1
|
Fonseca M, Ribeiro C, Castilla-Fernández G, Gama H, Magalhães L, Henriques SC, Silva N, Pinto F, Almeida L, Soares-da-Silva P. Effect of zamicastat on blood pressure and heart rate response to cold pressor test: A double-blind, randomized, placebo-controlled study in healthy subjects. Br J Clin Pharmacol 2024; 90:2781-2792. [PMID: 38970469 DOI: 10.1111/bcp.16167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 07/08/2024] Open
Abstract
AIMS Dopamine beta-hydroxylase (DβH) inhibitors, like zamicastat, hold promise for treating pulmonary arterial hypertension. This study aimed to validate the mechanism of action of zamicastat by studying its effect on the overdrive of the sympathetic nervous system (SNS). METHODS A single-centre, prospective, double-blind, randomized, placebo-controlled, crossover study evaluated the effect of 400 mg zamicastat in 22 healthy male subjects. Cold pressor test (CPT) was performed at screening and each treatment period on Days -1 and 10. Plasma and 24 h-urine levels of dopamine (DA), epinephrine (EPI) and norepinephrine (NE), and plasma DβH activity, were measured. RESULTS Compared to placebo, zamicastat showed a - 4.62 mmHg decrease in systolic blood pressure during the cold stimulus vs. rest phases on Day 10 of CPT (P = .020). Zamicastat decreased mean arterial pressure response to cold stimulus during CPT (-2.62 mmHg; P = .025). At Day 10, zamicastat significantly increased plasma DA, before CPT (12.63 ng/L; P = .040) and after CPT (19.22 ng/L; P = .001) as well as the estimated plasma EPI change from baseline after CPT (P = .040). Inhibition of plasma DβH activity ranged from 19.8% to 25.0%. At Day 10, significant reductions in 24-h urinary excretion of EPI (P = .002) and NE (P = .001) were observed. Zamicastat Cτ geometric mean ± GSD ranged from 45.86 ± 1.46 ng/mL on Day 3 to 58.64 ± 1.52 ng/mL on Day 10, with moderate inter-individual variability (CV: 32.6%-36.6%). Steady state was already achieved on Day 6. CONCLUSIONS Our results demonstrated the effect of zamicastat on the overdrive sympathetic response to cold stimulus, confirming its potential as SNS modulator.
Collapse
Affiliation(s)
| | - Cheila Ribeiro
- Research and Development, Bial-Portela & Cª S.A., Coronado (S. Romao e S. Mamede), Portugal
| | - Guillermo Castilla-Fernández
- Research and Development, Bial-Portela & Cª S.A., Coronado (S. Romao e S. Mamede), Portugal
- BIAL R&D Investments, S.A, Portugal
| | - Helena Gama
- Research and Development, Bial-Portela & Cª S.A., Coronado (S. Romao e S. Mamede), Portugal
| | - Luís Magalhães
- Research and Development, Bial-Portela & Cª S.A., Coronado (S. Romao e S. Mamede), Portugal
| | - Sara Carolina Henriques
- BlueClinical Phase I, Porto, Portugal
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - Nuno Silva
- BlueClinical Phase I, Porto, Portugal
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | | | - Luís Almeida
- BlueClinical Phase I, Porto, Portugal
- Department of Biomedicine, Unit of Pharmacology & Therapeutics, Faculty of Medicine, University of Porto, Portugal
- MedInUP - Center for Drug Discovery and Innovative Medicines, University of Porto, Porto, Portugal
| | - Patrício Soares-da-Silva
- Department of Biomedicine, Unit of Pharmacology & Therapeutics, Faculty of Medicine, University of Porto, Portugal
- MedInUP - Center for Drug Discovery and Innovative Medicines, University of Porto, Porto, Portugal
| |
Collapse
|
2
|
The Effects of Renal Nerve Denervation on Blood Pressure and Target Organs in Different Hypertensive Rat Models. Int J Hypertens 2021; 2021:8615253. [PMID: 33884205 PMCID: PMC8041559 DOI: 10.1155/2021/8615253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 01/25/2021] [Accepted: 03/02/2021] [Indexed: 11/26/2022] Open
Abstract
Background Hypertension contributes to the progression of cardiac remodeling and renal damage. In turn, renal sympathetic hyperactivation showed elevated sympathetic nervous system activity and led to blood pressure increase in certain patients. The purpose of this study was to observe the effect of renal nerve denervation on blood pressure and target organ changes in two hypertensive rat models. Methods Hypertensive rats were randomly divided into a renal denervation (RDN) group and sham operation group. Wistar–Kyoto (WKY) rats of the same age were set as the baseline control group. In the secondary hypertension model, SD rats were randomly divided into five groups. Blood pressure and bodyweight were measured every week until they were euthanized. Results The two rat models underwent RDN at key timepoints. At these timepoints, the hearts and kidneys were collected for norepinephrine and angiotensin II measurements and histological analysis. Conclusion RDN performed before development of hypertension showed a significant antihypertensive effect on the secondary hypertension model.
