1
|
Cruz MA, Magalhães S, Bakırdöven M, Zélé F. Wolbachia strengthens the match between premating and early postmating isolation in spider mites. Evolution 2025; 79:203-219. [PMID: 39432669 DOI: 10.1093/evolut/qpae149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 10/04/2024] [Accepted: 10/17/2024] [Indexed: 10/23/2024]
Abstract
Endosymbiotic reproductive manipulators are widely studied as sources of postzygotic isolation in arthropods, but their effect on prezygotic isolation between genetically differentiated populations has garnered less attention. We tested this using two partially isolated populations of the red and green color forms of Tetranychus urticae, either uninfected or infected with different Wolbachia strains, one inducing cytoplasmic incompatibility and the other not. We first investigated male and female preferences and found that, in absence of infection, females were not choosy, but all males preferred red-form females. Wolbachia effects were more subtle, with only the cytoplasmic incompatibility-inducing strain slightly strengthening color-form-based preferences. We then performed a double-mating experiment to test how incompatible matings affect subsequent mating behavior and offspring production as compared to compatible matings. Females mated with an incompatible male (infected and/or heterotypic) were more attractive and/or receptive to subsequent (compatible) matings, although analyses of offspring production revealed no clear benefit for this remating behavior (i.e., apparently unaltered first male sperm precedence). Finally, by computing the relative contributions of each reproductive barrier to total isolation, we showed that premating isolation matches both host-associated and Wolbachia-induced postmating isolation, suggesting that Wolbachia could contribute to reproductive isolation in this system.
Collapse
Affiliation(s)
- Miguel A Cruz
- Centre for Ecology, Evolution and Environmental Changes (cE3c) & CHANGE - Global Change and Sustainability Institute, Universidade de Lisboa, Lisboa, Portugal
| | - Sara Magalhães
- Centre for Ecology, Evolution and Environmental Changes (cE3c) & CHANGE - Global Change and Sustainability Institute, Universidade de Lisboa, Lisboa, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Murat Bakırdöven
- Institute of Environmental Sciences, Boğaziçi University, Istanbul, Turkey
| | - Flore Zélé
- Institut des Sciences de l'Évolution de Montpellier (ISEM), Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France
| |
Collapse
|
2
|
Konaka S, Hirota SK, Sato Y, Matsumoto N, Suyama Y, Tsumura Y. Secondary contact zone and genetic introgression in closely related haplodiploid social spider mites. Heredity (Edinb) 2024; 133:227-237. [PMID: 39090316 PMCID: PMC11437192 DOI: 10.1038/s41437-024-00708-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 08/04/2024] Open
Abstract
How frequently hybridisation and gene flow occur in the contact zones of diverging taxa is important for understanding the speciation process. Stigmaeopsis sabelisi and Stigmaeopsis miscanthi high-aggression form (hereafter, S. miscanthi HG) are haplodiploid, social spider mites that infest the Chinese silver grass, Miscanthus sinensis. These two species are closely related and parapatrically distributed in Japan. In mountainous areas, S. sabelisi and S. miscanthi HG are often found in the highlands and lowlands, respectively, suggesting that they are in contact at intermediate altitudes. It is estimated that they diverged from their common ancestors distributed in subtropical regions (south of Japan) during the last glacial period, expanded their distribution into the Japanese Archipelago, and came to have such a parapatric distribution (secondary contact). As their reproductive isolation is strong but incomplete, hybridisation and genetic introgression are expected at their distributional boundaries. In this study, we investigated their spatial distribution patterns along the elevation on Mt. Amagi using male morphological differences, and investigated their hybridisation status using single-nucleotide polymorphisms by MIG-seq. We found their contact zone at altitudes of 150-430 m, suggesting that their contact zone is prevalent in the parapatric area, which is in line with a previous study. Interspecific mating was predicted based on the sex ratio in the contact zone. No obvious hybrids were found, but genetic introgression was detected although it was extremely low.
Collapse
Affiliation(s)
- Shota Konaka
- Master Program in Biology, Degree Programs in Life and Earth Sciences, Graduate School of Science and Technology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
| | - Shun K Hirota
- Field Science Center, Graduate School of Agricultural Science, Tohoku University, 232-3 Yomogida, Naruko-onsen, Osaki, Miyagi, 989-6711, Japan
- Botanical Gardens, Osaka Metropolitan University 2000 Kisaichi, Katano City, Osaka, 576-0004, Japan
| | - Yukie Sato
- Faculty of Life and Environmental Sciences / Mountain Science Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan.
