1
|
Schulte MC, Barcellona AT, Wang X, Schrum AG, Ulery BD. M2e-Derived Peptidyl and Peptide Amphiphile Micelles as Novel Influenza Vaccines. Pharmaceuticals (Basel) 2024; 17:1503. [PMID: 39598414 PMCID: PMC11597048 DOI: 10.3390/ph17111503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024] Open
Abstract
Background: A significant problem with current influenza vaccines is their reliance on predictions of the most prevalent strains for the upcoming season, with inaccurate forecasts greatly reducing the overall efficacy of the immunization campaign. A universal influenza vaccine, which leverages epitopes conserved across many, if not all, strains of influenza, could reduce the need for extremely accurate forecasting. The highly conserved ectodomain of the influenza M2 protein contains a B cell epitope in the M22-16 region, making it a promising candidate as a universal influenza vaccine. Unfortunately, free peptide antigens alone are limited as vaccines due to their poor stability and weak immunogenicity in vivo. To improve the potential of peptide vaccines, immunostimulatory micellar nanoparticles can be generated from them by lipid conjugation (i.e., peptide amphiphiles-PAs). Methods: M22-16 peptides and Palm2K-M22-16-(KE)4 PAs were synthesized and characterized. BALB/c mice were subcutaneously vaccinated with these formulations, and ELISAs were conducted on serum collected from the vaccinated mice to evaluate induced antibody responses. Results: Unlike other peptide antigens previously studied, the unmodified M22-16 peptide micellized without any peptidyl or lipid modifications. M22-16 peptidyl micelles (PMs) were spherical with largely undefined secondary structure somewhat different from the cylindrical, β-sheet-containing Palm2K-M22-16-(KE)4 peptide amphiphile micelles (PAMs). Differences in physical properties were found to correlate with slightly different immune responses with PAMs eliciting higher antibody titers after the initial immunization, whereas both micelle types elicited strong IgG titers after a prime-boost regimen. Conclusions: These results suggest the viability of PAMs as single-dose vaccines, while both PMs and PAMs show potential using a multi-dose immunization approach.
Collapse
Affiliation(s)
- Megan C. Schulte
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO 65211, USA; (M.C.S.); (A.T.B.); (A.G.S.)
| | - Agustin T. Barcellona
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO 65211, USA; (M.C.S.); (A.T.B.); (A.G.S.)
| | - Xiaofei Wang
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO 65211, USA; (M.C.S.); (A.T.B.); (A.G.S.)
| | - Adam G. Schrum
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO 65211, USA; (M.C.S.); (A.T.B.); (A.G.S.)
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO 65211, USA
- Department of Surgery, University of Missouri, Columbia, MO 65211, USA
- NextGen Precision Health Institute, University of Missouri, Columbia, MO 65211, USA
| | - Bret D. Ulery
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO 65211, USA; (M.C.S.); (A.T.B.); (A.G.S.)
- NextGen Precision Health Institute, University of Missouri, Columbia, MO 65211, USA
- Materials Science & Engineering Institute, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
2
|
Zykova AA, Blokhina EA, Kotlyarov RY, Stepanova LA, Tsybalova LM, Kuprianov VV, Ravin NV. Highly Immunogenic Nanoparticles Based on a Fusion Protein Comprising the M2e of Influenza A Virus and a Lipopeptide. Viruses 2020; 12:E1133. [PMID: 33036278 PMCID: PMC7601894 DOI: 10.3390/v12101133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/23/2020] [Accepted: 10/01/2020] [Indexed: 12/17/2022] Open
Abstract
The highly conserved extracellular domain of the transmembrane protein M2 (M2e) of the influenza A virus is a promising target for the development of broad-spectrum vaccines. However, M2e is a poor immunogen by itself and must be linked to an appropriate carrier to induce an efficient immune response. In this study, we obtained recombinant mosaic proteins containing tandem copies of M2e fused to a lipopeptide from Neisseria meningitidis surface lipoprotein Ag473 and alpha-helical linkers and analyzed their immunogenicity. Six fusion proteins, comprising four or eight tandem copies of M2e flanked by alpha-helical linkers, lipopeptides, or a combination of both of these elements, were produced in Escherichia coli. The proteins, containing both alpha-helical linkers and lipopeptides at each side of M2e repeats, formed nanosized particles, but no particulate structures were observed in the absence of lipopeptides. Animal study results showed that proteins with lipopeptides induced strong M2e-specific antibody responses in the absence of external adjuvants compared to similar proteins without lipopeptides. Thus, the recombinant M2e-based proteins containing alpha-helical linkers and N. meningitidis lipopeptide sequences at the N- and C-termini of four or eight tandem copies of M2e peptide are promising vaccine candidates.
