biologie Intégrative et des Systèmes (IBIS)Université LavalQuébecCanada
- Département de BiologieUniversité LavalQuébecCanada
- Present address:
UMR 6553 Ecobio, OSUR, CNRSUniversité de RennesRennesFrance
| |
Collapse
|
2
|
Besnier F, Skaala Ø, Wennevik V, Ayllon F, Utne KR, Fjeldheim PT, Andersen-Fjeldheim K, Knutar S, Glover KA. Overruled by nature: A plastic response to environmental change disconnects a gene and its trait. Mol Ecol 2024; 33:e16933. [PMID: 36942798 DOI: 10.1111/mec.16933] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/21/2023] [Accepted: 03/17/2023] [Indexed: 03/23/2023]
Abstract
In Atlantic salmon, age at maturation is a life history trait governed by a sex-specific trade-off between reproductive success and survival. Following environmental changes across large areas of the Northeast Atlantic, many populations currently display smaller size at age and higher age at maturation. However, whether these changes reflect rapid evolution or plasticity is unknown. Approximately 1500 historical and contemporary salmon from the river Etne in Western Norway, genotyped at 50,000 SNPs, revealed three loci associated with age at maturation. These included vgll3 and six6 which collectively explained 36%-50% of the age at maturation variation in the 1983-1984 period. These two loci also displayed sex-specific epistasis, as the effect of six6 was only detected in males bearing two copies of the late maturation allele for vgll3. Strikingly, despite allelic frequencies at vgll3 remaining unchanged, the combined influence of these genes was nearly absent in all samples from 2013 to 2016, and genome-wide heritability strongly declined between the two time-points. The difference in age at maturation between males and females was upheld in the population despite the loss of effect from the candidate loci, which strongly points towards additional causative mechanisms resolving the sexual conflict. Finally, because admixture with farmed escaped salmon was excluded as the origin of the observed disconnection between gene(s) and maturation age, we conclude that the environmental changes observed in the North Atlantic during the past decades have led to bypassing of the influence of vgll3 and six6 on maturation through growth-driven plasticity.
Collapse
|
3
|
Rondeau EB, Christensen KA, Johnson HA, Sakhrani D, Biagi CA, Wetklo M, Despins CA, Leggatt RA, Minkley DR, Withler RE, Beacham TD, Koop BF, Devlin RH. Insights from a chum salmon (Oncorhynchus keta) genome assembly regarding whole-genome duplication and nucleotide variation influencing gene function. G3 (BETHESDA, MD.) 2023; 13:jkad127. [PMID: 37293843 PMCID: PMC10411575 DOI: 10.1093/g3journal/jkad127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/30/2023] [Accepted: 06/04/2023] [Indexed: 06/10/2023]
Abstract
Chum salmon are ecologically important to Pacific Ocean ecosystems and commercially important to fisheries. To improve the genetic resources available for this species, we sequenced and assembled the genome of a male chum salmon using Oxford Nanopore read technology and the Flye genome assembly software (contig N50: ∼2 Mbp, complete BUSCOs: ∼98.1%). We also resequenced the genomes of 59 chum salmon from hatchery sources to better characterize the genome assembly and the diversity of nucleotide variants impacting phenotype variation. With genomic sequences from a doubled haploid individual, we were able to identify regions of the genome assembly that have been collapsed due to high sequence similarity between homeologous (duplicated) chromosomes. The homeologous chromosomes are relics of an ancient salmonid-specific genome duplication. These regions were enriched with genes whose functions are related to the immune system and responses to toxins. From analyzing nucleotide variant annotations of the resequenced genomes, we were also able to identify genes that have increased levels of variants thought to moderately impact gene function. Genes related to the immune system and the detection of chemical stimuli (olfaction) had increased levels of these variants based on a gene ontology enrichment analysis. The tandem organization of many of the enriched genes raises the question of why they have this organization.
Collapse
Affiliation(s)
- Eric B Rondeau
- Fisheries and Oceans Canada, 4160 Marine Drive, West Vancouver, BC V7V 1N6, Canada
- Department of Biology, University of Victoria, 3800 Finnerty Road, Victoria, BC V8W 2Y2, Canada
- Fisheries and Oceans Canada, Pacific Biological Station, 3190 Hammond Bay Road, Nanaimo, BC V9T 6N7, Canada
| | - Kris A Christensen
- Fisheries and Oceans Canada, 4160 Marine Drive, West Vancouver, BC V7V 1N6, Canada
- Department of Biology, University of Victoria, 3800 Finnerty Road, Victoria, BC V8W 2Y2, Canada
| | - Hollie A Johnson
- Department of Biology, University of Victoria, 3800 Finnerty Road, Victoria, BC V8W 2Y2, Canada
| | - Dionne Sakhrani
- Fisheries and Oceans Canada, 4160 Marine Drive, West Vancouver, BC V7V 1N6, Canada
| | - Carlo A Biagi
- Fisheries and Oceans Canada, 4160 Marine Drive, West Vancouver, BC V7V 1N6, Canada
| | - Mike Wetklo
- Fisheries and Oceans Canada, Pacific Biological Station, 3190 Hammond Bay Road, Nanaimo, BC V9T 6N7, Canada
| | - Cody A Despins
- Department of Biology, University of Victoria, 3800 Finnerty Road, Victoria, BC V8W 2Y2, Canada
| | - Rosalind A Leggatt
- Fisheries and Oceans Canada, 4160 Marine Drive, West Vancouver, BC V7V 1N6, Canada
| | - David R Minkley
- Department of Biology, University of Victoria, 3800 Finnerty Road, Victoria, BC V8W 2Y2, Canada
| | - Ruth E Withler
- Fisheries and Oceans Canada, Pacific Biological Station, 3190 Hammond Bay Road, Nanaimo, BC V9T 6N7, Canada
| | - Terry D Beacham
- Fisheries and Oceans Canada, Pacific Biological Station, 3190 Hammond Bay Road, Nanaimo, BC V9T 6N7, Canada
| | - Ben F Koop
- Department of Biology, University of Victoria, 3800 Finnerty Road, Victoria, BC V8W 2Y2, Canada
| | - Robert H Devlin
- Fisheries and Oceans Canada, 4160 Marine Drive, West Vancouver, BC V7V 1N6, Canada
| |
Collapse
|
4
|
Moghadam HK, Fannemel B, Thorland I, Lozano C, Hillestad B. Identification and Genomic Localization of Autosomal sdY Locus in a Population of Atlantic Salmon (Salmo salar). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2023:10.1007/s10126-023-10217-4. [PMID: 37233880 DOI: 10.1007/s10126-023-10217-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/14/2023] [Indexed: 05/27/2023]
Abstract
The determination of sex in salmonid fishes is controlled by genetic mechanisms, with males being the heterogametic sex. The master sex-determining gene, the sexually dimorphic gene on the Y chromosome (sdY), is a conserved gene across various salmonid species. Nevertheless, variations in the genomic location of sdY have been observed both within and between species. Furthermore, different studies have reported discordances in the association between the sdY and the phenotypic gender. While some males seem to lack this locus, there have been reports of females carrying sdY. Although the exact reasons behind this discordance remain under investigation, some recent studies have proposed the existence of an autosomal, non-functional copy of sdY as a potential cause. In this study, we confirmed the presence of this autosomal sdY in the SalmoBreed strain of Atlantic salmon using a genotyping platform through a novel approach that allows for high-throughput screening of a large number of individuals. We further characterized the segregation profile of this locus across families and found the ratio of genetically assigned female-to-male progeny to be in accordance with the expected profile of a single autosomal sdY locus. Additionally, our mapping efforts localized this locus to chromosome 3 and suggested a putative copy on chromosome 6.
Collapse
|
5
|
Do Ty3/Gypsy Transposable Elements Play Preferential Roles in Sex Chromosome Differentiation? Life (Basel) 2022; 12:life12040522. [PMID: 35455013 PMCID: PMC9025612 DOI: 10.3390/life12040522] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/13/2022] [Accepted: 03/30/2022] [Indexed: 12/16/2022] Open
Abstract
Transposable elements (TEs) comprise a substantial portion of eukaryotic genomes. They have the unique ability to integrate into new locations and serve as the main source of genomic novelties by mediating chromosomal rearrangements and regulating portions of functional genes. Recent studies have revealed that TEs are abundant in sex chromosomes. In this review, we propose evolutionary relationships between specific TEs, such as Ty3/Gypsy, and sex chromosomes in different lineages based on the hypothesis that these elements contributed to sex chromosome differentiation processes. We highlight how TEs can drive the dynamics of sex-determining regions via suppression recombination under a selective force to affect the organization and structural evolution of sex chromosomes. The abundance of TEs in the sex-determining regions originates from TE-poor genomic regions, suggesting a link between TE accumulation and the emergence of the sex-determining regions. TEs are generally considered to be a hallmark of chromosome degeneration. Finally, we outline recent approaches to identify TEs and study their sex-related roles and effects in the differentiation and evolution of sex chromosomes.
Collapse
|
6
|
Besnier F, Ayllon F, Skaala Ø, Solberg MF, Fjeldheim PT, Anderson K, Knutar S, Glover KA. Introgression of domesticated salmon changes life history and phenology of a wild salmon population. Evol Appl 2022; 15:853-864. [PMID: 35603027 PMCID: PMC9108307 DOI: 10.1111/eva.13375] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 03/03/2022] [Accepted: 03/09/2022] [Indexed: 11/29/2022] Open
Affiliation(s)
- F. Besnier
- Institute of Marine Research PO box 1870 Nordnes N‐5817 Norway
| | - F. Ayllon
- Institute of Marine Research PO box 1870 Nordnes N‐5817 Norway
| | - Ø. Skaala
- Institute of Marine Research PO box 1870 Nordnes N‐5817 Norway
| | - M. F. Solberg
- Institute of Marine Research PO box 1870 Nordnes N‐5817 Norway
| | | | - K. Anderson
- Institute of Marine Research PO box 1870 Nordnes N‐5817 Norway
| | - S. Knutar
- Institute of Marine Research PO box 1870 Nordnes N‐5817 Norway
| | - K. A. Glover
- Institute of Marine Research PO box 1870 Nordnes N‐5817 Norway
- Department of Biological Sciences University of Bergen N‐5020 Bergen Norway
| |
Collapse
|
7
|
Bertho S, Herpin A, Jouanno E, Yano A, Bobe J, Parrinello H, Journot L, Guyomard R, Muller T, Swanson P, McKinney G, Williamson K, Meek M, Schartl M, Guiguen Y. A nonfunctional copy of the salmonid sex-determining gene ( sdY) is responsible for the “apparent” XY females in Chinook salmon, Oncorhynchus tshawytscha. G3 GENES|GENOMES|GENETICS 2022; 12:6493265. [PMID: 35100376 PMCID: PMC8824802 DOI: 10.1093/g3journal/jkab451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 12/03/2021] [Indexed: 11/14/2022]
Abstract
Abstract
Many salmonids have a male heterogametic (XX/XY) sex determination system, and they are supposed to have a conserved master sex-determining gene (sdY) that interacts at the protein level with Foxl2 leading to the blockage of the synergistic induction of Foxl2 and Nr5a1 of the cyp19a1a promoter. However, this hypothesis of a conserved master sex-determining role of sdY in salmonids is challenged by a few exceptions, one of them being the presence of naturally occurring “apparent” XY Chinook salmon, Oncorhynchus tshawytscha, females. Here, we show that some XY Chinook salmon females have a sdY gene (sdY-N183), with 1 missense mutation leading to a substitution of a conserved isoleucine to an asparagine (I183N). In contrast, Chinook salmon males have both a nonmutated sdY-I183 gene and the missense mutation sdY-N183 gene. The 3-dimensional model of SdY-I183N predicts that the I183N hydrophobic to hydrophilic amino acid change leads to a modification in the SdY β-sandwich structure. Using in vitro cell transfection assays, we found that SdY-I183N, like the wild-type SdY, is preferentially localized in the cytoplasm. However, compared to wild-type SdY, SdY-I183N is more prone to degradation, its nuclear translocation by Foxl2 is reduced, and SdY-I183N is unable to significantly repress the synergistic Foxl2/Nr5a1 induction of the cyp19a1a promoter. Altogether, our results suggest that the sdY-N183 gene of XY Chinook females is nonfunctional and that SdY-I183N is no longer able to promote testicular differentiation by impairing the synthesis of estrogens in the early differentiating gonads of wild Chinook salmon XY females.
