1
|
Zhou T, Chen X, López-Pujol J, Bai G, Herrando-Moraira S, Nualart N, Zhang X, Zhao Y, Zhao G. Genetically- and environmentally-dependent processes drive interspecific and intraspecific divergence in the Chinese relict endemic genus Dipteronia. PLANT DIVERSITY 2024; 46:585-599. [PMID: 39290880 PMCID: PMC11403150 DOI: 10.1016/j.pld.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 04/15/2024] [Accepted: 04/19/2024] [Indexed: 09/19/2024]
Abstract
China is a hotspot of relict plant species that were once widespread throughout the Northern Hemisphere. Recent research has demonstrated that the occurrence of long-term stable refugia in the mountainous regions of central and south-western China allowed their persistence through the late Neogene climate fluctuations. One of these relict lineages is Dipteronia, an oligotypic tree genus with a fossil record extending to the Paleocene. Here, we investigated the genetic variability, demographic dynamics and diversification patterns of the two currently recognized Dipteronia species (D ipteronia sinensis and D . dyeriana). Molecular data were obtained from 45 populations of Dipteronia by genotyping three cpDNA regions, two single copy nuclear genes and 15 simple sequence repeat loci. The genetic study was combined with niche comparison analyses on the environmental space, ecological niche modeling, and landscape connectivity analysis. We found that the two Dipteronia species have highly diverged both in genetic and ecological terms. Despite the incipient speciation processes that can be observed in D. sinensis, the occurrence of long-term stable refugia and, particularly, a dispersal corridor along Daba Shan-west Qinling, likely ensured its genetic and ecological integrity to date. Our study will not only help us to understand how populations of Dipteronia species responded to the tectonic and climatic changes of the Cenozoic, but also provide insight into how Arcto-Tertiary relict plants in East Asia survived, evolved, and diversified.
Collapse
Affiliation(s)
- Tao Zhou
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi'an 710069, China
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Xiaodan Chen
- College of Life Science, Shanxi Normal University, Taiyuan, China
| | - Jordi López-Pujol
- Botanic Institute of Barcelona (IBB), CSIC-CMCNB, Barcelona 08038, Catalonia, Spain
- Escuela de Ciencias Ambientales, Universidad Espíritu Santo (UEES), Samborondón 091650, Ecuador
| | - Guoqing Bai
- Shaanxi Engineering Research Centre for Conservation and Utilization of Botanical Resources, Xi'an Botanical Garden of Shaanxi Province, Xi'an 710061, China
| | | | - Neus Nualart
- Botanic Institute of Barcelona (IBB), CSIC-CMCNB, Barcelona 08038, Catalonia, Spain
| | - Xiao Zhang
- Shaanxi Engineering Research Centre for Conservation and Utilization of Botanical Resources, Xi'an Botanical Garden of Shaanxi Province, Xi'an 710061, China
| | - Yuemei Zhao
- School of Biological Sciences, Guizhou Education University, Guiyang, China
| | - Guifang Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi'an 710069, China
| |
Collapse
|
2
|
Jiang C, Shi T, Mo Z, Zhao C. Across a phylogeographic break in the Qinling Mountains-Huaihe River Line: Quaternary evolutionary history of a medicinal and edible homologous plant (Allium macrostemon) in China. BMC Ecol Evol 2024; 24:107. [PMID: 39138401 PMCID: PMC11323607 DOI: 10.1186/s12862-024-02297-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/31/2024] [Indexed: 08/15/2024] Open
Abstract
Biogeographic barriers to gene flow are central to studies of plant phylogeography. There are many physical and geographic barriers in China, but few studies have used molecular ecological evidence to investigate the natural geographic isolation barrier of the Qinling Mountains-Huaihe River Line (QHL). Allium macrostemon is a precious Chinese perennial herb belonging to the Amaryllidaceae family. It is used as a food and medicine, with a variety of health and healing properties. Five SSR markers, three chloroplast DNA (cpDNA) markers (psbA-trnH, rps16 and trnL-F), one nuclear ribosomal DNA (nrDNA) marker (ITS), and simplified genome GBS sequencing were used to analyse the genetic diversity and structure of A. macrostemon. Combining SSR, cpDNA, nrDNA ITS data and GBS analysis results, we divided A. macrostemon populations into northern and southern groups, with the southern group further divided into southwestern and central-southeastern groups. Niche simulation results reveal that the distribution area of A. macrostemon will reach its maximum in the future. These data indicate that the regional separation of A. macrostemon has been maintained by the combined influence of a geographical barrier and Quaternary climate, and that the back-and-forth fluctuations of QHL and Quaternary climate have played an important role in this process. QHL acts as a north-south dividing line in phylogeography and population genetic structure, promoting physical geographic isolation. This study provides a theoretical basis for the conservation, development, and utilization of A. macrostemon resources. It further provides a reference for understanding the systematic geographical pattern of the large-scale spatial distribution of plants in China and enriches our understanding of Quaternary plant evolution in areas with complex terrain.