Collapse
Affiliation(s)
- Anna A. Zykova
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (A.A.Z.); (E.A.B.); (R.Y.K.)
| | - Elena A. Blokhina
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (A.A.Z.); (E.A.B.); (R.Y.K.)
| | - Roman Y. Kotlyarov
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (A.A.Z.); (E.A.B.); (R.Y.K.)
| | - Liudmila A. Stepanova
- Research Institute of Influenza, Russian Ministry of Health, 23805 St. Petersburg, Russia; (L.A.S.); (L.M.T.)
| | - Liudmila M. Tsybalova
- Research Institute of Influenza, Russian Ministry of Health, 23805 St. Petersburg, Russia; (L.A.S.); (L.M.T.)
| | - Victor V. Kuprianov
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (A.A.Z.); (E.A.B.); (R.Y.K.)
| | - Nikolai V. Ravin
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (A.A.Z.); (E.A.B.); (R.Y.K.)
| |
Collapse
|
3
|
Mezhenskaya D, Isakova-Sivak I, Rudenko L. M2e-based universal influenza vaccines: a historical overview and new approaches to development. J Biomed Sci 2019; 26:76. [PMID: 31629405 PMCID: PMC6800501 DOI: 10.1186/s12929-019-0572-3] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 10/01/2019] [Indexed: 01/04/2023] Open
Abstract
The influenza A virus was isolated for the first time in 1931, and the first attempts to develop a vaccine against the virus began soon afterwards. In addition to causing seasonal epidemics, influenza viruses can cause pandemics at random intervals, which are very hard to predict. Vaccination is the most effective way of preventing the spread of influenza infection. However, seasonal vaccination is ineffective against pandemic influenza viruses because of antigenic differences, and it takes approximately six months from isolation of a new virus to develop an effective vaccine. One of the possible ways to fight the emergence of pandemics may be by using a new type of vaccine, with a long and broad spectrum of action. The extracellular domain of the M2 protein (M2e) of influenza A virus is a conservative region, and an attractive target for a universal influenza vaccine. This review gives a historical overview of the study of M2 protein, and summarizes the latest developments in the preparation of M2e-based universal influenza vaccines.
Collapse
Affiliation(s)
- Daria Mezhenskaya
- Department of Virology, Institute of Experimental Medicine, 12 Acad. Pavlov Street, St. Petersburg, 197376, Russia
| | - Irina Isakova-Sivak
- Department of Virology, Institute of Experimental Medicine, 12 Acad. Pavlov Street, St. Petersburg, 197376, Russia.