| | - Naoki Matsumoto
- Master Program in Biology, Degree Programs in Life and Earth Sciences, Graduate School of Science and Technology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
| | - Yoshihisa Suyama
- Field Science Center, Graduate School of Agricultural Science, Tohoku University, 232-3 Yomogida, Naruko-onsen, Osaki, Miyagi, 989-6711, Japan
| | - Yoshihiko Tsumura
- Faculty of Life and Environmental Sciences / Mountain Science Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| |
Collapse
|
3
|
Bendall EE, Mattingly KM, Moehring AJ, Linnen CR. A Test of Haldane's Rule in Neodiprion Sawflies and Implications for the Evolution of Postzygotic Isolation in Haplodiploids. Am Nat 2023; 202:40-54. [PMID: 37384768 DOI: 10.1086/724820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2023]
Abstract
AbstractHaldane's rule-a pattern in which hybrid sterility or inviability is observed in the heterogametic sex of an interspecific cross-is one of the most widely obeyed rules in nature. Because inheritance patterns are similar for sex chromosomes and haplodiploid genomes, Haldane's rule may apply to haplodiploid taxa, predicting that haploid male hybrids will evolve sterility or inviability before diploid female hybrids. However, there are several genetic and evolutionary mechanisms that may reduce the tendency of haplodiploids to obey Haldane's rule. Currently, there are insufficient data from haplodiploids to determine how frequently they adhere to Haldane's rule. To help fill this gap, we crossed a pair of haplodiploid hymenopteran species (Neodiprion lecontei and Neodiprion pinetum) and evaluated the viability and fertility of female and male hybrids. Despite considerable divergence, we found no evidence of reduced fertility in hybrids of either sex, consistent with the hypothesis that hybrid sterility evolves slowly in haplodiploids. For viability, we found a pattern opposite to that of Haldane's rule: hybrid females, but not males, had reduced viability. This reduction was most pronounced in one direction of the cross, possibly due to a cytoplasmic-nuclear incompatibility. We also found evidence of extrinsic postzygotic isolation in hybrids of both sexes, raising the possibility that this form or reproductive isolation tends to emerge early in speciation in host-specialized insects. Our work emphasizes the need for more studies on reproductive isolation in haplodiploids, which are abundant in nature but underrepresented in the speciation literature.
Collapse
|
4
|
Sato Y, Fujiwara S, Egas M, Matsuda T, Gotoh T. Patterns of reproductive isolation in a haplodiploid mite, Amphitetranychus viennensis: prezygotic isolation, hybrid inviability and hybrid sterility. BMC Ecol Evol 2021; 21:177. [PMID: 34551724 PMCID: PMC8459536 DOI: 10.1186/s12862-021-01896-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 08/23/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Evolution of reproductive isolation is an important process, generating biodiversity and driving speciation. To better understand this process, it is necessary to investigate factors underlying reproductive isolation through various approaches but also in various taxa. Previous studies, mainly focusing on diploid animals, supported the prevalent view that reproductive barriers evolve gradually as a by-product of genetic changes accumulated by natural selection by showing a positive relationship between the degree of reproductive isolation and genetic distance. Haplodiploid animals are expected to generate additional insight into speciation, but few studies investigated the prevalent view in haplodiploid animals. In this study, we investigate whether the relationship also holds in a haplodiploid spider mite, Amphitetranychus viennensis (Zacher). RESULTS We sampled seven populations of the mite in the Palaearctic region, measured their genetic distance (mtDNA) and carried out cross experiments with all combinations. We analyzed how lack of fertilization rate (as measure of prezygotic isolation) as well as hybrid inviability and hybrid sterility (as measures of postzygotic isolation) varies with genetic distance. We found that the degree of reproductive isolation varies among cross combinations, and that all three measures of reproductive isolation have a positive relationship with genetic distance. Based on the mtDNA marker, lack of fertilization rate, hybrid female inviability and hybrid female sterility were estimated to be nearly complete (99.0-99.9% barrier) at genetic distances of 0.475-0.657, 0.150-0.209 and 0.145-0.210, respectively. Besides, we found asymmetries in reproductive isolation. CONCLUSIONS The prevalent view on the evolution of reproductive barriers is supported in the haplodiploid spider mite we studied here. According to the estimated minimum genetic distance for total reproductive isolation in parent population crosses in this study and previous work, a genetic distance of 0.15-0.21 in mtDNA (COI) appears required for speciation in spider mites. Variations and asymmetries in the degree of reproductive isolation highlight the importance of reinforcement of prezygotic reproductive isolation through incompatibility and the importance of cytonuclear interactions for reproductive isolation in haplodiploid spider mites.
Collapse
Affiliation(s)
- Yukie Sato
- Faculty of Life and Environmental Science/Mountain Science Center, University of Tsukuba, Ibaraki, 305-8577, Japan
| | - Satoshi Fujiwara
- Laboratory of Applied Entomology and Zoology, Faculty of Agriculture, Ibaraki University, Ami, Ibaraki, 300-0393, Japan
| | - Martijn Egas
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Tomoko Matsuda
- Laboratory of Applied Entomology and Zoology, Faculty of Agriculture, Ibaraki University, Ami, Ibaraki, 300-0393, Japan.,Nihon BioData Corporation, Kawasaki, Kanagawa, 213-0012, Japan
| | - Tetsuo Gotoh
- Laboratory of Applied Entomology and Zoology, Faculty of Agriculture, Ibaraki University, Ami, Ibaraki, 300-0393, Japan. .,Faculty of Economics, Ryutsu Keizai University, Ryugasaki, Ibaraki, 301-8555, Japan.