Collapse
Affiliation(s)
- Chunxue Jiang
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering(CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, 550025, Guizhou Province, China
| | - Tian Shi
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering(CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, 550025, Guizhou Province, China
| | - Zhongmei Mo
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering(CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, 550025, Guizhou Province, China
| | - Cai Zhao
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering(CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, 550025, Guizhou Province, China.
| |
Collapse
|
3
|
Iverson ENK, Criswell A, Havird JC. Stronger evidence for relaxed selection than adaptive evolution in high-elevation animal mtDNA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.20.576402. [PMID: 38328137 PMCID: PMC10849488 DOI: 10.1101/2024.01.20.576402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Mitochondrial (mt) genes are the subject of many adaptive hypotheses due to the key role of mitochondria in energy production and metabolism. One widespread adaptive hypothesis is that selection imposed by life at high elevation leads to the rapid fixation of beneficial alleles in mtDNA, reflected in the increased rates of mtDNA evolution documented in many high-elevation species. However, the assumption that fast mtDNA evolution is caused by positive, rather than relaxed purifying selection has rarely been tested. Here, we calculated the dN/dS ratio, a metric of nonsynonymous substitution bias, and explicitly tested for relaxed selection in the mtDNA of over 700 species of terrestrial vertebrates, freshwater fishes, and arthropods, with information on elevation and latitudinal range limits, range sizes, and body sizes. We confirmed that mitochondrial genomes of high-elevation taxa have slightly higher dN/dS ratios compared to low-elevation relatives. High-elevation species tend to have smaller ranges, which predict higher dN/dS ratios and more relaxed selection across species and clades, while absolute elevation and latitude do not predict higher dN/dS. We also find a positive relationship between body mass and dN/dS, supporting a role for small effective population size leading to relaxed selection. We conclude that higher mt dN/dS among high-elevation species is more likely to reflect relaxed selection due to smaller ranges and reduced effective population size than adaptation to the environment. Our results highlight the importance of rigorously testing adaptive stories against non-adaptive alternative hypotheses, especially in mt genomes.
Collapse
Affiliation(s)
- Erik N K Iverson
- Department of Integrative Biology, the University of Texas at Austin, Austin, TX, United States
| | - Abby Criswell
- Department of Integrative Biology, the University of Texas at Austin, Austin, TX, United States
| | - Justin C Havird
- Department of Integrative Biology, the University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
4
|
Feng Y, Comes HP, Chen J, Zhu S, Lu R, Zhang X, Li P, Qiu J, Olsen KM, Qiu Y. Genome sequences and population genomics provide insights into the demographic history, inbreeding, and mutation load of two 'living fossil' tree species of Dipteronia. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:177-192. [PMID: 37797086 DOI: 10.1111/tpj.16486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 08/29/2023] [Accepted: 09/20/2023] [Indexed: 10/07/2023]
Abstract
'Living fossils', that is, ancient lineages of low taxonomic diversity, represent an exceptional evolutionary heritage, yet we know little about how demographic history and deleterious mutation load have affected their long-term survival and extinction risk. We performed whole-genome sequencing and population genomic analyses on Dipteronia sinensis and D. dyeriana, two East Asian Tertiary relict trees. We found large-scale genome reorganizations and identified species-specific genes under positive selection that are likely involved in adaptation. Our demographic analyses suggest that the wider-ranged D. sinensis repeatedly recovered from population bottlenecks over late Tertiary/Quaternary periods of adverse climate conditions, while the population size of the narrow-ranged D. dyeriana steadily decreased since the late Miocene, especially after the Last Glacial Maximum (LGM). We conclude that the efficient purging of deleterious mutations in D. sinensis facilitated its survival and repeated demographic recovery. By contrast, in D. dyeriana, increased genetic drift and reduced selection efficacy, due to recent severe population bottlenecks and a likely preponderance of vegetative propagation, resulted in fixation of strongly deleterious mutations, reduced fitness, and continuous population decline, with likely detrimental consequences for the species' future viability and adaptive potential. Overall, our findings highlight the significant impact of demographic history on levels of accumulation and purging of putatively deleterious mutations that likely determine the long-term survival and extinction risk of Tertiary relict trees.
Collapse
Affiliation(s)
- Yu Feng
- Systematic & Evolutionary Botany and Biodiversity group, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China
| | - Hans Peter Comes
- Department of Environment & Biodiversity, Salzburg University, Salzburg, Austria
| | - Jun Chen
- Systematic & Evolutionary Botany and Biodiversity group, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Shanshan Zhu
- Systematic & Evolutionary Botany and Biodiversity group, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Ruisen Lu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Xinyi Zhang
- Systematic & Evolutionary Botany and Biodiversity group, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China
| | - Pan Li
- Systematic & Evolutionary Botany and Biodiversity group, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jie Qiu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Kenneth M Olsen
- Department of Biology, Washington University in St Louis, St Louis, Missouri, 63130, USA
| | - Yingxiong Qiu
- Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China
| |
Collapse
|
5
|
Liu G, Xue G, Zhao T, Li Y, Yue L, Song H, Liu Q. Population structure and phylogeography of three closely related tree peonies. Ecol Evol 2023; 13:e10073. [PMID: 37274151 PMCID: PMC10234759 DOI: 10.1002/ece3.10073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/23/2023] [Accepted: 04/25/2023] [Indexed: 06/06/2023] Open
Abstract
Paeonia decomposita, Paeonia rotundiloba, and Paeonia rockii are three closely related species of Sect. Moutan is distributed in the montane area of the Eastern Hengduan Mountain region. Understanding the population history of these three tree peony species could contribute to unraveling the evolutionary patterns of undergrowth species in this hotspot area. We used one nuclear DNA marker (internal transcribed spacer region, ITS) and two chloroplast DNA markers (matK, ycf1) to reconstruct the phylogeographic pattern of the populations. In total, 228 individuals from 17 populations of the three species were analyzed in this study. Three nuclear clades (Clade I - Clade III) and four maternal clades (Clade A - Clade D) were reconstructed. Molecular dating suggested that young lineages diverged during the late Pliocene and early Pleistocene, younger than the uplift of the Hengduan Mountains but older than the last glacial maximum (LGM). Significant population and phylogeographic structures were detected at both markers. Furthermore, the populations of these tree peonies were overall at equilibrium during the climatic oscillations of the Pleistocene. The simulated palaeoranges of the three species during the LGM period mostly overlapped, which could have led to cross-breeding events. We propose an evolutionary scenario in which mountain orogenesis around the Hengduan Mountain area triggered parapatric isolation between maternal lineages of tree peonies. Subsequent climatic fluctuations drove migration and range recontact of these populations along the valleys. This detailed evolutionary history provides new insights into the phylogeographic pattern of species from mountain-valley systems.