| | - Larisa Rudenko
- Department of Virology, Institute of Experimental Medicine, 12 Acad. Pavlov Street, St. Petersburg, 197376, Russia
| |
Collapse
|
4
|
Ozkan B, Budama-Kilinc Y, Cakir-Koc R, Mese S, Badur S. Application of an immunoglobulin Y-alkaline phosphatase bioconjugate as a diagnostic tool for influenza A virus. Bioengineered 2019; 10:33-42. [PMID: 30913952 PMCID: PMC6527078 DOI: 10.1080/21655979.2019.1586054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The diagnosis of influenza A virus is essential since it can be confused with influenza A like illness and lead to inaccurate drug prescription. In this study, the M2e peptide, a strategic antigen that is conserved in all virus subtypes, was used as a diagnostic marker of influenza A. For the first time, M2e-specific IgY antibody was covalently conjugated to alkaline phosphatase (ALP) enzyme in the presence of glutaraldehyde. The antibody-enzyme bioconjugate was characterized by fluorescence and Fourier-transform infrared spectroscopy. Subsequently, the diagnostic value of this bioconjugate was evaluated by direct sandwich ELISA using nasopharyngeal swab samples positive/negative for H1N1 and H3N2, which were previously analyzed by rRT-PCR for influenza. In conclusion, the M2e-specific IgY-ALP bioconjugate demonstrated positive results for Influenza A in samples that were diagnosed as Influenza A via the RT-PCR method.
Collapse
Affiliation(s)
- Busra Ozkan
- a Department of Bioengineering, Chemical and Metallurgical Engineering Faculty , Yildiz Technical University , Istanbul , Turkey
| | - Yasemin Budama-Kilinc
- a Department of Bioengineering, Chemical and Metallurgical Engineering Faculty , Yildiz Technical University , Istanbul , Turkey
| | - Rabia Cakir-Koc
- a Department of Bioengineering, Chemical and Metallurgical Engineering Faculty , Yildiz Technical University , Istanbul , Turkey
| | - Sevim Mese
- b Department of Virology and Fundamental Immunology, Istanbul Medical Faculty , Istanbul University , Istanbul , Turkey
| | - Selim Badur
- c GlaxoSmithKline-Vaccine , Istanbul , Turkey
| |
Collapse
|
5
|
Hajam IA, Kim J, Lee JH. Intranasally administered polyethylenimine adjuvanted influenza M2 ectodomain induces partial protection against H9N2 influenza A virus infection in chickens. Vet Immunol Immunopathol 2019; 209:78-83. [PMID: 30885310 DOI: 10.1016/j.vetimm.2019.02.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 01/11/2019] [Accepted: 02/19/2019] [Indexed: 12/25/2022]
Abstract
This study aimed to investigate whether intranasally coadministered four tandem copies of extracellular domains of M2 (M2e) and polyethyleneimine (PEI), a mucosal adjuvant, can protect chickens against H9N2 influenza A virus infection. Groups of chickens were intranasally vaccinated with M2e plus PEI adjuvant, M2e alone or PEI adjuvant, and antibody (serum IgG and mucosal IgA) and cellular (CD4+ T cells and IFN-γ levels) immune responses were measured post-vaccination. We demonstrated that the chickens vaccinated with M2e plus PEI adjuvant showed significantly (p < 0.05) higher M2e-specific systemic IgG and mucosal IgA responses compared to the chickens that received either M2e alone or PEI adjuvant. The IgA responses measured in lungs were almost comparable to that of the serum IgG levels. Upon restimulation of the vaccinated peripheral blood mononuclear cells (PBMCs) with M2e antigen, significantly (p < 0.05) higher IFN-γ levels were observed only in M2e plus PEI adjuvant vaccinated group. Lymphoproliferative and CD4+ T cell responses, as measured by MTT-based assay and flow cytometry, respectively, were also observed significantly (p < 0.05) higher in M2e plus PEI adjuvant vaccinated chickens. On challenge with the H9N2 virus (104TCID50) at 28th day post-vaccination, M2e plus PEI adjuvant vaccinated group exhibited lower lung inflammation and viral load compared to the chickens treated with either M2e alone or PEI adjuvant. In summary, we show that intranasally coadministered M2e and PEI adjuvant can elicit humoral and cell-mediated immune responses and can reduce viremia levels in chickens post H9N2 infection in chickens.
