1
|
Ho CH, Chang TT, Lin HC, Wang SF. Agalactosyl IgG induces liver fibrogenesis via Fc gamma receptor 3a on human hepatic stellate cells. J Pathol 2024; 263:508-519. [PMID: 38886892 DOI: 10.1002/path.6303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 04/15/2024] [Accepted: 05/08/2024] [Indexed: 06/20/2024]
Abstract
The relevance of aberrant serum IgG N-glycosylation in liver fibrosis has been identified; however, its causal effect remains unclear. Because hepatic stellate cells (HSCs) contribute substantially to liver fibrosis, we investigated whether and through which mechanisms IgG N-glycosylation affects the fibrogenic properties of HSCs. Analysis of serum IgG1 N-glycome from 151 patients with chronic hepatitis B or liver cirrhosis revealed a positive correlation between Ishak fibrosis grading and IgG1 with agalactosyl N-glycoforms on the crystallizable fragment (Fc). Fc gamma receptor (FcγR) IIIa was observed in cultured human HSCs and HSCs in human liver tissues, and levels of FcγRIIIa in HSCs correlated with the severity of liver fibrosis. Additionally, agalactosyl IgG treatment caused HSCs to have a fibroblast-like morphology, enhanced migration and invasion capabilities, and enhanced expression of the FcγRIIIa downstream tyrosine-protein kinase SYK. Furthermore, agalactosyl IgG treatment increased fibrogenic factors in HSCs, including transforming growth factor (TGF)-β1, total collagen, platelet-derived growth factor subunit B and its receptors, pro-collagen I-α1, α-smooth muscle actin, and matrix metalloproteinase 9. These effects were more pronounced in HSCs that stably expressed FCGR3A and were reduced in FCGR3A knockout cells. Agalactosyl IgG and TGF-β1 each increased FCGR3A in HSCs. Furthermore, serum TGF-β1 concentrations in patients were positively correlated with agalactosyl IgG1 levels and liver fibrosis severity, indicating a positive feedback loop involving agalactosyl IgG, HSC-FcγRIIIa, and TGF-β1. In conclusion, agalactosyl IgG promotes fibrogenic characteristics in HSCs through FcγRIIIa. © 2024 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Cheng-Hsun Ho
- Department of Medical Laboratory Science, College of Medical Science and Technology, I-Shou University, Kaohsiung, Taiwan
| | - Ting-Tsung Chang
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hsien-Chang Lin
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Sheng-Fan Wang
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan
- Center for Tropical Medicine and Infectious Disease Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
2
|
Resistance to Trastuzumab. Cancers (Basel) 2022; 14:cancers14205115. [PMID: 36291900 PMCID: PMC9600208 DOI: 10.3390/cancers14205115] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/12/2022] [Accepted: 10/17/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Trastuzumab is a humanized antibody that has significantly improved the management and treatment outcomes of patients with cancers that overexpress HER2. Many research groups, both in academia and industry, have contributed towards understanding the various mechanisms engaged by trastuzumab to mediate its anti-tumor effects. Nevertheless, data from several clinical studies have indicated that a significant proportion of patients exhibit primary or acquired resistance to trastuzumab therapy. In this article, we discuss underlying mechanisms that contribute towards to resistance. Furthermore, we discuss the potential strategies to overcome some of the mechanisms of resistance to enhance the therapeutic efficacy of trastuzumab and other therapies based on it. Abstract One of the most impactful biologics for the treatment of breast cancer is the humanized monoclonal antibody, trastuzumab, which specifically recognizes the HER2/neu (HER2) protein encoded by the ERBB2 gene. Useful for both advanced and early breast cancers, trastuzumab has multiple mechanisms of action. Classical mechanisms attributed to trastuzumab action include cell cycle arrest, induction of apoptosis, and antibody-dependent cell-mediated cytotoxicity (ADCC). Recent studies have identified the role of the adaptive immune system in the clinical actions of trastuzumab. Despite the multiple mechanisms of action, many patients demonstrate resistance, primary or adaptive. Newly identified molecular and cellular mechanisms of trastuzumab resistance include induction of immune suppression, vascular mimicry, generation of breast cancer stem cells, deregulation of long non-coding RNAs, and metabolic escape. These newly identified mechanisms of resistance are discussed in detail in this review, particularly considering how they may lead to the development of well-rationalized, patient-tailored combinations that improve patient survival.