Collapse
|
3
|
Dey SK, Saini M, Prabhakar P, Kundu S. Dopamine β hydroxylase as a potential drug target to combat hypertension. Expert Opin Investig Drugs 2020; 29:1043-1057. [DOI: 10.1080/13543784.2020.1795830] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Sanjay Kumar Dey
- Department of Biochemistry, University of Delhi South Camp us , New Delhi, India
| | - Manisha Saini
- Department of Biochemistry, University of Delhi South Camp us , New Delhi, India
| | - Pankaj Prabhakar
- Department of Biochemistry, University of Delhi South Camp us , New Delhi, India
| | - Suman Kundu
- Department of Biochemistry, University of Delhi South Camp us , New Delhi, India
| |
Collapse
|
4
|
Azzam O, Kiuchi MG, Ho JK, Matthews VB, Gavidia LML, Nolde JM, Carnagarin R, Schlaich MP. New Molecules for Treating Resistant Hypertension: a Clinical Perspective. Curr Hypertens Rep 2019; 21:80. [PMID: 31506798 DOI: 10.1007/s11906-019-0978-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW To review the findings of trials evaluating pharmacological treatment approaches for hypertension in general, and resistant hypertension (RH) in particular, and propose future research and clinical directions. RECENT FINDINGS RH is defined as blood pressure (BP) that remains above target levels despite adherence to at least three antihypertensive medications, including a diuretic. Thus far, clinical trials of pharmacological approaches in RH have focused on older molecules, with spironolactone being demonstrated as the most efficacious fourth-line agent. However, the use of spironolactone in clinical practice is hampered by its side effect profile and the risk of hyperkalaemia in important RH subgroups, such as patients with moderate-severe chronic kidney disease (CKD). Clinical trials of new molecules targeting both well-established and more recently elucidated pathophysiologic mechanisms of hypertension offer a multitude of potential treatment avenues that warrant further evaluation in the context of RH. These include selective mineralocorticoid receptor antagonists (MRAs), aldosterone synthase inhibitors (ASIs), activators of the counterregulatory renin-angiotensin-system (RAS), vaccines, neprilysin inhibitors alone and in combined formulations, natriuretic peptide receptor agonists A (NPRA-A) agonists, vasoactive intestinal peptide (VIP) agonists, centrally acting aminopeptidase A (APA|) inhibitors, antimicrobial suppression of central sympathetic outflow (minocycline), dopamine β-hydroxylase (DβH) inhibitors and Na+/H+ Exchanger 3 (NHE3) inhibitors. There is a paucity of data from trials evaluating newer molecules for the treatment of RH. Emergent novel molecules for non-resistant forms of hypertension heighten the prospects of identifying new, effective and well-tolerated pharmacological approaches to RH. There is a glaring need to undertake RH-focused trials evaluating their efficacy and clinical applicability.
