1
|
Kartavtsev YP, Masalkova NA. Structure, Evolution, and Mitochondrial Genome Analysis of Mussel Species (Bivalvia, Mytilidae). Int J Mol Sci 2024; 25:6902. [PMID: 39000014 PMCID: PMC11241113 DOI: 10.3390/ijms25136902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/13/2024] [Accepted: 06/17/2024] [Indexed: 07/14/2024] Open
Abstract
Based on the nucleotide sequences of the mitochondrial genome (mitogenome) of specimens taken from two mussel species (Arcuatula senhousia and Mytilus coruscus), an investigation was performed by means of the complex approaches of the genomics, molecular phylogenetics, and evolutionary genetics. The mitogenome structure of studied mussels, like in many other invertebrates, appears to be much more variable than in vertebrates and includes changing gene order, duplications, and deletions, which were most frequent for tRNA genes; the mussel species' mitogenomes also have variable sizes. The results demonstrate some of the very important properties of protein polypeptides, such as hydrophobicity and its determination by the purine and pyrimidine nucleotide ratio. This fact might indirectly indicate the necessity of purifying natural selection for the support of polypeptide functionality. However, in accordance with the widely accepted and logical concept of natural cutoff selection for organisms living in nature, which explains its action against deleterious nucleotide substitutions in the nonsynonymous codons (mutations) and its holding of the active (effective) macromolecules of the polypeptides in a population, we were unable to get unambiguous evidence in favor of this concept in the current paper. Here, the phylogeny and systematics of mussel species from one of the largest taxons of bivalve mollusks are studied, the family known as Mytilidae. The phylogeny for Mytilidae (order Mytilida), which currently has no consensus in terms of systematics, is reconstructed using a data matrix of 26-27 mitogenomes. Initially, a set of 100 sequences from GenBank were downloaded and checked for their gender: whether they were female (F) or male (M) in origin. Our analysis of the new data confirms the known drastic differences between the F/M mitogenome lines in mussels. Phylogenetic reconstructions of the F-lines were performed using the combined set of genetic markers, reconstructing only protein-coding genes (PCGs), only rRNA + tRNA genes, and all genes. Additionally, the analysis includes the usage of nucleotide sequences composed of other data matrices, such as 20-68 mitogenome sequences. The time of divergence from MRCA, estimated via BEAST2, for Mytilidae is close to 293 Mya, suggesting that they originate in the Silurian Period. From all these data, a consensus for the phylogeny of the subfamily of Mytilinae and its systematics is suggested. In particular, the long-debated argument on mussel systematics was resolved as to whether Mytilidae, and the subfamily of Mytilinae, are monophyletic. The topology signal, which was strongly resolved in this paper and in the literature, has refuted the theory regarding the monophyly of Mytilinae.
Collapse
Affiliation(s)
- Yuri Phedorovich Kartavtsev
- A.V. Zhirmunsky National Scientific Center of Marine Biology (NSCMB), Far Eastern Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia
| | | |
Collapse
|
2
|
Theodorakis CW, Meyer MA, Okay O, Yakan SD, Schramm KW. Contamination acts as a genotype-dependent barrier to gene flow, causing genetic erosion and fine-grained population subdivision in Mussels from the Strait of Istanbul. ECOTOXICOLOGY (LONDON, ENGLAND) 2024; 33:47-65. [PMID: 38182932 DOI: 10.1007/s10646-023-02725-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/13/2023] [Indexed: 01/07/2024]
Abstract
This study provides evidence of fine-grained genetic structuring in Mediterranean mussels (Mytilus galloprovincialis) from the Strait of Istanbul, caused by barriers to gene flow via contaminant-mediated selection. In this study, mitochondrial D-loop sequences were analyzed in mussels from 8 localities, all less than 30 kilometers apart, with differing contaminant loads. The results were: 1) Intra-population genetic differentiation (ΦST) between sites with high and low contaminant loads was high (up to 0.459), even at distances of only a few kilometers. 2) Genetic diversity was negatively correlated with the contaminant load ("genetic erosion"). 3) There was evidence of selection, based on haplotype frequencies and neutrality tests (Tajima's D), with purifying selection at the most contaminated site and balancing selection at the least contaminated. 4) Genetic distance was not correlated with geographic distance (no isolation-by-distance), but was correlated with contaminant load at each site. 5) Population dendrograms and Bayesian estimators of migration indicated that gene flow between sites was affected by contamination. For the dendrograms of the sampling sites, the clades clustered according to contaminant load more than geographic distance. Overall, these results suggest that 1) contamination may serve as a genotype-dependent dispersal barrier (i.e., contamination may not affect total number of migrants, just the relative proportions of the haplotypes in the established immigrants), leading strong population differentiation over short distances, and 2) genetic erosion may occur by a combination of selection and altered patterns of haplotype-specific gene flow. These effects may be more pronounced in the Strait of Istanbul than in other locations because of the riverine nature and strong, uni-directional current of the strait.
Collapse
Affiliation(s)
- Christopher W Theodorakis
- Department of Environmental Sciences, Southern Illinois University Edwardsville, Edwardsville, IL, 62026-1099, USA.