Collapse
Affiliation(s)
- Sylvain Bertho
- INRAE, LPGP, Rennes 35000, France
- Physiological Chemistry, Biocenter, University of Wuerzburg, Wuerzburg 97074, Germany
| | | | | | | | | | - Hugues Parrinello
- Institut de Génomique Fonctionnelle, IGF, CNRS, INSERM, Univ. Montpellier, Montpellier 34094, France
| | - Laurent Journot
- Institut de Génomique Fonctionnelle, IGF, CNRS, INSERM, Univ. Montpellier, Montpellier 34094, France
| | - René Guyomard
- GABI, INRAE, AgroParisTech, Université Paris-Saclay, Paris 75005, France
| | - Thomas Muller
- Julius-von-Sachs-Institute, Department of Molecular Plant Physiology and Biophysics, University of Wuerzburg, Wuerzburg 97082, Germany
| | - Penny Swanson
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA 98112, USA
| | - Garrett McKinney
- Molecular Genetics Laboratory, Washington Department of Fish & Wildlife, Olympia, WA 98501, USA
| | | | - Mariah Meek
- Dept. of Integrative Biology, AgBio Research, and Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, MI 48824, USA
| | - Manfred Schartl
- The Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666, USA
- Department of Developmental Biochemistry, Biocenter, University of Wüerzburg, Wuerzburg 97074, Germany
| | | |
Collapse
|
8
|
Christensen KA, Rondeau EB, Sakhrani D, Biagi CA, Johnson H, Joshi J, Flores AM, Leelakumari S, Moore R, Pandoh PK, Withler RE, Beacham TD, Leggatt RA, Tarpey CM, Seeb LW, Seeb JE, Jones SJM, Devlin RH, Koop BF. The pink salmon genome: Uncovering the genomic consequences of a two-year life cycle. PLoS One 2021; 16:e0255752. [PMID: 34919547 PMCID: PMC8682878 DOI: 10.1371/journal.pone.0255752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 12/02/2021] [Indexed: 12/30/2022] Open
Abstract
Pink salmon (Oncorhynchus gorbuscha) adults are the smallest of the five Pacific salmon native to the western Pacific Ocean. Pink salmon are also the most abundant of these species and account for a large proportion of the commercial value of the salmon fishery worldwide. A two-year life history of pink salmon generates temporally isolated populations that spawn either in even-years or odd-years. To uncover the influence of this genetic isolation, reference genome assemblies were generated for each year-class and whole genome re-sequencing data was collected from salmon of both year-classes. The salmon were sampled from six Canadian rivers and one Japanese river. At multiple centromeres we identified peaks of Fst between year-classes that were millions of base-pairs long. The largest Fst peak was also associated with a million base-pair chromosomal polymorphism found in the odd-year genome near a centromere. These Fst peaks may be the result of a centromere drive or a combination of reduced recombination and genetic drift, and they could influence speciation. Other regions of the genome influenced by odd-year and even-year temporal isolation and tentatively under selection were mostly associated with genes related to immune function, organ development/maintenance, and behaviour.
Collapse
Affiliation(s)
- Kris A. Christensen
- West Vancouver, Fisheries and Oceans Canada, British Columbia, Canada
- Department of Biology, University of Victoria, Victoria, British Columbia, Canada
- * E-mail: (KAC); (BFK)
| | - Eric B. Rondeau
- West Vancouver, Fisheries and Oceans Canada, British Columbia, Canada
- Department of Biology, University of Victoria, Victoria, British Columbia, Canada
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, British Columbia, Canada
| | - Dionne Sakhrani
- West Vancouver, Fisheries and Oceans Canada, British Columbia, Canada
| | - Carlo A. Biagi
- West Vancouver, Fisheries and Oceans Canada, British Columbia, Canada
| | - Hollie Johnson
- Department of Biology, University of Victoria, Victoria, British Columbia, Canada
| | - Jay Joshi
- Department of Biology, University of Victoria, Victoria, British Columbia, Canada
| | - Anne-Marie Flores
- Department of Biology, University of Victoria, Victoria, British Columbia, Canada
| | - Sreeja Leelakumari
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia, Canada
| | - Richard Moore
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia, Canada
| | - Pawan K. Pandoh
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia, Canada
| | - Ruth E. Withler
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, British Columbia, Canada
| | - Terry D. Beacham
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, British Columbia, Canada
| | | | - Carolyn M. Tarpey
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, Washington, United States of America
| | - Lisa W. Seeb
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, Washington, United States of America
| | - James E. Seeb
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, Washington, United States of America
| | - Steven J. M. Jones
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia, Canada
| | - Robert H. Devlin
- West Vancouver, Fisheries and Oceans Canada, British Columbia, Canada
| | - Ben F. Koop
- Department of Biology, University of Victoria, Victoria, British Columbia, Canada
- * E-mail: (KAC); (BFK)
| |
Collapse
|
9
|
Duval E, Skaala Ø, Quintela M, Dahle G, Delaval A, Wennevik V, Glover KA, Hansen MM. Long-term monitoring of a brown trout (Salmo trutta) population reveals kin-associated migration patterns and contributions by resident trout to the anadromous run. BMC Ecol Evol 2021; 21:143. [PMID: 34256705 PMCID: PMC8276402 DOI: 10.1186/s12862-021-01876-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/02/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND In species showing partial migration, as is the case for many salmonid fishes, it is important to assess how anthropogenic pressure experienced by migrating individuals affects the total population. We focused on brown trout (Salmo trutta) from the Guddal River in the Norwegian Hardanger Fjord system, which encompasses both resident and anadromous individuals. Aquaculture has led to increased anthropogenic pressure on brown trout during the marine phase in this region. Fish traps in the Guddal River allow for sampling all ascending anadromous spawners and descending smolts. We analyzed microsatellite DNA markers from all individuals ascending in 2006-2016, along with all emigrating smolts in 2017. We investigated (1) if there was evidence for declines in census numbers and effective population size during that period, (2) if there was association between kinship and migration timing in smolts and anadromous adults, and (3) to what extent resident trout were parents of outmigrating smolts. RESULTS Census counts of anadromous spawners showed no evidence for a decline from 2006 to 2016, but were lower than in 2000-2005. Estimates of effective population size also showed no trends of declines during the study period. Sibship reconstruction of the 2017 smolt run showed significant association between kinship and migration timing, and a similar association was indicated in anadromous spawners. Parentage assignment of 2017 smolts with ascending anadromous trout as candidate parents, and assuming that unknown parents represented resident trout, showed that 70% of smolts had at least one resident parent and 24% had two resident parents. CONCLUSIONS The results bear evidence of a population that after an initial decline has stabilized at a lower number of anadromous spawners. The significant association between kinship and migration timing in smolts suggests that specific episodes of elevated mortality in the sea could disproportionally affect some families and reduce overall effective population size. Finally, the results based on parentage assignment demonstrate a strong buffering effect of resident trout in case of elevated marine mortality affecting anadromous trout, but also highlight that increased mortality of anadromous trout, most of which are females, may lower overall production in the system.
Collapse
Affiliation(s)
- Eloïse Duval
- Department of Biology, Aarhus University, Ny Munkegade 114, 8000, Aarhus C, Denmark.
- Theoretical and Experimental Ecology Station, UMR-5321, CNRS, University of Toulouse III Paul Sabatier, 2 route du CNRS, 09200, Moulis, France.
| | - Øystein Skaala
- Department of Aquaculture, Institute of Marine Research, Nordnes, P.O. Box 1870, 5817, Bergen, Norway.
| | - María Quintela
- Department of Aquaculture, Institute of Marine Research, Nordnes, P.O. Box 1870, 5817, Bergen, Norway
| | - Geir Dahle
- Department of Aquaculture, Institute of Marine Research, Nordnes, P.O. Box 1870, 5817, Bergen, Norway
| | - Aurélien Delaval
- Department of Aquaculture, Institute of Marine Research, Nordnes, P.O. Box 1870, 5817, Bergen, Norway
- Faculty of Biosciences and Aquaculture, Nord University, 8049, Bodø, Norway
| | - Vidar Wennevik
- Department of Aquaculture, Institute of Marine Research, Nordnes, P.O. Box 1870, 5817, Bergen, Norway
| | - Kevin A Glover
- Department of Aquaculture, Institute of Marine Research, Nordnes, P.O. Box 1870, 5817, Bergen, Norway
- Institute of Biology, University of Bergen, Bergen, Norway
| | - Michael M Hansen
- Department of Biology, Aarhus University, Ny Munkegade 114, 8000, Aarhus C, Denmark.
- Department of Aquaculture, Institute of Marine Research, Nordnes, P.O. Box 1870, 5817, Bergen, Norway.
| |
Collapse
|
10
|
Bertho S, Herpin A, Schartl M, Guiguen Y. Lessons from an unusual vertebrate sex-determining gene. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200092. [PMID: 34247499 DOI: 10.1098/rstb.2020.0092] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
So far, very few sex-determining genes have been identified in vertebrates and most of them, the so-called 'usual suspects', evolved from genes which fulfil essential functions during sexual development and are thus already tightly linked to the process that they now govern. The single exception to this 'usual suspects' rule in vertebrates so far is the conserved salmonid sex-determining gene, sdY (sexually dimorphic on the Y chromosome), that evolved from a gene known to be involved in regulation of the immune response. It is contained in a jumping sex locus that has been transposed or translocated into different ancestral autosomes during the evolution of salmonids. This special feature of sdY, i.e. being inserted in a 'jumping sex locus', could explain how salmonid sex chromosomes remain young and undifferentiated to escape degeneration. Recent knowledge on the mechanism of action of sdY demonstrates that it triggers its sex-determining action by deregulating oestrogen synthesis that is a conserved and crucial pathway for ovarian differentiation in vertebrates. This result suggests that sdY has evolved to cope with a pre-existing sex differentiation regulatory network. Therefore, 'limited options' for the emergence of new master sex-determining genes could be more constrained by their need to tightly interact with a conserved sex differentiation regulatory network rather than by being themselves 'usual suspects', already inside this sex regulatory network. This article is part of the theme issue 'Challenging the paradigm in sex chromosome evolution: empirical and theoretical insights with a focus on vertebrates (Part I)'.
Collapse
Affiliation(s)
- Sylvain Bertho
- INRAE, LPGP, 35000 Rennes, France.,Developmental Biochemistry, Biocenter, University of Wuerzburg, 97074 Wuerzburg, Germany
| | - Amaury Herpin
- INRAE, LPGP, 35000 Rennes, France.,State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081 Hunan, People's Republic of China
| | - Manfred Schartl
- Developmental Biochemistry, Biocenter, University of Wuerzburg, 97074 Wuerzburg, Germany.,Department of Chemistry and Biochemistry, The Xiphophorus Genetic Stock Center, Texas State University, San Marcos, TX 78666, USA
| | | |
Collapse
|
11
|
Thorbjørnsen SH, Moland E, Villegas‐Ríos D, Bleeker K, Knutsen H, Olsen EM. Selection on fish personality differs between a no-take marine reserve and fished areas. Evol Appl 2021; 14:1807-1815. [PMID: 34295365 PMCID: PMC8288012 DOI: 10.1111/eva.13242] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 02/24/2021] [Accepted: 03/23/2021] [Indexed: 11/28/2022] Open
Abstract
Marine reserves can protect fish populations by increasing abundance and body size, but less is known about the effect of protection on fish behaviour. We looked for individual consistency in movement behaviours of sea trout in the marine habitat using acoustic telemetry to investigate whether they represent personality traits and if so, do they affect survival in relation to protection offered by a marine reserve. Home range size had a repeatability of 0.21, suggesting that it represents a personality trait, while mean swimming depth, activity and diurnal vertical migration were not repeatable movement behaviours. The effect of home range size on survival differed depending on the proportion of time fish spent in the reserve, where individuals spending more time in the reserve experienced a decrease in survival with larger home ranges while individuals spending little time in the reserve experienced an increase in survival with larger home ranges. We suggest that the diversity of fish home range sizes could be preserved by establishing networks of marine reserves encompassing different habitat types, ensuring both a heterogeneity in environmental conditions and fishing pressure.
Collapse
Affiliation(s)
- Susanna Huneide Thorbjørnsen
- Centre for Coastal ResearchDepartment of Natural SciencesUniversity of AgderKristiansandNorway
- Institute of Marine Research, FlødevigenHisNorway
| | - Even Moland
- Centre for Coastal ResearchDepartment of Natural SciencesUniversity of AgderKristiansandNorway
- Institute of Marine Research, FlødevigenHisNorway
| | - David Villegas‐Ríos
- IMEDEAInstituto Mediterráneo de Estudios Avanzados (CSIC‐UIB)Department of Ecology and Marine ResourcesIchthyology GroupEsporlesBalearic IslandsSpain
- IIMInstituto de Investigaciones Marinas (CSIC)Department of Ecology and Marine ResourcesFisheries Ecology GroupVigoPontevedraSpain
| | - Katinka Bleeker
- Centre for Coastal ResearchDepartment of Natural SciencesUniversity of AgderKristiansandNorway
- Institute of Marine Research, FlødevigenHisNorway
| | - Halvor Knutsen
- Centre for Coastal ResearchDepartment of Natural SciencesUniversity of AgderKristiansandNorway
- Institute of Marine Research, FlødevigenHisNorway
| | - Esben Moland Olsen
- Centre for Coastal ResearchDepartment of Natural SciencesUniversity of AgderKristiansandNorway
- Institute of Marine Research, FlødevigenHisNorway
| |
Collapse
|
12
|
Skaftnesmo KO, Crespo D, Kleppe L, Andersson E, Edvardsen RB, Norberg B, Fjelldal PG, Hansen TJ, Schulz RW, Wargelius A. Loss of stra8 Increases Germ Cell Apoptosis but Is Still Compatible With Sperm Production in Atlantic Salmon ( Salmo salar). Front Cell Dev Biol 2021; 9:657192. [PMID: 33942021 PMCID: PMC8087537 DOI: 10.3389/fcell.2021.657192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/29/2021] [Indexed: 12/03/2022] Open
Abstract
Entering meiosis strictly depends on stimulated by retinoic acid 8 (Stra8) gene function in mammals. This gene is missing in a number of fish species, including medaka and zebrafish, but is present in the majority of fishes, including Atlantic salmon. Here, we have examined the effects of removing stra8 on male fertility in Atlantic salmon. As in mammals, stra8 expression was restricted to germ cells in the testis, transcript levels increased during the start of puberty, and decreased when blocking the production of retinoic acid. We targeted the salmon stra8 gene with two gRNAs one of these were highly effective and produced numerous mutations in stra8, which led to a loss of wild-type (WT) stra8 expression in F0 salmon testis. In maturing stra8 crispants, the spermatogenetic tubuli were partially disorganized and displayed a sevenfold increase in germ cell apoptosis, in particular among type B spermatogonia and spermatocytes. The production of spermatogenic cysts, on the other hand, increased in maturing stra8 crispants. Gene expression analysis revealed unchanged (lin28a, ret) or reduced levels (egr1, dusp4) of transcripts associated with undifferentiated spermatogonia. Decreased expression was recorded for some genes expressed in differentiating spermatogonia including dmrt1 and ccnd2 or in spermatocytes, such as ccna1. Different from Stra8-deficient mammals, a large number of germ cells completed spermatogenesis, sperm was produced and fertilization rates were similar in WT and crispant males. While loss of stra8 increased germ cell apoptosis during salmon spermatogenesis, crispants compensated this cell loss by an elevated production of spermatogenic cysts, and were able to produce functional sperm. It appears that also in a fish species with a stra8 gene in the genome, the critical relevance this gene has attained for mammalian spermatogenesis is not yet given, although detrimental effects of the loss of stra8 were clearly visible during maturation.