Collapse
Affiliation(s)
- Omar Azzam
- Department of Internal Medicine, Royal Perth Hospital, Perth, Western Australia, Australia.,Dobney Hypertension Centre, School of Medicine - Royal Perth Hospital Unit / Medical Research Foundation, University of Western Australia, Level 3, MRF Building, Rear 50 Murray St, Perth, WA, 6000, Australia
| | - Marcio G Kiuchi
- Dobney Hypertension Centre, School of Medicine - Royal Perth Hospital Unit / Medical Research Foundation, University of Western Australia, Level 3, MRF Building, Rear 50 Murray St, Perth, WA, 6000, Australia
| | - Jan K Ho
- Dobney Hypertension Centre, School of Medicine - Royal Perth Hospital Unit / Medical Research Foundation, University of Western Australia, Level 3, MRF Building, Rear 50 Murray St, Perth, WA, 6000, Australia
| | - Vance B Matthews
- Dobney Hypertension Centre, School of Medicine - Royal Perth Hospital Unit / Medical Research Foundation, University of Western Australia, Level 3, MRF Building, Rear 50 Murray St, Perth, WA, 6000, Australia
| | - Leslie Marisol Lugo Gavidia
- Dobney Hypertension Centre, School of Medicine - Royal Perth Hospital Unit / Medical Research Foundation, University of Western Australia, Level 3, MRF Building, Rear 50 Murray St, Perth, WA, 6000, Australia
| | - Janis M Nolde
- Dobney Hypertension Centre, School of Medicine - Royal Perth Hospital Unit / Medical Research Foundation, University of Western Australia, Level 3, MRF Building, Rear 50 Murray St, Perth, WA, 6000, Australia
| | - Revathy Carnagarin
- Dobney Hypertension Centre, School of Medicine - Royal Perth Hospital Unit / Medical Research Foundation, University of Western Australia, Level 3, MRF Building, Rear 50 Murray St, Perth, WA, 6000, Australia
| | - Markus P Schlaich
- Dobney Hypertension Centre, School of Medicine - Royal Perth Hospital Unit / Medical Research Foundation, University of Western Australia, Level 3, MRF Building, Rear 50 Murray St, Perth, WA, 6000, Australia. .,Departments of Cardiology and Nephrology, Royal Perth Hospital, Perth, Australia. .,Neurovascular Hypertension & Kidney Disease Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia.
| |
Collapse
|
5
|
Abstract
PURPOSE OF REVIEW Hypertension (HTN) is a widespread and growing disease, with medication intolerance and side-effect present among many. To address these obstacles novel pharmacotherapy is an active area of drug development. This review seeks to explore future drug therapy for HTN in the preclinical and clinical arenas. RECENT FINDINGS The future of pharmacological therapy in HTN consists of revisiting old pathways to find new targets and exploring wholly new approaches to provide additional avenues of treatment. In this review, we discuss the current status of the most recent drug therapy in HTN. New developments in well trod areas include novel mineralocorticoid antagonists, aldosterone synthase inhibitors, aminopeptidase-A inhibitors, natriuretic peptide receptor agonists, or the counter-regulatory angiotensin converting enzyme 2/angiotensin (Ang) (1-7)/Mas receptor axis. Neprilysin inhibitors popularized for heart failure may also still hold HTN potential. Finally, we examine unique systems in development never before used in HTN such as Na/H exchange inhibitors, vasoactive intestinal peptide agonists, and dopamine beta hydroxylase inhibitors. SUMMARY A concise review of future directions of HTN pharmacotherapy.
Collapse
|
6
|
Pires NM, Igreja B, Serrão MP, Matias EF, Moura E, António T, Campos FL, Brion L, Bertorello A, Soares-da-Silva P. Acute salt loading induces sympathetic nervous system overdrive in mice lacking salt-inducible kinase 1 (SIK1). Hypertens Res 2019; 42:1114-1124. [DOI: 10.1038/s41440-019-0249-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 11/29/2018] [Accepted: 01/22/2019] [Indexed: 01/11/2023]
|
7
|
Abstract
PURPOSE OF THE REVIEW Pharmacology remains the mainstay of treatment for hypertension across the globe. In what may seem like a well-trodden field, there are actually an exciting array of new pathways for the treatment of hypertension on the horizon. This review seeks to discuss the most recent research in ongoing areas of drug development in the field of hypertension. RECENT FINDINGS Novel areas of research in the field of hypertension pharmacology include central nervous system regulators, peripheral noradrenergic inhibitors, gastrointestinal sodium modulators, and a counter-regulatory arm of the renin-angiotensin-aldosterone system. This review discusses these pathways in a look into the current status of emerging pharmacological therapies for hypertension.