- Department of Biological Sciences, Southern Illinois University Edwardsville, Edwardsville, IL, 62026-1651, USA.
| | - Mary-Ann Meyer
- Department of Biological Sciences, Southern Illinois University Edwardsville, Edwardsville, IL, 62026-1651, USA
| | - Oya Okay
- Faculty of Naval Architecture and Ocean Engineering, Istanbul Technical University, Maslak, Sarıyer, 34469, Istanbul, Turkey
| | - Sevil Deniz Yakan
- Faculty of Naval Architecture and Ocean Engineering, Istanbul Technical University, Maslak, Sarıyer, 34469, Istanbul, Turkey
| | - Karl-Werner Schramm
- Molecular EXposomics, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
- Department für Biowissenschaften, TUM, Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt, Weihenstephaner Steig 23, 85350, Freising, Germany
| |
Collapse
|
3
|
Moutinho J, Carreira-Flores D, Gomes PT, Costa FO, Duarte S. Assessing the Seasonal and Spatial Dynamics of Zooplankton through DNA Metabarcoding in a Temperate Estuary. Animals (Basel) 2023; 13:3876. [PMID: 38136913 PMCID: PMC10740712 DOI: 10.3390/ani13243876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/07/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Zooplankton are key components of estuarine trophic networks. However, routine monitoring is hindered by the difficulty of morphology-based identification. DNA-based methods allow us to circumvent some of these hurdles, providing precise species identifications regardless of the taxonomic expertise of the investigator or the developmental stage of the specimens. However, the process is dependent on the completeness of the reference libraries. In this study, we sought to evaluate the potential of DNA metabarcoding to assess the seasonal (summer, autumn, and early spring) and spatial dynamics of zooplankton (four locations spanning ca. 6 km) in the Lima estuary (NW Portugal). Two genetic markers were used: the cytochrome c oxidase subunit I and the V4 hypervariable region of the ribosomal 18S rRNA genes. Overall, 327 species were recovered, and both markers displayed minute overlap (7% were detected with both markers). Species richness, composition, and taxonomic distinctness were majorly influenced by the season, with a declining tendency from summer (highest number of exclusive species, n = 74) to spring. Second to season, the taxa composition was influenced by spatial variation where the most downstream site displayed the highest number of exclusive species, n = 53. A total of 16 non-indigenous species were detected using metabarcoding, but only one (Austrominus modestus) has been documented out in the estuary. In conclusion, both the seasonal and spatial gradients influenced the recovered richness, composition, and taxonomic distinctness, confirming the great aptitude of DNA metabarcoding for providing higher density monitoring and shedding new light on the composition and dynamics of complex zooplankton communities.
Collapse
Affiliation(s)
- Jorge Moutinho
- Centre of Molecular and Environmental Biology (CBMA) and ARNET—Aquatic Research Network, Department of Biology, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; (D.C.-F.); (P.T.G.); (F.O.C.)
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
| | - Diego Carreira-Flores
- Centre of Molecular and Environmental Biology (CBMA) and ARNET—Aquatic Research Network, Department of Biology, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; (D.C.-F.); (P.T.G.); (F.O.C.)
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
| | - Pedro T. Gomes
- Centre of Molecular and Environmental Biology (CBMA) and ARNET—Aquatic Research Network, Department of Biology, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; (D.C.-F.); (P.T.G.); (F.O.C.)
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
| | - Filipe O. Costa
- Centre of Molecular and Environmental Biology (CBMA) and ARNET—Aquatic Research Network, Department of Biology, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; (D.C.-F.); (P.T.G.); (F.O.C.)
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
| | - Sofia Duarte
- Centre of Molecular and Environmental Biology (CBMA) and ARNET—Aquatic Research Network, Department of Biology, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; (D.C.-F.); (P.T.G.); (F.O.C.)
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
| |
Collapse
|
4
|
Wenne R. Microsatellites as Molecular Markers with Applications in Exploitation and Conservation of Aquatic Animal Populations. Genes (Basel) 2023; 14:genes14040808. [PMID: 37107566 PMCID: PMC10138012 DOI: 10.3390/genes14040808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/28/2023] [Accepted: 03/17/2023] [Indexed: 03/29/2023] Open
Abstract
A large number of species and taxa has been studied for genetic polymorphism. Microsatellites have been known as hypervariable neutral molecular markers with the highest resolution power in comparison with any other markers. However, the discovery of a new type of molecular marker—single nucleotide polymorphism (SNP) has put the existing applications of microsatellites to the test. To ensure good resolution power in studies of populations and individuals, a number of microsatellite loci from 14 to 20 was often used, which corresponds to about 200 independent alleles. Recently, these numbers have tended to be increased by the application of genomic sequencing of expressed sequence tags (ESTs), and the choice of the most informative loci for genotyping depends on the aims of research. Examples of successful applications of microsatellite molecular markers in aquaculture, fisheries, and conservation genetics in comparison with SNPs have been summarized in this review. Microsatellites can be considered superior markers in such topics as kinship and parentage analysis in cultured and natural populations, the assessment of gynogenesis, androgenesis and ploidization. Microsatellites can be coupled with SNPs for mapping QTL. Microsatellites will continue to be used in research on genetic diversity in cultured stocks, and also in natural populations as an economically advantageous genotyping technique.