Collapse
|
3
|
Ma L, Jiang Y, Lu F, Wang S, Liu M, Liu F, Huang L, Li Y, Jiao N, Jiang S, Yuan X, Yang W. Quantitative Proteomic Analysis of Zearalenone-Induced Intestinal Damage in Weaned Piglets. Toxins (Basel) 2022; 14:toxins14100702. [PMID: 36287972 PMCID: PMC9609629 DOI: 10.3390/toxins14100702] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/09/2022] [Accepted: 10/11/2022] [Indexed: 11/16/2022] Open
Abstract
Zearalenone (ZEN), also known as the F-2 toxin, is a common contaminant in cereal crops and livestock products. This experiment aimed to reveal the changes in the proteomics of ZEN-induced intestinal damage in weaned piglets by tandem mass spectrometry tags. Sixteen weaned piglets either received a basal diet or a basal diet supplemented with 3.0 mg/kg ZEN in a 32 d study. The results showed that the serum levels of ZEN, α-zearalenol, and β-zearalenol were increased in weaned piglets exposed to ZEN (p < 0.05). Zearalenone exposure reduced apparent nutrient digestibility, increased intestinal permeability, and caused intestinal damage in weaned piglets. Meanwhile, a total of 174 differential proteins (DEPs) were identified between control and ZEN groups, with 60 up-regulated DEPs and 114 down-regulated DEPs (FC > 1.20 or <0.83, p < 0.05). Gene ontology analysis revealed that DEPs were mainly involved in substance transport and metabolism, gene expression, inflammatory, and oxidative stress. The Kyoto Encyclopedia of Genes and Genomes analysis revealed that DEPs were significantly enriched in 25 signaling pathways (p < 0.05), most of which were related to inflammation and amino acid metabolism. Our study provides valuable clues to elucidate the possible mechanism of ZEN-induced intestinal injury.
Collapse
Affiliation(s)
- Lulu Ma
- College of Animal Sciences and Veterinary Medicine, Shandong Agricultural University, Tai’an 271018, China
| | - Yanping Jiang
- Zhongcheng Feed Technology Co., Ltd., Feicheng 271600, China
| | - Fuguang Lu
- Shandong Yucheng Animal Husbandry Development Center Co., Ltd., Yucheng 251200, China
| | - Shujing Wang
- College of Animal Sciences and Veterinary Medicine, Shandong Agricultural University, Tai’an 271018, China
| | - Mei Liu
- College of Animal Sciences and Veterinary Medicine, Shandong Agricultural University, Tai’an 271018, China
| | - Faxiao Liu
- College of Animal Sciences and Veterinary Medicine, Shandong Agricultural University, Tai’an 271018, China
| | - Libo Huang
- College of Animal Sciences and Veterinary Medicine, Shandong Agricultural University, Tai’an 271018, China
| | - Yang Li
- College of Animal Sciences and Veterinary Medicine, Shandong Agricultural University, Tai’an 271018, China
| | - Ning Jiao
- College of Animal Sciences and Veterinary Medicine, Shandong Agricultural University, Tai’an 271018, China
| | - Shuzhen Jiang
- College of Animal Sciences and Veterinary Medicine, Shandong Agricultural University, Tai’an 271018, China
| | - Xuejun Yuan
- College of Life Sciences, Shandong Agricultural University, Tai’an 271018, China
- Correspondence: (X.Y.); (W.Y.)
| | - Weiren Yang
- College of Animal Sciences and Veterinary Medicine, Shandong Agricultural University, Tai’an 271018, China
- Correspondence: (X.Y.); (W.Y.)
| |
Collapse
|
4
|
Roghanian A, Stopforth RJ, Dahal LN, Cragg MS. New revelations from an old receptor: Immunoregulatory functions of the inhibitory Fc gamma receptor, FcγRIIB (CD32B). J Leukoc Biol 2018; 103:1077-1088. [PMID: 29406570 DOI: 10.1002/jlb.2mir0917-354r] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 11/03/2017] [Accepted: 12/14/2017] [Indexed: 12/11/2022] Open
Abstract
The Fc gamma receptor IIB (FcγRIIB/CD32B) was generated million years ago during evolution. It is the sole inhibitory receptor for IgG, and has long been associated with the regulation of humoral immunity and innate immune homeostasis. However, new and surprising functions of FcγRIIB are emerging. In particular, FcγRIIB has been shown to perform unexpected activatory roles in both immune-signaling and monoclonal antibody (mAb) immunotherapy. Furthermore, although ITIM signaling is an integral part of FcγRIIB regulatory activity, it is now clear that inhibition/activation of immune responses can occur independently of the ITIM. In light of these new findings, we present an overview of the established and noncanonical functions of FcγRIIB and discuss how this knowledge might be exploited therapeutically.
