1
|
Anghelache M, Voicu G, Deleanu M, Turtoi M, Safciuc F, Anton R, Boteanu D, Fenyo IM, Manduteanu I, Simionescu M, Calin M. Biomimetic Nanocarriers of Pro-Resolving Lipid Mediators for Resolution of Inflammation in Atherosclerosis. Adv Healthc Mater 2024; 13:e2302238. [PMID: 37852632 PMCID: PMC11469162 DOI: 10.1002/adhm.202302238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/16/2023] [Indexed: 10/20/2023]
Abstract
Atherosclerosis (ATH) is a systemic disease characterized by a chronic inflammatory process and lipid deposition in the arterial walls. The chronic inflammation within ATH lesions results, at least in part, from the failed resolution of inflammation. This process is controlled actively by specialized pro-resolving lipid mediators (SPMs), namely lipoxins, resolvins, protectins, and maresins. Herein, biomimetic nanocarriers are produced comprising a cocktail of SPMs-loaded lipid nanoemulsions (LN) covered with macrophage membranes (Bio-LN/SPMs). Bio-LN/SPMs retain on their surface the macrophage receptors involved in cellular interactions and the "marker of self" CD47, which impede their recognition and uptake by other macrophages. The binding of Bio-LN/SPMs to the surface of endothelial cells (EC) and smooth muscle cells (SMC) is facilitated by the receptors on the macrophage membranes and partly by SPMs receptors. In addition, Bio-LN/SPMs prove functional by reducing monocyte adhesion and transmigration to/through activated EC and by stimulating macrophage phagocytic activity. After intravenous administration, Bio-LN/SPMs accumulate in the aorta of ApoE-deficient mice at the level of atherosclerotic lesions. Also, the safety assessment testing reveals no side effects or immunotoxicity of Bio-LN/SPMs. Thus, the newly developed Bio-LN/SPMs represent a reliable targeted nanomedicine for the resolution of inflammation in atherosclerosis.
Collapse
Affiliation(s)
- Maria Anghelache
- Medical and Pharmaceutical Bionanotechnologies LaboratoryInstitute of Cellular Biology and Pathology “Nicolae Simionescu”Romanian AcademyBucharest050568Romania
| | - Geanina Voicu
- Medical and Pharmaceutical Bionanotechnologies LaboratoryInstitute of Cellular Biology and Pathology “Nicolae Simionescu”Romanian AcademyBucharest050568Romania
| | - Mariana Deleanu
- Liquid and Gas Chromatography LaboratoryInstitute of Cellular Biology and Pathology “Nicolae Simionescu”Romanian AcademyBucharest050568Romania
| | - Mihaela Turtoi
- Medical and Pharmaceutical Bionanotechnologies LaboratoryInstitute of Cellular Biology and Pathology “Nicolae Simionescu”Romanian AcademyBucharest050568Romania
| | - Florentina Safciuc
- Medical and Pharmaceutical Bionanotechnologies LaboratoryInstitute of Cellular Biology and Pathology “Nicolae Simionescu”Romanian AcademyBucharest050568Romania
| | - Ruxandra Anton
- Medical and Pharmaceutical Bionanotechnologies LaboratoryInstitute of Cellular Biology and Pathology “Nicolae Simionescu”Romanian AcademyBucharest050568Romania
| | - Delia Boteanu
- Medical and Pharmaceutical Bionanotechnologies LaboratoryInstitute of Cellular Biology and Pathology “Nicolae Simionescu”Romanian AcademyBucharest050568Romania
| | - Ioana Madalina Fenyo
- Gene Regulation and Molecular Therapies LaboratoryInstitute of Cellular Biology and Pathology “Nicolae Simionescu”Romanian AcademyBucharest050568Romania
| | - Ileana Manduteanu
- Medical and Pharmaceutical Bionanotechnologies LaboratoryInstitute of Cellular Biology and Pathology “Nicolae Simionescu”Romanian AcademyBucharest050568Romania
| | - Maya Simionescu
- Medical and Pharmaceutical Bionanotechnologies LaboratoryInstitute of Cellular Biology and Pathology “Nicolae Simionescu”Romanian AcademyBucharest050568Romania
| | - Manuela Calin
- Medical and Pharmaceutical Bionanotechnologies LaboratoryInstitute of Cellular Biology and Pathology “Nicolae Simionescu”Romanian AcademyBucharest050568Romania
| |
Collapse
|
2
|
Verçosa BLA, Muniz-Junqueira MI, Menezes-Souza D, Fujiwara RT, Borges LDF, Melo MN, Vasconcelos AC. MCP-1/IL-12 ratio expressions correlated with adventitial collagen depositions in renal vessels and IL-4/IFN-γ expression correlated with interstitial collagen depositions in the kidneys of dogs with canine leishmaniasis. Mol Immunol 2023; 156:61-76. [PMID: 36889187 DOI: 10.1016/j.molimm.2023.02.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/04/2023] [Accepted: 02/13/2023] [Indexed: 03/08/2023]
Abstract
Collagen deposition is a common event in chronic inflammation, and canine Leishmaniosis (CanL) is generally associated with a long and chronic evolution. Considering that the kidney shows fibrinogenic changes during CanL, and the balance of cytokines/chemokines regulates the profibrinogenic and antifibrinogenic immune responses differently, it can be hypothesized that the balance of cytokines/chemokines can be differentially expressed in the renal tissue in order to determine the expression of collagen depositions in the kidneys. This study aimed to measure collagen deposition and to evaluate cytokine/chemokine expressions in the kidney by means of qRT-PCR in sixteen Leishmania-infected dogs and six uninfected controls. Kidney fragments were stained with hematoxylin & eosin (H&E), Masson's Trichrome, Picrosirius Red, and Gomori's reticulin. Intertubular and adventitial collagen depositions were evaluated by the morphometric approach. Cytokine RNA expressions were measured by means of qRT-PCR to identify molecules involved in chronic collagen depositions in kidneys with CanL. Collagen depositions were related to the presence of clinical signs, and more intense intertubular collagen depositions occurred in infected dogs. Adventitial collagen deposition, as morphometrically measured by the average area of the collagen, was more intense in clinically affected dogs than in subclinically infected dogs. TNF-α/TGF-β, MCP1/IL-12, CCL5/IL-12, IL-4/IFN-γ, and IL-12/TGF-β expressions were associated with clinical manifestations in dogs with CanL. The IL-4/IFN-α ratio was more commonly expressed and upregulated in clinically affected dogs, and downregulated in subclinically infected dogs. Furthermore, MCP-1/IL-12 and CCL5/IL-12 were more commonly expressed in subclinically infected dogs. Strong positive correlations were detected between morphometric values of interstitial collagen depositions and MCP-1/IL-12, IL-12, and IL-4 mRNA expression levels in the renal tissues. Adventitial collagen deposition was correlated with TGF-β, IL-4/IFN-γ, and TNF-α/TGF-β. In conclusion, our results showed the association of MCP-1/IL-12 and CCL5/IL-12 ratios with an absence of clinical signs, as well as an IL-4/IFN-α ratio with adventitial and intertubular collagen depositions in dogs with visceral leishmaniosis.