Collapse
Affiliation(s)
- Roman Wenne
- Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, 81-712 Sopot, Poland
| |
Collapse
|
5
|
A Molecular Mechanism to Explain the Nickel-Induced Changes in Protamine-like Proteins and Their DNA Binding Affecting Sperm Chromatin in Mytilus galloprovincialis: An In Vitro Study. Biomolecules 2023; 13:biom13030520. [PMID: 36979455 PMCID: PMC10046793 DOI: 10.3390/biom13030520] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/03/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023] Open
Abstract
Nickel is associated with reproductive toxicity, but little is known about the molecular mechanisms of nickel-induced effects on sperm chromatin and protamine-like proteins (PLs). In the present work, we analyzed PLs from Mytilus galloprovincialis by urea-acetic acid polyacrylamide gel electrophoresis (AU-PAGE) and SDS-PAGE and assessed their binding to DNA by Electrophoretic Mobility Shift Assay (EMSA) after exposing mussels to 5, 15, and 35 µM NiCl2 for 24 h. In addition, a time course of digestion with MNase and release of PLs from sperm nuclei by the NaCl gradient was performed. For all exposure doses, in AU-PAGE, there was an additional migrating band between PL-III and PL-IV, corresponding to a fraction of PLs in the form of peptides detected by SDS-PAGE. Alterations in DNA binding of PLs were observed by EMSA after exposure to 5 and 15 µM NiCl2, while, at all NiCl2 doses, increased accessibility of MNase to sperm chromatin was found. The latter was particularly relevant at 15 µM NiCl2, a dose at which increased release of PLII and PLIII from sperm nuclei and the highest value of nickel accumulated in the gonads were also found. Finally, at all exposure doses, there was also an increase in PARP expression, but especially at 5 µM NiCl2. A possible molecular mechanism for the toxic reproductive effects of nickel in Mytilus galloprovincialis is discussed.
Collapse
|
6
|
Wenne R, Zbawicka M, Prądzińska A, Kotta J, Herkül K, Gardner JPA, Apostolidis AP, Poćwierz-Kotus A, Rouane-Hacene O, Korrida A, Dondero F, Baptista M, Reizopoulou S, Hamer B, Sundsaasen KK, Árnyasi M, Kent MP. Molecular genetic differentiation of native populations of Mediterranean blue mussels, Mytilus galloprovincialis Lamarck, 1819, and the relationship with environmental variables. THE EUROPEAN ZOOLOGICAL JOURNAL 2022. [DOI: 10.1080/24750263.2022.2086306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Affiliation(s)
- R. Wenne
- Department of Genetics and Marine Biotechnology, Institute of Oceanology, Polish Academy of Sciences, 81-712 Sopot, Poland
| | - M. Zbawicka
- Department of Genetics and Marine Biotechnology, Institute of Oceanology, Polish Academy of Sciences, 81-712 Sopot, Poland
| | - A. Prądzińska
- Department of Genetics and Marine Biotechnology, Institute of Oceanology, Polish Academy of Sciences, 81-712 Sopot, Poland
| | - J. Kotta
- Department of Marine Systems, Estonian Marine Institute, University of Tartu, 12619 Tallinn, Estonia
| | - K. Herkül
- Department of Marine Systems, Estonian Marine Institute, University of Tartu, 12619 Tallinn, Estonia
| | - J. P. A. Gardner
- School of Biological Sciences, Victoria University of Wellington, Wellington, 6140, New Zealand
| | - A. P. Apostolidis
- Department of Animal Production, Faculty of Agriculture, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - A. Poćwierz-Kotus
- Department of Genetics and Marine Biotechnology, Institute of Oceanology, Polish Academy of Sciences, 81-712 Sopot, Poland
| | - O. Rouane-Hacene
- Department of Biology, Faculty of Nature and Life Sciences, University of Oran 1 - Ahmed Ben Bella, Algeria
| | - A. Korrida
- High Institute of Nursing Professions and Health Techniques, ISPITS-Agadir, Moroccan Ministry of Health and Social Protection, Kingdom of Morocco
| | - F. Dondero
- Department of Science and Technological Innovation (DISIT), Ecotoxicology and Ecology, Università del Piemonte Orientale “Amedeo Avogadro”, Novara, 15121, Italy
| | - M. Baptista
- Marine and Environmental Sciences Centre, University of Lisbon, Portugal
| | - S. Reizopoulou
- Department of Biological Oceanography, Institute of Oceanography, Hellenic Centre for Marine Research, Athens Sounio, 19013 Anavyssos, Greece
| | - B. Hamer
- Ruđer Bošković Institute, Center for Marine Research Rovinj, Rovinj, Croatia
| | - K. K. Sundsaasen
- Department of Animal and Aquacultural Sciences, Centre for Integrative Genetics (Cigene), Faculty of Biosciences, Norwegian University of Life Sciences, No-1432 Ås, Norway
| | - M. Árnyasi
- Department of Animal and Aquacultural Sciences, Centre for Integrative Genetics (Cigene), Faculty of Biosciences, Norwegian University of Life Sciences, No-1432 Ås, Norway
| | - M. P. Kent
- Department of Animal and Aquacultural Sciences, Centre for Integrative Genetics (Cigene), Faculty of Biosciences, Norwegian University of Life Sciences, No-1432 Ås, Norway
| |
Collapse
|
7
|
Zbawicka M, Wenne R, Dias PJ, Gardner JPA. Combined threats to native smooth-shelled mussels (genus Mytilus) in Australia: bioinvasions and hybridization. Zool J Linn Soc 2021. [DOI: 10.1093/zoolinnean/zlab067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
Human-mediated pressures, including bioinvasions, threaten the biotas of every continent. Hybridization and introgression between invasive and native species may result in loss of genetic integrity of native taxa but, in many cases, these events are hard to detect because the invader is impossible to tell apart from the native taxon. The problem of cryptic invasive taxa and its importance for biodiversity protection have been underestimated, because of the limited number of studies of broadly distributed taxa using sensitive nuclear DNA markers. We employed a panel of 51 single nucleotide polymorphism (SNP) markers to examine genetic interactions between Australian native smooth-shelled mussels, Mytilus planulatus, and invasive and cryptic Northern Hemisphere M. galloprovincialis along 4400 km of coastline from the Pacific to the Indian Ocean. Overall, 20.8% of mussels from ten sites were native species. The centre of distribution of M. planulatus is in south-eastern Australia, in particular in Tasmania. We suggest that ongoing spatial and temporal monitoring of Tasmanian sites is required to test for the presence of M. galloprovincialis and its possible further spread, and that hatchery production of M. planulatus for farming and reseeding into the wild may help reduce the likelihood of its loss.