Collapse
Affiliation(s)
- Irshad Ahmed Hajam
- College of Veterinary Medicine, Chonbuk National University, Iksan, 54596, Republic of Korea
| | - Jehyoung Kim
- College of Veterinary Medicine, Chonbuk National University, Iksan, 54596, Republic of Korea
| | - John Hwa Lee
- College of Veterinary Medicine, Chonbuk National University, Iksan, 54596, Republic of Korea.
| |
Collapse
|
6
|
Hajam IA, Kim J, Lee JH. Salmonella Gallinarum delivering M2eCD40L in protein and DNA formats acts as a bivalent vaccine against fowl typhoid and H9N2 infection in chickens. Vet Res 2018; 49:99. [PMID: 30285855 PMCID: PMC6389227 DOI: 10.1186/s13567-018-0593-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 09/17/2018] [Indexed: 02/07/2023] Open
Abstract
Fowl typhoid (FT), a septicemic disease caused by Salmonella Gallinarum (SG), and H9N2 influenza infection are two economically important diseases that affect poultry industry worldwide. Herein, we exploited a live attenuated SG mutant (JOL967) to deliver highly conserved extracellular domains of H9N2 M2 (M2e) to induce protective immunity against both H9N2 infection and FT. To increase the immunogenicity of M2e, we physically linked it with CD40L and cloned the fusion gene into either prokaryotic constitutive expression vector pJHL65 or mammalian expression vector pcDNA3.1+. Then pJHL65-M2eCD40L or pcDNA-M2eCD40L recombinant plasmid was electroporated into JOL967 strain and the resultant clones were designated as JOL2074 and JOL2076, respectively. We demonstrated that the chickens vaccinated once orally with a co-mix of JOL2074 and JOL2076 strains elicited significantly (p < 0.05) higher M2e-specific humoral and cell-mediated immunity compared to JOL2074 alone vaccinated group. However, SG-specific immune responses were comparable in both the vaccination groups. On challenge with the virulent H9N2 virus (105 TCID50) at 28th day post-vaccination, chickens that received a co-mix of JOL2074 plus JOL2076 strains exhibited significantly (p < 0.05) lower lung inflammation and viral load in both lungs and cloacal samples than JOL2074 alone vaccinated group. Against challenge with the lethal wild-type SG, both the vaccination groups exhibited only 12.5% mortality compared to 75% mortality observed in the control group. In conclusion, we show that SG delivering M2eCD40L can act as a bivalent vaccine against FT and H9N2 infection and further studies are warranted to develop this SG-M2eCD40L vaccine as a broadly protective vaccine against avian influenza virus subtypes.
Collapse
Affiliation(s)
- Irshad Ahmed Hajam
- College of Veterinary Medicine, Chonbuk National University, Iksan, 54596 Republic of Korea
| | - Jehyoung Kim
- College of Veterinary Medicine, Chonbuk National University, Iksan, 54596 Republic of Korea
| | - John Hwa Lee
- College of Veterinary Medicine, Chonbuk National University, Iksan, 54596 Republic of Korea
| |
Collapse
|
7
|
Surenaud M, Lacabaratz C, Zurawski G, Lévy Y, Lelièvre JD. Development of an epitope-based HIV-1 vaccine strategy from HIV-1 lipopeptide to dendritic-based vaccines. Expert Rev Vaccines 2018; 16:955-972. [PMID: 28879788 DOI: 10.1080/14760584.2017.1374182] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Development of a safe, effective and globally affordable Human Immunodeficiency Virus strain 1 (HIV-1) vaccine offers the best hope for future control of the HIV-1 pandemic. However, with the exception of the recent RV144 trial, which elicited a modest level of protection against infection, no vaccine candidate has shown efficacy in preventing HIV-1 infection or in controlling virus replication in humans. There is also a great need for a successful immunotherapeutic vaccine since combination antiretroviral therapy (cART) does not eliminate the reservoir of HIV-infected cells. But to date, no vaccine candidate has proven to significantly alter the natural history of an individual with HIV-1 infection. Areas covered: For over 25 years, the ANRS (France Recherche Nord&Sud Sida-HIV hépatites) has been committed to an original program combining basic science and clinical research developing an epitope-based vaccine strategy to induce a multiepitopic cellular response against HIV-1. This review describes the evolution of concepts, based on strategies using HIV-1 lipopeptides towards the use of dendritic cell (DC) manipulation. Expert commentary: Understanding the crucial role of DCs in immune responses allowed moving from the non-specific administration of HIV-1 sequences with lipopeptides to DC-based vaccines. These DC-targeting strategies should improve HIV-1 vaccine efficacy.