Collapse
Affiliation(s)
- Merrill H Stewart
- John Ochsner Heart and Vascular Institute, Ochsner Clinical School, The University of Queensland School of Medicine, 1514 Jefferson Highway, New Orleans, LA, 70121, USA.
| | - Carl J Lavie
- John Ochsner Heart and Vascular Institute, Ochsner Clinical School, The University of Queensland School of Medicine, 1514 Jefferson Highway, New Orleans, LA, 70121, USA
| | - Hector O Ventura
- John Ochsner Heart and Vascular Institute, Ochsner Clinical School, The University of Queensland School of Medicine, 1514 Jefferson Highway, New Orleans, LA, 70121, USA
| |
Collapse
|
8
|
Catelas DN, Serrão MP, Soares-Da-Silva P. Effects of nepicastat upon dopamine-β-hydroxylase activity and dopamine and norepinephrine levels in the rat left ventricle, kidney, and adrenal gland. Clin Exp Hypertens 2019; 42:118-125. [PMID: 30821508 DOI: 10.1080/10641963.2019.1583245] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Background and Objective: Evaluate the activity of dopamine-β-hydroxylase (DβH) as well as the effect of the DβH inhibitor nepicastat upon enzyme activity and levels of dopamine (DA) and norepinephrine (NE) in the rat left ventricle, kidney, and adrenal glands.Methods: DβH assay consisted of the enzymatic hydroxylation of tyramine into octopamine, and DA and NE tissues levels were quantified by HPLC-ED.Results: Nepicastat (30 mg/kg, p.o.) reduced DβH activity by 93% and 80% in the adrenals at 4 h and 8 h postdrug administration, accompanied by significant reductions in NE and epinephrine tissue levels and an increase in DA levels and of DA/NE tissue ratios, with similar findings for NE, DA and of DA/NE tissue ratios in left ventricle and kidney. DβH activity in the left ventricle and kidney showed a high degree of variability, which does not allow corroboration of the effects of nepicastat upon catecholamine tissue levels.Conclusion: The assay of DβH activity in heart and kidney lacks the necessary robustness, but DβH activity in the adrenals appears to be an appropriate marker. However, the effect size upon DA/NE tissue ratios (an indirect measure of DβH activity) as induced by nepicastat was very similar in sympathetically innervated tissues, left ventricle and kidney, and the adrenal medulla.
Collapse
Affiliation(s)
- Diogo Nóbrega Catelas
- Department of Biomedicine, Unit of Pharmacology and Therapeutics, Faculty Medicine, University of Porto, Porto, Portugal
| | - Maria Paula Serrão
- Department of Biomedicine, Unit of Pharmacology and Therapeutics, Faculty Medicine, University of Porto, Porto, Portugal.,MedInUP - Center for Drug Discovery and Innovative Medicines, University of Porto, Porto, Portugal
| | - Patricio Soares-Da-Silva
- Department of Biomedicine, Unit of Pharmacology and Therapeutics, Faculty Medicine, University of Porto, Porto, Portugal.,MedInUP - Center for Drug Discovery and Innovative Medicines, University of Porto, Porto, Portugal
| |
Collapse
|
9
|
Effects of renal denervation on blood-pressure response to hemorrhagic shock in spontaneously hypertensive rats. Chin J Traumatol 2018; 21:293-300. [PMID: 30342984 PMCID: PMC6235792 DOI: 10.1016/j.cjtee.2018.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 03/31/2018] [Accepted: 04/19/2018] [Indexed: 02/04/2023] Open
Abstract