Collapse
Affiliation(s)
- Kai O Skaftnesmo
- Institute of Marine Research, Research Group Reproduction and Developmental Biology, Bergen, Norway
| | - Diego Crespo
- Institute of Marine Research, Research Group Reproduction and Developmental Biology, Bergen, Norway
| | - Lene Kleppe
- Institute of Marine Research, Research Group Reproduction and Developmental Biology, Bergen, Norway
| | - Eva Andersson
- Institute of Marine Research, Research Group Reproduction and Developmental Biology, Bergen, Norway
| | - Rolf B Edvardsen
- Institute of Marine Research, Research Group Reproduction and Developmental Biology, Bergen, Norway
| | - Birgitta Norberg
- Institute of Marine Research, Research Group Reproduction and Developmental Biology, Austevoll Research Station, Storebø, Norway
| | - Per Gunnar Fjelldal
- Institute of Marine Research, Research Group Reproduction and Developmental Biology, Matre Research Station, Matredal, Norway
| | - Tom J Hansen
- Institute of Marine Research, Research Group Reproduction and Developmental Biology, Matre Research Station, Matredal, Norway
| | - Rüdiger W Schulz
- Institute of Marine Research, Research Group Reproduction and Developmental Biology, Bergen, Norway.,Reproductive Biology Group, Division Developmental Biology, Department Biology, Science Faculty, Utrecht University, Utrecht, Netherlands
| | - Anna Wargelius
- Institute of Marine Research, Research Group Reproduction and Developmental Biology, Bergen, Norway
| |
Collapse
|
13
|
McKinney GJ, Nichols KM, Ford MJ. A mobile sex-determining region, male-specific haplotypes and rearing environment influence age at maturity in Chinook salmon. Mol Ecol 2020; 30:131-147. [PMID: 33111366 DOI: 10.1111/mec.15712] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 09/28/2020] [Accepted: 10/15/2020] [Indexed: 12/14/2022]
Abstract
Variation in age at maturity is an important contributor to life history and demographic variation within and among species. The optimal age at maturity can vary by sex, and the ability of each sex to evolve towards its fitness optimum depends on the genetic architecture of maturation. Using GWAS of RAD sequencing data, we show that age at maturity in Chinook salmon exhibits sex-specific genetic architecture, with age at maturity in males influenced by large (up to 20 Mb) male-specific haplotypes. These regions showed no such effect in females. We also provide evidence for translocation of the sex-determining gene between two different chromosomes. This has important implications for sexually antagonistic selection, particularly that sex linkage of adaptive genes may differ within and among populations based on chromosomal location of the sex-determining gene. Our findings will facilitate research into the genetic causes of shifting demography in Chinook salmon as well as a better understanding of sex determination in this species and Pacific salmon in general.
Collapse
Affiliation(s)
- Garrett J McKinney
- NRC Research Associateship Program, Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA, USA
| | - Krista M Nichols
- Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA, USA
| | - Michael J Ford
- Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA, USA
| |
Collapse
|
14
|
The sockeye salmon genome, transcriptome, and analyses identifying population defining regions of the genome. PLoS One 2020; 15:e0240935. [PMID: 33119641 PMCID: PMC7595290 DOI: 10.1371/journal.pone.0240935] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 10/06/2020] [Indexed: 12/12/2022] Open
Abstract
Sockeye salmon (Oncorhynchus nerka) is a commercially and culturally important species to the people that live along the northern Pacific Ocean coast. There are two main sockeye salmon ecotypes—the ocean-going (anadromous) ecotype and the fresh-water ecotype known as kokanee. The goal of this study was to better understand the population structure of sockeye salmon and identify possible genomic differences among populations and between the two ecotypes. In pursuit of this goal, we generated the first reference sockeye salmon genome assembly and an RNA-seq transcriptome data set to better annotate features of the assembly. Resequenced whole-genomes of 140 sockeye salmon and kokanee were analyzed to understand population structure and identify genomic differences between ecotypes. Three distinct geographic and genetic groups were identified from analyses of the resequencing data. Nucleotide variants in an immunoglobulin heavy chain variable gene cluster on chromosome 26 were found to differentiate the northwestern group from the southern and upper Columbia River groups. Several candidate genes were found to be associated with the kokanee ecotype. Many of these genes were related to ammonia tolerance or vision. Finally, the sex chromosomes of this species were better characterized, and an alternative sex-determination mechanism was identified in a subset of upper Columbia River kokanee.
Collapse
|
15
|
Rescue of germ cells in dnd crispant embryos opens the possibility to produce inherited sterility in Atlantic salmon. Sci Rep 2020; 10:18042. [PMID: 33093479 PMCID: PMC7581530 DOI: 10.1038/s41598-020-74876-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 10/07/2020] [Indexed: 11/12/2022] Open
Abstract
Genetic introgression of escaped farmed Atlantic salmon (Salmo salar) into wild populations is a major environmental concern for the salmon aquaculture industry. Using sterile fish in commercial aquaculture operations is, therefore, a sustainable strategy for bio-containment. So far, the only commercially used methodology for producing sterile fish is triploidization. However, triploid fish are less robust. A novel approach in which to achieve sterility is to produce germ cell-free salmon, which can be accomplished by knocking out the dead-end (dnd) gene using CRISPR-Cas9. The lack of germ cells in the resulting dnd crispants, thus, prevents reproduction and inhibits subsequent large-scale production of sterile fish. Here, we report a rescue approach for producing germ cells in Atlantic salmon dnd crispants. To achieve this, we co-injected the wild-type (wt) variant of salmon dnd mRNA together with CRISPR-Cas9 constructs targeting dnd into 1-cell stage embryos. We found that rescued one-year-old fish contained germ cells, type A spermatogonia in males and previtellogenic primary oocytes in females. The method presented here opens a possibility for large-scale production of germ-cell free Atlantic salmon offspring through the genetically sterile broodstock which can pass the sterility trait on the next generation.
Collapse
|
16
|
Ayllon F, Solberg MF, Besnier F, Fjelldal PG, Hansen TJ, Wargelius A, Edvardsen RB, Glover KA. Autosomal sdY Pseudogenes Explain Discordances Between Phenotypic Sex and DNA Marker for Sex Identification in Atlantic Salmon. Front Genet 2020; 11:544207. [PMID: 33173531 PMCID: PMC7591749 DOI: 10.3389/fgene.2020.544207] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 09/17/2020] [Indexed: 11/13/2022] Open
Abstract
Despite the key role that sex-determination plays in evolutionary processes, it is still poorly understood in many species. In salmonids, which are among the best studied fishes, the master sex-determining gene sexually dimorphic on the Y-chromosome (sdY) has been identified. However, sdY displays unexplained discordance to the phenotypic sex, with a variable frequency of phenotypic females being reported as genetic males. Multiple sex determining loci in Atlantic salmon have also been reported, possibly as a result of recent transposition events in this species. We hypothesized the existence of an autosomal copy of sdY, causing apparent discordance between phenotypic and genetic sex, that is transmitted in accordance with autosomal inheritance. To test this, we developed a qPCR methodology to detect the total number of sdY copies present in the genome. Based on the observed phenotype/genotype frequencies and linkage analysis among 2,025 offspring from 64 pedigree-controlled families of accurately phenotyped Atlantic salmon, we identified both males and females carrying one or two autosomal copies of sdY in addition to the Y-specific copy present in males. Patterns across families were highly consistent with autosomal inheritance. These autosomal sdY copies appear to have lost the ability to function as a sex determining gene and were only occasionally assigned to the actual sex chromosome in any of the affected families.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Kevin Alan Glover
- Institute of Marine Research, Bergen, Norway.,Department of Biological Sciences, University of Bergen, Bergen, Norway
| |
Collapse
|
17
|
Perry WB, Solberg MF, Brodie C, Medina AC, Pillay KG, Egerton A, Harvey A, Creer S, Llewellyn M, Taylor M, Carvalho G, Glover KA. Disentangling the effects of sex, life history and genetic background in Atlantic salmon: growth, heart and liver under common garden conditions. ROYAL SOCIETY OPEN SCIENCE 2020; 7:200811. [PMID: 33204455 PMCID: PMC7657880 DOI: 10.1098/rsos.200811] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 09/17/2020] [Indexed: 06/11/2023]
Abstract
Livestock domestication has long been a part of agriculture, estimated to have first occurred approximately 10 000 years ago. Despite the plethora of traits studied, there is little understanding of the possible impacts domestication has had on internal organs, which are key determinants of survival. Moreover, the genetic basis of observed associated changes in artificial environments is still puzzling. Here we examine impacts of captivity on two organs in Atlantic salmon (Salar salar) that have been domesticated for approximately 50 years: heart and liver, in addition to growth. We studied multiple families of wild, domesticated, F1 and F2 hybrid, and backcrossed strains of S. salar in replicated common garden tanks during the freshwater and marine stages of development. Heart and liver weight were investigated, along with heart morphology metrics examined in just the wild, domesticated and F1 hybrid strains (heart height and width). Growth was positively linked with the proportion of the domesticated strain, and recombination in F2 hybrids (and the potential disruption of co-adapted gene complexes) did not influence growth. Despite the influence of domestication on growth, we found no evidence for domestication-driven divergence in heart or liver morphology. However, sexual dimorphism was detected in heart morphology, and after controlling for body size, females exhibited significantly larger heart weight and heart width when compared with males. Wild females also had an increased heart height when compared with wild males, and this was not observed in any other strain. Females sampled in saltwater showed significantly larger heart height with rounder hearts, than saltwater males. Collectively, these results demonstrate an additive basis of growth and, despite a strong influence of domestication on growth, no clear evidence of changes in heart or liver morphology associated with domestication was identified.
Collapse
Affiliation(s)
- William Bernard Perry
- Molecular Ecology and Fisheries Genetics Laboratory, School of Biological Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| | - Monica F. Solberg
- Population Genetics Research Group, Institute of Marine Research, PO Box 1870, Nordnes 5817, Bergen, Norway
| | - Christopher Brodie
- Mariani Molecular Ecology Laboratory, School of Natural Sciences and Psychology, Liverpool John Moores University, Liverpool L3 5UX, UK
| | - Angela C. Medina
- School of Microbiology, Food Science and Technology Building University College Cork, Cork T12 TP07, Ireland
| | - Kirthana G. Pillay
- Molecular Ecology and Fisheries Genetics Laboratory, School of Biological Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| | - Anna Egerton
- Molecular Ecology and Fisheries Genetics Laboratory, School of Biological Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| | - Alison Harvey
- Population Genetics Research Group, Institute of Marine Research, PO Box 1870, Nordnes 5817, Bergen, Norway
| | - Simon Creer
- Molecular Ecology and Fisheries Genetics Laboratory, School of Biological Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| | - Martin Llewellyn
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, UK
| | - Martin Taylor
- School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Gary Carvalho
- Molecular Ecology and Fisheries Genetics Laboratory, School of Biological Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| | - Kevin A. Glover
- Population Genetics Research Group, Institute of Marine Research, PO Box 1870, Nordnes 5817, Bergen, Norway
- Institute of Biology, University of Bergen, Bergen, Norway
| |
Collapse
|
18
|
Brown MS, Evans BS, Afonso LOB. Discordance for genotypic sex in phenotypic female Atlantic salmon (Salmo salar) is related to a reduced sdY copy number. Sci Rep 2020; 10:9651. [PMID: 32541863 PMCID: PMC7296011 DOI: 10.1038/s41598-020-66406-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 05/18/2020] [Indexed: 11/10/2022] Open
Abstract
The master sex determinant in rainbow trout (Oncorhynchus mykiss), sexually dimorphic on the Y chromosome (sdY), is strongly but not perfectly associated with male phenotype in several other species from the family Salmonidae. Currently, the cause and implications of discordance for sdY-predicted genotypic sex and phenotypic sex in these species is unclear. Using an established multiplex PCR test for exons 2 and 3 of sdY, we demonstrated that sdY-predicted genotypic sex was discordant with histologically evidenced phenotypic sex in 4% of 176 Tasmanian Atlantic salmon. All discordant individuals were phenotypic females presenting a male genotype. Using real-time qPCR assays that we developed and validated for exons 2, 3 and 4 of sdY, all genotype-phenotype discordant females were confirmed to possess sdY, albeit at a reduced number of copies when compared to phenotypic males. The real-time qPCR assays also demonstrated reduced levels of sdY in 30% of phenotypic females that the established multiplex PCR-based test indicated to be devoid of sdY. These findings suggest sdY may be reduced in copy number or mosaicked in the genomic DNA of sdY-positive phenotypic female Atlantic salmon and highlight the importance of understanding the effects of reduced sdY copies on the development of phenotypic sex.