Collapse
Affiliation(s)
- Mathieu Surenaud
- a INSERM, U955 , Créteil , France.,b Faculté de médecine , Université Paris Est , Créteil , France.,c Vaccine Research Institute (VRI) , Créteil , France
| | - Christine Lacabaratz
- a INSERM, U955 , Créteil , France.,b Faculté de médecine , Université Paris Est , Créteil , France.,c Vaccine Research Institute (VRI) , Créteil , France
| | - Gérard Zurawski
- a INSERM, U955 , Créteil , France.,c Vaccine Research Institute (VRI) , Créteil , France.,d Baylor Institute for Immunology Research , Dallas , TX , USA
| | - Yves Lévy
- a INSERM, U955 , Créteil , France.,b Faculté de médecine , Université Paris Est , Créteil , France.,c Vaccine Research Institute (VRI) , Créteil , France.,e AP-HP, Hôpital H. Mondor - A. Chenevier, Service d'Immunologie Clinique et Maladies Infectieuses , Créteil , France
| | - Jean-Daniel Lelièvre
- a INSERM, U955 , Créteil , France.,b Faculté de médecine , Université Paris Est , Créteil , France.,c Vaccine Research Institute (VRI) , Créteil , France.,e AP-HP, Hôpital H. Mondor - A. Chenevier, Service d'Immunologie Clinique et Maladies Infectieuses , Créteil , France
| |
Collapse
|
8
|
Kim JH, Hajam IA, Lee JH. Oral immunization with a novel attenuated Salmonella Typhimurium encoding influenza HA, M2e and NA antigens protects chickens against H7N9 infection. Vet Res 2018; 49:12. [PMID: 29391053 PMCID: PMC5796500 DOI: 10.1186/s13567-018-0509-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 01/18/2018] [Indexed: 12/22/2022] Open
Abstract
Attenuated Salmonella strains constitute a promising technology for the development of efficient protein-based influenza vaccines. H7N9, a low pathogenic avian influenza (LPAI) virus, is a major public health concern and currently there are no effective vaccines against this subtype. Herein, we constructed a novel attenuated Salmonella Typhimurium strain for the delivery and expression of H7N9 hemagglutinin (HA), neuraminidase (NA) or the conserved extracellular domain of the matrix protein 2 (M2e). We demonstrated that the constructed Salmonella strains exhibited efficient HA, NA and M2e expressions, respectively, and the constructs were safe and immunogenic in chickens. Our results showed that chickens immunized once orally with Salmonella (Sal) mutants encoding HA (Sal-HA), M2e (Sal-M2e) or NA (Sal-NA), administered either alone or in combination, induced both antigen-specific humoral and cell mediated immune (CMI) responses, and protected chickens against the lethal H7N9 challenge. However, chickens immunized with Sal-HA+Sal-M2e+Sal-NA vaccine constructs exhibited efficient mucosal and CMI responses compared to the chickens that received only Sal-HA, Sal-M2e or Sal-M2e+Sal-NA vaccine. Further, chickens immunized with Sal-HA+Sal-M2e+Sal-NA constructs cleared H7N9 infection at a faster rate compared to the chickens that were vaccinated with Sal-HA, Sal-M2e or Sal-M2e+Sal-NA, as indicated by the reduced viral shedding in cloacal swabs of the immunized chickens. We conclude that this vaccination strategy, based on HA, M2e and NA, stimulated efficient induction of immune protection against the lethal H7N9 LPAI virus and, therefore, further studies are warranted to develop this approach as a potential prophylaxis against LPAI viruses affecting poultry birds.