| |
Collapse
|
5
|
Villacis-Perez E, Snoeck S, Kurlovs AH, Clark RM, Breeuwer JAJ, Van Leeuwen T. Adaptive divergence and post-zygotic barriers to gene flow between sympatric populations of a herbivorous mite. Commun Biol 2021; 4:853. [PMID: 34244609 PMCID: PMC8270941 DOI: 10.1038/s42003-021-02380-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 06/21/2021] [Indexed: 02/06/2023] Open
Abstract
Plant-herbivore interactions promote the generation and maintenance of both plant and herbivore biodiversity. The antagonistic interactions between plants and herbivores lead to host race formation: the evolution of herbivore types specializing on different plant species, with restricted gene flow between them. Understanding how ecological specialization promotes host race formation usually depends on artificial approaches, using laboratory experiments on populations associated with agricultural crops. However, evidence on how host races are formed and maintained in a natural setting remains scarce. Here, we take a multidisciplinary approach to understand whether populations of the generalist spider mite Tetranychus urticae form host races in nature. We demonstrate that a host race co-occurs among generalist conspecifics in the dune ecosystem of The Netherlands. Extensive field sampling and genotyping of individuals over three consecutive years showed a clear pattern of host associations. Genome-wide differences between the host race and generalist conspecifics were found using a dense set of SNPs on field-derived iso-female lines and previously sequenced genomes of T. urticae. Hybridization between lines of the host race and sympatric generalist lines is restricted by post-zygotic breakdown, and selection negatively impacts the survival of generalists on the native host of the host race. Our description of a host race among conspecifics with a larger diet breadth shows how ecological and reproductive isolation aid in maintaining intra-specific variation in sympatry, despite the opportunity for homogenization through gene flow. Our findings highlight the importance of explicitly considering the spatial and temporal scale on which plant-herbivore interactions occur in order to identify herbivore populations associated with different plant species in nature. This system can be used to study the underlying genetic architecture and mechanisms that facilitate the use of a large range of host plant taxa by extreme generalist herbivores. In addition, it offers the chance to investigate the prevalence and mechanisms of ecological specialization in nature.
Collapse
Affiliation(s)
- Ernesto Villacis-Perez
- Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, Netherlands.
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium.
| | - Simon Snoeck
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium
- Department of Biology, University of Washington, Seattle, USA
| | - Andre H Kurlovs
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium
| | - Richard M Clark
- School of Biological Sciences and Henry Eyring Center for Cell and Genome Science, University of Utah, Salt Lake City, UT, USA
| | - Johannes A J Breeuwer
- Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, Netherlands.
| | - Thomas Van Leeuwen
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium.
| |
Collapse
|
6
|
Cruz MA, Magalhães S, Sucena É, Zélé F. Wolbachia and host intrinsic reproductive barriers contribute additively to postmating isolation in spider mites. Evolution 2021; 75:2085-2101. [PMID: 34156702 DOI: 10.1111/evo.14286] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 05/04/2021] [Accepted: 05/20/2021] [Indexed: 12/27/2022]
Abstract
Wolbachia are maternally-inherited bacteria that induce cytoplasmic incompatibility in many arthropod species. However, the ubiquity of this isolation mechanism for host speciation processes remains elusive, as only few studies have examined Wolbachia-induced incompatibilities when host populations are not genetically compatible. Here, we used three populations of two genetically differentiated colour forms of the haplodiploid spider mite Tetranychus urticae to dissect the interaction between Wolbachia-induced and host-associated incompatibilities, and their relative contribution to postmating isolation. We found that these two sources of incompatibility act through different mechanisms in an additive fashion. Host-associated incompatibility contributes 1.5 times more than Wolbachia-induced incompatibility in reducing hybrid production, the former through an overproduction of haploid sons at the expense of diploid daughters (ca. 75% decrease) and the latter by increasing the embryonic mortality of daughters (by ca. 49%). Furthermore, regardless of cross direction, we observed near-complete F1 hybrid sterility and complete F2 hybrid breakdown between populations of the two forms, but Wolbachia did not contribute to this outcome. We thus show mechanistic independence and an additive nature of host-intrinsic and Wolbachia-induced sources of isolation. Wolbachia may contribute to reproductive isolation in this system, thereby potentially affecting host differentiation and distribution in the field.