PURPOSE Renal denervation (RD) has been demonstrated to be an effective approach to reduce blood pressure for those with resistant hypertension. Yet, we aimed to explore the effect and possible mechanism of RD on blood-pressure response to hemorrhagic shock in spontaneously hypertensive rats. METHODS A total of 48 male spontaneously hypertensive rats were randomized to three groups: study group, sham-operation group and control group. RD was achieved by cutting off renal nerves and swabbing phenol on it. Ten weeks after RD, 8 rats in each group were sacrificed to collect the kidney and heart tissues. The remaining rats were subjected to an operation to induce hemorrhagic shock which would lead to 40% loss of total blood volume, and observed for 120 min. The serum concentration of norepinephrine was measured before and three weeks after RD. RESULTS The blood-pressure and norepinephrine levels were reduced significantly after RD (p < 0.05). Systolic blood pressure and diastolic blood pressure of the surgery group were higher than those in the sham and control groups at 15, 30 and 45 min after hemorrhagic shock (p < 0.05), while no significant difference was observed at 60, 90 and 120 min (p > 0.05). Additionally, the beta-1 adrenergic receptor (β1-AR) in the study group was significantly higher than those in the other two groups (p < 0.05) after hemorrhagic shock. CONCLUSION This study demonstrated that RD could to some extent improve blood-pressure response to hemorrhagic shock in an established model of severe hemorrhagic shock in spontaneously hypertensive rats. The mechanism might be associated with up-regulation of β1-AR.
Collapse
|
10
|
Antihypertensive effect of etamicastat in dopamine D2 receptor-deficient mice. Hypertens Res 2018; 41:489-498. [PMID: 29654295 DOI: 10.1038/s41440-018-0041-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 10/23/2017] [Accepted: 11/30/2017] [Indexed: 12/21/2022]
Abstract
Abnormalities of the D2R gene (DRD2) play a role in the pathogenesis of human essential hypertension; variants of the DRD2 have been reported to be associated with hypertension. Disruption of Drd2 (D2-/-) in mice increases blood pressure. The hypertension of D2-/- mice has been related, in part, to increased sympathetic activity, renal oxidative stress, and renal endothelin B receptor (ETBR) expression. We tested in D2-/- mice the effect of etamicastat, a reversible peripheral inhibitor of dopamine-β-hydroxylase that reduces the biosynthesis of norepinephrine from dopamine and decreases sympathetic nerve activity. Blood pressure was measured in anesthetized D2-/- mice treated with etamicastat by gavage, (10 mg/kg), conscious D2-/- mice, and D2+/+ littermates, and mice with the D2R selectively silenced in the kidney, treated with etamicastat in the drinking water (10 mg/kg per day). Tissue and urinary catecholamines and renal expression of selected G protein-coupled receptors, enzymes related to the production of reactive oxygen species, and sodium transporters were also measured. Etamicastat decreased blood pressure both in anesthetized and conscious D2-/- mice and mice with renal-selective silencing of D2R to levels similar or close to those measured in D2+/+ littermates. Etamicastat decreased cardiac and renal norepinephrine and increased cardiac and urinary dopamine levels in D2-/- mice. It also normalized the increased renal protein expressions of ETBR, NADPH oxidase isoenzymes, and urinary 8-isoprostane, as well as renal NHE3 and NCC, and increased the renal expression of D1R but not D5R in D2-/- mice. In conclusion, etamicastat is effective in normalizing the increased blood pressure and some of the abnormal renal biochemical alterations of D2-/- mice.