Collapse
Affiliation(s)
- Barbara Laurice Araújo Verçosa
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; Laboratório de Imunologia Celular, Faculdade de Medicina, Universidade de Brasília, Brasília, Brazil.
| | | | - Daniel Menezes-Souza
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Ricardo Toshio Fujiwara
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Luciano de F Borges
- Instituto de Ciências Biológicas, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil
| | - Maria Norma Melo
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Anilton Cesar Vasconcelos
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
3
|
Pradhan A, Aneja A, Ghosh S, Devvanshi H, C D, Sahu R, Ross C, Kshetrapal P, Maitra A, Das S. Association of exosomal miR-96-5p and miR-146a-5p with the disease severity in dengue virus infection. J Med Virol 2023; 95:e28614. [PMID: 36840403 DOI: 10.1002/jmv.28614] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/31/2023] [Accepted: 02/19/2023] [Indexed: 02/26/2023]
Abstract
Exosomes are small extracellular vesicles secreted by cells and have a major role in cell-to-cell signaling. As dengue infection progresses from a mild to a severe form of infection, the exosome's microRNA (miRNA) composition might change, which may contribute to pathogenesis. In this study, a comprehensive analysis of serum exosomal miRNAs was performed and their involvement in dengue virus-induced disease progression in an Indian cohort was assessed. Small RNA-seq showed 50 differentially expressed exosomal miRNAs that were significantly dysregulated during dengue infection. After extensive validation, miR-96-5p was found to be significantly upregulated, whereas miR-146a-5p was significantly downregulated with the progression of disease to severe form. Interestingly, a strong positive correlation was found between the expression levels of miR-96-5p and miR-146a-5p and the platelet levels of the patients. Further, study of miR-146a-5p showed that it regulates the expression of the proteins which are involved in the immune responses. These results suggest that miR-96-5p and miR-146a-5p could be used as diagnostic and prognostic markers for dengue disease progression, in addition to the already available biochemical and pathological parameters.
Collapse
Affiliation(s)
- Aunji Pradhan
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Ashish Aneja
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Sahana Ghosh
- National Institute of Biomedical Genomics, Kalyani, India
| | - Himadri Devvanshi
- Translational Health Science and Technology Institute, Faridabad, India
| | - Deepika C
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Risabh Sahu
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Celil Ross
- St. John's Medical College, Bangalore, India
| | | | - Arindam Maitra
- National Institute of Biomedical Genomics, Kalyani, India
| | - Saumitra Das
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
- National Institute of Biomedical Genomics, Kalyani, India
| |
Collapse
|
4
|
Yurdagul A. Crosstalk Between Macrophages and Vascular Smooth Muscle Cells in Atherosclerotic Plaque Stability. Arterioscler Thromb Vasc Biol 2022; 42:372-380. [PMID: 35172605 PMCID: PMC8957544 DOI: 10.1161/atvbaha.121.316233] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Most acute cardiovascular events are due to plaque rupture, with atheromas containing large necrotic cores and thin fibrous caps being more susceptible to rupture and lesions with small necrotic cores and thick fibrous caps being more protected from rupture. Atherosclerotic plaques are comprised various extracellular matrix proteins, modified lipoprotein particles, and cells of different origins, that is, vascular cells and leukocytes. Although much has been revealed about the mechanisms that lead to plaque instability, several key areas remain incompletely understood. This In-Focus Review highlights processes related to cellular crosstalk and the role of the tissue microenvironment in determining cell function and plaque stability. Recent advances highlight critical underpinnings of atherosclerotic plaque vulnerability, particularly impairments in the ability of macrophages to clear dead cells and phenotypic switching of vascular smooth muscle cells. However, these processes do not occur in isolation, as crosstalk between macrophages and vascular smooth muscle cells and interactions with their surrounding microenvironment play a significant role in determining plaque stability. Understanding these aspects of cellular crosstalk within an atherosclerotic plaque may shed light on how to modify cell behavior and identify novel approaches to transform rupture-prone atheromas into stable lesions.