Collapse
Affiliation(s)
- Miguel A Cruz
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências da Universidade de Lisboa, Edificio C2, 3° Piso Campo Grande, Lisboa, Portugal
| | - Sara Magalhães
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências da Universidade de Lisboa, Edificio C2, 3° Piso Campo Grande, Lisboa, Portugal.,Departamento de Biologia Animal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, Lisboa, Portugal
| | - Élio Sucena
- Departamento de Biologia Animal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, Lisboa, Portugal.,Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Flore Zélé
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências da Universidade de Lisboa, Edificio C2, 3° Piso Campo Grande, Lisboa, Portugal.,Departamento de Biologia Animal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, Lisboa, Portugal.,ISEM, University of Montpellier, CNRS, IRD, EPHE, Montpellier, France
| |
Collapse
|
7
|
Pei 裴一凡 Y, Forstmeier W, Wang 王代平 D, Martin K, Rutkowska J, Kempenaers B. Proximate Causes of Infertility and Embryo Mortality in Captive Zebra Finches. Am Nat 2020; 196:577-596. [PMID: 33064590 DOI: 10.1086/710956] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractSome species show high rates of reproductive failure, which is puzzling because natural selection works against such failure in every generation. Hatching failure is common in both captive and wild zebra finches (Taeniopygia guttata), yet little is known about its proximate causes. Here we analyze data on reproductive performance (the fate of >23,000 eggs) based on up to 14 years of breeding of four captive zebra finch populations. We find that virtually all aspects of reproductive performance are negatively affected by inbreeding (mean r=-0.117); by an early-starting, age-related decline (mean r=-0.132); and by poor early-life nutrition (mean r=-0.058). However, these effects together explain only about 3% of the variance in infertility, offspring mortality, fecundity, and fitness. In contrast, individual repeatability of different fitness components varied between 15% and 50%. As expected, we found relatively low heritability in fitness components (median: 7% of phenotypic variation and 29% of individually repeatable variation). Yet some of the heritable variation in fitness appears to be maintained by antagonistic pleiotropy (negative genetic correlations) between male fitness traits and female and offspring fitness traits. The large amount of unexplained variation suggests a potentially important role of local dominance and epistasis, including the possibility of segregating genetic incompatibilities.
Collapse
|
8
|
Godinho DP, Cruz MA, Charlery de la Masselière M, Teodoro‐Paulo J, Eira C, Fragata I, Rodrigues LR, Zélé F, Magalhães S. Creating outbred and inbred populations in haplodiploids to measure adaptive responses in the laboratory. Ecol Evol 2020; 10:7291-7305. [PMID: 32760529 PMCID: PMC7391545 DOI: 10.1002/ece3.6454] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 05/05/2020] [Indexed: 12/15/2022] Open
Abstract
Laboratory studies are often criticized for not being representative of processes occurring in natural populations. One reason for this is the fact that laboratory populations generally do not capture enough of the genetic variation of natural populations. This can be mitigated by mixing the genetic background of several field populations when creating laboratory populations. From these outbred populations, it is possible to generate inbred lines, thereby freezing and partitioning part of their variability, allowing each genotype to be characterized independently. Many studies addressing adaptation of organisms to their environment, such as those involving quantitative genetics or experimental evolution, rely on inbred or outbred populations, but the methodology underlying the generation of such biological resources is usually not explicitly documented. Here, we developed different procedures to circumvent common pitfalls of laboratory studies, and illustrate their application using two haplodiploid species, the spider mites Tetranychus urticae and Tetranychus evansi. First, we present a method that increases the chance of capturing high amounts of variability when creating outbred populations, by performing controlled crosses between individuals from different field-collected populations. Second, we depict the creation of inbred lines derived from such outbred populations, by performing several generations of sib-mating. Third, we outline an experimental evolution protocol that allows the maintenance of a constant population size at the beginning of each generation, thereby preventing bottlenecks and diminishing extinction risks. Finally, we discuss the advantages of these procedures and emphasize that sharing such biological resources and combining them with available genetic tools will allow consistent and comparable studies that greatly contribute to our understanding of ecological and evolutionary processes.
Collapse
Affiliation(s)
- Diogo P. Godinho
- Centre for Ecology, Evolution and Environmental Changes – cE3cFaculdade de Ciências da Universidade de LisboaLisboaPortugal
| | - Miguel A. Cruz
- Centre for Ecology, Evolution and Environmental Changes – cE3cFaculdade de Ciências da Universidade de LisboaLisboaPortugal
| | - Maud Charlery de la Masselière
- Centre for Ecology, Evolution and Environmental Changes – cE3cFaculdade de Ciências da Universidade de LisboaLisboaPortugal
| | - Jéssica Teodoro‐Paulo
- Centre for Ecology, Evolution and Environmental Changes – cE3cFaculdade de Ciências da Universidade de LisboaLisboaPortugal
| | - Cátia Eira
- Centre for Ecology, Evolution and Environmental Changes – cE3cFaculdade de Ciências da Universidade de LisboaLisboaPortugal
| | - Inês Fragata
- Centre for Ecology, Evolution and Environmental Changes – cE3cFaculdade de Ciências da Universidade de LisboaLisboaPortugal
| | - Leonor R. Rodrigues
- Centre for Ecology, Evolution and Environmental Changes – cE3cFaculdade de Ciências da Universidade de LisboaLisboaPortugal
| | - Flore Zélé
- Centre for Ecology, Evolution and Environmental Changes – cE3cFaculdade de Ciências da Universidade de LisboaLisboaPortugal
| | - Sara Magalhães
- Centre for Ecology, Evolution and Environmental Changes – cE3cFaculdade de Ciências da Universidade de LisboaLisboaPortugal
| |
Collapse
|
9
|
Irwin DE. Assortative Mating in Hybrid Zones Is Remarkably Ineffective in Promoting Speciation. Am Nat 2020; 195:E150-E167. [DOI: 10.1086/708529] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