Collapse
|
11
|
Skrzypecki J, Gawlak M, Huc T, Szulczyk P, Ufnal M. Renal denervation decreases blood pressure and renal tyrosine hydroxylase but does not augment the effect of hypotensive drugs. Clin Exp Hypertens 2017; 39:290-294. [DOI: 10.1080/10641963.2016.1267191] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
12
|
Li P, Huang PP, Yang Y, Liu C, Lu Y, Wang F, Sun W, Kong XQ. Renal sympathetic denervation attenuates hypertension and vascular remodeling in renovascular hypertensive rats. J Appl Physiol (1985) 2017; 122:121-129. [PMID: 27742806 DOI: 10.1152/japplphysiol.01019.2015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 09/26/2016] [Accepted: 10/09/2016] [Indexed: 02/07/2023] Open
Abstract
Li P, Huang P, Yang Y, Liu C, Lu Y, Wang F, Sun W, Kong X. Renal sympathetic denervation attenuates hypertension and vascular remodeling in renovascular hypertensive rats. J Appl Physiol 122: 121–129, 2017. First published October 14, 2016; doi: 10.1152/japplphysiol.01019.2015 .—Sympathetic activity is enhanced in patients with essential or secondary hypertension, as well as in various hypertensive animal models. Therapeutic targeting of sympathetic activation is considered an effective antihypertensive strategy. We hypothesized that renal sympathetic denervation (RSD) attenuates hypertension and improves vascular remodeling and renal disease in the 2-kidney, 1-clip (2K1C) rat model. Rats underwent 2K1C modeling or sham surgery; then rats underwent RSD or sham surgery 4 wk later, thus resulting in four groups (normotensive-sham, normotensive-RSD, 2K1C-sham, and 2K1C-RSD). Norepinephrine was measured by ELISA. Echocardiography was used to assess heart function. Fibrosis and apoptosis were assessed by Masson and TUNEL staining. Changes in mean arterial blood pressure in response to hexamethonium and plasma norepinephrine levels were used to evaluate basal sympathetic nerve activity. The 2K1C modeling success rate was 86.8%. RSD reversed the elevated systolic blood pressure induced by 2K1C, but had no effect on body weight. Compared with rats in the 2K1C-sham group, rats in the 2K1C-RSD group showed lower left ventricular mass/body weight ratio, interventricular septal thickness in diastole, left ventricular end-systolic diameter, and left ventricular posterior wall thickness in systole, whereas fractional shortening and ejection fraction were higher. Right kidney apoptosis and left kidney hypertrophy were not changed by RSD. Arterial fibrosis was lower in animals in the 2K1C-RSD group compared with those in the 2K1C-sham group. RSD reduced plasma norepinephrine and basal sympathetic activity in rats in the 2K1C-RSD group compared with rats in the 2K1C-sham group. These results suggest a possible clinical efficacy of RSD for renovascular hypertension. NEW & NOTEWORTHY The effects of renal sympathetic denervation (RSD) on hypertension, cardiac function, vascular fibrosis, and renal apoptosis were studied in the 2K1C rat model. Results showed that RSD attenuated hypertension, improved vascular remodeling, and reduced vascular fibrosis through decreased sympathetic activity in the 2K1C rat model, but it did not change the kidney size, renal apoptosis, or renal caspase-3 expression. These results could suggest possible clinical efficacy of RSD for renovascular hypertension.
Collapse
Affiliation(s)
- Peng Li
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Peoples Republic of China
| | - Pei-Pei Huang
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Peoples Republic of China
| | - Yun Yang
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Peoples Republic of China
| | - Chi Liu
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Peoples Republic of China
| | - Yan Lu
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Peoples Republic of China
| | - Fang Wang
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Peoples Republic of China
| | - Wei Sun
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Peoples Republic of China
| | - Xiang-Qing Kong
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Peoples Republic of China
| |
Collapse
|
13
|