Collapse
Affiliation(s)
- Ali Roghanian
- Antibody and Vaccine Group, Centre for Cancer Immunology, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Richard J Stopforth
- Antibody and Vaccine Group, Centre for Cancer Immunology, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Lekh N Dahal
- Antibody and Vaccine Group, Centre for Cancer Immunology, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Mark S Cragg
- Antibody and Vaccine Group, Centre for Cancer Immunology, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK
| |
Collapse
|
5
|
Li Y, Sun Z, Cao Q, Chen M, Luo H, Lin X, Xiao F. Role of amyloid β protein receptors in mediating synaptic plasticity. Biomed Rep 2017; 6:379-386. [PMID: 28413635 PMCID: PMC5374942 DOI: 10.3892/br.2017.863] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 12/01/2016] [Indexed: 11/05/2022] Open
Abstract
There are few diseases in modern biomedicine that have garnered as much scientific interest and public concern as Alzheimer's disease (AD). The amyloid hypothesis has become the dominant model of AD pathogenesis; however, the details of the hypothesis are changing over time. Recently, given the increasing recognition, subtle effects of amyloid β protein (Aβ) on synaptic efficacy may be critical to AD progression. Synaptic plasticity is the important neurochemical foundation of learning and memory. Recent studies have identified that soluble Aβ oligomers combine with certain receptors to impair synaptic plasticity in AD, which advanced the amyloid hypothesis. The aim of the present review was to summarize the role of Aβ-relevant receptors in regulating synaptic plasticity and their downstream signaling cascades, which may provide novel insights into the understanding of the pathogenesis of AD and the development of therapeutic strategies to slow down the progression of AD-associated memory decline in the early stages.
Collapse
Affiliation(s)
- Yu Li
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Zhongqing Sun
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Qiaoyu Cao
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Meiwan Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, P.R. China
| | - Huanmin Luo
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Xi Lin
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Fei Xiao
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| |
Collapse
|
6
|
Rosales C. Fcγ Receptor Heterogeneity in Leukocyte Functional Responses. Front Immunol 2017; 8:280. [PMID: 28373871 PMCID: PMC5357773 DOI: 10.3389/fimmu.2017.00280] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 02/27/2017] [Indexed: 01/12/2023] Open
Abstract
Antibodies participate in defense of the organism from all types of pathogens, including viruses, bacteria, fungi, and protozoa. IgG antibodies recognize their associated antigen via their two Fab portions and are in turn recognized though their Fc portion by specific Fcγ receptors (FcγRs) on the membrane of immune cells. Multiple types and polymorphic variants of FcγR exist. These receptors are expressed in many cells types and are also redundant in inducing cell responses. Crosslinking of FcγR on the surface of leukocytes activates several effector functions aimed toward the destruction of pathogens and the induction of an inflammatory response. In the past few years, new evidence on how the particular IgG subclass and the glycosylation pattern of the antibody modulate the IgG-FcγR interaction has been presented. Despite these advances, our knowledge of what particular effector function is activated in a certain cell and in response to a specific type of FcγR remains very limited today. On one hand, each immune cell could be programmed to perform a particular cell function after FcγR crosslinking. On the other, each FcγR could activate a particular signaling pathway leading to a unique cell response. In this review, I describe the main types of FcγRs and our current view of how particular FcγRs activate various signaling pathways to promote unique leukocyte functions.