Collapse
Affiliation(s)
- Morgan S Brown
- School of Life and Environmental Sciences, Centre for Integrative Ecology, Deakin University Warrnambool Campus, Warrnambool, Victoria, 3280, Australia
| | - Brad S Evans
- Breeding & Research, Tassal Operations, Hobart, Tasmania, 7000, Australia
| | - Luis O B Afonso
- School of Life and Environmental Sciences, Centre for Integrative Ecology, Deakin University Warrnambool Campus, Warrnambool, Victoria, 3280, Australia.
| |
Collapse
|
19
|
Lothian AJ, Schwinn M, Anton AH, Adams CE, Newton M, Koed A, Lucas MC. Are we designing fishways for diversity? Potential selection on alternative phenotypes resulting from differential passage in brown trout. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 262:110317. [PMID: 32250800 DOI: 10.1016/j.jenvman.2020.110317] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 01/22/2020] [Accepted: 02/20/2020] [Indexed: 06/11/2023]
Abstract
Fishways are commonly employed to improve river connectivity for fishes, but the extent to which they cater for natural phenotypic diversity has been insufficiently addressed. We measured differential upstream passage success of three wild brown trout (Salmo trutta) phenotypes (anadromous, freshwater-resident adult and parr-marked), encompassing a range of sizes and both sexes, at a Larinier superactive baffle fishway adjacent to a flow-gauging weir, using PIT telemetry (n = 160) and radio telemetry (n = 53, double tagged with PIT tags). Fish were captured and tagged downstream of the weir in the autumn pre-spawning period, 2017, in a tributary of the River Wear, England, where over 95% of tributary spawning habitat was available upstream of the weir. Of 57 trout that approached the weir-fishway complex, freshwater-resident adult and parr-marked phenotypes were less successful in passing than anadromous trout (25%, 36%, and 63% passage efficiency, respectively). Seventy-one percent of anadromous trout that passed upstream traversed the weir directly. Although the fishway facilitated upstream passage, it was poor in attracting fish of all phenotypes (overall attraction efficiency, 22.8%). A higher proportion (68.2%) of parr-marked trout that approached the weir were male and included sexually mature individuals, compared with that of freshwater-resident (37.8%) and anadromous trout (37.0%). The greater passage success of anadromous trout was likely due to their greater size and locomotory performance compared to the other phenotypes. Barriers and fishways can act as selection filters, likely the case in this study, and greater consideration needs to be given to supporting natural diversity in populations when proposing fishway designs to mitigate river connectivity problems.
Collapse
Affiliation(s)
- Angus J Lothian
- Department of Biosciences, Durham University, South Road, Durham, DH1 3LE, England, United Kingdom.
| | - Michael Schwinn
- Section for Freshwater Fisheries Ecology, National Institute of Aquatic Resources, Technical University of Denmark, Vejlovej 39, Silkeborg, Denmark
| | - A Harrison Anton
- Department of Biosciences, Durham University, South Road, Durham, DH1 3LE, England, United Kingdom
| | - Colin E Adams
- Scottish Centre for Ecology and the Natural Environment, Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, G63 0AW, Scotland, United Kingdom
| | - Matthew Newton
- Scottish Centre for Ecology and the Natural Environment, Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, G63 0AW, Scotland, United Kingdom
| | - Anders Koed
- Section for Freshwater Fisheries Ecology, National Institute of Aquatic Resources, Technical University of Denmark, Vejlovej 39, Silkeborg, Denmark
| | - Martyn C Lucas
- Department of Biosciences, Durham University, South Road, Durham, DH1 3LE, England, United Kingdom.
| |
Collapse
|
20
|
McKinney G, McPhee MV, Pascal C, Seeb JE, Seeb LW. Network Analysis of Linkage Disequilibrium Reveals Genome Architecture in Chum Salmon. G3 (BETHESDA, MD.) 2020; 10:1553-1561. [PMID: 32165371 PMCID: PMC7202013 DOI: 10.1534/g3.119.400972] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 02/28/2020] [Indexed: 11/26/2022]
Abstract
Many studies exclude loci that exhibit linkage disequilibrium (LD); however, high LD can signal reduced recombination around genomic features such as chromosome inversions or sex-determining regions. Chromosome inversions and sex-determining regions are often involved in adaptation, allowing for the inheritance of co-adapted gene complexes and for the resolution of sexually antagonistic selection through sex-specific partitioning of genetic variants. Genomic features such as these can escape detection when loci with LD are removed; in addition, failing to account for these features can introduce bias to analyses. We examined patterns of LD using network analysis to identify an overlapping chromosome inversion and sex-determining region in chum salmon. The signal of the inversion was strong enough to show up as false population substructure when the entire dataset was analyzed, while the effect of the sex-determining region on population structure was only obvious after restricting analysis to the sex chromosome. Understanding the extent and geographic distribution of inversions is now a critically important part of genetic analyses of natural populations. Our results highlight the importance of analyzing and understanding patterns of LD in genomic dataset and the perils of excluding or ignoring loci exhibiting LD. Blindly excluding loci in LD would have prevented detection of the sex-determining region and chromosome inversion while failing to understand the genomic features leading to high-LD could have resulted in false interpretations of population structure.
Collapse
Affiliation(s)
- Garrett McKinney
- College of Fisheries and Ocean Sciences, University of Alaska Fairbanks, 17101 Point Lena Loop Road, Juneau, AK, 99801
- School of Aquatic and Fishery Sciences, University of Washington, 1122 NE Boat Street, Box 355020, Seattle WA 98195
| | - Megan V McPhee
- College of Fisheries and Ocean Sciences, University of Alaska Fairbanks, 17101 Point Lena Loop Road, Juneau, AK, 99801
| | - Carita Pascal
- School of Aquatic and Fishery Sciences, University of Washington, 1122 NE Boat Street, Box 355020, Seattle WA 98195
| | - James E Seeb
- School of Aquatic and Fishery Sciences, University of Washington, 1122 NE Boat Street, Box 355020, Seattle WA 98195
| | - Lisa W Seeb
- School of Aquatic and Fishery Sciences, University of Washington, 1122 NE Boat Street, Box 355020, Seattle WA 98195
| |
Collapse
|
21
|
Taslima K, Wehner S, Taggart JB, de Verdal H, Benzie JAH, Bekaert M, McAndrew BJ, Penman DJ. Sex determination in the GIFT strain of tilapia is controlled by a locus in linkage group 23. BMC Genet 2020; 21:49. [PMID: 32349678 PMCID: PMC7189693 DOI: 10.1186/s12863-020-00853-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 04/15/2020] [Indexed: 12/25/2022] Open
Abstract
Background Tilapias (Family Cichlidae) are the second most important group of aquaculture species in the world. They have been the subject of much research on sex determination due to problems caused by early maturation in culture and their complex sex-determining systems. Different sex-determining loci (linkage group 1, 20 and 23) have been detected in various tilapia stocks. The ‘genetically improved farmed tilapia’ (GIFT) stock, founded from multiple Nile tilapia (Oreochromis niloticus) populations, with some likely to have been introgressed with O. mossambicus, is a key resource for tilapia aquaculture. The sex-determining mechanism in the GIFT stock was unknown, but potentially complicated due to its multiple origins. Results A bulk segregant analysis (BSA) version of double-digest restriction-site associated DNA sequencing (BSA-ddRADseq) was developed and used to detect and position sex-linked single nucleotide polymorphism (SNP) markers in 19 families from the GIFT strain breeding nucleus and two Stirling families as controls (a single XY locus had been previously mapped to LG1 in the latter). About 1500 SNPs per family were detected across the genome. Phenotypic sex in Stirling families showed strong association with LG1, whereas only SNPs located in LG23 showed clear association with sex in the majority of the GIFT families. No other genomic regions linked to sex determination were apparent. This region was validated using a series of LG23-specific DNA markers (five SNPs with highest association to sex from this study, the LG23 sex-associated microsatellite UNH898 and ARO172, and the recently isolated amhy marker for individual fish (n = 284). Conclusions Perhaps surprisingly given its multiple origins, sex determination in the GIFT strain breeding nucleus was associated only with a locus in LG23. BSA-ddRADseq allowed cost-effective analysis of multiple families, strengthening this conclusion. This technique has potential to be applied to other complex traits. The sex-linked SNP markers identified will be useful for potential marker-assisted selection (MAS) to control sex-ratio in GIFT tilapia to suppress unwanted reproduction during growout.
Collapse
Affiliation(s)
- Khanam Taslima
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, Scotland, UK.,Department of Fisheries Biology and Genetics, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Stefanie Wehner
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, Scotland, UK
| | - John B Taggart
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, Scotland, UK
| | - Hugues de Verdal
- WorldFish Centre, Jalan Batu Maung, Bayan Lepas, Penang, Malaysia.,CIRAD, UMR ISEM, F-34398 Montpellier, France; ISEM, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - John A H Benzie
- WorldFish Centre, Jalan Batu Maung, Bayan Lepas, Penang, Malaysia.,School of Biological Earth and Environmental Sciences, University College Cork, Cork, Ireland
| | - Michaël Bekaert
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, Scotland, UK
| | - Brendan J McAndrew
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, Scotland, UK
| | - David J Penman
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, Scotland, UK.
| |
Collapse
|
22
|
Grashei KE, Ødegård J, Meuwissen THE. Genotype calling of triploid offspring from diploid parents. Genet Sel Evol 2020; 52:15. [PMID: 32188420 PMCID: PMC7081531 DOI: 10.1186/s12711-020-00534-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 03/11/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Polyploidy is widespread in animals and especially in plants. Different kinds of ploidies exist, for example, hexaploidy in wheat, octaploidy in strawberries, and diploidy, triploidy, tetraploidy, and pseudo-tetraploidy (partly tetraploid) in fish. Triploid offspring from diploid parents occur frequently in the wild in Atlantic salmon (Salmo salar) and, as with triploidy in general, the triploid individuals are sterile. Induced triploidy in Atlantic salmon is common practice to produce sterile fish. In Norwegian aquaculture, production of sterile triploid fish is an attempt by government and industry to limit genetic introgression between wild and farmed fish. However, triploid fish may have traits and properties that differ from those of diploids. Investigating the genetics behind traits in triploids has proved challenging because genotype calling of genetic markers in triploids is not supported by standard software. Our aim was to develop a method that can be used for genotype calling of genetic markers in triploid individuals. RESULTS Allele signals were produced for 381 triploid Atlantic salmon offspring using a 56 K Thermo Fisher GeneTitan genotyping platform. Genotypes were successfully called by applying finite normal mixture models to the (transformed) allele signals. Subsets of markers were filtered by quality control statistics for use with downstream analyses. The quality of the called genotypes was sufficient to allow for assignment of diploid parents to the triploid offspring and to discriminate between maternal and paternal parents from autosomal inheritance patterns. In addition, as the maternal inheritance in triploid offspring is identical to gynogenetic inheritance, the maternal recombination pattern for each chromosome could be mapped by using a similar approach as that used in gene-centromere mapping. CONCLUSIONS We show that calling of dense marker genotypes for triploid individuals is feasible. The resulting genotypes can be used in parentage assignment of triploid offspring to diploid parents, to discriminate between maternal and paternal parents using autosomal inheritance patterns, and to map the maternal recombination pattern using an approach similar to gene-centromere mapping. Genotyping of triploid individuals is important both for selective breeding programs and unravelling the underlying genetics of phenotypes recorded in triploids. In principle, the developed method can be used for genotype calling of other polyploid organisms.
Collapse
Affiliation(s)
- Kim Erik Grashei
- AquaGen AS, P.O. Box 1240, 7462, Trondheim, Norway. .,Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, P.O. Box 5003, 1432, Ås, Norway.
| | - Jørgen Ødegård
- AquaGen AS, P.O. Box 1240, 7462, Trondheim, Norway.,Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, P.O. Box 5003, 1432, Ås, Norway
| | - Theo H E Meuwissen
- Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, P.O. Box 5003, 1432, Ås, Norway
| |
Collapse
|
23
|
Besnier F, Solberg MF, Harvey AC, Carvalho GR, Bekkevold D, Taylor MI, Creer S, Nielsen EE, Skaala Ø, Ayllon F, Dahle G, Glover KA. Epistatic regulation of growth in Atlantic salmon revealed: a QTL study performed on the domesticated-wild interface. BMC Genet 2020; 21:13. [PMID: 32033538 PMCID: PMC7006396 DOI: 10.1186/s12863-020-0816-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 01/28/2020] [Indexed: 12/23/2022] Open
Abstract
Background Quantitative traits are typically considered to be under additive genetic control. Although there are indications that non-additive factors have the potential to contribute to trait variation, experimental demonstration remains scarce. Here, we investigated the genetic basis of growth in Atlantic salmon by exploiting the high level of genetic diversity and trait expression among domesticated, hybrid and wild populations. Results After rearing fish in common-garden experiments under aquaculture conditions, we performed a variance component analysis in four mapping populations totaling ~ 7000 individuals from six wild, two domesticated and three F1 wild/domesticated hybrid strains. Across the four independent datasets, genome-wide significant quantitative trait loci (QTLs) associated with weight and length were detected on a total of 18 chromosomes, reflecting the polygenic nature of growth. Significant QTLs correlated with both length and weight were detected on chromosomes 2, 6 and 9 in multiple datasets. Significantly, epistatic QTLs were detected in all datasets. Discussion The observed interactions demonstrated that the phenotypic effect of inheriting an allele deviated between half-sib families. Gene-by-gene interactions were also suggested, where the combined effect of two loci resulted in a genetic effect upon phenotypic variance, while no genetic effect was detected when the two loci were considered separately. To our knowledge, this is the first documentation of epistasis in a quantitative trait in Atlantic salmon. These novel results are of relevance for breeding programs, and for predicting the evolutionary consequences of domestication-introgression in wild populations.