10
|
Sato Y, Alba JM. Reproductive interference and sensitivity to female pheromones in males and females of two herbivorous mite species. EXPERIMENTAL & APPLIED ACAROLOGY 2020; 81:59-74. [PMID: 32307618 PMCID: PMC7203586 DOI: 10.1007/s10493-020-00492-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 04/08/2020] [Indexed: 06/11/2023]
Abstract
Competitive interaction between sister species can be affected by reproductive interference (RI) depending on the ability of males to discriminate conspecific from heterospecific mates. We study such interactions in Tetranychus evansi and T. urticae. These spider mites co-occur on solanaceous plants in Southern Europe, and cause important yield losses in tomato crops. Previous studies using Spanish populations found that T. evansi outcompetes T. urticae, and that this is due to unidirectional RI of T. evansi males with T. urticae females. The unidirectional RI is attributed to differences in male mate preference for conspecific females between the two species. Also, differences in the propensity of interspecific web sharing in females plays a role. To investigate proximate mechanisms of this RI, here we study the role of female pheromones on male mate preference and female web sharing. We extracted pheromones from females of the two species, and investigated if males and females were arrested by the pheromone extractions in various concentrations. We observed that T. urticae males were more sensitive to the pheromone extractions and able to discriminate conspecific from heterospecific ones. Tetranychus evansi males, on the other hand, were less sensitive. Females from both species were arrested by conspecific pheromone extraction in lower concentrations. In conclusion, heterospecific mating by T. evansi males, which results in RI, can be explained by their lack of discrimination between female pheromones of the two species. Differences in the propensity of interspecific web sharing in females might not be explained by the pheromones that we investigated.
Collapse
Affiliation(s)
- Yukie Sato
- Mountain Science Center, Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan.
- Evolutionary and Population Biology-IBED, University of Amsterdam, P.O. Box 94240, 1090GE, Amsterdam, The Netherlands.
| | - Juan M Alba
- Evolutionary and Population Biology-IBED, University of Amsterdam, P.O. Box 94240, 1090GE, Amsterdam, The Netherlands
| |
Collapse
|
11
|
Knegt B, Meijer TT, Kant MR, Kiers ET, Egas M. Tetranychus evansi spider mite populations suppress tomato defenses to varying degrees. Ecol Evol 2020; 10:4375-4390. [PMID: 32489604 PMCID: PMC7246200 DOI: 10.1002/ece3.6204] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 03/30/2019] [Accepted: 04/13/2019] [Indexed: 01/30/2023] Open
Abstract
Plant defense suppression is an offensive strategy of herbivores, in which they manipulate plant physiological processes to increase their performance. Paradoxically, defense suppression does not always benefit the defense-suppressing herbivores, because lowered plant defenses can also enhance the performance of competing herbivores and can expose herbivores to increased predation. Suppression of plant defense may therefore entail considerable ecological costs depending on the presence of competitors and natural enemies in a community. Hence, we hypothesize that the optimal magnitude of suppression differs among locations. To investigate this, we studied defense suppression across populations of Tetranychus evansi spider mites, a herbivore from South America that is an invasive pest of solanaceous plants including cultivated tomato, Solanum lycopersicum, in other parts of the world. We measured the level of expression of defense marker genes in tomato plants after infestation with mites from eleven different T. evansi populations. These populations were chosen across a range of native (South American) and non-native (other continents) environments and from different host plant species. We found significant variation at three out of four defense marker genes, demonstrating that T. evansi populations suppress jasmonic acid- and salicylic acid-dependent plant signaling pathways to varying degrees. While we found no indication that this variation in defense suppression was explained by differences in host plant species, invasive populations tended to suppress plant defense to a smaller extent than native populations. This may reflect either the genetic lineage of T. evansi-as all invasive populations we studied belong to one linage and both native populations to another-or the absence of specialized natural enemies in invasive T. evansi populations.
Collapse
Affiliation(s)
- Bram Knegt
- Department of Evolutionary and Population BiologyInstitute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamAmsterdamThe Netherlands
| | - Tomas T. Meijer
- Department of Evolutionary and Population BiologyInstitute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamAmsterdamThe Netherlands
| | - Merijn R. Kant
- Department of Evolutionary and Population BiologyInstitute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamAmsterdamThe Netherlands
| | - E. Toby Kiers
- Department of Ecological ScienceVU UniversityAmsterdamThe Netherlands
| | - Martijn Egas
- Department of Evolutionary and Population BiologyInstitute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
12
|
Understanding Admixture: Haplodiploidy to the Rescue. Trends Ecol Evol 2019; 35:34-42. [PMID: 31703819 DOI: 10.1016/j.tree.2019.08.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/22/2019] [Accepted: 08/28/2019] [Indexed: 01/08/2023]
Abstract
Hybridization has broad evolutionary consequences, from fueling or counteracting speciation to facilitating adaptation to novel environments. Hybridization and subsequent introgression appear widespread along the tree of life. However, our understanding of how distinct evolutionary forces shape admixed genomes and the fate of introgressed genetic variants remains scarce. Most admixture research in animals has focused on diploid organisms. We propose that haplodiploid organisms can help resolve open questions about the genomic consequences of hybridization in natural populations. The ploidy difference between haploid males and diploid females, the availability of genome-wide male haplotypes, and ongoing cases of admixture make haplodiploid organisms promising models to improve our knowledge with regards to the evolution of hybrid genomes.