Collapse
Affiliation(s)
- Arif Yurdagul
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences, Shreveport
| |
Collapse
|
5
|
Freitas RAD, Lima VV, Bomfim GF, Giachini FRC. Interleukin-10 in the Vasculature: Pathophysiological Implications. Curr Vasc Pharmacol 2021; 20:230-243. [PMID: 34961448 DOI: 10.2174/1570161120666211227143459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/18/2021] [Accepted: 11/16/2021] [Indexed: 11/22/2022]
Abstract
Interleukin-10 (IL-10) is an important immunomodulatory cytokine, initially characterized as an anti-inflammatory agent released by immune cells during infectious and inflammatory processes. IL-10 exhibits biological functions that extend to the regulation of different intracellular signaling pathways directly associated with vascular function. This cytokine plays a vital role in vascular tone regulation through the change of important proteins involved in vasoconstriction and vasodilation. Numerous investigations covered here have shown that therapeutic strategies inducing IL-10 result in anti-inflammatory, anti-hypertrophic, antihyperplastic, anti-apoptotic and antihypertensive effects. This non-systematic review summarizes the modulating effects mediated by IL-10 in vascular tissue, particularly on vascular tone, and the intracellular pathway induced by this cytokine. We also highlight the advances in IL-10 manipulation as a therapeutic target in different cardiovascular pathophysiologies, including the physiological implications in animals and humans. Finally, the review illustrates current and potential future perspectives of the potential use of IL-10 in clinical trials, based on the clinical evidence.
Collapse
Affiliation(s)
| | - Victor Vitorino Lima
- Institute of Biological Sciences and Health, Federal University of Mato Grosso, Barra do Garças - Brazil
| | | | - Fernanda Regina Casagrande Giachini
- Institute of Biological Sciences, Federal University of Goias, Goiânia - Brazil.
- Institute of Biological Sciences and Health, Federal University of Mato Grosso, Barra do Garças - Brazil
| |
Collapse
|
6
|
Ho MH, Yen CH, Hsieh TH, Kao TJ, Chiu JY, Chiang YH, Hoffer BJ, Chang WC, Chou SY. CCL5 via GPX1 activation protects hippocampal memory function after mild traumatic brain injury. Redox Biol 2021; 46:102067. [PMID: 34315111 PMCID: PMC8327355 DOI: 10.1016/j.redox.2021.102067] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/12/2021] [Accepted: 07/08/2021] [Indexed: 12/23/2022] Open
Abstract
Traumatic brain injury (TBI) is a prevalent head injury worldwide which increases the risk of neurodegenerative diseases. Increased reactive oxygen species (ROS) and inflammatory chemokines after TBI induces secondary effects which damage neurons. Targeting NADPH oxidase or increasing redox systems are ways to reduce ROS and damage. Earlier studies show that C–C motif chemokine ligand 5 (CCL5) has neurotrophic functions such as promoting neurite outgrowth as well as reducing apoptosis. Although CCL5 levels in blood are associated with severity in TBI patients, the function of CCL5 after brain injury is unclear. In the current study, we induced mild brain injury in C57BL/6 (wildtype, WT) mice and CCL5 knockout (CCL5-KO) mice using a weight-drop model. Cognitive and memory functions in mice were analyzed by Novel-object-recognition and Barnes Maze tests. The memory performance of both WT and KO mice were impaired after mild injury. Cognition and memory function in WT mice quickly recovered after 7 days but recovery took more than 14 days in CCL5-KO mice. FJC, NeuN and Hypoxyprobe staining revealed large numbers of neurons damaged by oxidative stress in CCL5-KO mice after mTBI. NADPH oxidase activity show increased ROS generation together with reduced glutathione peroxidase-1 (GPX1) and glutathione (GSH) activity in CCL5-KO mice; this was opposite to that seen in WT mice. CCL5 increased GPX1 expression and reduced intracellular ROS levels which subsequently increased cell survival both in primary neuron cultures and in an overexpression model using SHSY5Y cell. Memory impairment in CCL5-KO mice induced by TBI could be rescued by i.p. injection of the GSH precursor – N-acetylcysteine (NAC) or intranasal delivery of recombinant CCL5 into mice after injury. We conclude that CCL5 is an important molecule for GPX1 antioxidant activation during post-injury day 1–3, and protects hippocampal neurons from ROS as well as improves memory function after trauma.