Collapse
Affiliation(s)
- Małgorzata Zbawicka
- Institute of Oceanology Polish Academy of Sciences, Powstańców Warszawy 55, Sopot, Poland
| | - Roman Wenne
- Institute of Oceanology Polish Academy of Sciences, Powstańców Warszawy 55, Sopot, Poland
| | - Patricia Joana Dias
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, USA
| | - Jonathan P A Gardner
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| |
Collapse
|
8
|
Kartavtsev YP. Some Examples of the Use of Molecular Markers for Needs of Basic Biology and Modern Society. Animals (Basel) 2021; 11:1473. [PMID: 34065552 PMCID: PMC8160991 DOI: 10.3390/ani11051473] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/13/2021] [Accepted: 05/15/2021] [Indexed: 01/27/2023] Open
Abstract
Application of molecular genetic markers appeared to be very fruitful in achieving many goals, including (i) proving the theoretic basements of general biology and (ii) assessment of worldwide biodiversity. Both are provided in the present meta-analysis and a review as the main signal. One of the basic current challenges in modern biology in the face of new demands in the 21st century is the validation of its paradigms such as the synthetic theory of evolution (STE) and biological species concept (BSC). Another of most valuable goals is the biodiversity assessment for a variety of social needs including free web-based information resources about any living being, renovation of museum collections, nature conservation that recognized as a global project, iBOL, as well as resolving global trading problems such as false labeling of species specimens used as food, drug components, entertainment, etc. The main issues of the review are focused on animals and combine four items. (1) A combination of nDNA and mtDNA markers best suits the identification of hybrids and estimation of genetic introgression. (2) The available facts on nDNA and mtDNA diversity seemingly make introgression among many taxa obvious, although it is evident, that introgression may be quite restricted or asymmetric, thus, leaving at least the "source" taxon (taxa) intact. (3) If we consider sexually reproducing species in marine and terrestrial realms introgressed, as it is still evident in many cases, then we should recognize that the BSC, in view of the complete lack of gene flow among species, is inadequate because many zoological species are not biological ones yet. However, vast modern molecular data have proven that sooner or later they definitely become biological species. (4) An investigation into the fish taxa divergence using the BOLD database shows that most gene trees are basically monophyletic and interspecies reticulations are quite rare.
Collapse
Affiliation(s)
- Yuri Phedorovich Kartavtsev
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia
| |
Collapse
|
9
|
Gerdol M, Moreira R, Cruz F, Gómez-Garrido J, Vlasova A, Rosani U, Venier P, Naranjo-Ortiz MA, Murgarella M, Greco S, Balseiro P, Corvelo A, Frias L, Gut M, Gabaldón T, Pallavicini A, Canchaya C, Novoa B, Alioto TS, Posada D, Figueras A. Massive gene presence-absence variation shapes an open pan-genome in the Mediterranean mussel. Genome Biol 2020; 21:275. [PMID: 33168033 PMCID: PMC7653742 DOI: 10.1186/s13059-020-02180-3] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 10/15/2020] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND The Mediterranean mussel Mytilus galloprovincialis is an ecologically and economically relevant edible marine bivalve, highly invasive and resilient to biotic and abiotic stressors causing recurrent massive mortalities in other bivalves. Although these traits have been recently linked with the maintenance of a high genetic variation within natural populations, the factors underlying the evolutionary success of this species remain unclear. RESULTS Here, after the assembly of a 1.28-Gb reference genome and the resequencing of 14 individuals from two independent populations, we reveal a complex pan-genomic architecture in M. galloprovincialis, with a core set of 45,000 genes plus a strikingly high number of dispensable genes (20,000) subject to presence-absence variation, which may be entirely missing in several individuals. We show that dispensable genes are associated with hemizygous genomic regions affected by structural variants, which overall account for nearly 580 Mb of DNA sequence not included in the reference genome assembly. As such, this is the first study to report the widespread occurrence of gene presence-absence variation at a whole-genome scale in the animal kingdom. CONCLUSIONS Dispensable genes usually belong to young and recently expanded gene families enriched in survival functions, which might be the key to explain the resilience and invasiveness of this species. This unique pan-genome architecture is characterized by dispensable genes in accessory genomic regions that exceed by orders of magnitude those observed in other metazoans, including humans, and closely mirror the open pan-genomes found in prokaryotes and in a few non-metazoan eukaryotes.