Gao J, Kerut EK, Smart F, Katsurada A, Seth D, Navar LG, Kapusta DR. Sympathoinhibitory Effect of Radiofrequency Renal Denervation in Spontaneously Hypertensive Rats With Established Hypertension. Am J Hypertens 2016; 29:1394-1401. [PMID: 27538721 DOI: 10.1093/ajh/hpw089] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 07/22/2016] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Radiofrequency ablation of the renal arteries (RF-ABL) has been shown to decrease blood pressure (BP) in drug-resistant hypertensive patients who receive antihypertensive drug therapy. However, there remain questions regarding how RF-ABL influences BP independent of drug therapy and whether complete renal denervation is necessary to maximally lower BP. To study these questions, we examined the cardiovascular, sympathetic, and renal effects produced by RF-ABL of the proximal renal arteries in spontaneously hypertensive rats (SHR) with established hypertension. METHODS SHR were instrumented (telemetry) for measurement of systolic/diastolic BP (SBP/DBP). Rats then underwent Sham-ABL or RF-ABL adjacent to the renal ostium and BP was recorded for 8 weeks. Changes in sympathetic activity, 24-hour water/sodium excretion, and levels of urinary angiotensinogen (AGT), plasma renin activity, and kidney renin content (KRC) were measured in SHR. RESULTS Compared with Sham-ABL, RF-ABL produced a sustained decrease in BP. At 8 weeks, SBP/DBP was 171±6/115±3 and 183±4/129±3mm Hg for RF-ABL and Sham-ABL SHR, respectively. Correlating with the reduction in BP, RF-ABL significantly decreased the low frequency/total and low frequency/high frequency of BP variability and attenuated the hypotensive response to chlorisondamine. Kidney norepinephrine levels were markedly decreased at 8 weeks in RF-ABL vs. Sham-ABL SHR. There were no group differences in 24-hour sodium/water excretion or urinary AGT excretion rate (6 weeks) or plasma renin activity or KRC (8 weeks). In other studies, concurrent RF-ABL plus surgical denervation initially decreased BP to a greater level than RF-ABL alone, but thereafter the reduction in BP between groups was not different. CONCLUSIONS In hypertensive SHR, bilateral RF-ABL of the proximal renal arteries produced a sustained decease in sympathetic activity and BP without changes in sodium/water excretion or activity of the systemic/renal renin-angiotensin system.
Collapse
Affiliation(s)
- Juan Gao
- The Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
- The Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | | | - Frank Smart
- The Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
- Department of Cardiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Akemi Katsurada
- The Department of Physiology and the Hypertension and Renal Center of Excellence, Tulane Health Sciences Center, New Orleans, Louisiana, USA
| | - Dale Seth
- The Department of Physiology and the Hypertension and Renal Center of Excellence, Tulane Health Sciences Center, New Orleans, Louisiana, USA
| | - L Gabriel Navar
- The Department of Physiology and the Hypertension and Renal Center of Excellence, Tulane Health Sciences Center, New Orleans, Louisiana, USA
| | - Daniel R Kapusta
- The Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
- The Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
- Department of Anesthesiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| |
Collapse
|
14
|
Abstract
PURPOSE OF REVIEW Hypertension, which is present in about one quarter of the world's population, is responsible for about 41% of the number one cause of death - cardiovascular disease. Not included in these statistics is the effect of sodium intake on blood pressure, even though an increase or a marked decrease in sodium intake can increase blood pressure. This review deals with the interaction of gut microbiota and the kidney with genetics and epigenetics in the regulation of blood pressure and salt sensitivity. RECENT FINDINGS The abundance of the gut microbes, Firmicutes and Bacteroidetes, is associated with increased blood pressure in several models of hypertension, including the spontaneously hypertensive and Dahl salt-sensitive rats. Decreasing gut microbiota by antibiotics can increase or decrease blood pressure that is influenced by genotype. The biological function of probiotics may also be a consequence of epigenetic modification, related, in part, to microRNA. Products of the fermentation of nutrients by gut microbiota can influence blood pressure by regulating expenditure of energy, intestinal metabolism of catecholamines, and gastrointestinal and renal ion transport, and thus, salt sensitivity. SUMMARY The beneficial or deleterious effect of gut microbiota on blood pressure is a consequence of several variables, including genetics, epigenetics, lifestyle, and intake of antibiotics. These variables may influence the ultimate level of blood pressure and control of hypertension.