Collapse
Affiliation(s)
- Man-Hau Ho
- Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research, Taiwan; Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan; Department of Biological Science and Technology, National Pingtung University of Science and Technology, Neipu, Pingtung, 91201, Taiwan
| | - Chia-Hung Yen
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Neipu, Pingtung, 91201, Taiwan
| | - Tsung-Hsun Hsieh
- School of Physical Therapy and Graduate Institute of Rehabilitation Science, Chang Gung University, Taoyuan, Taiwan; Neuroscience Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Tzu-Jen Kao
- Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research, Taiwan; Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Jing-Yuan Chiu
- Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Yung-Hsiao Chiang
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, 11031, Taiwan; Department of Neurosurgery, Taipei Medical University Hospital, Taipei, 11031, Taiwan; Neuroscience Research Center, Taipei Medical University, Taipei, 11031, Taiwan
| | - Barry J Hoffer
- Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research, Taiwan; Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Neuroscience Research Center, Taipei Medical University, Taipei, 11031, Taiwan; Department of Neurosurgery, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Scientist Emeritus, National Institutes of Health, USA
| | - Wen-Chang Chang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Szu-Yi Chou
- Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research, Taiwan; Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
7
|
Kim HY, Kim HS. Sulfatase 1 mediates IL-10-induced dimethylarginine dimethylaminohydrolase-1 expression and antiproliferative effects in vascular smooth muscle cells of spontaneously hypertensive rats. Cytokine 2021; 137:155344. [PMID: 33128921 DOI: 10.1016/j.cyto.2020.155344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 10/08/2020] [Accepted: 10/08/2020] [Indexed: 12/18/2022]
Abstract
The extracellular sulfatases (exSulfs) sulfatase 1 (Sulf1) and sulfatase 2 (Sulf2) are well-known regulators of cell signaling and metabolism. In addition, exSulfs mediate the up- or downregulatory effects of cytokines on angiotensin II (Ang II)-induced expression of hypertensive mediators in vascular smooth muscle cells (VSMC) from spontaneously hypertensive rats (SHRs). Previously, we demonstrated that interleukin-10 (IL-10)-induced dimethylarginine dimethylaminohydrolase-1 (DDAH-1) expression was mediated by Ang II subtype 2 receptor (AT2 R) and AMP-activated protein kinase (AMPK) activation, and that IL-10-mediated inhibition of Ang II-induced proliferation of SHRs VSMC was partially associated with DDAH-1. In this study, we examined the effects of exSulfs on IL-10-induced DDAH-1 expression, abrogation of Ang II-induced DDAH-1 downregulation, and inhibition of Ang II-induced proliferation of SHRs VSMC. IL-10-induced DDAH-1 expression and abrogation of Ang II-induced DDAH-1 downregulation were attenuated in Sulf1 siRNA-transfected SHRs VSMC. However, Sulf2 did not affect IL-10-induced DDAH-1 expression and abrogation of Ang II-induced DDAH-1 downregulation. Downregulation of Sulf1 inhibited IL-10-induced AT2 R expression and the synergistic effects of IL-10 on Ang II-induced AT2 R expression. Additionally, Sulf1 downregulation inhibited IL-10-induced AMPK activity and abrogation of Ang II-induced decrease in AMPK activity. Moreover, the IL-10-mediated inhibition of Ang II-induced proliferation was not detected in Sulf1 siRNA-transfected SHRs VSMC; IL-10-mediated inhibition of Ang II-induced VSMC proliferation was mediated via the AT2 R pathway and AMPK activation. Specifically, IL-10-induced DDAH-1 expression, abrogation of Ang II-induced DDAH-1 downregulation, and inhibition of Ang II-induced proliferation, which is mediated by the AT2 R pathway and AMPK activation, are mainly mediated by Sulf1 activity in SHRs VSMC. These results suggest that Sulf1, and not Sulf2, mediates the IL-10-induced inhibition of Ang II-induced hypertensive effects in SHRs VSMC.
Collapse
MESH Headings
- Amidohydrolases/genetics
- Amidohydrolases/metabolism
- Angiotensin II/pharmacology
- Animals
- Blotting, Western
- Cell Proliferation/drug effects
- Cells, Cultured
- Gene Expression Regulation, Enzymologic/drug effects
- Interleukin-10/pharmacology
- Male
- Muscle, Smooth, Vascular/cytology
- Myocytes, Smooth Muscle/drug effects
- RNA Interference
- Rats, Inbred SHR
- Rats, Inbred WKY
- Receptor, Angiotensin, Type 2/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Signal Transduction/drug effects
- Sulfotransferases/genetics
- Sulfotransferases/metabolism
- Rats
Collapse
Affiliation(s)
- Hye Young Kim
- Department of Microbiology, College of Medicine, Yeungnam University, Daegu, Republic of Korea
| | - Hee Sun Kim
- Department of Microbiology, College of Medicine, Yeungnam University, Daegu, Republic of Korea.
| |
Collapse
|
8
|
Kozłowska A, Wojtacha P, Równiak M, Kolenkiewicz M, Huang ACW. ADHD pathogenesis in the immune, endocrine and nervous systems of juvenile and maturating SHR and WKY rats. Psychopharmacology (Berl) 2019; 236:2937-2958. [PMID: 30737597 PMCID: PMC6820808 DOI: 10.1007/s00213-019-5180-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 01/23/2019] [Indexed: 01/10/2023]
Abstract
RATIONALE Attention-deficit/hyperactivity disorder (ADHD) is one of the most common neurobehavioural disorders with morphological and functional brain abnormalities. However, there is a growing body of evidence that abnormalities in the immune and endocrine systems may also account for the ADHD pathogenesis. OBJECTIVES To test ADHD pathogenesis in neurological, immune and endocrine systems, this study examined the concentrations of cytokines, chemokines, oxidative stress markers, metabolic parameters, steroid hormones and steroidogenic enzymes in the serum and/or tissues of spontaneously hypertensive rats (SHRs, animal model of ADHD) and Wistar Kyoto rats (WKYs, control animals). Moreover, the volume of the medial prefrontal cortex (mPFC) as well as the density of dopamine 2 (D2) receptor-expressing cells and tyrosine hydroxylase (TH)-positive nerve fibres in it was also elucidated. METHODS Peripheral blood, spleen and adrenal gland samples, as well as brain sections collected on day 35 (juvenile) and day 70 (maturating) from SHRs and WKYs, were processed by ELISA and immunohistochemistry, respectively. RESULTS The results show significant increases of serum and/or tissue concentrations of cytokines, chemokines and oxidative stress markers in juvenile SHRs when compared to the age-matched WKYs. These increases were accompanied by a lowered volume of the mPFC and up-regulation of D2 in this brain region. In maturating SHRs, the levels of inflammatory and oxidative stress markers were normalised and accompanied by elevated contents of steroid hormones. CONCLUSIONS Significant elevations of serum and/or tissue contents of cytokines, chemokines and oxidative stress markers as well as volumetric and neurochemical alterations in the mPFC of juvenile SHRs may suggest the cooperation of neurological and immune systems in the ADHD pathogenesis. Elevated levels of steroid hormones in maturating SHRs may be a compensatory effect involved in reducing inflammation and ADHD symptoms.