Collapse
|
13
|
Stewart KA, Draaijer R, Kolasa MR, Smallegange IM. The role of genetic diversity in the evolution and maintenance of environmentally-cued, male alternative reproductive tactics. BMC Evol Biol 2019; 19:58. [PMID: 30777004 PMCID: PMC6379956 DOI: 10.1186/s12862-019-1385-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 02/12/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Alternative reproductive tactics (ARTs) are taxonomically pervasive strategies adopted by individuals to maximize reproductive success within populations. Even for conditionally-dependent traits, consensus postulates most ARTs involve both genetic and environmental interactions (GEIs), but to date, quantifying genetic variation underlying the threshold disposing an individual to switch phenotypes in response to an environmental cue has been a difficult undertaking. Our study aims to investigate the origins and maintenance of ARTs within environmentally disparate populations of the microscopic bulb mite, Rhizoglyphus robini, that express 'fighter' and 'scrambler' male morphs mediated by a complex combination of environmental and genetic factors. RESULTS Using never-before-published individual genetic profiling, we found all individuals across populations are highly inbred with the exception of scrambler males in stressed environments. In fact within the poor environment, scrambler males and females showed no significant difference in genetic differentiation (Fst) compared to all other comparisons, and although fighters were highly divergent from the rest of the population in both poor or rich environments (e.g., Fst, STRUCTURE), fighters demonstrated approximately three times less genetic divergence from the population in poor environments. AMOVA analyses further corroborated significant genetic differentiation across subpopulations, between morphs and sexes, and among subpopulations within each environment. CONCLUSION Our study provides new insights into the origin of ARTs in the bulb mite, highlighting the importance of GEIs: genetic correlations, epistatic interactions, and sex-specific inbreeding depression across environmental stressors. Asymmetric reproductive output, coupled with the purging of highly inbred individuals during environmental oscillations, also facilitates genetic variation within populations, despite evidence for strong directional selection. This cryptic genetic variation also conceivably facilitates stable population persistence even in the face of spatially or temporally unstable environmental challenges. Ultimately, understanding the genetic context that maintains thresholds, even for conditionally-dependent ARTs, will enhance our understanding of within population variation and our ability to predict responses to selection.
Collapse
Affiliation(s)
- K A Stewart
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, PO Box 94240, 1090 GE, Amsterdam, The Netherlands.
| | - R Draaijer
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, PO Box 94240, 1090 GE, Amsterdam, The Netherlands
| | - M R Kolasa
- Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Slawkowska 17 St., 31-016, Krakow, Poland
| | - I M Smallegange
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, PO Box 94240, 1090 GE, Amsterdam, The Netherlands
| |
Collapse
|
14
|
Sato Y, Sakamoto H, Gotoh T, Saito Y, Chao JT, Egas M, Mochizuki A. Patterns of reproductive isolation in a haplodiploid - strong post-mating, prezygotic barriers among three forms of a social spider mite. J Evol Biol 2018; 31:866-881. [DOI: 10.1111/jeb.13270] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 03/13/2018] [Accepted: 03/15/2018] [Indexed: 12/31/2022]
Affiliation(s)
- Yukie Sato
- Sugadaira Research Station; Mountain Science Center; University of Tsukuba; Ueda Nagano Japan
- Institute for Agro-Environmental Sciences; NARO; Tsukuba Ibaraki Japan
| | - Hironori Sakamoto
- Laboratory of Applied Entomology and Zoology; Faculty of Agriculture; Ibaraki University; Ami Ibaraki Japan
- Organization for University Research Initiatives; Waseda University; Shinjuku-ku Tokyo Japan
| | - Tetsuo Gotoh
- Laboratory of Applied Entomology and Zoology; Faculty of Agriculture; Ibaraki University; Ami Ibaraki Japan
| | - Yutaka Saito
- Research Faculty of Agriculture; Hokkaido University; Kita-ku Sapporo Hokkaido Japan
| | - Jung-Tai Chao
- Division of Forest Protection; Taiwan Forestry Research Institute; Taipei Taiwan
| | - Martijn Egas
- Institute for Biodiversity and Ecosystem Dynamics; University of Amsterdam; Amsterdam The Netherlands
| | - Atsushi Mochizuki
- Institute for Agro-Environmental Sciences; NARO; Tsukuba Ibaraki Japan
| |
Collapse
|
15
|