Collapse
Affiliation(s)
- Francois Besnier
- Population Genetics Research group, Institute of Marine Research, P.O. Box 1870, Nordnes, NO-5817, Bergen, Norway.
| | - Monica F Solberg
- Population Genetics Research group, Institute of Marine Research, P.O. Box 1870, Nordnes, NO-5817, Bergen, Norway
| | - Alison C Harvey
- Population Genetics Research group, Institute of Marine Research, P.O. Box 1870, Nordnes, NO-5817, Bergen, Norway.,Molecular Ecology and Fisheries Genetics Laboratory, School of Biological Sciences, Bangor University, Deiniol Road, Bangor, LL57 2UW, UK
| | - Gary R Carvalho
- Molecular Ecology and Fisheries Genetics Laboratory, School of Biological Sciences, Bangor University, Deiniol Road, Bangor, LL57 2UW, UK
| | - Dorte Bekkevold
- Section for Marine Living Resources, National Institute of Aquatic Resources, Technical University of Denmark, Vejlsøvej 39, 8600, Silkeborg, Denmark
| | - Martin I Taylor
- School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Simon Creer
- Molecular Ecology and Fisheries Genetics Laboratory, School of Biological Sciences, Bangor University, Deiniol Road, Bangor, LL57 2UW, UK
| | - Einar E Nielsen
- Section for Marine Living Resources, National Institute of Aquatic Resources, Technical University of Denmark, Vejlsøvej 39, 8600, Silkeborg, Denmark
| | - Øystein Skaala
- Population Genetics Research group, Institute of Marine Research, P.O. Box 1870, Nordnes, NO-5817, Bergen, Norway
| | - Fernando Ayllon
- Population Genetics Research group, Institute of Marine Research, P.O. Box 1870, Nordnes, NO-5817, Bergen, Norway
| | - Geir Dahle
- Population Genetics Research group, Institute of Marine Research, P.O. Box 1870, Nordnes, NO-5817, Bergen, Norway.,Sea Lice Research Centre, Department of Biology, University of Bergen, Bergen, Norway
| | - Kevin A Glover
- Population Genetics Research group, Institute of Marine Research, P.O. Box 1870, Nordnes, NO-5817, Bergen, Norway.,Sea Lice Research Centre, Department of Biology, University of Bergen, Bergen, Norway
| |
Collapse
|
24
|
Pearse DE, Barson NJ, Nome T, Gao G, Campbell MA, Abadía-Cardoso A, Anderson EC, Rundio DE, Williams TH, Naish KA, Moen T, Liu S, Kent M, Moser M, Minkley DR, Rondeau EB, Brieuc MSO, Sandve SR, Miller MR, Cedillo L, Baruch K, Hernandez AG, Ben-Zvi G, Shem-Tov D, Barad O, Kuzishchin K, Garza JC, Lindley ST, Koop BF, Thorgaard GH, Palti Y, Lien S. Sex-dependent dominance maintains migration supergene in rainbow trout. Nat Ecol Evol 2019; 3:1731-1742. [DOI: 10.1038/s41559-019-1044-6] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 10/18/2019] [Indexed: 11/09/2022]
Abstract
AbstractMales and females often differ in their fitness optima for shared traits that have a shared genetic basis, leading to sexual conflict. Morphologically differentiated sex chromosomes can resolve this conflict and protect sexually antagonistic variation, but they accumulate deleterious mutations. However, how sexual conflict is resolved in species that lack differentiated sex chromosomes is largely unknown. Here we present a chromosome-anchored genome assembly for rainbow trout (Oncorhynchus mykiss) and characterize a 55-Mb double-inversion supergene that mediates sex-specific migratory tendency through sex-dependent dominance reversal, an alternative mechanism for resolving sexual conflict. The double inversion contains key photosensory, circadian rhythm, adiposity and sex-related genes and displays a latitudinal frequency cline, indicating environmentally dependent selection. Our results show sex-dependent dominance reversal across a large autosomal supergene, a mechanism for sexual conflict resolution capable of protecting sexually antagonistic variation while avoiding the homozygous lethality and deleterious mutations associated with typical heteromorphic sex chromosomes.
Collapse
|
25
|
Gabián M, Morán P, Fernández AI, Villanueva B, Chtioui A, Kent MP, Covelo-Soto L, Fernández A, Saura M. Identification of genomic regions regulating sex determination in Atlantic salmon using high density SNP data. BMC Genomics 2019; 20:764. [PMID: 31640542 PMCID: PMC6805462 DOI: 10.1186/s12864-019-6104-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 09/13/2019] [Indexed: 02/07/2023] Open
Abstract
Background A complete understanding of the genetic basis for sexual determination and differentiation is necessary in order to implement efficient breeding schemes at early stages of development. Atlantic salmon belongs to the family Salmonidae of fishes and represents a species of great commercial value. Although the species is assumed to be male heterogametic with XY sex determination, the precise genetic basis of sexual development remains unclear. The complexity is likely associated to the relatively recent salmonid specific whole genome duplication that may be responsible for certain genome instability. This instability together with the capacity of the sex-determining gene to move across the genome as reported by previous studies, may explain that sexual development genes are not circumscribed to the same chromosomes in all members of the species. In this study, we have used a 220 K SNP panel developed for Atlantic salmon to identify the chromosomes explaining the highest proportion of the genetic variance for sex as well as candidate regions and genes associated to sexual development in this species. Results Results from regional heritability analysis showed that the chromosomes explaining the highest proportion of variance in these populations were Ssa02 (heritability = 0.42, SE = 0.12) and Ssa21 (heritability = 0.26, SE = 0.11). After pruning by linkage disequilibrium, genome-wide association analyses revealed 114 SNPs that were significantly associated with sex, being Ssa02 the chromosome containing a greatest number of regions. Close examination of the candidate regions evidenced important genes related to sex in other species of Class Actinopterygii, including SDY, genes from family SOX, RSPO1, ESR1, U2AF2A, LMO7, GNRH-R, DND and FIGLA. Conclusions The combined results from regional heritability analysis and genome-wide association have provided new advances in the knowledge of the genetic regulation of sex determination in Atlantic salmon, supporting that Ssa02 is the candidate chromosome for sex in this species and suggesting an alternative population lineage in Spanish wild populations according to the results from Ssa21.
Collapse
Affiliation(s)
- María Gabián
- Departamento de Bioquímica, Genética e Inmunología, Facultad de Biología, Universidad de Vigo, Vigo, 36310, Spain
| | - Paloma Morán
- Departamento de Bioquímica, Genética e Inmunología, Facultad de Biología, Universidad de Vigo, Vigo, 36310, Spain
| | - Ana I Fernández
- Departamento de Mejora Genética Animal, INIA, Carretera de la Coruña km 7,5, 28040, Madrid, Spain
| | - Beatriz Villanueva
- Departamento de Mejora Genética Animal, INIA, Carretera de la Coruña km 7,5, 28040, Madrid, Spain
| | - Amel Chtioui
- Departamento de Mejora Genética Animal, INIA, Carretera de la Coruña km 7,5, 28040, Madrid, Spain
| | - Matthew P Kent
- Center for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Faculty of Bioscience, Norwegian University of Life Sciences (NMBU), 1430, Ås, Norway
| | - Lara Covelo-Soto
- Departamento de Bioquímica, Genética e Inmunología, Facultad de Biología, Universidad de Vigo, Vigo, 36310, Spain
| | - Almudena Fernández
- Departamento de Mejora Genética Animal, INIA, Carretera de la Coruña km 7,5, 28040, Madrid, Spain
| | - María Saura
- Departamento de Mejora Genética Animal, INIA, Carretera de la Coruña km 7,5, 28040, Madrid, Spain.
| |
Collapse
|
26
|
Ayllon F, Solberg MF, Glover KA, Mohammadi F, Kjærner-Semb E, Fjelldal PG, Andersson E, Hansen T, Edvardsen RB, Wargelius A. The influence of vgll3 genotypes on sea age at maturity is altered in farmed mowi strain Atlantic salmon. BMC Genet 2019; 20:44. [PMID: 31060499 PMCID: PMC6501413 DOI: 10.1186/s12863-019-0745-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 04/25/2019] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND In Atlantic salmon in the wild, age at maturity is strongly influenced by the vgll3 locus. Under farming conditions, light, temperature and feeding regimes are known significantly advance or delay age at maturity. However, the potential influence of the vgll3 locus on the maturation of salmon reared under farming conditions has been rarely investigated, especially in females. RESULTS Here, we reared domesticated salmon (mowi strain) with different vgll3 genotypes under standard farming conditions until they matured at either one, two or more than two sea winters. Interestingly, and in contrast to previous findings in the wild, we were not able to identify a link between vgll3 and age at maturity in females when reared under farming conditions. For males however, we found that the probability of delaying maturation from one to two sea winters was significantly lower in fish homozygous for the early allele compared to homozygous fish for the late allele, while the probability for heterozygous fish was intermediate. These data also contrast to previous findings in the wild where the early allele has been reported as dominant. However, we found that the probability of males delaying maturation from two to three sea winters was regulated in the same manner as the wild. CONCLUSIONS Collectively, our data suggest that increased growth rates in mowi salmon, caused by high feed intake and artificial light and temperature regimes together with other possible genetic/epigenetic components, may significantly influence the impact that the vgll3 locus has on age at maturity, especially in females. In turn, our results show that the vgll3 locus can only to a large extent be used in selective breeding to control age at maturation in mowi males. In summary, we here show that in contrast to the situation in wild salmon, under farming conditions vgll3 does not seem to influence age at maturity in mowi females whereas in mowi males, maturing as one or two sea winters it alters the early allele effect from dominant to intermediate.
Collapse
Affiliation(s)
- Fernando Ayllon
- Institute of Marine Research, P.O. Box 1870, Nordnes, NO-5817, Bergen, Norway
| | - Monica F Solberg
- Institute of Marine Research, P.O. Box 1870, Nordnes, NO-5817, Bergen, Norway
| | - Kevin A Glover
- Institute of Marine Research, P.O. Box 1870, Nordnes, NO-5817, Bergen, Norway.,Institute of Biology, University of Bergen, Bergen, Norway
| | - Faezeh Mohammadi
- Institute of Marine Research, P.O. Box 1870, Nordnes, NO-5817, Bergen, Norway
| | - Erik Kjærner-Semb
- Institute of Marine Research, P.O. Box 1870, Nordnes, NO-5817, Bergen, Norway
| | - Per Gunnar Fjelldal
- Institute of Marine research (IMR), Matre Aquaculture Research Station, 5984, Matredal, Norway
| | - Eva Andersson
- Institute of Marine Research, P.O. Box 1870, Nordnes, NO-5817, Bergen, Norway
| | - Tom Hansen
- Institute of Marine research (IMR), Matre Aquaculture Research Station, 5984, Matredal, Norway
| | - Rolf B Edvardsen
- Institute of Marine Research, P.O. Box 1870, Nordnes, NO-5817, Bergen, Norway
| | - Anna Wargelius
- Institute of Marine Research, P.O. Box 1870, Nordnes, NO-5817, Bergen, Norway.
| |
Collapse
|
27
|
Perry WB, Solberg MF, Besnier F, Dyrhovden L, Matre IH, Fjelldal PG, Ayllon F, Creer S, Llewellyn M, Taylor MI, Carvalho G, Glover KA. Evolutionary drivers of kype size in Atlantic salmon ( Salmo salar): domestication, age and genetics. ROYAL SOCIETY OPEN SCIENCE 2019; 6:190021. [PMID: 31183145 PMCID: PMC6502380 DOI: 10.1098/rsos.190021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 03/20/2019] [Indexed: 06/09/2023]
Abstract
The diversity of reproduction and associated mating patterns in Atlantic salmon (Salmo salar) has long captivated evolutionary biologists. Salmo salar exhibit strategies involving migration, bold mating behaviours and radical morphological and physiological change. One such radical change is the elongation and curvature of the lower jaw in sexually mature males into a hook-like appendage called the kype. The kype is a secondary sexual characteristic used in mating hierarchies and a prime candidate for sexual selection. As one of the core global aquaculture fish species, however, mate choice, and thus sexual selection, has been replaced by industrial artificial fertilization seeking to develop more commercially viable strains. Removal of mate choice provides a unique opportunity to examine the kype over successive generations in the absence of sexual selection. Here we use a large-scale common-garden experiment, incorporating six experimental strains (wild, farmed and wild × farmed hybrids), experiencing one to three sea winters, to assess the impact of age and genetic background. After controlling for allometry, fork length-adjusted kype height (AKH) was significantly reduced in the domesticated strain in comparison to two wild strains. Furthermore, genetic variation at a locus on linkage group SSA1 was associated with kype height, and a locus on linkage group SSA23 was associated with fork length-adjusted kype length (AKL). The reduction in fork length-AKH in domesticated salmon suggests that the kype is of importance in mate choice and that it has decreased due to relaxation of sexual selection. Fork length-AKL showed an increase in domesticated individuals, highlighting that it may not be an important cue in mate choice. These results give us insight into the evolutionary significance of the kype, as well as implications of genetic induced phenotypic change caused by domesticated individuals escaping into the natural environment.