Collapse
|
15
|
Kishi T. What is the benefit of renal denervation? Hypertens Res 2016; 39:201-2. [PMID: 26763847 DOI: 10.1038/hr.2015.150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Takuya Kishi
- Collaborative Research Institute of Innovation for Cardiovascular Diseases, Kyushu University Center for Disruptive Cardiovascular Medicine, Fukuoka, Japan
| |
Collapse
|
16
|
Igreja B, Wright LC, Soares-da-Silva P. Sustained high blood pressure reduction with etamicastat, a peripheral selective dopamine β-hydroxylase inhibitor. ACTA ACUST UNITED AC 2015; 10:207-16. [PMID: 26803288 DOI: 10.1016/j.jash.2015.12.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Revised: 12/03/2015] [Accepted: 12/16/2015] [Indexed: 11/25/2022]
Abstract
The aim of the present study was to evaluate the influence of chronic inhibition of dopamine ß-hydroxylase by etamicastat on the development of hypertension in the spontaneously hypertensive rat (SHR) and the sustainability of effects on the systolic and diastolic blood pressure in the SHR and the normotensive Wistar-Kyoto rat (WKY). WKY and SHR received etamicastat (10 mg/kg/d) from 5 weeks of age for 35 weeks in drinking water, and cardiovascular assessments were performed on a weekly basis. Etamicastat reduced systolic and diastolic blood pressure when SHRs reached the age of 16 weeks with mean decreases of 37 and 32 mm Hg, respectively, for the subsequent for 24 weeks of treatment, but did not prevent the increase in blood pressure (BP) aged between 5 and 11 week. The BP lowering effect of etamicastat in SHR was reversible on discontinuation and quickly resumed after reinstatement of therapy and was not accompanied by changes in heart rate. Etamicastat affected neither BP nor heart rate in WKY during 36 weeks of treatment. Etamicastat reduced urinary excretion of norepinephrine to a similar extent in WKY and SHR, accompanied by significant increases in urinary dopamine in SHR. Chronic administration of etamicastat did not adversely affected development of animals. Chronic dopamine ß-hydroxylase inhibition with etamicastat effectively decreases BP, although does not prevent the development of hypertension in the SHR.
Collapse
Affiliation(s)
- Bruno Igreja
- Department of Research and Development, BIAL-Portela & C(a), S.A., Portugal
| | - Lyndon C Wright
- Department of Research and Development, BIAL-Portela & C(a), S.A., Portugal
| | - Patricio Soares-da-Silva
- Department of Research and Development, BIAL-Portela & C(a), S.A., Portugal; Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Porto, Portugal; MedInUP-Center for Drug Discovery and Innovative Medicines, University of Porto, Porto, Portugal.
| |
Collapse
|
17
|
Renal denervation mitigates cardiac remodeling and renal damage in Dahl rats: a comparison with β-receptor blockade. Hypertens Res 2015; 39:217-26. [PMID: 26631854 DOI: 10.1038/hr.2015.133] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 09/29/2015] [Accepted: 10/14/2015] [Indexed: 12/22/2022]
Abstract
Chronic activation of the sympathetic nervous system (SNS) contributes to cardiac remodeling and the transition to heart failure (HF). Renal sympathetic denervation (RDN) may ameliorate this damage by improving renal function and sympathetic cardioregulation in hypertensive HF patients with renal injury. The efficacy may be comparable to that of chronic β-blocker treatment. Dahl salt-sensitive hypertensive rats were subjected to RDN in the hypertrophic stage. Another group of Dahl rats were subjected to sham operations and treated chronically with vehicle (CONT) or β-blocker bisoprolol (BISO). Neither RDN nor BISO altered the blood pressure; however, BISO significantly reduced the heart rate (HR). Both RDN and BISO significantly prolonged survival (22.2 and 22.4 weeks, respectively) compared with CONT (18.3 weeks). Echocardiography revealed reduced left ventricular (LV) hypertrophy and improved LV function, and histological analysis demonstrated the amelioration of LV myocyte hypertrophy and fibrosis in the RDN and BISO rats at the HF stage. Tyrosine hydroxylase and β1-adrenergic receptor (ADR) expression levels in the LV myocardium significantly increased only in the RDN rats, whereas the α1b-, α1d- and α2c-ADR expression levels increased only in the BISO rats. In both groups, renal damage and dysfunction were also reduced, and this reduction was accompanied by the suppression of endothelin-1, renin and angiotensin-converting enzyme mRNAs. RDN ameliorated the progression of both myocardial and renal damage in the hypertensive rats independent of blood pressure changes. The overall effects were similar to those of β-receptor blockade with favorable effects on HR and α-ADR expression. These findings may be associated with the restoration of the myocardial SNS and renal protection.
Collapse
|