Collapse
Affiliation(s)
- Marco Gerdol
- Department of Life Sciences, Università degli Studi di Trieste, Via Licio Giorgieri 5, 34127 Trieste, Italy
| | - Rebeca Moreira
- Instituto de Investigaciones Marinas (IIM - CSIC), Eduardo Cabello, 6, 36208 Vigo, Spain
| | - Fernando Cruz
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028 Barcelona, Spain
| | - Jessica Gómez-Garrido
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028 Barcelona, Spain
| | - Anna Vlasova
- CRG - Centre for Genomic Regulation, Doctor Aiguader, 88, 08003 Barcelona, Spain
| | - Umberto Rosani
- Department of Biology, Università degli Studi di Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy
| | - Paola Venier
- Department of Biology, Università degli Studi di Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy
| | - Miguel A. Naranjo-Ortiz
- CRG - Centre for Genomic Regulation, Doctor Aiguader, 88, 08003 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Maria Murgarella
- Department of Biochemistry, Genetics and Immunology, University of Vigo, 36310 Vigo, Spain
| | - Samuele Greco
- Department of Life Sciences, Università degli Studi di Trieste, Via Licio Giorgieri 5, 34127 Trieste, Italy
| | - Pablo Balseiro
- Instituto de Investigaciones Marinas (IIM - CSIC), Eduardo Cabello, 6, 36208 Vigo, Spain
- Norce Norwegian Research Centre AS, Bergen, Norway
| | - André Corvelo
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028 Barcelona, Spain
- New York Genome Center, New York, NY 10013 USA
| | - Leonor Frias
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028 Barcelona, Spain
| | - Marta Gut
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028 Barcelona, Spain
| | - Toni Gabaldón
- CRG - Centre for Genomic Regulation, Doctor Aiguader, 88, 08003 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
- ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
- Current address: Barelona Supercomputing Centre (BSC-CNS) and Institute for Research in Biomedicine (IRB), 08034 Barcelona, Spain
| | - Alberto Pallavicini
- Department of Life Sciences, Università degli Studi di Trieste, Via Licio Giorgieri 5, 34127 Trieste, Italy
- Anton Dohrn Zoological Station, 80121 Villa Comunale, Naples, Italy
| | - Carlos Canchaya
- Department of Biochemistry, Genetics and Immunology, University of Vigo, 36310 Vigo, Spain
- Biomedical Research Center (CINBIO), University of Vigo, 36310 Vigo, Spain
- Galicia Sur Health Research Institute, 36310 Vigo, Spain
| | - Beatriz Novoa
- Instituto de Investigaciones Marinas (IIM - CSIC), Eduardo Cabello, 6, 36208 Vigo, Spain
| | - Tyler S. Alioto
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - David Posada
- Department of Biochemistry, Genetics and Immunology, University of Vigo, 36310 Vigo, Spain
- Biomedical Research Center (CINBIO), University of Vigo, 36310 Vigo, Spain
- Galicia Sur Health Research Institute, 36310 Vigo, Spain
| | - Antonio Figueras
- Instituto de Investigaciones Marinas (IIM - CSIC), Eduardo Cabello, 6, 36208 Vigo, Spain
| |
Collapse
|
10
|
Wenne R, Zbawicka M, Bach L, Strelkov P, Gantsevich M, Kukliński P, Kijewski T, McDonald JH, Sundsaasen KK, Árnyasi M, Lien S, Kaasik A, Herkül K, Kotta J. Trans-Atlantic Distribution and Introgression as Inferred from Single Nucleotide Polymorphism: Mussels Mytilus and Environmental Factors. Genes (Basel) 2020; 11:genes11050530. [PMID: 32397617 PMCID: PMC7288462 DOI: 10.3390/genes11050530] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/30/2020] [Accepted: 05/02/2020] [Indexed: 12/11/2022] Open
Abstract
Large-scale climate changes influence the geographic distribution of biodiversity. Many taxa have been reported to extend or reduce their geographic range, move poleward or displace other species. However, for closely related species that can hybridize in the natural environment, displacement is not the only effect of changes of environmental variables. Another option is subtler, hidden expansion, which can be found using genetic methods only. The marine blue mussels Mytilus are known to change their geographic distribution despite being sessile animals. In addition to natural dissemination at larval phase—enhanced by intentional or accidental introductions and rafting—they can spread through hybridization and introgression with local congeners, which can create mixed populations sustaining in environmental conditions that are marginal for pure taxa. The Mytilus species have a wide distribution in coastal regions of the Northern and Southern Hemisphere. In this study, we investigated the inter-regional genetic differentiation of the Mytilus species complex at 53 locations in the North Atlantic and adjacent Arctic waters and linked this genetic variability to key local environmental drivers. Of seventy-nine candidate single nucleotide polymorphisms (SNPs), all samples were successfully genotyped with a subset of 54 SNPs. There was a clear interregional separation of Mytilus species. However, all three Mytilus species hybridized in the contact area and created hybrid zones with mixed populations. Boosted regression trees (BRT) models showed that inter-regional variability was important in many allele models but did not prevail over variability in local environmental factors. Local environmental variables described over 40% of variability in about 30% of the allele frequencies of Mytilus spp. For the 30% of alleles, variability in their frequencies was only weakly coupled with local environmental conditions. For most studied alleles the linkages between environmental drivers and the genetic variability of Mytilus spp. were random in respect to “coding” and “non-coding” regions. An analysis of the subset of data involving functional genes only showed that two SNPs at Hsp70 and ATPase genes correlated with environmental variables. Total predictive ability of the highest performing models (r2 between 0.550 and 0.801) were for alleles that discriminated most effectively M. trossulus from M. edulis and M. galloprovincialis, whereas the best performing allele model (BM101A) did the best at discriminating M. galloprovincialis from M. edulis and M. trossulus. Among the local environmental variables, salinity, water temperature, ice cover and chlorophyll a concentration were by far the greatest predictors, but their predictive performance varied among different allele models. In most cases changes in the allele frequencies along these environmental gradients were abrupt and occurred at a very narrow range of environmental variables. In general, regions of change in allele frequencies for M. trossulus occurred at 8–11 psu, 0–10 °C, 60%–70% of ice cover and 0–2 mg m−3 of chlorophyll a, M. edulis at 8–11 and 30–35 psu, 10–14 °C and 60%–70% of ice cover and for M. galloprovincialis at 30–35 psu, 14–20 °C.