Collapse
Affiliation(s)
- Carlos Rosales
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| |
Collapse
|
7
|
Norton N, Olson RM, Pegram M, Tenner K, Ballman KV, Clynes R, Knutson KL, Perez EA. Association studies of Fcγ receptor polymorphisms with outcome in HER2+ breast cancer patients treated with trastuzumab in NCCTG (Alliance) Trial N9831. Cancer Immunol Res 2014; 2:962-9. [PMID: 24989892 DOI: 10.1158/2326-6066.cir-14-0059] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Patients with HER2+ breast cancer treated with trastuzumab and chemotherapy have superior survival compared with patients treated with chemotherapy alone. Polymorphisms within FCGR2A and FCGR3A are associated with binding affinity of natural killer cells to the IgG1 portion of trastuzumab, and a polymorphism in FCGR2B (I232T) is associated with impaired regulatory activity. The association of these polymorphisms with clinical response among trastuzumab-treated patients is equivocal, with both positive and negative associations. We performed genotyping analysis on the FCGR3A V158F, FCGR2A R131H, and FCGR2B I232T polymorphisms in 1,325 patients from the N9831 clinical trial. Patients in arm A (N = 419) received chemotherapy only. Patients in arms B (N = 469) and C (N = 437) were treated with chemotherapy and trastuzumab (sequentially in arm B and concurrently in arm C). Using log-rank test and Cox proportional hazard models, we compared disease-free survival (DFS) among genotypic groups within pooled arms B/C. We found no differences in DFS between trastuzumab-treated patients who had the FCGR3A 158 V/V and/or FCGR2A 131 H/H high-affinity genotypes and patients without those genotypes. Furthermore, there was no significant interaction between FCGR3A and FCGR2A and treatment. However, there was a difference in DFS for FCGR2B I232T, with I/I patients deriving benefit from trastuzumab (P < 0.001), compared with the T carriers who did not (P = 0.81). The interaction between FCGR2B genotype and treatment was statistically significant (P = 0.03). Our analysis did not reveal an association between FcγR high-affinity genotypes and outcomes. However, it seems that the FCGR2B inhibitory gene may be predictive of adjuvant trastuzumab benefit.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Keith L Knutson
- Mayo Clinic, Rochester, Minnesota. Vaccine and Gene Therapy Institute of Florida, Port St. Lucie, Florida.
| | | |
Collapse
|
8
|
Kao D, Lux A, Schwab I, Nimmerjahn F. Targeting B cells and autoantibodies in the therapy of autoimmune diseases. Semin Immunopathol 2014; 36:289-99. [PMID: 24777745 DOI: 10.1007/s00281-014-0427-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 04/01/2014] [Indexed: 12/19/2022]
Abstract
B cells and B cell-derived autoantibodies play a central role in the pathogenesis of many autoimmune diseases. Thus, depletion of B cells via monoclonal antibodies such as Rituximab is an obvious therapeutic intervention and has been used successfully in many instances. More recently, novel therapeutic options targeting either the autoantibody itself or resetting the threshold for B cell activation have become available and show promising immunomodulatory and anti-inflammatory effects in a variety of animal models. The aim of this review is to summarize these results and to provide an insight into the underlying molecular and cellular pathways of these novel therapeutic interventions targeting autoantibodies and B cells and to discuss their value for human therapy.
Collapse
Affiliation(s)
- Daniela Kao
- Institute of Genetics, Department of Biology, University of Erlangen-Nürnberg, Erwin-Rommelstr. 3, 91058, Erlangen, Germany
| | | | | | | |
Collapse
|
9
|
Chu SY, Yeter K, Kotha R, Pong E, Miranda Y, Phung S, Chen H, Lee SH, Leung I, Bonzon C, Desjarlais JR, Stohl W, Szymkowski DE. Suppression of Rheumatoid Arthritis B Cells by XmAb5871, an Anti-CD19 Antibody That Coengages B Cell Antigen Receptor Complex and Fcγ Receptor IIb Inhibitory Receptor. Arthritis Rheumatol 2014; 66:1153-64. [DOI: 10.1002/art.38334] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 12/19/2013] [Indexed: 12/20/2022]
Affiliation(s)
| | - Karen Yeter
- Los Angeles County + University of Southern California Medical Center and University of Southern California, Keck School of Medicine; Los Angeles
| | - Roshan Kotha
- Los Angeles County + University of Southern California Medical Center and University of Southern California, Keck School of Medicine; Los Angeles
| | | | | | | | | | | | | | | | | | - William Stohl
- Los Angeles County + University of Southern California Medical Center and University of Southern California, Keck School of Medicine; Los Angeles
| | | |
Collapse
|
10
|
Lehmann B, Schwab I, Böhm S, Lux A, Biburger M, Nimmerjahn F. FcγRIIB: a modulator of cell activation and humoral tolerance. Expert Rev Clin Immunol 2014; 8:243-54. [DOI: 10.1586/eci.12.5] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
11
|
Autoimmune diseases in the intensive care unit. An update. Autoimmun Rev 2013; 12:380-95. [DOI: 10.1016/j.autrev.2012.06.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 06/12/2012] [Indexed: 12/18/2022]
|
12
|
Nahmias AJ, Schollin J, Abramowsky C. Evolutionary-developmental perspectives on immune system interactions among the pregnant woman, placenta, and fetus, and responses to sexually transmitted infectious agents. Ann N Y Acad Sci 2011; 1230:25-47. [PMID: 21824164 DOI: 10.1111/j.1749-6632.2011.06137.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A balance has evolved over deep time between the various immune systems of the "triad" that is linked together for a short period: the pregnant woman, the fetus, and the placenta. This balance is affected by, and helps to determine, the immune responses to maternal infectious agents that may be transmitted to the fetus/infant transplacentally, intrapartum, or via breast milk. This review identifies newer evolutionary concepts and processes related particularly to the human placenta, innate and adaptive immune systems involved in tolerance, and in responses to sexually transmitted infectious (STI) agents that may be pathogenic to the fetus/infant at different gestational periods and in the first year of life. An evolutionary-developmental (EVO-DEVO) perspective has been applied to the complexities within, and among, the different actors and their beneficial or deleterious outcomes. Such a phylogenetic and ontogenic approach has helped to stimulate several basic questions and suggested possible explanations and novel practical interventions.