Collapse
Affiliation(s)
- Anna Kozłowska
- Department of Human Physiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Warszawska Av, 30, 10-082 Olsztyn, Poland
| | - Paweł Wojtacha
- Department of Industrial and Food Microbiology, Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Plac Cieszyński 1, 10-726 Olsztyn, Poland
| | - Maciej Równiak
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Plac Łódzki 3, 10-727 Olsztyn, Poland
| | - Małgorzata Kolenkiewicz
- Department of Pathophysiology, School Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Olsztyn, Warszawska Av, 30, 10-082 Olsztyn, Poland
| | | |
Collapse
|
9
|
Abstract
PURPOSE OF REVIEW In recent years, a vast body of evidence has accumulated indicating the role of the immune system in the regulation of blood pressure and modulation of hypertensive pathology. Numerous cells of the immune system, both innate and adaptive immunity, have been indicated to play an important role in the development and maintenance of hypertension. The purpose of this review was to summarize the role of adaptive immunity in experimental models of hypertension (genetic, salt-sensitive, and Angiotensin (Ang) II induced) and in human studies. In particular, the role of T and B cells is discussed. RECENT FINDINGS In response to hypertensive stimuli such as Ang II and high salt, T cells become pro-inflammatory and they infiltrate the brain, blood vessel adventitia and periadventitial fat, heart, and the kidney. Pro-inflammatory T cell-derived cytokines such as IFN-γ and TNF-α (from CD8+ and CD4+Th1) and IL-17A (from the γδ-T cell and CD4+Th17) exacerbate hypertensive responses mediating both endothelial dysfunction and cardiac, renal, and neurodegenerative injury. The modulation of adaptive immune activation in hypertension has been attributed to target organ oxidative stress that leads to the generation of neoantigens, including isolevuglandin-modified proteins. The role of adaptive immunity is sex-specific with much more pronounced mechanisms in males than that in females. Hypertension is also associated with B cell activation and production of autoantibodies (anti-Hsp70, anti-Hsp65, anti-Hsp60, anti-AT1R, anti-α1AR, and anti-β1AR). The hypertensive responses can be inhibited by T regulatory lymphocytes (Tregs) and their anti-inflammatory IL-10. Adaptive immunity and its interface with innate mechanisms may represent valuable targets in the modulation of blood pressure, as well as hypertension-related residual risk.
Collapse
Affiliation(s)
- Tomasz P Mikolajczyk
- Department of Internal and Agricultural Medicine, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Tomasz J Guzik
- Department of Internal and Agricultural Medicine, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland.
- BHF Centre for Excellence, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
10
|
Cha HJ, Kim HY, Kim HS. Sulfatase 1 mediates the attenuation of Ang II-induced hypertensive effects by CCL5 in vascular smooth muscle cells from spontaneously hypertensive rats. Cytokine 2018; 110:1-8. [DOI: 10.1016/j.cyto.2017.12.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 12/21/2017] [Accepted: 12/26/2017] [Indexed: 12/22/2022]
|
11
|
Pouvreau C, Dayre A, Butkowski EG, de Jong B, Jelinek HF. Inflammation and oxidative stress markers in diabetes and hypertension. J Inflamm Res 2018; 11:61-68. [PMID: 29497324 PMCID: PMC5822844 DOI: 10.2147/jir.s148911] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Background Inflammation and oxidative stress are important factors associated with chronic disease such as essential hypertension (HTN) and type 2 diabetes mellitus (T2DM). However, the association of inflammation and oxidative stress in HTN with T2DM as a comorbidity is inconclusive due to the multifactorial nature of these cardiometabolic diseases. Methodology The influence of pathophysiological factors include genetics, age of patient, and disease progression change throughout the lifespan and require further investigation. The study population included 256 participants attending a rural health screening program who were tested for markers of inflammation, oxidative stress, and coagulation/fibrinolysis. Demographic and clinical variables included, age, gender, systolic and diastolic blood pressures, blood glucose, hemoglobin A1c, estimated glomerular filtration rate, and cholesterol profile. Data were tested for normality, and nonparametric statistics were applied to analyze the sample with significance set at p<0.05. Results Of the inflammatory markers, interleukin-1β (IL-1β) and IL-10 were significantly different between the control and hypertensive group (p<0.03) and between the HTN+T2DM compared to the HTN group (p<0.05). Significant results for oxidative stress were observed for urinary 8-iso-PGF2α and insulin-like growth factor 1 (IGF-1) between the control and the HTN+T2DM group (p<0.01). Glutathione (GSH) was also significant between the HTN and HTN+T2DM group (p<0.05). Investigation of the progression of HTN also found significant changes in the inflammatory markers IGF-1, monocyte chemoattractant protein 1 (MCP-1), and (MCP-1/IGF-1)*IL-6 (p<0.05). Conclusion This study demonstrated that 8-iso-PGF2α and erythrocyte GSH may be clinically useful for assessing HTN and HTN with T2DM as a comorbidity, while significant changes in the inflammatory profile were also observed with HTN progression.