Collapse
Affiliation(s)
- Roman Wenne
- Institute of Oceanology, Polish Academy of Sciences, 81-712 Sopot, Poland; (M.Z.); (P.K.); (T.K.)
- Correspondence: ; Tel.: +48-58-7311763
| | - Małgorzata Zbawicka
- Institute of Oceanology, Polish Academy of Sciences, 81-712 Sopot, Poland; (M.Z.); (P.K.); (T.K.)
| | - Lis Bach
- Arctic Research Centre, Department of Bioscience, Aarhus University, 4000 Roskilde, Denmark;
| | - Petr Strelkov
- Department of Ichthyology and Hydrobiology, St. Petersburg State University, 199034 St. Petersburg, Russia;
| | - Mikhail Gantsevich
- Department of Invertebrate Zoology, Faculty of Biology, Moscow MV Lomonosov State University, 119234 Moscow, Russia;
| | - Piotr Kukliński
- Institute of Oceanology, Polish Academy of Sciences, 81-712 Sopot, Poland; (M.Z.); (P.K.); (T.K.)
| | - Tomasz Kijewski
- Institute of Oceanology, Polish Academy of Sciences, 81-712 Sopot, Poland; (M.Z.); (P.K.); (T.K.)
| | - John H. McDonald
- Biology Department, Western Washington University, Bellingham, WA 98225, USA;
| | - Kristil Kindem Sundsaasen
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, 1432 Ås, Norway; (K.K.S.); (M.Á.); (S.L.)
| | - Mariann Árnyasi
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, 1432 Ås, Norway; (K.K.S.); (M.Á.); (S.L.)
| | - Sigbjørn Lien
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, 1432 Ås, Norway; (K.K.S.); (M.Á.); (S.L.)
| | - Ants Kaasik
- Estonian Marine Institute, University of Tartu, 12619 Tallinn, Estonia; (A.K.); (K.H.); (J.K.)
| | - Kristjan Herkül
- Estonian Marine Institute, University of Tartu, 12619 Tallinn, Estonia; (A.K.); (K.H.); (J.K.)
| | - Jonne Kotta
- Estonian Marine Institute, University of Tartu, 12619 Tallinn, Estonia; (A.K.); (K.H.); (J.K.)
| |
Collapse
|
11
|
Global invasion genetics of two parasitic copepods infecting marine bivalves. Sci Rep 2019; 9:12730. [PMID: 31484951 PMCID: PMC6726661 DOI: 10.1038/s41598-019-48928-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 08/12/2019] [Indexed: 11/26/2022] Open
Abstract
Invasive species, and especially invasive parasites, represent excellent models to study ecological and evolutionary mechanisms in the wild. To understand these processes, it is crucial to obtain more knowledge on the native range, invasion routes and invasion history of invasive parasites. We investigated the consecutive invasions of two parasitic copepods (Mytilicola intestinalis and Mytilicolaorientalis) by combining an extensive literature survey covering the reported putative native regions and the present-day invaded regions with a global phylogeography of both species. The population genetic analyses based on partial COI sequences revealed significant population differentiation for M. orientalis within the native region in Japan, while introduced populations in North America and Europe could not be distinguished from the native ones. Thus, M. orientalis’ invasion history resembles the genetic structure and recent spread of its principal host, the Pacific oyster, Crassostrea gigas, while M. intestinalis lacks population genetic structure and has an overall low genetic diversity. Therefore, the native origin of M. intestinalis remains unclear. With this study, we demonstrate that even highly related and biologically similar invasive species can differ in their invasion genetics. From this, we conclude that extrapolating invasion genetics dynamics from related invasive taxa may not always be possible.
Collapse
|
12
|
Lettieri G, Maione M, Ranauda MA, Mele E, Piscopo M. Molecular effects on spermatozoa of Mytilus galloprovincialis exposed to hyposaline conditions. Mol Reprod Dev 2019; 86:650-660. [PMID: 30938011 DOI: 10.1002/mrd.23141] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/06/2019] [Accepted: 03/13/2019] [Indexed: 02/06/2023]
Abstract
Salinity represents a critical environmental and an ecological factor in the reproduction of marine species. As global climate changes and anthropogenic factors affect salinity, in this study, we have analyzed the responses of Mytilus galloprovincialis spermatozoa to hyposaline stress. We exposed mussels, in laboratory tanks, for 24 hr at 18°C to control (35.9 psu) and three hyposaline (17.1, 22.6, and 26.2 psu) conditions, and evaluated the expression of sperm hsp70 and protamine-like proteins genes. Further we analyzed the electrophoretic pattern, the DNA binding and the release from sperm nuclei of protamine-like proteins. For all experimental approaches used, the results obtained at 17.1 psu condition were very similar to those obtained in the control condition, while alterations were always recorded at 22.6 and 26.2 psu conditions. Particularly, at 22.6 and 26.2 psu, was observed: 42.5- and 17.1-fold increase in hsp70 expression, respectively, and hypoexpression of PL-II/PLIV protamine-like proteins genes. Further, electrophoretic mobility shift assays and salt-induced release of nuclear proteins from sperm nuclei, revealed alterations in the PL proteins/DNA binding, in these two hyposaline conditions. The similarity between the results obtained in control and in the more severe hyposaline condition (17.1 psu) could indicate a phenomenon of fertility preservation strategy due to gamete plasticity.