Collapse
Affiliation(s)
- Guangli Liu
- College of Landscape ArchitectureSichuan Agricultural UniversityChengduChina
| | - Ge Xue
- College of Landscape ArchitectureSichuan Agricultural UniversityChengduChina
| | - Tingting Zhao
- College of Landscape ArchitectureSichuan Agricultural UniversityChengduChina
| | - Yang Li
- College of Landscape ArchitectureSichuan Agricultural UniversityChengduChina
| | - Liangliang Yue
- National Plateau Wetlands Research Center, College of WetlandsSouthwest Forestry UniversityKunmingChina
| | - Huixing Song
- College of Landscape ArchitectureSichuan Agricultural UniversityChengduChina
| | - Qinglin Liu
- College of Landscape ArchitectureSichuan Agricultural UniversityChengduChina
| |
Collapse
|
6
|
Setsuko S, Sugai K, Tamaki I, Takayama K, Kato H. Contrasting genetic diversity between Planchonella obovata sensu lato (Sapotaceae) on old continental and young oceanic island populations in Japan. PLoS One 2022; 17:e0273871. [PMID: 36054192 PMCID: PMC9439235 DOI: 10.1371/journal.pone.0273871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 08/16/2022] [Indexed: 11/23/2022] Open
Abstract
Genetic diversity of plant populations on islands is likely to be influenced by characteristics such as island origin (oceanic or continental) and their age, size, and distance to continental landmasses. In Japan, Planchonella obovata sensu lato which is found on both continental and oceanic islands of varying age, size, and distance to East Asian continental areas-is an ideal system in which to investigate the factors influencing genetic diversity of island plant species. In this study, we examined the genetic diversity of P. obovata s.l. populations, in the context of the species population genetic structure, demography, and between island migration, from 668 individuals, 28 populations and 14 islands including both continental (the Yaeyama Islands) and oceanic islands (the Daito, Bonin, and Volcano Islands) using 11 microsatellite markers. The Yaeyama and Volcano Islands respectively had the highest and lowest genetic diversity, and island origin and age significantly affected genetic diversity. Clustering analysis revealed that populations were grouped into Bonin, Volcano, and Yaeyama + Daito groups. However, Bonin and Volcano groups were distinct despite the relatively short geographical distance between them. Approximate Bayesian Computation analysis suggested that the population size was stable in Bonin and Yaeyama + Daito groups, whereas population reduction occurred in Volcano group, and migration between groups were very limited. Younger oceanic islands showed lower genetic diversity, probably due to limited gene flow and a lack of time to accumulate unique alleles. Genetic structure was generally consistent with the geographic pattern of the islands, but in Volcano, a limited number of founders and limited gene flow among islands are likely to have caused the large genetic divergence observed.
Collapse
Affiliation(s)
- Suzuki Setsuko
- Department of Forest Molecular Genetics and Biotechnology, Forestry and Forest Products Research Institute, Forest Research and Management Organization, Tsukuba, Ibaraki, Japan
| | - Kyoko Sugai
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, Matsue, Shimane, Japan
| | - Ichiro Tamaki
- Gifu Academy of Forest Science and Culture, Mino, Gifu, Japan
| | - Koji Takayama
- Department of Botany, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Hidetoshi Kato
- Makino Herbarium, Tokyo Metropolitan University, Hachioji, Tokyo, Japan
| |
Collapse
|
7
|
Hornick KM, Plough LV. Genome-wide analysis of natural and restored eastern oyster populations reveals local adaptation and positive impacts of planting frequency and broodstock number. Evol Appl 2022; 15:40-59. [PMID: 35126647 PMCID: PMC8792482 DOI: 10.1111/eva.13322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/22/2021] [Accepted: 10/24/2021] [Indexed: 01/20/2023] Open
Abstract
The release of captive-bred plants and animals has increased worldwide to augment declining species. However, insufficient attention has been given to understanding how neutral and adaptive genetic variation are partitioned within and among proximal natural populations, and the patterns and drivers of gene flow over small spatial scales, which can be important for restoration success. A seascape genomics approach was used to investigate population structure, local adaptation, and the extent to which environmental gradients influence genetic variation among natural and restored populations of Chesapeake Bay eastern oysters Crassostrea virginica. We also investigated the impact of hatchery practices on neutral genetic diversity of restored reefs and quantified the broader genetic impacts of large-scale hatchery-based bivalve restoration. Restored reefs showed similar levels of diversity as natural reefs, and striking relationships were found between planting frequency and broodstock numbers and genetic diversity metrics (effective population size and relatedness), suggesting that hatchery practices can have a major impact on diversity. Despite long-term restoration activities, haphazard historical translocations, and high dispersal potential of larvae that could homogenize allele frequencies among populations, moderate neutral population genetic structure was uncovered. Moreover, environmental factors, namely salinity, pH, and temperature, play a major role in the distribution of neutral and adaptive genetic variation. For marine invertebrates in heterogeneous seascapes, collecting broodstock from large populations experiencing similar environments to candidate sites may provide the most appropriate sources for restoration and ensure population resilience in the face of rapid environmental change. This is one of a few studies to demonstrate empirically that hatchery practices have a major impact on the retention of genetic diversity. Overall, these results contribute to the growing body of evidence for fine-scale genetic structure and local adaptation in broadcast-spawning marine species and provide novel information for the management of an important fisheries resource.