Ghenu AH, Blanckaert A, Butlin RK, Kulmuni J, Bank C. Conflict between heterozygote advantage and hybrid incompatibility in haplodiploids (and sex chromosomes). Mol Ecol 2018; 27:3935-3949. [PMID: 29328538 DOI: 10.1111/mec.14482] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 12/19/2017] [Accepted: 12/22/2017] [Indexed: 01/08/2023]
Abstract
In many diploid species, the sex chromosomes play a special role in mediating reproductive isolation. In haplodiploids, where females are diploid and males haploid, the whole genome behaves similarly to the X/Z chromosomes of diploids. Therefore, haplodiploid systems can serve as a model for the role of sex chromosomes in speciation and hybridization. A previously described population of Finnish Formica wood ants displays genome-wide signs of ploidally and sexually antagonistic selection resulting from hybridization. Here, hybrid females have increased survivorship but hybrid males are inviable. To understand how the unusual hybrid population may be maintained, we developed a mathematical model with hybrid incompatibility, female heterozygote advantage, recombination and assortative mating. The rugged fitness landscape resulting from the co-occurrence of heterozygote advantage and hybrid incompatibility results in a sexual conflict in haplodiploids, which is caused by the ploidy difference. Thus, whereas heterozygote advantage always promotes long-term polymorphism in diploids, we find various outcomes in haplodiploids in which the population stabilizes either in favour of males, females or via maximizing the number of introgressed individuals. We discuss these outcomes with respect to the potential long-term fate of the Finnish wood ant population and provide approximations for the extension of the model to multiple incompatibilities. Moreover, we highlight the general implications of our results for speciation and hybridization in haplodiploids versus diploids and how the described fitness relationships could contribute to the outstanding role of sex chromosomes as hotspots of sexual antagonism and genes involved in speciation.
Collapse
Affiliation(s)
| | | | - Roger K Butlin
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK.,Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Jonna Kulmuni
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK.,Centre of Excellence in Biological Interactions, Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - Claudia Bank
- Instituto Gulbenkian de Ciência, Oeiras, Portugal.,Kavli Institute for Theoretical Physics, University of California at Santa Barbara, Santa Barbara, CA, USA
| |
Collapse
|
16
|
Schausberger P. Herbivore-Associated Bacteria as Potential Mediators and Modifiers of Induced Plant Defense Against Spider Mites and Thrips. FRONTIERS IN PLANT SCIENCE 2018; 9:1107. [PMID: 30105044 PMCID: PMC6077224 DOI: 10.3389/fpls.2018.01107] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 07/09/2018] [Indexed: 05/13/2023]
Abstract
Induced plant defense, comprising contact with exogenous stimuli, production of endogenous signals alerting the plant, associated biochemical cascades, and local and/or systemic expression of the defense mechanisms, critically depends on the nature of the inducing agents. At large, bio-trophic pathogenic microorganisms and viruses usually trigger the salicylate (SA)-mediated pathway, whereas necro-trophic pathogens and herbivores usually trigger the jasmonate (JA)-mediated pathway in plants. The SA- and JA-mediated pathways do not operate independently but commonly interfere with each other. Several recent studies revealed abnormal plant responses upon herbivore attack in diverse plant-herbivore systems. Observed abnormalities range from suppression of the common JA-pathway, induction of the SA-pathway to no response, yet the underlying proximate causes and ultimate consequences of these variations are elusive. Strikingly, some studies provide compelling evidence that anti-herbivore plant responses may decisively depend on bacteria associated with the herbivore attacking the plant (HAB for herbivore-associated bacteria). HAB may influence herbivore recognition by the plant and alter the biochemical cascades inside plants. Here, I report cases in point of HAB manipulating induced anti-herbivore plant responses, suggest spatial and temporal categorization of HAB, and point at proximate and ultimate aspects of plant defense manipulation by HAB. Following, I overview the diversity of HAB of spider mites and herbivorous thrips, argue that, considering recently reported phenomena of abnormal plant responses upon spider mite attack, some of these HAB could represent important, but hitherto largely neglected, mediators/modifiers of induced plant defense against spider mites and thrips, and conclude with suggestions for future research.