Collapse
Affiliation(s)
- Gennaro Lettieri
- Dipartimento di Biologia, Università degli Studki di Napoli Federico II, Napoli, Italy
| | - Martina Maione
- Dipartimento di Biologia, Università degli Studki di Napoli Federico II, Napoli, Italy
| | | | - Elena Mele
- Dipartimento di Biologia, Università degli Studki di Napoli Federico II, Napoli, Italy
| | - Marina Piscopo
- Dipartimento di Biologia, Università degli Studki di Napoli Federico II, Napoli, Italy
| |
Collapse
|
13
|
Kartavtsev YP. Barcode index number, taxonomic rank and modes of speciation: examples from fish. Mitochondrial DNA A DNA Mapp Seq Anal 2017; 29:535-542. [PMID: 28481646 DOI: 10.1080/24701394.2017.1315570] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Species delimitation by DNA sequence data or DNA barcoding is successful, as confirmed by the vast BOLD data base. However, the theory that would explain this fact has not been developed yet. An approach based on Barcoding Index Number (BIN), suggested in the assignment, allows delimiting of taxa of three ranks (species, genera, and families) and statistical validation with a high precision of delimiting (over 80%), as well as shows for majority of Co-1-based single gene trees good correspondence between their topology and conventional taxa content for analyzed fish species (R2 ≈ 0.84-0.98). Knowledge of deviations from these data can help to find out new taxa and improve biodiversity description. It is concluded that delimiting is successful for bulk of cases because the geographic mode of speciation prevails in nature. It takes a long time for new taxa to form in isolation, which allows accumulation of random mutations and many different nucleotide substitutions between them that can be detected by molecular markers and give unique DNA barcodes. The use of BIN approach, described here, can aid greatly in making this important question clearer especially under wider examination of other organisms.
Collapse
Affiliation(s)
- Yuri Phedorovich Kartavtsev
- a Laboratory of Molecular Systematics, A.V. Zhirmunsky Institute of Marine Biology , National Scientific Center of Marine Biology, Russian Academy of Sciences , Vladivostok , Russia.,b Chair of Biodiversity and Marine Bioresources, Far Eastern Federal University , Vladivostok , Russia
| |
Collapse
|
14
|
Mathiesen SS, Thyrring J, Hemmer-Hansen J, Berge J, Sukhotin A, Leopold P, Bekaert M, Sejr MK, Nielsen EE. Genetic diversity and connectivity within Mytilus spp. in the subarctic and Arctic. Evol Appl 2016; 10:39-55. [PMID: 28035234 PMCID: PMC5192891 DOI: 10.1111/eva.12415] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 08/07/2016] [Indexed: 12/20/2022] Open
Abstract
Climate changes in the Arctic are predicted to alter distributions of marine species. However, such changes are difficult to quantify because information on present species distribution and the genetic variation within species is lacking or poorly examined. Blue mussels, Mytilus spp., are ecosystem engineers in the coastal zone globally. To improve knowledge of distribution and genetic structure of the Mytilus edulis complex in the Arctic, we analyzed 81 SNPs in 534 Mytilus spp. individuals sampled at 13 sites to provide baseline data for distribution and genetic variation of Mytilus mussels in the European Arctic. Mytilus edulis was the most abundant species found with a clear genetic split between populations in Greenland and the Eastern Atlantic. Surprisingly, analyses revealed the presence of Mytilus trossulus in high Arctic NW Greenland (77°N) and Mytilus galloprovincialis or their hybrids in SW Greenland, Svalbard, and the Pechora Sea. Furthermore, a high degree of hybridization and introgression between species was observed. Our study highlights the importance of distinguishing between congener species, which can display local adaptation and suggests that information on dispersal routes and barriers is essential for accurate predictions of regional susceptibility to range expansions or invasions of boreal species in the Arctic.
Collapse
Affiliation(s)
- Sofie Smedegaard Mathiesen
- Department of Bioscience Arctic Research Centre Aarhus University Aarhus C Denmark; Section for Marine Living Resources National Institute of Aquatic Resources Technical University of Denmark Silkeborg Denmark
| | - Jakob Thyrring
- Department of Bioscience Arctic Research Centre Aarhus University Aarhus C Denmark
| | - Jakob Hemmer-Hansen
- Section for Marine Living Resources National Institute of Aquatic Resources Technical University of Denmark Silkeborg Denmark
| | - Jørgen Berge
- Faculty of Biosciences, Fisheries and Economics UiT The Arctic University of Norway Tromsø Norway; The University Centre in Svalbard Longyearbyen Norway
| | - Alexey Sukhotin
- White Sea Biological Station Zoological Institute of Russian Academy of Sciences St. Petersburg Russia; Invertebrate Zoology Department St. Petersburg State University St. Petersburg Russia
| | - Peter Leopold
- Faculty of Biosciences, Fisheries and Economics UiT The Arctic University of Norway Tromsø Norway
| | | | - Mikael Kristian Sejr
- Department of Bioscience Arctic Research Centre Aarhus University Aarhus C Denmark
| | - Einar Eg Nielsen
- Section for Marine Living Resources National Institute of Aquatic Resources Technical University of Denmark Silkeborg Denmark
| |
Collapse
|
15
|
Becking LE, de Leeuw CA, Knegt B, Maas DL, de Voogd NJ, Abdunnur, Suyatna I, Peijnenburg KTCA. Highly divergent mussel lineages in isolated Indonesian marine lakes. PeerJ 2016; 4:e2496. [PMID: 27761314 PMCID: PMC5068364 DOI: 10.7717/peerj.2496] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 08/27/2016] [Indexed: 11/20/2022] Open
Abstract
Marine lakes, with populations in landlocked seawater and clearly delineated contours, have the potential to provide a unique model to study early stages of evolution in coastal marine taxa. Here we ask whether populations of the mussel Brachidontes from marine lakes in Berau, East Kalimantan (Indonesia) are isolated from each other and from the coastal mangrove systems. We analyzed sequence data of one mitochondrial marker (Cytochrome Oxidase I (COI)), and two nuclear markers (18S and 28S). In addition, we examined shell shape using a geometric morphometric approach. The Indonesian populations of Brachidontes spp. harbored four deeply diverged lineages (14–75% COI corrected net sequence divergence), two of which correspond to previously recorded lineages from marine lakes in Palau, 1,900 km away. These four lineages also showed significant differences in shell shape and constitute a species complex of at least four undescribed species. Each lake harbored a different lineage despite the fact that the lakes are separated from each other by only 2–6 km, while the two mangrove populations, at 20 km distance from each other, harbored the same lineage and shared haplotypes. Marine lakes thus represent isolated habitats. As each lake contained unique within lineage diversity (0.1–0.2%), we suggest that this may have resulted from in situdivergence due to isolation of founder populations after the formation of the lakes (6,000–12,000 years before present). Combined effects of stochastic processes, local adaptation and increased evolutionary rates could produce high levels of differentiation in small populations such as in marine lake environments. Such short-term isolation at small spatial scales may be an important contributing factor to the high marine biodiversity that is found in the Indo-Australian Archipelago.