Collapse
Affiliation(s)
- Katherine M. Hornick
- University of Maryland Center for Environmental ScienceHorn Point LaboratoryCambridgeMarylandUSA
| | - Louis V. Plough
- University of Maryland Center for Environmental ScienceHorn Point LaboratoryCambridgeMarylandUSA
| |
Collapse
|
8
|
Tamaki I, Obora T, Ohsawa T, Matsumoto A, Saito Y, Ide Y. Different population size change and migration histories created genetic diversity of three oaks in Tokai region, central Japan. JOURNAL OF PLANT RESEARCH 2021; 134:933-946. [PMID: 34155542 DOI: 10.1007/s10265-021-01323-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/14/2021] [Indexed: 06/13/2023]
Abstract
To understand genetic diversity in focal species, it is important to consider the possibility of speciation with gene flow, especially in species with porous genomes such as oaks. We studied genetic diversity and structure in three oaks, Quercus mongolica var. mongolicoides (QM), Q. mongolica var. crispula (QC) and Q. serrata (QS), growing in the Tokai region, central Japan. QM is semi-endemic to the region while the others are common taxa. We also conducted demographic modeling to infer their population size change and migration histories using an approximate Bayesian computation (ABC) approach. The three taxa showed distinct genetic structures but there was genetic admixture among the taxa, especially between QM and QC. ABC analysis of population size change revealed that the population size of QM was stable during and after the last glacial period, while QC and QS showed population expansion after the last glacial maximum. ABC analysis of population divergence and migration revealed that continuous gene flow between QM and QC after their divergence was supported, while between QM and QS, and between QC and QS, secondary contact after sufficient isolation was supported. These historical migration patterns among the three taxa indicate that QM and QC are currently in the early stage or gray zone of speciation, whereas speciation of the other two taxon pairs is considered to have almost been established. Observed gene flow patterns and strength between QM and QC, and between QM and QS, were explained by both flowering patterns and historical distributions, but those between QC and QS were not.
Collapse
Affiliation(s)
- Ichiro Tamaki
- Gifu Academy of Forest Science and Culture, 88 Sodai, Mino, Gifu, 501-3714, Japan.
| | - Tomohiro Obora
- Gifu Academy of Forest Science and Culture, 88 Sodai, Mino, Gifu, 501-3714, Japan
| | - Takafumi Ohsawa
- Ministry of the Environment, 1-2-2 Kasumigaseki, Chiyoda-ku, Tokyo, 100-8975, Japan
| | - Asako Matsumoto
- Forestry and Forest Products Research Institute, 1 Matsunosato, Tsukuba, Ibaraki, 305-8687, Japan
| | - Yoko Saito
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Yuji Ide
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| |
Collapse
|
9
|
Evolutionary history and genetic connectivity across highly fragmented populations of an endangered daisy. Heredity (Edinb) 2021; 126:846-858. [PMID: 33608651 PMCID: PMC8102499 DOI: 10.1038/s41437-021-00413-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 01/24/2021] [Accepted: 01/25/2021] [Indexed: 01/31/2023] Open
Abstract
Conservation management can be aided by knowledge of genetic diversity and evolutionary history, so that ecological and evolutionary processes can be preserved. The Button Wrinklewort daisy (Rutidosis leptorrhynchoides) was a common component of grassy ecosystems in south-eastern Australia. It is now endangered due to extensive habitat loss and the impacts of livestock grazing, and is currently restricted to a few small populations in two regions >500 km apart, one in Victoria, the other in the Australian Capital Territory and nearby New South Wales (ACT/NSW). Using a genome-wide SNP dataset, we assessed patterns of genetic structure and genetic differentiation of 12 natural diploid populations. We estimated intrapopulation genetic diversity to scope sources for genetic management. Bayesian clustering and principal coordinate analyses showed strong population genetic differentiation between the two regions, and substantial substructure within ACT/NSW. A coalescent tree-building approach implemented in SNAPP indicated evolutionary divergence between the two distant regions. Among the populations screened, the last two known remaining Victorian populations had the highest genetic diversity, despite having among the lowest recent census sizes. A maximum likelihood population tree method implemented in TreeMix suggested little or no recent gene flow except potentially between very close neighbours. Populations that were more genetically distinctive had lower genetic diversity, suggesting that drift in isolation is likely driving population differentiation though loss of diversity, hence re-establishing gene flow among them is desirable. These results provide background knowledge for evidence-based conservation and support genetic rescue within and between regions to elevate genetic diversity and alleviate inbreeding.