Collapse
Affiliation(s)
- Peter Schausberger
- Department of Behavioural Biology, University of Vienna, Vienna, Austria
- Sugadaira Research Station, Mountain Science Center, University of Tsukuba, Ueda, Japan
- *Correspondence: Peter Schausberger,
| |
Collapse
|
17
|
Beresford J, Elias M, Pluckrose L, Sundström L, Butlin RK, Pamilo P, Kulmuni J. Widespread hybridization within mound-building wood ants in Southern Finland results in cytonuclear mismatches and potential for sex-specific hybrid breakdown. Mol Ecol 2017; 26:4013-4026. [PMID: 28503905 DOI: 10.1111/mec.14183] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 04/07/2017] [Accepted: 04/17/2017] [Indexed: 12/28/2022]
Abstract
Hybridization and gene flow between diverging lineages are increasingly recognized as common evolutionary processes, and their consequences can vary from hybrid breakdown to adaptive introgression. We have previously found a population of wood ant hybrids between Formica aquilonia and F. polyctena that shows antagonistic effects of hybridization: females with introgressed alleles show hybrid vigour, whereas males with the same alleles show hybrid breakdown. Here, we investigate whether hybridization is a general phenomenon in this species pair and analyse 647 worker samples from 16 localities in Finland using microsatellite markers and a 1200-bp mitochondrial sequence. Our results show that 27 sampled nests contained parental-like gene pools (six putative F. polyctena and 21 putative F. aquilonia) and all remaining nests (69), from nine localities, contained hybrids of varying degrees. Patterns of genetic variation suggest these hybrids arise from several hybridization events or, instead, have backcrossed to the parental gene pools to varying extents. In contrast to expectations, the mitochondrial haplotypes of the parental species were not randomly distributed among the hybrids. Instead, nests that were closer to parental-like F. aquilonia for nuclear markers preferentially had F. polyctena's mitochondria and vice versa. This systematic pattern suggests there may be underlying selection favouring cytonuclear mismatch and hybridization. We also found a new hybrid locality with strong genetic differences between the sexes similar to those predicted under antagonistic selection on male and female hybrids. Further studies are needed to determine the selective forces that act on male and female genomes in these newly discovered hybrids.
Collapse
Affiliation(s)
- J Beresford
- Department of Biosciences, Centre of Excellence in Biological Interactions, University of Helsinki, Helsinki, Finland.,Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - M Elias
- Institut de Systématique, Évolution, Biodiversité (ISYEB) - UMR 7205 - CNRS MNHN UPMC EPHE, Muséum National d'Histoire Naturelle, Sorbonne Universités, Paris, France
| | - L Pluckrose
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - L Sundström
- Department of Biosciences, Centre of Excellence in Biological Interactions, University of Helsinki, Helsinki, Finland.,Tvärminne Zoological Station, University of Helsinki, Hanko, Finland
| | - R K Butlin
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK.,Department of Marine Science, University of Gothenburg, Gothenburg, Sweden
| | - P Pamilo
- Department of Biosciences, Centre of Excellence in Biological Interactions, University of Helsinki, Helsinki, Finland
| | - J Kulmuni
- Department of Biosciences, Centre of Excellence in Biological Interactions, University of Helsinki, Helsinki, Finland.,Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK.,Tvärminne Zoological Station, University of Helsinki, Hanko, Finland.,Department of Biology and Biocenter Oulu, University of Oulu, Oulu, Finland
| |
Collapse
|
18
|
Knegt B, Potter T, Pearson NA, Sato Y, Staudacher H, Schimmel BCJ, Kiers ET, Egas M. Detection of genetic incompatibilities in non-model systems using simple genetic markers: hybrid breakdown in the haplodiploid spider mite Tetranychus evansi. Heredity (Edinb) 2016; 118:311-321. [PMID: 27782117 PMCID: PMC5345600 DOI: 10.1038/hdy.2016.103] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 08/30/2016] [Accepted: 09/02/2016] [Indexed: 02/01/2023] Open
Abstract
When two related species interbreed, their hybrid offspring frequently suffer from reduced fitness. The genetics of hybrid incompatibility are described by the Bateson–Dobzhansky–Muller (BDM) model, where fitness is reduced by epistatic interactions between alleles of heterospecific origin. Unfortunately, most empirical evidence for the BDM model comes from a few well-studied model organisms, restricting our genetic understanding of hybrid incompatibilities to limited taxa. These systems are predominantly diploid and incompatibility is often complete, which complicates the detection of recessive allelic interactions and excludes the possibility to study viable or intermediate stages. Here, we advocate research into non-model organisms with haploid or haplodiploid reproductive systems and incomplete hybrid incompatibility because (1) dominance is absent in haploids and (2) incomplete incompatibility allows comparing affected with unaffected individuals. We describe a novel two-locus statistic specifying the frequency of individuals for which two alleles co-occur. This approach to studying BDM incompatibilities requires genotypic characterization of hybrid individuals, but not genetic mapping or genome sequencing. To illustrate our approach, we investigated genetic causes for hybrid incompatibility between differentiated lineages of the haplodiploid spider mite Tetranychus evansi, and show that strong, but incomplete, hybrid breakdown occurs. In addition, by comparing the genotypes of viable hybrid males and inviable hybrid male eggs for eight microsatellite loci, we show that nuclear and cytonuclear BDM interactions constitute the basis of hybrid incompatibility in this species. Our approach opens up possibilities to study BDM interactions in non-model taxa, and may give further insight into the genetic mechanisms behind hybrid incompatibility.
Collapse
Affiliation(s)
- B Knegt
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - T Potter
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - N A Pearson
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Y Sato
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands.,Sugadaira Montane Research Center, University of Tsukuba, Ueda, Japan
| | - H Staudacher
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - B C J Schimmel
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - E T Kiers
- Department of Ecological Science, Vrije Universiteit, Amsterdam, The Netherlands
| | - M Egas
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|