Collapse
Affiliation(s)
- Chloé Pouvreau
- Faculty of Sciences, University of Poitiers, Poitiers, France
| | - Antoine Dayre
- Faculty of Sciences, University of Poitiers, Poitiers, France
| | - Eugene G Butkowski
- School of Community Health, Charles Sturt University, Albury, NSW, Australia
| | - Beverlie de Jong
- School of Community Health, Charles Sturt University, Albury, NSW, Australia
| | - Herbert F Jelinek
- School of Community Health, Charles Sturt University, Albury, NSW, Australia.,Australian School of Advanced Medicine, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
12
|
Ye J, Ji Q, Liu J, Liu L, Huang Y, Shi Y, Shi L, Wang M, Liu M, Feng Y, Jiang H, Xu Y, Wang Z, Song J, Lin Y, Wan J. Interleukin 22 Promotes Blood Pressure Elevation and Endothelial Dysfunction in Angiotensin II-Treated Mice. J Am Heart Assoc 2017; 6:e005875. [PMID: 28974499 PMCID: PMC5721831 DOI: 10.1161/jaha.117.005875] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 07/26/2017] [Indexed: 01/02/2023]
Abstract
BACKGROUND CD4+ T helper (Th) cells, including Th1, Th2, and Th17 cells, play critical roles in angiotensin II-induced hypertension. Th22 cells, a novel subset of Th cells, take part in cardiovascular diseases by producing IL-22 (interleukin 22). This study aimed to investigate whether IL-22 is involved in hypertension. METHODS AND RESULTS Th22 cells and IL-22 levels were detected in angiotensin II-infused mice, and the results showed that Th22 cells and IL-22 levels significantly increased. To determine the effect of Th22/IL-22 on blood pressure regulation, angiotensin II-infused mice were treated with recombinant mouse IL-22, an anti-IL-22 neutralizing monoclonal antibody, or control. Treatment with recombinant IL-22 resulted in increased blood pressure, amplified inflammatory responses, and aggravated endothelial dysfunction, whereas the anti-IL-22 neutralizing monoclonal antibody decreased blood pressure, reduced inflammatory responses, and attenuated endothelial dysfunction. To determine whether the STAT3 (signal transducer and activator of transcription 3) pathway mediates the effect of IL-22 on blood pressure regulation, the special STAT3 pathway inhibitor S31-201 was administered to mice treated with recombinant IL-22. S31-201 treatment significantly ameliorated the IL-22 effects of increased blood pressure and endothelial dysfunction. In addition, serum IL-22 levels were significantly increased in hypertensive patients compared with healthy persons. Correlation analysis showed a positive correlation between IL-22 levels and blood pressure. CONCLUSIONS IL-22 amplifies the inflammatory response, induces endothelial dysfunction and promotes blood pressure elevation in angiotensin II-induced hypertensive mice. The STAT3 pathway mediates the effect of IL-22 on hypertension. Blocking IL-22 may be a novel therapeutic strategy to prevent and treat hypertension.
Collapse
Affiliation(s)
- Jing Ye
- Department of Cardiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Qingwei Ji
- Department of Cardiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Emergency & Critical Care Center, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing, China
| | - Jianfang Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Ling Liu
- Department of Cardiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Ying Huang
- Department of Cardiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Ying Shi
- Department of Cardiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Lei Shi
- Department of Cardiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Menglong Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Mengling Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Ying Feng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Huimin Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Yao Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Zhen Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Junlong Song
- Department of Cardiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Yingzhong Lin
- Department of Cardiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jun Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| |
Collapse
|
13
|
Aswad M, Assi S, Schif-Zuck S, Ariel A. CCL5 Promotes Resolution-Phase Macrophage Reprogramming in Concert with the Atypical Chemokine Receptor D6 and Apoptotic Polymorphonuclear Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2017; 199:1393-1404. [PMID: 28674178 DOI: 10.4049/jimmunol.1502542] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 06/07/2017] [Indexed: 12/16/2023]
Abstract
The engulfment of apoptotic polymorphonuclear cells (PMN) during the resolution of inflammation leads to macrophage reprogramming culminating in reduced proinflammatory and increased anti-inflammatory mediator secretion. The atypical chemokine receptor D6/ACKR2 is expressed on apoptotic PMN and plays an important role in regulating macrophage properties during and after engulfment. In this study, we found that the inflammatory chemokine CCL5 is mostly retained (75%) during the resolution of zymosan A peritonitis in mice. Moreover, this chemokine is secreted by resolution-phase macrophages (2.5 ng/ml) and promotes their reprogramming in vivo in D6+/+ mice (2-fold increase in IL-10/IL-12 ratio) but not their D6-/- counterparts. In addition, CCL5 enhanced macrophage reprogramming ex vivo exclusively when bound to D6+/+ apoptotic PMN. Signaling through p38MAPK and JNK in reprogrammed macrophages was enhanced by CCL5-bound apoptotic PMN (3.6-4 fold) in a D6-dependent manner, and was essential for reprogramming. Thus, CCL5 exerts a novel proresolving role on macrophages when acting in concert with apoptotic PMN-expressed D6.
Collapse
Affiliation(s)
- Miran Aswad
- Department of Biology, Faculty of Natural Sciences, University of Haifa, Haifa 3498838, Israel; and
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, Haifa 3498838, Israel
| | - Simaan Assi
- Department of Biology, Faculty of Natural Sciences, University of Haifa, Haifa 3498838, Israel; and
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, Haifa 3498838, Israel
| | - Sagie Schif-Zuck
- Department of Biology, Faculty of Natural Sciences, University of Haifa, Haifa 3498838, Israel; and
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, Haifa 3498838, Israel
| | - Amiram Ariel
- Department of Biology, Faculty of Natural Sciences, University of Haifa, Haifa 3498838, Israel; and
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, Haifa 3498838, Israel
| |
Collapse
|
14
|
Abais-Battad JM, Dasinger JH, Fehrenbach DJ, Mattson DL. Novel adaptive and innate immunity targets in hypertension. Pharmacol Res 2017; 120:109-115. [PMID: 28336371 DOI: 10.1016/j.phrs.2017.03.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 02/03/2017] [Accepted: 03/17/2017] [Indexed: 01/11/2023]
Abstract
Hypertension is a worldwide epidemic and global health concern as it is a major risk factor for the development of cardiovascular diseases. A relationship between the immune system and its contributing role to the pathogenesis of hypertension has been long established, but substantial advancements within the last few years have dissected specific causal molecular mechanisms. This review will briefly examine these recent studies exploring the involvement of either innate or adaptive immunity pathways. Such pathways to be discussed include innate immunity factors such as antigen presenting cells and pattern recognition receptors, adaptive immune elements including T and B lymphocytes, and more specifically, the emerging role of T regulatory cells, as well as the potential of cytokines and chemokines to serve as signaling messengers connecting innate and adaptive immunity. Together, we summarize these studies to provide new perspective for what will hopefully lead to more targeted approaches to manipulate the immune system as hypertensive therapy.