Collapse
|
10
|
Crane P. Conserving our global botanical heritage: The PSESP plant conservation program. PLANT DIVERSITY 2020; 42:319-322. [PMID: 33094203 PMCID: PMC7567748 DOI: 10.1016/j.pld.2020.06.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/16/2020] [Accepted: 06/17/2020] [Indexed: 05/25/2023]
Affiliation(s)
- Peter Crane
- Oak Spring Garden Foundation, 1776 Loughborough Lane, Upperville, VA, 20184, USA
- School of Forestry and Environmental Studies, Yale University, New Haven, CT, 06511, USA
| |
Collapse
|
11
|
Setsuko S, Sugai K, Tamaki I, Takayama K, Kato H, Yoshimaru H. Genetic diversity, structure, and demography of Pandanus boninensis (Pandanaceae) with sea drifted seeds, endemic to the Ogasawara Islands of Japan: Comparison between young and old islands. Mol Ecol 2020; 29:1050-1068. [PMID: 32048374 DOI: 10.1111/mec.15383] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 01/23/2020] [Accepted: 01/27/2020] [Indexed: 11/30/2022]
Abstract
Pandanus boninensis, endemic to the Ogasawara Islands, Japan, is distributed on both the older Bonin and younger Volcano Islands. In this study, we conducted population genetic analyses of P. boninensis on these islands to examine the population diversity and structure across old and young islands, to assess potential differences in population demography with island age, and to collect any evidence of migration between old and young islands. We found that the genetic diversity of expressed sequence tag (EST)-based microsatellite (SSR) markers, the nucleotide diversity of nuclear DNA sequences, and the haplotype diversity of chloroplast DNA on young islands were lower than those on old islands. Clustering analyses of EST-SSR indicated that populations on old islands were strongly diverged from those on young islands. Approximate Bayesian computation analysis of EST-SSR suggested that population expansion occurred on old islands while population reduction occurred on young islands. We also found evidence of migration among old islands (mostly from south to north), while it appears that there have been very few migration events between old and young islands. These differences could be due to the fact that young islands tend to be geographically isolated and support smaller populations that began a shorter time ago from limited founders. The P. boninensis populations on the Volcano Islands are interesting from an evolutionary perspective as they constitute a classic example of the early stages of progressive colonization on oceanic islands with small effective population sizes and low genetic diversity.
Collapse
Affiliation(s)
- Suzuki Setsuko
- Department of Forest Molecular Genetics and Biotechnology, Forestry and Forest Products Research Institute, Forest Research and Management Organization, Tsukuba, Ibaraki, Japan
| | - Kyoko Sugai
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, Matsue, Shimane, Japan
| | - Ichiro Tamaki
- Gifu Academy of Forest Science and Culture, Mino, Gifu, Japan
| | - Koji Takayama
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Hidetoshi Kato
- Makino Herbarium, Tokyo Metropolitan University, Hachioji, Tokyo, Japan
| | - Hiroshi Yoshimaru
- Department of Forest Molecular Genetics and Biotechnology, Forestry and Forest Products Research Institute, Forest Research and Management Organization, Tsukuba, Ibaraki, Japan
| |
Collapse
|
12
|
Sun Y, Hou N, Woeste K, Zhang C, Yue M, Yuan X, Zhao P. Population genetic structure and adaptive differentiation of iron walnut Juglans regia subsp. sigillata in southwestern China. Ecol Evol 2019; 9:14154-14166. [PMID: 31938510 PMCID: PMC6953554 DOI: 10.1002/ece3.5850] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/29/2019] [Accepted: 10/30/2019] [Indexed: 11/07/2022] Open
Abstract
Southwestern (SW) China is an area of active tectonism and erosion, yielding a dynamic, deeply eroded landscape that influences the genetic structure of the resident populations of plants and animals. Iron walnut (Juglans regia subsp. sigillata) is a deciduous tree species endemic to this region of China and cultivated there for its edible nuts. We sampled 36 iron walnut populations from locations throughout the species' range in SW China and genotyped a total of 765 individuals at five chloroplast DNA regions and 22 nuclear microsatellite loci. Species distribution models were produced to predict the evolution and historical biogeography of iron walnut and to estimate the impacts of climate oscillations and orographic environments on the species' demography. Our results indicated that J. regia subsp. sigillata had relatively low genetic diversity, high interpopulation genetic differentiation, and asymmetric interpopulation gene flow. Based on DIYABC analysis, we identified two lineages of J. sigillata in southwestern China. The lineages (subpopulations) diverge during the last glacial period (~1.34 Ma). Southwestern China was a glacial refuge during the last glacial period, but increasingly colder and arid climates might have fostered the fragmentation of J. regia subsp. sigillata within this refugium. Finally, we found that recent habitat fragmentation has led to a reduction in population connectivity and increased genetic differentiation by genetic drift in isolated populations. Our results support a conclusion that geological and climatic factors since the Miocene triggered the differentiation, evolutionary origin, and range shifts of J. sigillata in the studied region.