Collapse
Affiliation(s)
- William Bernard Perry
- Molecular Ecology and Fisheries Genetics Laboratory, School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| | - Monica Favnebøe Solberg
- Population Genetics Research Group, Institute of Marine Research, P.O. Box 1870, Nordnes, NO-5817 Bergen, Norway
| | - Francois Besnier
- Population Genetics Research Group, Institute of Marine Research, P.O. Box 1870, Nordnes, NO-5817 Bergen, Norway
| | - Lise Dyrhovden
- Matre Research Station, Institute of Marine Research, Matredal, Norway
| | - Ivar Helge Matre
- Matre Research Station, Institute of Marine Research, Matredal, Norway
| | - Per Gunnar Fjelldal
- Population Genetics Research Group, Institute of Marine Research, P.O. Box 1870, Nordnes, NO-5817 Bergen, Norway
| | - Fernando Ayllon
- Population Genetics Research Group, Institute of Marine Research, P.O. Box 1870, Nordnes, NO-5817 Bergen, Norway
| | - Simon Creer
- Molecular Ecology and Fisheries Genetics Laboratory, School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| | - Martin Llewellyn
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, UK
| | - Martin I. Taylor
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | - Gary Carvalho
- Molecular Ecology and Fisheries Genetics Laboratory, School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| | - Kevin Alan Glover
- Population Genetics Research Group, Institute of Marine Research, P.O. Box 1870, Nordnes, NO-5817 Bergen, Norway
- Institute of Biology, University of Bergen, N-5020 Bergen, Norway
| |
Collapse
|
28
|
Mohamed AR, Verbyla KL, Al-Mamun HA, McWilliam S, Evans B, King H, Kube P, Kijas JW. Polygenic and sex specific architecture for two maturation traits in farmed Atlantic salmon. BMC Genomics 2019; 20:139. [PMID: 30770720 PMCID: PMC6377724 DOI: 10.1186/s12864-019-5525-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 02/11/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND A key developmental transformation in the life of all vertebrates is the transition to sexual maturity, whereby individuals are capable of reproducing for the first time. In the farming of Atlantic salmon, early maturation prior to harvest size has serious negative production impacts. RESULTS We report genome wide association studies (GWAS) using fish measured for sexual maturation in freshwater or the marine environment. Genotypic data from a custom 50 K single nucleotide polymorphism (SNP) array was used to identify 13 significantly associated SNP for freshwater maturation with the most strongly associated on chromosomes 10 and 11. A higher number of associations (48) were detected for marine maturation, and the two peak loci were found to be the same for both traits. The number and broad distribution of GWAS hits confirmed a highly polygenetic nature, and GWAS performed separately within males and females revealed sex specific genetic behaviour for loci co-located with positional candidate genes phosphatidylinositol-binding clathrin assembly protein-like (picalm) and membrane-associated guanylate kinase, WW and PDZ domain-containing protein 2 (magi2). CONCLUSIONS The results extend earlier work and have implications for future applied breeding strategies to delay maturation in this important aquaculture species.
Collapse
Affiliation(s)
- Amin R Mohamed
- Commonwealth Scientific and Industrial Research Organisation Agriculture and Food, Queensland Bioscience Precinct, St Lucia Brisbane, 4067, Australia.,Zoology Department, Faculty of Science, Benha University, Benha, 13518, Egypt
| | - Klara L Verbyla
- Commonwealth Scientific and Industrial Research Organisation Data 61, Canberra, Australian Capital Territory, 2601, Australia
| | - Hawlader A Al-Mamun
- Commonwealth Scientific and Industrial Research Organisation Data 61, Canberra, Australian Capital Territory, 2601, Australia
| | - Sean McWilliam
- Commonwealth Scientific and Industrial Research Organisation Agriculture and Food, Queensland Bioscience Precinct, St Lucia Brisbane, 4067, Australia
| | - Bradley Evans
- Tassal Operations Pty Ltd, Hobart, Tasmania, 7001, Australia
| | - Harry King
- Commonwealth Scientific and Industrial Research Organisation Agriculture and Food, Hobart, Tasmania, 7004, Australia
| | - Peter Kube
- Commonwealth Scientific and Industrial Research Organisation Agriculture and Food, Hobart, Tasmania, 7004, Australia
| | - James W Kijas
- Commonwealth Scientific and Industrial Research Organisation Agriculture and Food, Queensland Bioscience Precinct, St Lucia Brisbane, 4067, Australia.
| |
Collapse
|
29
|
Mohamed AR, King H, Evans B, Reverter A, Kijas JW. Multi-Tissue Transcriptome Profiling of North American Derived Atlantic Salmon. Front Genet 2018; 9:369. [PMID: 30271423 PMCID: PMC6146974 DOI: 10.3389/fgene.2018.00369] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 08/22/2018] [Indexed: 12/23/2022] Open
Abstract
The availability of a reference genome assembly for Atlantic salmon, Salmo salar, SNP genotyping platforms and low cost sequencing are enhancing the understanding of both life history and production-related traits in this important commercial species. We collected and analyzed transcriptomes from selected tissues of Atlantic salmon to inform future functional and comparative genomics studies. Messenger RNA (mRNA) was isolated from pituitary gland, brain, ovary, and liver before Illumina sequencing produced a total of 640 million 150-bp paired-end reads. Following read mapping, feature counting, and normalization, cluster analysis identified genes highly expressed in a tissue-specific manner. We identified a cluster of 508 tissue specific genes for pituitary gland, 3395 for brain, 2939 for ovary, and 539 for liver. Functional profiling identified gene clusters describing the unique functions of each tissue. Moreover, highly-expressed transcription factors (TFs) present in each tissue-specific gene cluster were identified. TFs belonging to homeobox and bhlh families were identified for pituitary gland, pou and zf-c2h2 families for brain, arid, and zf-c2h2 for ovary and rxr-like family for liver. The data and analysis presented are relevant to the emerging Functional Annotation of All Salmonid Genomes (FAASG) initiative that is seeking to develop a detailed understanding of both salmonid evolution and the genomic elements that drive gene expression and regulation.
Collapse
Affiliation(s)
- Amin R Mohamed
- Commonwealth Scientific and Industrial Research Organisation Agriculture and Food, Queensland Bioscience Precinct, St Lucia, QLD, Australia.,Zoology Department, Faculty of Science, Benha University, Benha, Egypt
| | - Harry King
- Commonwealth Scientific and Industrial Research Organisation Agriculture, Hobart, TAS, Australia
| | | | - Antonio Reverter
- Commonwealth Scientific and Industrial Research Organisation Agriculture and Food, Queensland Bioscience Precinct, St Lucia, QLD, Australia
| | - James W Kijas
- Commonwealth Scientific and Industrial Research Organisation Agriculture and Food, Queensland Bioscience Precinct, St Lucia, QLD, Australia
| |
Collapse
|
30
|
Abstract
Teleost fish exhibit a remarkable diversity in the control of sex determination, offering the opportunity to identify novel differentiation mechanisms and their ecological consequences. Here, we perform GWAS using 4715 fish and 46,501 SNP to map sex determination to three separate genomic locations in Atlantic salmon (Salmo salar). To characterize each, whole genome sequencing was performed to 30-fold depth of coverage using 20 fish representing each of three identified sex lineages. SNP polymorphism reveals male fish carry a single copy of the male specific region, consistent with an XX/XY or male heterogametric sex system. Haplotype analysis revealed deep divergence between the putatively ancestral locus on chromosome 2, compared with loci on chromosomes 3 and 6. Haplotypes in fish carrying either the chromosome 3 or 6 loci were nearly indistinguishable, indicating a founding event that occurred following the speciation event that defined Salmo salar from other salmonids. These findings highlight the evolutionarily fluid state of sex determination systems in salmonids, and resolve to the sequence level differences in animals with divergent sex lineages.
Collapse
|
31
|
Feng X, Yu X, Fu B, Wang X, Liu H, Pang M, Tong J. A high-resolution genetic linkage map and QTL fine mapping for growth-related traits and sex in the Yangtze River common carp (Cyprinus carpio haematopterus). BMC Genomics 2018; 19:230. [PMID: 29609551 PMCID: PMC5879560 DOI: 10.1186/s12864-018-4613-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 03/20/2018] [Indexed: 01/08/2023] Open
Abstract
Background A high-density genetic linkage map is essential for QTL fine mapping, comparative genome analysis, identification of candidate genes and marker-assisted selection for economic traits in aquaculture species. The Yangtze River common carp (Cyprinus carpio haematopterus) is one of the most important aquacultured strains in China. However, quite limited genetics and genomics resources have been developed for genetic improvement of economic traits in such strain. Results A high-resolution genetic linkage map was constructed by using 7820 2b-RAD (2b-restriction site-associated DNA) and 295 microsatellite markers in a F2 family of the Yangtze River common carp (C. c. haematopterus). The length of the map was 4586.56 cM with an average marker interval of 0.57 cM. Comparative genome mapping revealed that a high proportion (70%) of markers with disagreed chromosome location was observed between C. c. haematopterus and another common carp strain (subspecies) C. c. carpio. A clear 2:1 relationship was observed between C. c. haematopterus linkage groups (LGs) and zebrafish (Danio rerio) chromosomes. Based on the genetic map, 21 QTLs for growth-related traits were detected on 12 LGs, and contributed values of phenotypic variance explained (PVE) ranging from 16.3 to 38.6%, with LOD scores ranging from 4.02 to 11.13. A genome-wide significant QTL (LOD = 10.83) and three chromosome-wide significant QTLs (mean LOD = 4.84) for sex were mapped on LG50 and LG24, respectively. A 1.4 cM confidence interval of QTL for all growth-related traits showed conserved synteny with a 2.06 M segment on chromosome 14 of D. rerio. Five potential candidate genes were identified by blast search in this genomic region, including a well-studied multi-functional growth related gene, Apelin. Conclusions We mapped a set of suggestive and significant QTLs for growth-related traits and sex based on a high-density genetic linkage map using SNP and microsatellite markers for Yangtze River common carp. Several candidate growth genes were also identified from the QTL regions by comparative mapping. This genetic map would provide a basis for genome assembly and comparative genomics studies, and those QTL-derived candidate genes and genetic markers are useful genomic resources for marker-assisted selection (MAS) of growth-related traits in the Yangtze River common carp. Electronic supplementary material The online version of this article (10.1186/s12864-018-4613-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiu Feng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Xiaomu Yu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Beide Fu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Xinhua Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Haiyang Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Meixia Pang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Jingou Tong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
32
|
Evidence of sex-bias in gene expression in the brain transcriptome of two populations of rainbow trout (Oncorhynchus mykiss) with divergent life histories. PLoS One 2018; 13:e0193009. [PMID: 29447294 PMCID: PMC5814004 DOI: 10.1371/journal.pone.0193009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 02/03/2018] [Indexed: 11/19/2022] Open
Abstract
Sex-bias in gene expression is a mechanism that can generate phenotypic variance between the sexes, however, relatively little is known about how patterns of sex-bias vary during development, and how variable sex-bias is between different populations. To that end, we measured sex-bias in gene expression in the brain transcriptome of rainbow trout (Oncorhynchus mykiss) during the first two years of development. Our sampling included from the fry stage through to when O. mykiss either migrate to the ocean or remain resident and undergo sexual maturation. Samples came from two F1 lines: One from migratory steelhead trout and one from resident rainbow trout. All samples were reared in a common garden environment and RNA sequencing (RNA-seq) was used to estimate patterns of gene expression. A total of 1,716 (4.6% of total) genes showed evidence of sex-bias in gene expression in at least one time point. The majority (96.7%) of sex-biased genes were differentially expressed during the second year of development, indicating that patterns of sex-bias in expression are tied to key developmental events, such as migration and sexual maturation. Mapping of differentially expressed genes to the O. mykiss genome revealed that the X chromosome is enriched for female upregulated genes, and this may indicate a lack of dosage compensation in rainbow trout. There were many more sex-biased genes in the migratory line than the resident line suggesting differences in patterns of gene expression in the brain between populations subjected to different forces of selection. Overall, our results suggest that there is considerable variation in the extent and identity of genes exhibiting sex-bias during the first two years of life. These differentially expressed genes may be connected to developmental differences between the sexes, and/or between adopting a resident or migratory life history.
Collapse
|
33
|
Noble S, Saxena V, Ekker M, Devlin R. Expression of Thiaminase in Zebrafish (Danio rerio) is Lethal and Has Implications for Use as a Biocontainment Strategy in Aquaculture and Invasive Species. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2017; 19:563-569. [PMID: 28980193 DOI: 10.1007/s10126-017-9776-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 07/27/2017] [Indexed: 06/07/2023]
Abstract
As the world increasingly relies on aquaculture operations to meet rising seafood demands, reliable biocontainment measures for farmed fish stocks are desired to minimize ecological impacts arising from interactions of cultured fish with wild populations. One possible biocontainment strategy is to induce a dietary dependence on a vitamin, such as thiamine (vitamin B1), required for survival. Fish expressing thiaminase (an enzyme that degrades thiamine) within a confined aquaculture facility could receive supplemental thiamine to allow survival and normal growth, whereas escapees lacking this dietary rescue would die from thiamine deficiency. To test the concept and efficacy of such a dietary dependency system (for potential future use in larger aquaculture species), we expressed thiaminase in zebrafish as a test model. We drove the expression of thiaminase under the strong ubiquitous and constitutive control of the CMV promoter which resulted in non-viable fish, indicating that the thiaminase sequence kills fish. However, the CMV promoter is too strong to allow conditional survival since the lethality could not be rescued by exogenous thiamine provided as a supplement to typical food. In addition, microinjection of 0.5 pg of thiaminase mRNA in zebrafish embryos at the one-cell stage resulted in 50% larval mortality at 5 days post-fertilization (dpf), which was partially rescued by thiamine supplementation. Evaluating the efficacy of biocontainment strategies helps assess which methods can reliably prevent ecological impacts arising from breaches in physical containment systems that release engineered organisms to nature, and consequently provides critical information for use in regulatory risk assessment processes.
Collapse
Affiliation(s)
- Sandra Noble
- Center for Advanced Research in Environmental Genomics, Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON, K1N 6N5, Canada
- Fisheries and Oceans Canada, 4160 Marine Drive, West Vancouver, BC, V7V 1N6, Canada
| | - Vishal Saxena
- Center for Advanced Research in Environmental Genomics, Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON, K1N 6N5, Canada
| | - Marc Ekker
- Center for Advanced Research in Environmental Genomics, Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON, K1N 6N5, Canada.
| | - Robert Devlin
- Fisheries and Oceans Canada, 4160 Marine Drive, West Vancouver, BC, V7V 1N6, Canada.