Collapse
|
13
|
Lux A, Nimmerjahn F. Impact of Differential Glycosylation on IgG Activity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 780:113-24. [DOI: 10.1007/978-1-4419-5632-3_10] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
14
|
Abstract
Abstract
Intravenous immunoglobulin (IVIg) is an effective treatment against immune thrombocytopenia (ITP). Previous studies suggested that IVIg exerts this ameliorative role through 2 different leukocyte subsets. Dendritic cells (DCs) modulate the immunosuppression in an adoptive cell transfer model, and phagocytes up-regulate their inhibitory IgG Fc receptors (FcγR)IIB expression and thereby ameliorate the inflammatory response and platelet clearance. However, whether or not regulatory mechanisms exist among DCs, phagocytes, and platelets is still largely unknown. In this study we present findings that IVIg-primed splenic CD11c+ DCs (IVIg-DCs) primarily mediate their anti-inflammatory effects at the level of the platelet rather than the phagocyte. IVIg-DCs did not ameliorate ITP in Fcgr2b−/−, Fcgr3−/−, nor P-Selp−/− mice, implicating the potential involvement of these pathways in IVIg action. As platelets are a component of DC regulatory circuits, these findings may suggest an alternative perspective for the use of IVIg treatment.
Collapse
|
15
|
Chang T, Lin H, Gao J, Li W, Xu J, Sun CJ, Li H, Li FF, Song Y, Ye J, Li ZY. Selective recognition and elimination of nicotinic acetylcholine receptor-reactive B cells by a recombinant fusion protein AChR-Fc in myasthenia gravis in vitro. J Neuroimmunol 2010; 227:35-43. [PMID: 20727598 DOI: 10.1016/j.jneuroim.2010.06.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Revised: 05/30/2010] [Accepted: 06/03/2010] [Indexed: 11/17/2022]
Abstract
AChR-reactive B cells play a key role in the pathogenesis of myasthenia gravis (MG) by producing autoantibodies. Selective elimination of AChR-reactive B cells will be a promising way to treat MG. Thus, we generated a fusion protein (referred to as AChR-Fc) composed of the human extracellular domain of AChR α1 subunit and the Fc domain of the human IgG1 heavy chain, which could bind both to AChR-reactive BCR and FcγRIIB on the surface of AChR-reactive B cells. Our results showed that AChR-Fc inhibited the proliferation of AChR-specific hybridoma cells, promoted their apoptosis, and mediated cytotoxicity by cross-linking effector cells and complement. Likewise, AChR-Fc significantly reduced the number of AChR-reactive B cells from spleen of Lewis rats immunized with AChR ex vivo.
Collapse
Affiliation(s)
- Ting Chang
- Department of Neurology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710038, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Baerenwaldt A, Biburger M, Nimmerjahn F. Mechanisms of action of intravenous immunoglobulins. Expert Rev Clin Immunol 2010; 6:425-34. [PMID: 20441428 DOI: 10.1586/eci.10.9] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Intravenous immunoglobulin (IVIg) has been used for nearly three decades as an efficient anti-inflammatory therapeutic regimen in a growing number of autoimmune diseases. Despite this their success in clinical application, the mechanism of action of IVIg therapy remains elusive. During the last few years, several mechanisms dependent on either the IgG variable or constant fragment have been proposed to explain the potent immunomodulatory activity of IVIg. This review will discuss which molecular and cellular pathways might be involved in the anti-inflammatory activity of IVIg and for which types of autoimmune diseases they might be relevant.