Collapse
Affiliation(s)
- Yi‐Wei Sun
- Key Laboratory of Resource Biology and Biotechnology in Western ChinaMinistry of EducationCollege of Life SciencesNorthwest UniversityXi'anChina
| | - Na Hou
- Guizhou Academy of ForestryGuiyangChina
| | - Keith Woeste
- Department of Forestry and Natural ResourcesUSDA Forest Service Hardwood Tree Improvement and Regeneration Center (HTIRC)Purdue UniversityWest LafayetteINUSA
| | - Chuchu Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western ChinaMinistry of EducationCollege of Life SciencesNorthwest UniversityXi'anChina
| | - Ming Yue
- Key Laboratory of Resource Biology and Biotechnology in Western ChinaMinistry of EducationCollege of Life SciencesNorthwest UniversityXi'anChina
- Xi'an Botanical Garden of Shaanxi ProvinceXi'anChina
| | - Xiao‐Ying Yuan
- Key Laboratory of Resource Biology and Biotechnology in Western ChinaMinistry of EducationCollege of Life SciencesNorthwest UniversityXi'anChina
| | - Peng Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western ChinaMinistry of EducationCollege of Life SciencesNorthwest UniversityXi'anChina
| |
Collapse
|
13
|
Tamaki I, Kawashima N, Setsuko S, Lee JH, Itaya A, Yukitoshi K, Tomaru N. Population genetic structure and demography of Magnolia kobus: variety borealis is not supported genetically. JOURNAL OF PLANT RESEARCH 2019; 132:741-758. [PMID: 31489497 PMCID: PMC7196954 DOI: 10.1007/s10265-019-01134-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 08/16/2019] [Indexed: 05/25/2023]
Abstract
Species delimitations by morphological and by genetic markers are not always congruent. Magnolia kobus consists of two morphologically different varieties, kobus and borealis. The latter variety is characterized by larger leaves than the former. For the conservation of M. kobus genetic resources in natural forests, the relationships between morphological and genetic variation should be clarified. We investigated variations in nuclear microsatellites, chloroplast DNA (cpDNA) sequences and leaf morphological traits in 23 populations of M. kobus over the range of species. Two genetically divergent lineages, northern and southern were detected and their geographical boundary was estimated to be at 39°N. The northern lineage consisted of two genetic clusters and a single cpDNA haplotype, while the southern one had multiple genetic clusters and cpDNA haplotypes. The northern lineage showed significantly lower genetic diversity than the southern. Approximate Bayesian computation indicated that the northern and southern lineages had experienced, respectively, population expansion and long-term stable population size. The divergence time between the two lineages was estimated to be 565,000 years ago and no signature of migration between the two lineages after divergence was detected. Ecological niche modeling showed that the potential distribution area in northern Japan at the last glacial maximum was very small. It is thus considered that the two lineages have experienced different population histories over several glacial-inter-glacial cycles. Individuals of populations in the central to northern part of Honshu on the Sea of Japan side and in Hokkaido had large leaf width and area. These leaf characteristics corresponded with those of variety borealis. However, the delimitation of the northern and southern lineages detected by genetic markers (39°N) was not congruent with that detected by leaf morphologies (36°N). It is therefore suggested that variety borealis is not supported genetically and the northern and southern lineages should be considered separately when identifying conservation units based not on morphology but on genetic markers.
Collapse
Affiliation(s)
- Ichiro Tamaki
- Gifu Academy of Forest Science and Culture, 88 Sodai, Mino, Gifu, 501-3714, Japan
| | - Naomichi Kawashima
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
- Mie Prefecture Forestry Research Institute, 3769-1 Nihongi, Hakusan-cho, Tsu, Mie, 515-2602, Japan
| | - Suzuki Setsuko
- Department of Forest Molecular Genetics and Biotechnology, Forestry and Forest Products Research Institute, Forest Research and Management Organization, 1 Matsunosato, Tsukuba, Ibaraki, 305-8687, Japan
| | - Jung-Hyun Lee
- Department of Biology Education, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 500-757, Republic of Korea
| | - Akemi Itaya
- Graduate School of Bioresources, Mie University, 1577 Kurimamachiya, Tsu, Mie, 514-8507, Japan
| | - Kyohei Yukitoshi
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Nobuhiro Tomaru
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan.
| |
Collapse
|
14
|
Distribution and conservation status of Magnolia ovoidea (Magnoliaceae): a Critically Endangered species in Yunnan, China. ORYX 2019. [DOI: 10.1017/s0030605318000704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
AbstractMagnolia ovoidea is a narrowly endemic, Critically Endangered tree with a fragmented distribution in south-west Yunnan, China. We examined the size structure of this species, documented threats and assessed its extinction risk. We found the species in six locations, all in unprotected areas, in Maguan County. The largest subpopulations are in Donggua Lin and Youfang Po, with 17 and 50 living individuals, respectively. The distribution of the diameter at breast height of the M. ovoidea population has an inverse J-shape, indicating a stable size structure. However, the distribution of the height of seedlings is L-shaped, suggesting inhibited regeneration. The natural vegetation is severely fragmented in all six locations, surrounded by roads, farmlands, and Alnus nepalensis or Cunninghamia lanceolata plantations. We recommend that M. ovoidea should be categorized on the IUCN Red List as Critically Endangered based on criteria B2ab(iii) + C2a(i).
Collapse
|
15
|
Liao R, Luo Y, Yisilam G, Lu R, Wang Y, Li P. Development and characterization of SSR markers for Sanguinaria canadensis based on genome skimming. APPLICATIONS IN PLANT SCIENCES 2019; 7:e11289. [PMID: 31572630 PMCID: PMC6764431 DOI: 10.1002/aps3.11289] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 07/14/2019] [Indexed: 05/31/2023]
Abstract
PREMISE Polymorphic nuclear simple sequence repeat (nSSR) markers were developed for Sanguinaria canadensis (Papaveraceae), a spring ephemeral native to eastern North America. METHODS AND RESULTS Based on the genome skimming data of S. canadensis, a total of 240 nSSR primer pairs were designed for 80 loci from the assembled nuclear contigs. Of these primer pairs, 19 were selected for initial validation in four populations (80 individuals). All 19 loci produced heterologous amplification. The numbers of alleles per locus ranged from one to 21; the levels of observed and expected heterozygosity per locus ranged from 0.000 to 1.000 and from 0.000 to 0.847, respectively. Transferability of the loci was tested in the related species Eomecon chionantha. CONCLUSIONS The developed nSSR markers revealed polymorphism in the four studied populations and may contribute to investigations of the genetic diversity of S. canadensis and E. chionantha.