Collapse
Affiliation(s)
- Leontine E Becking
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA, USA; Department of Marine Animal Ecology, Wageningen University & Research, Wageningen, The Netherlands; Department of Marine Biodiversity, Naturalis Biodiversity Center, Leiden, The Netherlands
| | - Christiaan A de Leeuw
- Department of Marine Animal Ecology, Wageningen University & Research, Wageningen, The Netherlands; Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Bram Knegt
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam , Amsterdam , The Netherlands
| | - Diede L Maas
- Department of Marine Animal Ecology, Wageningen University & Research , Wageningen , The Netherlands
| | - Nicole J de Voogd
- Department of Marine Biodiversity, Naturalis Biodiversity Center , Leiden , The Netherlands
| | - Abdunnur
- Faculty of Fisheries and Marine Sciences, Mulawarman University , Samarinda , East Kalimantan , Indonesia
| | - Iwan Suyatna
- Faculty of Fisheries and Marine Sciences, Mulawarman University , Samarinda , East Kalimantan , Indonesia
| | - Katja T C A Peijnenburg
- Department of Marine Biodiversity, Naturalis Biodiversity Center, Leiden, The Netherlands; Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
16
|
Harris DJ, Rosado D, Xavier R. DNA Barcoding Reveals Extensive Mislabeling in Seafood Sold in Portuguese Supermarkets. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2016. [DOI: 10.1080/10498850.2015.1067267] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- David James Harris
- CIBIO/InBIO, Research Center in Biodiversity and Genetic Resources, University of Porto, Campus Agrário de Vairão, Vairão, Portugal
| | - Daniela Rosado
- CIBIO/InBIO, Research Center in Biodiversity and Genetic Resources, University of Porto, Campus Agrário de Vairão, Vairão, Portugal
| | - Raquel Xavier
- CIBIO/InBIO, Research Center in Biodiversity and Genetic Resources, University of Porto, Campus Agrário de Vairão, Vairão, Portugal
- School of Biological Sciences, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
17
|
Murgarella M, Puiu D, Novoa B, Figueras A, Posada D, Canchaya C. A First Insight into the Genome of the Filter-Feeder Mussel Mytilus galloprovincialis. PLoS One 2016; 11:e0151561. [PMID: 26977809 PMCID: PMC4792442 DOI: 10.1371/journal.pone.0151561] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 03/01/2016] [Indexed: 02/06/2023] Open
Abstract
Mussels belong to the phylum Mollusca, one of the largest and most diverse taxa in the animal kingdom. Despite their importance in aquaculture and in biology in general, genomic resources from mussels are still scarce. To broaden and increase the genomic knowledge in this family, we carried out a whole-genome sequencing study of the cosmopolitan Mediterranean mussel (Mytilus galloprovincialis). We sequenced its genome (32X depth of coverage) on the Illumina platform using three pair-end libraries with different insert sizes. The large number of contigs obtained pointed out a highly complex genome of 1.6 Gb where repeated elements seem to be widespread (~30% of the genome), a feature that is also shared with other marine molluscs. Notwithstanding the limitations of our genome sequencing, we were able to reconstruct two mitochondrial genomes and predict 10,891 putative genes. A comparative analysis with other molluscs revealed a gene enrichment of gene ontology categories related to multixenobiotic resistance, glutamate biosynthetic process, and the maintenance of ciliary structures.
Collapse
Affiliation(s)
- Maria Murgarella
- Department of Biochemistry, Genetics and Immunology and Unidad Asociada CSIC, University of Vigo, Vigo, Spain
| | - Daniela Puiu
- Center for Computational Biology. McKusick-Nathans, Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Beatriz Novoa
- Instituto de Investigaciones Marinas, Consejo Superior de Investigaciones Científicas, Vigo, Spain
| | - Antonio Figueras
- Instituto de Investigaciones Marinas, Consejo Superior de Investigaciones Científicas, Vigo, Spain
| | - David Posada
- Department of Biochemistry, Genetics and Immunology and Unidad Asociada CSIC, University of Vigo, Vigo, Spain
| | - Carlos Canchaya
- Department of Biochemistry, Genetics and Immunology and Unidad Asociada CSIC, University of Vigo, Vigo, Spain
- * E-mail:
| |
Collapse
|
18
|
A first report on coexistence and hybridization of Mytilus trossulus and M. edulis mussels in Greenland. Polar Biol 2015. [DOI: 10.1007/s00300-015-1785-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|