Collapse
Affiliation(s)
| | | | | | - David L Mattson
- Department of Physiology, Medical College of Wisconsin, United States
| |
Collapse
|
15
|
Mingomataj EÇ, Bakiri AH. Regulator Versus Effector Paradigm: Interleukin-10 as Indicator of the Switching Response. Clin Rev Allergy Immunol 2016; 50:97-113. [PMID: 26450621 DOI: 10.1007/s12016-015-8514-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The interleukin-10 (IL-10) is generally considered as the most important cytokine with anti-inflammatory properties and one of the key cytokines preventing inflammation-mediated tissue damage. In this respect, IL-10 producing cells play a crucial role in the outcome of infections, allergy, autoimmune reactions, tumor development, and transplant tolerance. Based on recent findings with regard to the mentioned clinical conditions, this review attempts to shed some light on the IL-10 functions, considering this cytokine as inherent inducer of the switching immunity. While acute infections and vaccinations are associated by IL-10 enhanced during few weeks, chronic parasitoses, tumor diseases, allergen-specific immunotherapy, transplants, and use of immune-suppressor drugs show an increased IL-10 level along months or years. With regard to autoimmune pathologies, the IL-10 increase is prevalently observed during early stages, whereas the successive stages are characterized by reaching of immune equilibrium independently to disease's activity. Together, these findings indicate that IL-10 is mainly produced during transient immune conditions and the persistent IL-10-related effect is the indication/prediction (and maybe effectuation) of the switching immunity. Actual knowledge emphasizes that any manipulation of the IL-10 response for treatment purposes should be considered very cautiously due to its potential hazards to the immune system. Probably, the IL-10 as potential switcher of immunity response should be used in association with co-stimulatory immune effectors that are necessary to determine the appropriate deviation during treatment of respective pathologies. Hopefully, further findings would open new avenues to study the biology of this "master switch" cytokine and its therapeutic potential.
Collapse
Affiliation(s)
- Ervin Ç Mingomataj
- Department of Allergy & Clinical Immunology, "Mother Theresa" School of Medicine, Tirana, Albania. .,Faculty of Technical Medical Sciences, Department of Preclinical Disciplines, University of Medicine, Tirana, Albania.
| | - Alketa H Bakiri
- Hygeia Hospital Tirana, Outpatients Service, Allergology Consulting Room, Tirana, Albania.,Faculty of Medical Sciences, Department of Preclinical Disciplines, Albanian University, Tirana, Albania
| |
Collapse
|
16
|
Vascular structural and functional changes: their association with causality in hypertension: models, remodeling and relevance. Hypertens Res 2016; 40:311-323. [PMID: 27784889 DOI: 10.1038/hr.2016.145] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 09/09/2016] [Accepted: 09/26/2016] [Indexed: 12/22/2022]
Abstract
Essential hypertension is a complex multifactorial disease process that involves the interaction of multiple genes at various loci throughout the genome, and the influence of environmental factors such as diet and lifestyle, to ultimately determine long-term arterial pressure. These factors converge with physiological signaling pathways to regulate the set-point of long-term blood pressure. In hypertension, structural changes in arteries occur and show differences within and between vascular beds, between species, models and sexes. Such changes can also reflect the development of hypertension, and the levels of circulating humoral and vasoactive compounds. The role of perivascular adipose tissue in the modulation of vascular structure under various disease states such as hypertension, obesity and metabolic syndrome is an emerging area of research, and is likely to contribute to the heterogeneity described in this review. Diversity in structure and related function is the norm, with morphological changes being causative in some beds and states, and in others, a consequence of hypertension. Specific animal models of hypertension have advantages and limitations, each with factors influencing the relevance of the model to the human hypertensive state/s. However, understanding the fundamental properties of artery function and how these relate to signalling mechanisms in real (intact) tissues is key for translating isolated cell and model data to have an impact and relevance in human disease etiology. Indeed, the ultimate aim of developing new treatments to correct vascular dysfunction requires understanding and recognition of the limitations of the methodologies used.
Collapse
|
17
|
Rudemiller NP, Patel MB, Zhang JD, Jeffs AD, Karlovich NS, Griffiths R, Kan MJ, Buckley AF, Gunn MD, Crowley SD. C-C Motif Chemokine 5 Attenuates Angiotensin II-Dependent Kidney Injury by Limiting Renal Macrophage Infiltration. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:2846-2856. [PMID: 27640148 DOI: 10.1016/j.ajpath.2016.07.015] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 07/12/2016] [Accepted: 07/19/2016] [Indexed: 12/24/2022]
Abstract
Inappropriate activation of the renin angiotensin system (RAS) is a key contributor to the pathogenesis of essential hypertension. During RAS activation, infiltration of immune cells into the kidney exacerbates hypertension and renal injury. However, the mechanisms underpinning the accumulation of mononuclear cells in the kidney after RAS stimulation remain unclear. C-C motif chemokine 5 (CCL5) drives recruitment of macrophages and T lymphocytes into injured tissues, and we have found that RAS activation induces CCL5 expression in the kidney during the pathogenesis of hypertension and renal fibrosis. We therefore evaluated the contribution of CCL5 to renal damage and fibrosis in hypertensive and normotensive models of RAS stimulation. Surprisingly, during angiotensin II-induced hypertension, CCL5-deficient (knockout, KO) mice exhibited markedly augmented kidney damage, macrophage infiltration, and expression of proinflammatory macrophage cytokines compared with wild-type controls. When subjected to the normotensive unilateral ureteral obstruction model of endogenous RAS activation, CCL5 KO mice similarly developed more severe renal fibrosis and greater accumulation of macrophages in the kidney, congruent with enhanced renal expression of the macrophage chemokine CCL2. In turn, pharmacologic inhibition of CCL2 abrogated the differences between CCL5 KO and wild-type mice in kidney fibrosis and macrophage infiltration after unilateral ureteral obstruction. These data indicate that CCL5 paradoxically limits macrophage accumulation in the injured kidney during RAS activation by constraining the proinflammatory actions of CCL2.