Collapse
Affiliation(s)
- Renyu Liao
- Laboratory of Systematic and Evolutionary Botany and BiodiversityCollege of Life SciencesZhejiang UniversityHangzhouZhejiang310058People's Republic of China
| | - Yuxin Luo
- Laboratory of Systematic and Evolutionary Botany and BiodiversityCollege of Life SciencesZhejiang UniversityHangzhouZhejiang310058People's Republic of China
| | - Gulbar Yisilam
- Laboratory of Systematic and Evolutionary Botany and BiodiversityCollege of Life SciencesZhejiang UniversityHangzhouZhejiang310058People's Republic of China
| | - Ruisen Lu
- Laboratory of Systematic and Evolutionary Botany and BiodiversityCollege of Life SciencesZhejiang UniversityHangzhouZhejiang310058People's Republic of China
| | - Yuguo Wang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological EngineeringInstitute of Biodiversity ScienceFudan UniversityShanghai200433People's Republic of China
| | - Pan Li
- Laboratory of Systematic and Evolutionary Botany and BiodiversityCollege of Life SciencesZhejiang UniversityHangzhouZhejiang310058People's Republic of China
| |
Collapse
|
16
|
Kosman E, Jokela J. Dissimilarity of individual microsatellite profiles under different mutation models: Empirical approach. Ecol Evol 2019; 9:4038-4054. [PMID: 31015986 PMCID: PMC6467862 DOI: 10.1002/ece3.5032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 01/21/2019] [Indexed: 11/25/2022] Open
Abstract
Microsatellites (simple sequence repeats, SSRs) still remain popular molecular markers for studying neutral genetic variation. Two alternative models outline how new microsatellite alleles evolve. Infinite alleles model (IAM) assumes that all possible alleles are equally likely to result from a mutation, while stepwise mutation model (SMM) describes microsatellite evolution as stepwise adding or subtracting single repeat units. Genetic relationships between individuals can be analyzed in higher precision when assuming the SMM scenario with allele size differences as a proxy of genetic distance. If population structure is not predetermined in advance, an empirical data analysis usually includes (a) estimating proximity between individual SSR profiles with a selected dissimilarity measure and (b) determining putative genetic structure of a given set of individuals using methods of clustering and/or ordination for the obtained dissimilarity matrix. We developed new dissimilarity indices between SSR profiles of haploid, diploid, or polyploid organisms assuming different mutation models and compared the performance of these indices for determining genetic structure with population data and with simulations. More specifically, we compared SMM with a constant or variable mutation rate at different SSR loci to IAM using data from natural populations of a freshwater bryozoan Cristatella mucedo (diploid), wheat leaf rust Puccinia triticina (dikaryon), and wheat powdery mildew Blumeria graminis (monokaryon). We show that inferences about population genetic structure are sensitive to the assumed mutation model. With simulations, we found that Bruvo's distance performs generally poorly, while the new metrics are capturing the differences in the genetic structure of the populations.
Collapse
Affiliation(s)
- Evsey Kosman
- Institute for Cereal Crops ImprovementTel Aviv UniversityTel AvivIsrael
| | - Jukka Jokela
- ETH Zurich, Department of Environmental Systems ScienceInstitute of Integrative Biology (IBZ)ZurichSwitzerland
- EAWAGAquatic EcologyDübendorfSwitzerland
| |
Collapse
|
17
|
Tamaki I, Kawashima N, Setsuko S, Itaya A, Tomaru N. Morphological and genetic divergence between two lineages of Magnolia salicifolia (Magnoliaceae) in Japan. Biol J Linn Soc Lond 2018. [DOI: 10.1093/biolinnean/bly139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Ichiro Tamaki
- Gifu Academy of Forest Science and Culture, Mino, Gifu, Japan
| | - Naomichi Kawashima
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Suzuki Setsuko
- Department of Forest Molecular Genetics and Biotechnology, Forestry and Forest Products Research Institute, Forest Research and Management Organization, Tsukuba, Ibaraki, Japan
| | - Akemi Itaya
- Graduate School of Bioresources, Mie University, Tsu, Mie, Japan
| | - Nobuhiro Tomaru
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
18
|
Jia Y, Zhu J, Wu Y, Fan WB, Zhao GF, Li ZH. Effects of Geological and Environmental Events on the Diversity and Genetic Divergence of Four Closely Related Pines: Pinus koraiensis, P. armandii, P. griffithii, and P. pumila. FRONTIERS IN PLANT SCIENCE 2018; 9:1264. [PMID: 30210523 PMCID: PMC6121107 DOI: 10.3389/fpls.2018.01264] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 08/10/2018] [Indexed: 06/08/2023]
Abstract
The effects of mountain uplift and environmental oscillations on nucleotide variability and species divergence remain largely unknown in East Asia. In this study, based on multiple nuclear DNA markers, we investigated the levels and patterns of nucleotide diversity and interspecific divergence in four closely related pines in China, i.e., Pinus koraiensis, P. armandii, P. griffithii, and P. pumila. The four pine taxa shared low levels of nucleotide polymorphisms at the species level. P. pumila had the highest silent nucleotide diversity (πsil = 0.00661) whereas P. griffithii had the lowest (πsil = 0.00175), while the levels of genetic polymorphism in P. armandii (πsil = 0.00508) and P. koraiensis (πsil = 0.00652) were intermediate between the other two species. Population genetic structure analysis showed that variations primarily existed within populations of the four pine species, presumably due to habitat fragmentation or the island-like distributions of Pinus species. Population divergence (FST) analysis showed that the genetic divergence between P. griffithii and P. koraiensis was much greater than that between P. koraiensis and the other two pines species. Isolation-with-migration analysis suggested that asymmetric gene flow had occurred between any two pairs of pine species. Phylogenetic analyses indicated that the four allied species split into two groups about 1.37 million years ago, where P. armandii and P. pumila were closer and clustered as sister species, whereas P. koraiensis and P. griffithii were clustered on another branch. Our results and those obtained in previous studies suggest that mountain uplift and geological climate oscillations may have led to the patterns of genetic divergence and nucleotide variations in these four pine species.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhong-Hu Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an, China