Collapse
Affiliation(s)
- Anne Baerenwaldt
- Department of Biology, Institute of Genetics, University of Erlangen-Nuremberg, Staudtstr. 5, 91058 Erlangen, Germany
| | | | | |
Collapse
|
17
|
|
18
|
Biburger M, Aschermann S, Lux A, Nimmerjahn F. The role of Fcγ receptors in murine autoimmune thrombocytopenia. Ann Hematol 2010; 89 Suppl 1:25-30. [DOI: 10.1007/s00277-010-0915-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Accepted: 01/29/2010] [Indexed: 12/17/2022]
|
19
|
Abstract
Genetic defects affecting the humoral immune response and especially the production of antibodies of the immunoglobulin G (IgG) isotype result in a heightened susceptibility to infections. Studies over the last years have demonstrated the crucial role of Fc-receptors for IgG (FcγRs) widely expressed on innate immune effector cells in mediating the protective function of IgG. During the last years, additional ligands interacting with FcγRs as well as additional receptors binding to IgG glycosylation variants have been identified. In this review, we discuss how the interaction of these different ligands with classical and novel Fcγ-receptors influences the immune response and which strategies microorganisms have developed to prevent them.
Collapse
Affiliation(s)
- Falk Nimmerjahn
- Chair of Genetics, University of Erlangen-Nuremberg, Staudtstr. 5, 91054, Erlangen, Germany.
| | | |
Collapse
|
20
|
Aschermann S, Lux A, Baerenwaldt A, Biburger M, Nimmerjahn F. The other side of immunoglobulin G: suppressor of inflammation. Clin Exp Immunol 2009; 160:161-7. [PMID: 20041883 DOI: 10.1111/j.1365-2249.2009.04081.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Immunoglobulin G (IgG) molecules can have two completely opposite functions. On one hand, they induce proinflammatory responses and recruit innate immune effector cells during infection with pathogenic microorganisms or autoimmune disease. On the other hand, intravenous infusion of high doses of pooled IgG molecules from thousands of donors [intravenous IG (IVIG) therapy] represents an efficient anti-inflammatory treatment for many autoimmune diseases. Whereas our understanding of the mechanism of the proinflammatory activity of IgG is quite advanced, we are only at the very beginning to comprehend how the anti-inflammatory activity comes about and what cellular and molecular players are involved in this activity. This review will summarize our current knowledge and focus upon the two major models of either IVIG-mediated competition for IgG-triggered effector functions or IVIG-mediated adjustment of cellular activation thresholds used to explain the mechanism of the anti-inflammatory activity.
Collapse
Affiliation(s)
- S Aschermann
- Laboratory of Experimental Immunology and Immunotherapy, Nikolaus-Fiebiger-Centre for Molecular Medicine, Medical Department III, University of Erlangen-Nuernberg, Erlangen, Germany
| | | | | | | | | |
Collapse
|
21
|
Okun E, Mattson MP, Arumugam TV. Involvement of Fc receptors in disorders of the central nervous system. Neuromolecular Med 2009; 12:164-78. [PMID: 19844812 DOI: 10.1007/s12017-009-8099-5] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Accepted: 10/07/2009] [Indexed: 01/09/2023]
Abstract
Immunoglobulins are proteins with a highly variable antigen-binding domain and a constant region (Fc domain) that binds to a cell surface receptor (FcR). Activation of FcRs in immune cells (lymphocytes, macrophages, and mast cells) triggers effector responses including cytokine production, phagocytosis, and degranulation. In addition to their roles in normal responses to infection or tissue injury, and in immune-related diseases, FcRs are increasingly recognized for their involvement in neurological disorders. One or more FcRs are expressed in microglia, astrocytes, oligodendrocytes, and neurons. Aberrant activation of FcRs in such neural cells may contribute to the pathogenesis of major neurodegenerative conditions including Alzheimer's disease, Parkinson's disease, ischemic stroke, and multiple sclerosis. On the other hand, FcRs may play beneficial roles in counteracting pathological processes; for e.g., FcRs may facilitate removal of amyloid peptides from the brain and so protect against Alzheimer's disease. Knowledge of the functions of FcRs in the nervous system in health and disease is leading to novel preventative and therapeutic strategies for stroke, Alzheimer's disease, and other neurological disorders.
Collapse
Affiliation(s)
- Eitan Okun
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| | | | | |
Collapse
|