Collapse
Affiliation(s)
- Nathan P Rudemiller
- Division of Nephrology, Department of Medicine, Duke University Medical Center, Durham, North Carolina; Durham VA Medical Center, Durham, North Carolina
| | - Mehul B Patel
- Division of Nephrology, Department of Medicine, Duke University Medical Center, Durham, North Carolina; Durham VA Medical Center, Durham, North Carolina
| | - Jian-Dong Zhang
- Division of Nephrology, Department of Medicine, Duke University Medical Center, Durham, North Carolina; Durham VA Medical Center, Durham, North Carolina
| | - Alexander D Jeffs
- Division of Nephrology, Department of Medicine, Duke University Medical Center, Durham, North Carolina; Durham VA Medical Center, Durham, North Carolina
| | - Norah S Karlovich
- Division of Nephrology, Department of Medicine, Duke University Medical Center, Durham, North Carolina; Durham VA Medical Center, Durham, North Carolina
| | - Robert Griffiths
- Division of Nephrology, Department of Medicine, Duke University Medical Center, Durham, North Carolina; Durham VA Medical Center, Durham, North Carolina
| | - Matthew J Kan
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Anne F Buckley
- Department of Pathology, Duke University Medical Center, Durham, North Carolina
| | - Michael D Gunn
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Steven D Crowley
- Division of Nephrology, Department of Medicine, Duke University Medical Center, Durham, North Carolina; Durham VA Medical Center, Durham, North Carolina.
| |
Collapse
|
18
|
Ates I, Ozkayar N, Ates H, Karakulak UN, Kursun O, Topcuoglu C, Inan B, Yilmaz N. Elevated circulating sST2 associated with subclinical atherosclerosis in newly diagnosed primary hypertension. Hypertens Res 2016; 39:513-518. [DOI: 10.1038/hr.2016.16] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 12/22/2015] [Accepted: 12/28/2015] [Indexed: 12/15/2022]
|
19
|
Maldonado-Bouchard S, Peters K, Woller SA, Madahian B, Faghihi U, Patel S, Bake S, Hook MA. Inflammation is increased with anxiety- and depression-like signs in a rat model of spinal cord injury. Brain Behav Immun 2016; 51:176-195. [PMID: 26296565 PMCID: PMC4679693 DOI: 10.1016/j.bbi.2015.08.009] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 07/28/2015] [Accepted: 08/07/2015] [Indexed: 02/07/2023] Open
Abstract
Spinal cord injury (SCI) leads to increased anxiety and depression in as many as 60% of patients. Yet, despite extensive clinical research focused on understanding the variables influencing psychological well-being following SCI, risk factors that decrease it remain unclear. We hypothesized that excitation of the immune system, inherent to SCI, may contribute to the decrease in psychological well-being. To test this hypothesis, we used a battery of established behavioral tests to assess depression and anxiety in spinally contused rats. The behavioral tests, and subsequent statistical analyses, revealed three cohorts of subjects that displayed behavioral characteristics of (1) depression, (2) depression and anxiety, or (3) no signs of decreased psychological well-being. Subsequent molecular analyses demonstrated that the psychological cohorts differed not only in behavioral symptoms, but also in peripheral (serum) and central (hippocampi and spinal cord) levels of pro-inflammatory cytokines. Subjects exhibiting a purely depression-like profile showed higher levels of pro-inflammatory cytokines peripherally, whereas subjects exhibiting a depression- and anxiety-like profile showed higher levels of pro-inflammatory cytokines centrally (hippocampi and spinal cord). These changes in inflammation were not associated with injury severity; suggesting that the association between inflammation and the expression of behaviors characteristic of decreased psychological well-being was not confounded by differential impairments in motor ability. These data support the hypothesis that inflammatory changes are associated with decreased psychological well-being following SCI.
Collapse
Affiliation(s)
- Sioui Maldonado-Bouchard
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, Bryan, TX, USA; Department of Psychology, McGill University, Montréal, Québec, Canada.
| | - Kelsey Peters
- Department of Psychology, Texas A&M University, College Station,
Texas, USA
| | - Sarah A. Woller
- Anesthesiology, University of California San Diego, San Diego,
California, USA
| | - Behrouz Madahian
- Department of Mathematical Sciences, University of Memphis,
Tennessee, USA
| | - Usef Faghihi
- Department of Mathematics & Computer Science, University of
Indianapolis, Indianapolis, USA
| | - Shivani Patel
- Department of Psychology, Texas A&M University, College Station,
Texas, USA
| | - Shameena Bake
- Department of Neuroscience and Experimental Therapeutics, Texas
A&M Health Science Center, Bryan, Texas
| | - Michelle A Hook
- Department of Neuroscience and Experimental Therapeutics, Texas
A&M Health Science Center, Bryan, Texas
| |
Collapse
|