- Marine Ecosystems and Aquaculture Division, Science Branch Fisheries and Oceans Canada, Government of Canada, 4160 Marine Drive, West Vancouver, BC, V7V 1N6, Canada.
| |
Collapse
|
34
|
Using Linkage Maps as a Tool To Determine Patterns of Chromosome Synteny in the Genus Salvelinus. G3-GENES GENOMES GENETICS 2017; 7:3821-3830. [PMID: 28963166 PMCID: PMC5677171 DOI: 10.1534/g3.117.300317] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Next generation sequencing techniques have revolutionized the collection of genome and transcriptome data from nonmodel organisms. This manuscript details the application of restriction site-associated DNA sequencing (RADseq) to generate a marker-dense genetic map for Brook Trout (Salvelinus fontinalis). The consensus map was constructed from three full-sib families totaling 176 F1 individuals. The map consisted of 42 linkage groups with a total female map size of 2502.5 cM, and a total male map size of 1863.8 cM. Synteny was confirmed with Atlantic Salmon for 38 linkage groups, with Rainbow Trout for 37 linkage groups, Arctic Char for 36 linkage groups, and with a previously published Brook Trout linkage map for 39 linkage groups. Comparative mapping confirmed the presence of 8 metacentric and 34 acrocentric chromosomes in Brook Trout. Six metacentric chromosomes seem to be conserved with Arctic Char suggesting there have been at least two species-specific fusion and fission events within the genus Salvelinus. In addition, the sex marker (sdY; sexually dimorphic on the Y chromosome) was mapped to Brook Trout BC35, which is homologous with Atlantic Salmon Ssa09qa, Rainbow Trout Omy25, and Arctic Char AC04q. Ultimately, this linkage map will be a useful resource for studies on the genome organization of Salvelinus, and facilitates comparisons of the Salvelinus genome with Salmo and Oncorhynchus.
Collapse
|
35
|
Kleppe L, Andersson E, Skaftnesmo KO, Edvardsen RB, Fjelldal PG, Norberg B, Bogerd J, Schulz RW, Wargelius A. Sex steroid production associated with puberty is absent in germ cell-free salmon. Sci Rep 2017; 7:12584. [PMID: 28974703 PMCID: PMC5626747 DOI: 10.1038/s41598-017-12936-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 09/20/2017] [Indexed: 11/09/2022] Open
Abstract
In all vertebrates studied so far, germ cells are not required for pubertal maturation of the gonadal steroidogenic system, subsequent development of secondary sex characteristics and reproductive behavior. To explore if the absence of germ cells affects puberty or growth in Atlantic salmon, germ cell-free (GCF), dnd knockout and wild type (WT) postsmolts were stimulated to enter puberty. No GCF fish entered puberty, whereas 66.7% (males) and 30% (females) WT fish completed or entered puberty, respectively. Expression of genes related to steroidogenesis (star, cyp17a1, cyp11β, cyp19a1a), gonadal somatic cells (insl3, amh, igf3), oocytes (bmp15), gonadotropin receptors (fshr, lhcgr), and pituitary gonadotropic cells (fshb, lhb, gnrhr4) showed an immature status and failure to up-regulate gonadal sex steroid production in male and female GCF fish was also reflected in low or undetectable plasma sex steroids (11-ketotestosterone, estradiol-17β and testosterone). A gender difference (high in females, low in males) was found in the expression of star and cyp17a1 in GCF fish. No clear difference in growth was detected between GCF and immature WT fish, while growth was compromised in maturing WT males. We demonstrate for the first time in a vertebrate that germ cells are required for pubertal activation of the somatic steroidogenic cells.
Collapse
Affiliation(s)
- Lene Kleppe
- Institute of Marine Research, P.O. Box 1870, Nordnes, NO-5817, Bergen, Norway.
| | - Eva Andersson
- Institute of Marine Research, P.O. Box 1870, Nordnes, NO-5817, Bergen, Norway
| | - Kai Ove Skaftnesmo
- Institute of Marine Research, P.O. Box 1870, Nordnes, NO-5817, Bergen, Norway
| | - Rolf B Edvardsen
- Institute of Marine Research, P.O. Box 1870, Nordnes, NO-5817, Bergen, Norway
| | - Per Gunnar Fjelldal
- Institute of Marine Research, Matre Aquaculture Research Station, 5984, Matredal, Norway
| | - Birgitta Norberg
- Institute of Marine Research, Austevoll Research Station, 5392, Storebø, Norway
| | - Jan Bogerd
- Utrecht University, Faculty of Science, Department of Biology, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Rüdiger W Schulz
- Institute of Marine Research, P.O. Box 1870, Nordnes, NO-5817, Bergen, Norway.,Utrecht University, Faculty of Science, Department of Biology, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Anna Wargelius
- Institute of Marine Research, P.O. Box 1870, Nordnes, NO-5817, Bergen, Norway
| |
Collapse
|
36
|
Harvey AC, Tang Y, Wennevik V, Skaala Ø, Glover KA. Timing is everything: Fishing-season placement may represent the most important angling-induced evolutionary pressure on Atlantic salmon populations. Ecol Evol 2017; 7:7490-7502. [PMID: 28944033 PMCID: PMC5606871 DOI: 10.1002/ece3.3304] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 06/01/2017] [Accepted: 07/13/2017] [Indexed: 01/15/2023] Open
Abstract
Fisheries‐induced evolution can change the trajectory of wild fish populations by selectively targeting certain phenotypes. For important fish species like Atlantic salmon, this could have large implications for their conservation and management. Most salmon rivers are managed by specifying an angling season of predetermined length based on population demography, which is typically established from catch statistics. Given the circularity of using catch statistics to estimate demographic parameters, it may be difficult to quantify the selective nature of angling and its evolutionary impact. In the River Etne in Norway, a recently installed trap permits daily sampling of fish entering the river, some of which are subsequently captured by anglers upstream. Here, we used 31 microsatellites to establish an individual DNA profile for salmon entering the trap, and for many of those subsequently captured by anglers. These data permitted us to investigate time of rod capture relative to river entry, potential body size‐selective harvest, and environmental variables associated with river entry. Larger, older fish entered the river earlier than smaller, younger fish of both sexes, and larger, older females were more abundant than males and vice versa. There was good agreement between the sizes of fish harvested by angling, and the size distribution of the population sampled on the trap. These results demonstrate that at least in this river, and with the current timing of the season, the angling catch reflects the population's demographics and there is no evidence of size‐selective harvest. We also demonstrated that the probability of being caught by angling declines quickly after river entry. Collectively, these data indicate that that the timing of the fishing season, in relation to the upstream migration patterns of the different demographics of the population, likely represents the most significant directional evolutionary force imposed by angling.
Collapse
Affiliation(s)
| | - Yongkai Tang
- Freshwater Fisheries Research Center Chinese Academy of Fishery Sciences Wuxi China
| | | | | | - Kevin A Glover
- Institute of Marine Research Bergen Norway.,Department of Biology Sea Lice Research Centre University of Bergen Bergen Norway
| |
Collapse
|
37
|
Sutherland BJG, Rico C, Audet C, Bernatchez L. Sex Chromosome Evolution, Heterochiasmy, and Physiological QTL in the Salmonid Brook Charr Salvelinus fontinalis. G3 (BETHESDA, MD.) 2017; 7:2749-2762. [PMID: 28626004 PMCID: PMC5555479 DOI: 10.1534/g3.117.040915] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 06/13/2017] [Indexed: 02/06/2023]
Abstract
Whole-genome duplication (WGD) can have large impacts on genome evolution, and much remains unknown about these impacts. This includes the mechanisms of coping with a duplicated sex determination system and whether this has an impact on increasing the diversity of sex determination mechanisms. Other impacts include sexual conflict, where alleles having different optimums in each sex can result in sequestration of genes into nonrecombining sex chromosomes. Sex chromosome development itself may involve sex-specific recombination rate (i.e., heterochiasmy), which is also poorly understood. The family Salmonidae is a model system for these phenomena, having undergone autotetraploidization and subsequent rediploidization in most of the genome at the base of the lineage. The salmonid master sex determining gene is known, and many species have nonhomologous sex chromosomes, putatively due to transposition of this gene. In this study, we identify the sex chromosome of Brook Charr Salvelinus fontinalis and compare sex chromosome identities across the lineage (eight species and four genera). Although nonhomology is frequent, homologous sex chromosomes and other consistencies are present in distantly related species, indicating probable convergence on specific sex and neo-sex chromosomes. We also characterize strong heterochiasmy with 2.7-fold more crossovers in maternal than paternal haplotypes with paternal crossovers biased to chromosome ends. When considering only rediploidized chromosomes, the overall heterochiasmy trend remains, although with only 1.9-fold more recombination in the female than the male. Y chromosome crossovers are restricted to a single end of the chromosome, and this chromosome contains a large interspecific inversion, although its status between males and females remains unknown. Finally, we identify quantitative trait loci (QTL) for 21 unique growth, reproductive, and stress-related phenotypes to improve knowledge of the genetic architecture of these traits important to aquaculture and evolution.
Collapse
Affiliation(s)
- Ben J G Sutherland
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec G1V 0A6, Canada
| | - Ciro Rico
- School of Marine Studies, Molecular Diagnostics Laboratory, University of the South Pacific, Suva, Fiji
- Department of Wetland Ecology, Estación Biológica de Doñana (EBD-CSIC), 41092 Sevilla, Spain
| | - Céline Audet
- Institut des Sciences de la Mer de Rimouski, Université du Québec à Rimouski, Quebec G5L 3A1, Canada
| | - Louis Bernatchez
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec G1V 0A6, Canada
| |
Collapse
|
38
|
Larson WA, McKinney GJ, Seeb JE, Seeb LW. Identification and Characterization of Sex-Associated Loci in Sockeye Salmon Using Genotyping-by-Sequencing and Comparison with a Sex-Determining Assay Based on thesdYGene. J Hered 2016; 107:559-66. [DOI: 10.1093/jhered/esw043] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 07/07/2016] [Indexed: 11/12/2022] Open
|
39
|
Dnd knockout ablates germ cells and demonstrates germ cell independent sex differentiation in Atlantic salmon. Sci Rep 2016; 6:21284. [PMID: 26888627 PMCID: PMC4758030 DOI: 10.1038/srep21284] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 01/20/2016] [Indexed: 01/07/2023] Open
Abstract
Introgression of farmed salmon escapees into wild stocks is a major threat to the genetic integrity of wild populations. Using germ cell-free fish in aquaculture may mitigate this problem. Our study investigated whether it is possible to produce germ cell-free salmon in F0 by using CRISPR-Cas9 to knock out dnd, a factor required for germ cell survival in vertebrates. To avoid studying mosaic animals, sgRNA targeting alb was simultaneously used as a visual tracer since the phenotype of alb KO is complete loss of pigmentation. Induced mutations for the tracer (alb) and the target (dnd) genes were highly correlated and produced germ cell-less fish lacking pigmentation, underlining the suitability of alb KO to serve as tracer for targeted double allelic mutations in F0 animals in species with prohibitively long generation times. This is also the first report describing dnd knockout in any fish species. Analyzing gene expression and histology of dnd KO fish revealed that sex differentiation of the somatic compartment does not depend on the presence of germ cells. However, the organization of the ovarian somatic compartment seems compromised in mutant fish.
Collapse
|
40
|
Glover KA, Bos JB, Urdal K, Madhun AS, Sørvik AGE, Unneland L, Seliussen BB, Skaala Ø, Skilbrei OT, Tang Y, Wennevik V. Genetic screening of farmed Atlantic salmon escapees demonstrates that triploid fish display reduced migration to freshwater. Biol Invasions 2016. [DOI: 10.1007/s10530-016-1066-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
41
|
Ayllon F, Kjærner-Semb E, Furmanek T, Wennevik V, Solberg MF, Dahle G, Taranger GL, Glover KA, Almén MS, Rubin CJ, Edvardsen RB, Wargelius A. The vgll3 Locus Controls Age at Maturity in Wild and Domesticated Atlantic Salmon (Salmo salar L.) Males. PLoS Genet 2015; 11:e1005628. [PMID: 26551894 PMCID: PMC4638356 DOI: 10.1371/journal.pgen.1005628] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 10/05/2015] [Indexed: 11/25/2022] Open
Abstract
Wild and domesticated Atlantic salmon males display large variation for sea age at sexual maturation, which varies between 1-5 years. Previous studies have uncovered a genetic predisposition for variation of age at maturity with moderate heritability, thus suggesting a polygenic or complex nature of this trait. The aim of this study was to identify associated genetic loci, genes and ultimately specific sequence variants conferring sea age at maturity in salmon. We performed a genome wide association study (GWAS) using a pool sequencing approach (20 individuals per river and phenotype) of male salmon returning to rivers as sexually mature either after one sea winter (2009) or three sea winters (2011) in six rivers in Norway. The study revealed one major selective sweep, which covered 76 significant SNPs in which 74 were found in a 370 kb region of chromosome 25. Genotyping other smolt year classes of wild and domesticated salmon confirmed this finding. Genotyping domesticated fish narrowed the haplotype region to four SNPs covering 2386 bp, containing the vgll3 gene, including two missense mutations explaining 33-36% phenotypic variation. A single locus was found to have a highly significant role in governing sea age at maturation in this species. The SNPs identified may be both used as markers to guide breeding for late maturity in salmon aquaculture and in monitoring programs of wild salmon. Interestingly, a SNP in proximity of the VGLL3 gene in humans (Homo sapiens), has previously been linked to age at puberty suggesting a conserved mechanism for timing of puberty in vertebrates.