| |
Collapse
|
19
|
Approximate Bayesian computation analysis of EST-associated microsatellites indicates that the broadleaved evergreen tree Castanopsis sieboldii survived the Last Glacial Maximum in multiple refugia in Japan. Heredity (Edinb) 2018; 122:326-340. [PMID: 30072800 DOI: 10.1038/s41437-018-0123-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 06/10/2018] [Accepted: 06/19/2018] [Indexed: 11/09/2022] Open
Abstract
Climatic changes have played major roles in plants' evolutionary history. Glacial oscillations have been particularly important, but some of their effects on plants' populations are poorly understood, including the numbers and locations of refugia in Asian warm temperate zones. In the present study, we investigated the demographic history of the broadleaved evergreen tree species Castanopsis sieboldii (Fagaceae) during the last glacial period in Japan. We used approximate Bayesian computation (ABC) for model comparison and parameter estimation for the demographic modeling using 27 EST-associated microsatellites. We also performed the species distribution modeling (SDM). The results strongly support a demographic scenario that the Ryukyu Islands and the western parts in the main islands (Kyushu and western Shikoku) were derived from separate refugia and the eastern parts in the main islands and the Japan Sea groups were diverged from the western parts prior to the coldest stage of the Last Glacial Maximum (LGM). Our data indicate that multiple refugia survived at least one in the Ryukyu Islands, and the other three regions of the western and eastern parts and around the Japan Sea of the main islands of Japan during the LGM. The SDM analysis also suggests the potential habitats under LGM climate conditions were mainly located along the Pacific Ocean side of the coastal region. Our ABC-based study helps efforts resolve the demographic history of a dominant species in warm temperate broadleaved forests during and after the last glacial period, which provides a basic model for future phylogeographical studies using this approach.
Collapse
|
20
|
Zhang YY, Shi E, Yang ZP, Geng QF, Qiu YX, Wang ZS. Development and Application of Genomic Resources in an Endangered Palaeoendemic Tree, Parrotia subaequalis (Hamamelidaceae) From Eastern China. FRONTIERS IN PLANT SCIENCE 2018; 9:246. [PMID: 29545814 PMCID: PMC5838013 DOI: 10.3389/fpls.2018.00246] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 02/12/2018] [Indexed: 05/14/2023]
Abstract
Parrotia subaequalis is an endangered palaeoendemic tree from disjunct montane sites in eastern China. Due to the lack of effective genomic resources, the genetic diversity and population structure of this endangered species are not clearly understood. In this study, we conducted paired-end shotgun sequencing (2 × 125 bp) of genomic DNA for two individuals of P. subaequalis on the Illumina HiSeq platform. Based on the resulting sequences, we have successfully assembled the complete chloroplast genome of P. subaequalis, as well as identified the polymorphic chloroplast microsatellites (cpSSRs), nuclear microsatellites (nSSRs) and mutational hotspots of chloroplast. Ten polymorphic cpSSR loci and 12 polymorphic nSSR loci were used to genotype 96 individuals of P. subaequalis from six populations to estimate genetic diversity and population structure. Our results revealed that P. subaequalis exhibited abundant genetic diversity (e.g., cpSSRs: Hcp = 0.862; nSSRs: HT = 0.559) and high genetic differentiation (e.g., cpSSRs: RST = 0.652; nSSRs: RST = 0.331), and characterized by a low pollen-to-seed migration ratio (r ≈ 1.78). These genetic patterns are attributable to its long evolutionary histories and low levels of contemporary inter-population gene flow by pollen and seed. In addition, lack of isolation-by-distance pattern and strong population genetic structuring in both marker systems, suggests that long-term isolation and/or habitat fragmentation as well as genetic drift may have also contributed to the geographic differentiation of P. subaequalis. Therefore, long-term habitat protection is the most important methods to prevent further loss of genetic variation and a decrease in effective population size. Furthermore, both cpSSRs and nSSRs revealed that P. subaequalis populations consisted of three genetic clusters, which should be considered as separated conservation units.
Collapse
Affiliation(s)
- Yun-Yan Zhang
- College of Life Sciences, Nanjing University, Nanjing, China
| | - En Shi
- College of Life Sciences, Nanjing University, Nanjing, China
| | - Zhao-Ping Yang
- Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, College of Life Sciences, Zhejiang University, Hangzhou, China
- College of Life Sciences, Tarim University, Alaer, China
| | - Qi-Fang Geng
- College of Life Sciences, Nanjing University, Nanjing, China
- Asian Natural Environmental Science Center, The University of Tokyo, Tokyo, Japan
| | - Ying-Xiong Qiu
- Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, College of Life Sciences, Zhejiang University, Hangzhou, China
| | | |
Collapse
|
21
|
Genetic Differentiation and Population Genetic Structure of the Chinese Endemic Dipteronia Oliv. Revealed by cpDNA and AFLP Data. FORESTS 2017. [DOI: 10.3390/f8110424] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|