Collapse
Affiliation(s)
| | - Erik Kjærner-Semb
- Institute of Marine Research, Bergen, Norway
- Department of Biology, University of Bergen, Bergen, Norway
| | | | | | | | - Geir Dahle
- Institute of Marine Research, Bergen, Norway
| | | | - Kevin A. Glover
- Institute of Marine Research, Bergen, Norway
- Department of Biology, University of Bergen, Bergen, Norway
| | - Markus Sällman Almén
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Carl J Rubin
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | | | | |
Collapse
|
42
|
Genomic Instability of the Sex-Determining Locus in Atlantic Salmon (Salmo salar). G3-GENES GENOMES GENETICS 2015; 5:2513-22. [PMID: 26401030 PMCID: PMC4632069 DOI: 10.1534/g3.115.020115] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Atlantic salmon and rainbow trout, like other members of the subfamily Salmoninae, are gonochoristic with male heterogamety. The finding that sex-linked genetic markers varied between species suggested that the sex-determining gene differs among salmonid species, or that there is one sex-determining gene that has the capacity to move around the genome. The discovery of sdY, the sex-determining gene in rainbow trout, and its presence in many male salmonids gave support to the latter. Additional evidence for a salmonid-specific, sex-determining jumping gene came from the mapping of the sex-determining locus to three different chromosomes in Tasmanian male Atlantic salmon lineages. To characterize the sex-determining region, we isolated three sdY containing BACs from an Atlantic salmon male library. Sequencing of these BACs yielded two contigs, one of which contained the sdY gene. Sequence analysis of the borders of male-specific and female/male common regions revealed highly repetitive sequences associated with mobile elements, which may allow an sdY cassette to jump around the genome. FISH analysis using a BAC or a plasmid containing the sdY gene showed that the sdY gene did indeed localize to the chromosomes where SEX had been mapped in different Tasmanian Atlantic salmon families. Moreover, the plasmid sdY gene probe hybridized primarily to one of the sex chromosomes as would be expected of a male-specific gene. Our results suggest that a common salmonid sex-determining gene (sdY) can move between three specific loci on chromosomes 2, 3, and 6, giving the impression that there are multiple SEX loci both within and between salmonid species.
Collapse
|
43
|
Lubieniecki KP, Botwright NA, Taylor RS, Evans BS, Cook MT, Davidson WS. Expression analysis of sex-determining pathway genes during development in male and female Atlantic salmon (Salmo salar). Physiol Genomics 2015; 47:581-7. [PMID: 26330486 DOI: 10.1152/physiolgenomics.00013.2015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 08/27/2015] [Indexed: 12/31/2022] Open
Abstract
We studied the expression of 28 genes that are involved in vertebrate sex-determination or sex-differentiation pathways, in male and female Atlantic salmon (Salmo salar) in 11 stages of development from fertilization to after first feeding. Gene expression was measured in half-sibs that shared the same dam. The sire of family 1 was a sex-reversed female (i.e., genetically female but phenotypically male), and so the progeny of this family are all female. The sire of family 2 was a true male, and so the offspring were 50% male and 50% female. Gene expression levels were compared among three groups: 20 female offspring of the cross between a regular female and the sex-reversed female (family 1, first group), ∼ 10 females from the cross between a regular female and a regular male (family 2, second group) and ∼ 10 males from this same family (family 2, third group). Statistically significant differences in expression levels between males and the two groups of females were observed for two genes, gsdf and amh/mis, in the last four developmental stages examined. SdY, the sex-determining gene in rainbow trout, appeared to be expressed in males from 58 days postfertilization (dpf). Starting at 83 dpf, ovarian aromatase, cyp19a, expression appeared to be greater in both groups of females compared with males, but this difference was not statistically significant. The time course of expression suggests that sdY may be involved in the upregulation of gsdf and amh/mis and the subsequent repression of cyp19a in males via the effect of amh/mis.
Collapse
Affiliation(s)
- Krzysztof P Lubieniecki
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Natasha A Botwright
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Brisbane, Queensland, Australia
| | | | - Brad S Evans
- Salmon Enterprises Of Tasmania Pty. Limited (SALTAS), Wayatinah, Tasmania, Australia
| | - Mathew T Cook
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Brisbane, Queensland, Australia
| | - William S Davidson
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada;
| |
Collapse
|
44
|
Faber-Hammond JJ, Phillips RB, Brown KH. Comparative Analysis of the Shared Sex-Determination Region (SDR) among Salmonid Fishes. Genome Biol Evol 2015; 7:1972-87. [PMID: 26112966 PMCID: PMC4524489 DOI: 10.1093/gbe/evv123] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Salmonids present an excellent model for studying evolution of young sex-chromosomes. Within the genus, Oncorhynchus, at least six independent sex-chromosome pairs have evolved, many unique to individual species. This variation results from the movement of the sex-determining gene, sdY, throughout the salmonid genome. While sdY is known to define sexual differentiation in salmonids, the mechanism of its movement throughout the genome has remained elusive due to high frequencies of repetitive elements, rDNA sequences, and transposons surrounding the sex-determining regions (SDR). Despite these difficulties, bacterial artificial chromosome (BAC) library clones from both rainbow trout and Atlantic salmon containing the sdY region have been reported. Here, we report the sequences for these BACs as well as the extended sequence for the known SDR in Chinook gained through genome walking methods. Comparative analysis allowed us to study the overlapping SDRs from three unique salmonid Y chromosomes to define the specific content, size, and variation present between the species. We found approximately 4.1 kb of orthologous sequence common to all three species, which contains the genetic content necessary for masculinization. The regions contain transposable elements that may be responsible for the translocations of the SDR throughout salmonid genomes and we examine potential mechanistic roles of each one.
Collapse
Affiliation(s)
- Joshua J Faber-Hammond
- Department of Biology, Portland State University School of Biological Sciences, Washington State University Vancouver
| | - Ruth B Phillips
- School of Biological Sciences, Washington State University Vancouver Center for Reproductive Biology, Washington State University, Pullman
| | - Kim H Brown
- Department of Biology, Portland State University
| |
Collapse
|
45
|
Genome-wide association study (GWAS) for growth rate and age at sexual maturation in Atlantic salmon (Salmo salar). PLoS One 2015; 10:e0119730. [PMID: 25757012 PMCID: PMC4355585 DOI: 10.1371/journal.pone.0119730] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 01/25/2015] [Indexed: 11/26/2022] Open
Abstract
Early sexual maturation is considered a serious drawback for Atlantic salmon aquaculture as it retards growth, increases production times and affects flesh quality. Although both growth and sexual maturation are thought to be complex processes controlled by several genetic and environmental factors, selection for these traits has been continuously accomplished since the beginning of Atlantic salmon selective breeding programs. In this genome-wide association study (GWAS) we used a 6.5K single-nucleotide polymorphism (SNP) array to genotype ∼480 individuals from the Cermaq Canada broodstock program and search for SNPs associated with growth and age at sexual maturation. Using a mixed model approach we identified markers showing a significant association with growth, grilsing (early sexual maturation) and late sexual maturation. The most significant associations were found for grilsing, with markers located in Ssa10, Ssa02, Ssa13, Ssa25 and Ssa12, and for late maturation with markers located in Ssa28, Ssa01 and Ssa21. A lower level of association was detected with growth on Ssa13. Candidate genes, which were linked to these genetic markers, were identified and some of them show a direct relationship with developmental processes, especially for those in association with sexual maturation. However, the relatively low power to detect genetic markers associated with growth (days to 5 kg) in this GWAS indicates the need to use a higher density SNP array in order to overcome the low levels of linkage disequilibrium observed in Atlantic salmon before the information can be incorporated into a selective breeding program.
Collapse
|
46
|
Abstract
Teleost fishes are the most species-rich clade of vertebrates and feature an overwhelming diversity of sex-determining mechanisms, classically grouped into environmental and genetic systems. Here, we review the recent findings in the field of sex determination in fish. In the past few years, several new master regulators of sex determination and other factors involved in sexual development have been discovered in teleosts. These data point toward a greater genetic plasticity in generating the male and female sex than previously appreciated and implicate novel gene pathways in the initial regulation of the sexual fate. Overall, it seems that sex determination in fish does not resort to a single genetic cascade but is rather regulated along a continuum of environmental and heritable factors.
Collapse
|
47
|
Martínez P, Viñas AM, Sánchez L, Díaz N, Ribas L, Piferrer F. Genetic architecture of sex determination in fish: applications to sex ratio control in aquaculture. Front Genet 2014; 5:340. [PMID: 25324858 PMCID: PMC4179683 DOI: 10.3389/fgene.2014.00340] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 09/10/2014] [Indexed: 01/05/2023] Open
Abstract
Controlling the sex ratio is essential in finfish farming. A balanced sex ratio is usually good for broodstock management, since it enables to develop appropriate breeding schemes. However, in some species the production of monosex populations is desirable because the existence of sexual dimorphism, primarily in growth or first time of sexual maturation, but also in color or shape, can render one sex more valuable. The knowledge of the genetic architecture of sex determination (SD) is convenient for controlling sex ratio and for the implementation of breeding programs. Unlike mammals and birds, which show highly conserved master genes that control a conserved genetic network responsible for gonad differentiation (GD), a huge diversity of SD mechanisms has been reported in fish. Despite theory predictions, more than one gene is in many cases involved in fish SD and genetic differences have been observed in the GD network. Environmental factors also play a relevant role and epigenetic mechanisms are becoming increasingly recognized for the establishment and maintenance of the GD pathways. Although major genetic factors are frequently involved in fish SD, these observations strongly suggest that SD in this group resembles a complex trait. Accordingly, the application of quantitative genetics combined with genomic tools is desirable to address its study and in fact, when applied, it has frequently demonstrated a multigene trait interacting with environmental factors in model and cultured fish species. This scenario has notable implications for aquaculture and, depending upon the species, from chromosome manipulation or environmental control techniques up to classical selection or marker assisted selection programs, are being applied. In this review, we selected four relevant species or fish groups to illustrate this diversity and hence the technologies that can be used by the industry for the control of sex ratio: turbot and European sea bass, two reference species of the European aquaculture, and salmonids and tilapia, representing the fish for which there are well established breeding programs.
Collapse
Affiliation(s)
- Paulino Martínez
- Departamento de Genética, Facultad de Veterinaria, Universidad de Santiago de CompostelaLugo, Spain
| | - Ana M. Viñas
- Departamento de Genética, Facultad de Biología, Universidad de Santiago de CompostelaSantiago de Compostela, Spain
| | - Laura Sánchez
- Departamento de Genética, Facultad de Veterinaria, Universidad de Santiago de CompostelaLugo, Spain
| | - Noelia Díaz
- Institut de Ciències del Mar, Consejo Superior de Investigaciones CientíficasBarcelona, Spain
| | | | - Francesc Piferrer
- Institut de Ciències del Mar, Consejo Superior de Investigaciones CientíficasBarcelona, Spain
| |
Collapse
|
48
|
Comparative mapping between Coho Salmon (Oncorhynchus kisutch) and three other salmonids suggests a role for chromosomal rearrangements in the retention of duplicated regions following a whole genome duplication event. G3-GENES GENOMES GENETICS 2014; 4:1717-30. [PMID: 25053705 PMCID: PMC4169165 DOI: 10.1534/g3.114.012294] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Whole genome duplication has been implicated in evolutionary innovation and rapid diversification. In salmonid fishes, however, whole genome duplication significantly pre-dates major transitions across the family, and re-diploidization has been a gradual process between genomes that have remained essentially collinear. Nevertheless, pairs of duplicated chromosome arms have diverged at different rates from each other, suggesting that the retention of duplicated regions through occasional pairing between homeologous chromosomes may have played an evolutionary role across species pairs. Extensive chromosomal arm rearrangements have been a key mechanism involved in re-dipliodization of the salmonid genome; therefore, we investigated their influence on degree of differentiation between homeologs across salmon species. We derived a linkage map for coho salmon and performed comparative mapping across syntenic arms within the genus Oncorhynchus, and with the genus Salmo, to determine the phylogenetic relationship between chromosome arrangements and the retention of undifferentiated duplicated regions. A 6596.7 cM female coho salmon map, comprising 30 linkage groups with 7415 and 1266 nonduplicated and duplicated loci, respectively, revealed uneven distribution of duplicated loci along and between chromosome arms. These duplicated regions were conserved across syntenic arms across Oncorhynchus species and were identified in metacentric chromosomes likely formed ancestrally to the divergence of Oncorhynchus from Salmo. These findings support previous studies in which observed pairings involved at least one metacentric chromosome. Re-diploidization in salmon may have been prevented or retarded by the formation of metacentric chromosomes after the whole genome duplication event and may explain lineage-specific innovations in salmon species if functional genes are found in these regions.
Collapse
|
49
|
Johnston SE, Orell P, Pritchard VL, Kent MP, Lien S, Niemelä E, Erkinaro J, Primmer CR. Genome-wide SNP analysis reveals a genetic basis for sea-age variation in a wild population of Atlantic salmon (Salmo salar). Mol Ecol 2014; 23:3452-68. [DOI: 10.1111/mec.12832] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 06/04/2014] [Accepted: 06/06/2014] [Indexed: 12/17/2022]
Affiliation(s)
- Susan E. Johnston
- Division of Genetics and Physiology; Department of Biology; University of Turku; Itäinen Pitkäkatu 4 Turku FIN-20520 Finland
| | - Panu Orell
- Finnish Game and Fisheries Research Institute; Utsjoki FIN-99980 Finland
| | - Victoria L. Pritchard
- Division of Genetics and Physiology; Department of Biology; University of Turku; Itäinen Pitkäkatu 4 Turku FIN-20520 Finland
| | - Matthew P. Kent
- Centre for Integrative Genetics (CIGENE) and Department of Animal and Aquacultural Sciences; Norwegian University of Life Sciences; Aas N-1432 Norway
| | - Sigbjørn Lien
- Centre for Integrative Genetics (CIGENE) and Department of Animal and Aquacultural Sciences; Norwegian University of Life Sciences; Aas N-1432 Norway
| | - Eero Niemelä
- Finnish Game and Fisheries Research Institute; Utsjoki FIN-99980 Finland
| | - Jaakko Erkinaro
- Finnish Game and Fisheries Research Institute; Utsjoki FIN-99980 Finland
| | - Craig R. Primmer
- Division of Genetics and Physiology; Department of Biology; University of Turku; Itäinen Pitkäkatu 4 Turku FIN-20520 Finland
| |
Collapse
|
50
|
Affiliation(s)
- William S Davidson
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| |
Collapse
|