Collapse
Affiliation(s)
- Je Hyoung Kim
- College of Veterinary Medicine, Chonbuk National University, Iksan, 54596, Republic of Korea
| | - Irshad Ahmed Hajam
- College of Veterinary Medicine, Chonbuk National University, Iksan, 54596, Republic of Korea
| | - John Hwa Lee
- College of Veterinary Medicine, Chonbuk National University, Iksan, 54596, Republic of Korea.
| |
Collapse
|
9
|
Krammer F, Smith GJD, Fouchier RAM, Peiris M, Kedzierska K, Doherty PC, Palese P, Shaw ML, Treanor J, Webster RG, García-Sastre A. Influenza. Nat Rev Dis Primers 2018; 4:3. [PMID: 29955068 PMCID: PMC7097467 DOI: 10.1038/s41572-018-0002-y] [Citation(s) in RCA: 912] [Impact Index Per Article: 130.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Influenza is an infectious respiratory disease that, in humans, is caused by influenza A and influenza B viruses. Typically characterized by annual seasonal epidemics, sporadic pandemic outbreaks involve influenza A virus strains of zoonotic origin. The WHO estimates that annual epidemics of influenza result in ~1 billion infections, 3–5 million cases of severe illness and 300,000–500,000 deaths. The severity of pandemic influenza depends on multiple factors, including the virulence of the pandemic virus strain and the level of pre-existing immunity. The most severe influenza pandemic, in 1918, resulted in >40 million deaths worldwide. Influenza vaccines are formulated every year to match the circulating strains, as they evolve antigenically owing to antigenic drift. Nevertheless, vaccine efficacy is not optimal and is dramatically low in the case of an antigenic mismatch between the vaccine and the circulating virus strain. Antiviral agents that target the influenza virus enzyme neuraminidase have been developed for prophylaxis and therapy. However, the use of these antivirals is still limited. Emerging approaches to combat influenza include the development of universal influenza virus vaccines that provide protection against antigenically distant influenza viruses, but these vaccines need to be tested in clinical trials to ascertain their effectiveness.
Collapse
Affiliation(s)
- Florian Krammer
- 0000 0001 0670 2351grid.59734.3cDepartment of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Gavin J. D. Smith
- 0000 0001 2180 6431grid.4280.eDuke–NUS Medical School, Singapore, Singapore ,0000 0004 1936 7961grid.26009.3dDuke Global Health Institute, Duke University, Durham, NC USA
| | - Ron A. M. Fouchier
- 000000040459992Xgrid.5645.2Department of Viroscience, Erasmus MC, Rotterdam, Netherlands
| | - Malik Peiris
- 0000000121742757grid.194645.bWHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, China ,0000000121742757grid.194645.bCenter of Influenza Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, China
| | - Katherine Kedzierska
- 0000 0001 2179 088Xgrid.1008.9Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria Australia
| | - Peter C. Doherty
- 0000 0001 2179 088Xgrid.1008.9Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria Australia ,0000 0001 0224 711Xgrid.240871.8Department of Immunology, St Jude Children’s Research Hospital, Memphis, TN USA
| | - Peter Palese
- 0000 0001 0670 2351grid.59734.3cDepartment of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY USA ,0000 0001 0670 2351grid.59734.3cDivision of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Megan L. Shaw
- 0000 0001 0670 2351grid.59734.3cDepartment of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - John Treanor
- 0000 0004 1936 9166grid.412750.5Division of Infectious Diseases, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY USA
| | - Robert G. Webster
- 0000 0001 0224 711Xgrid.240871.8Department of Infectious Diseases, St Jude Children’s Research Hospital, Memphis, TN USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
10
|
Deng L, Roose K, Job ER, De Rycke R, Van Hamme E, Gonçalves A, Parthoens E, Cicchelero L, Sanders N, Fiers W, Saelens X. Oral delivery of Escherichia coli persistently infected with M2e-displaying bacteriophages partially protects against influenza A virus. J Control Release 2017; 264:55-65. [PMID: 28842314 DOI: 10.1016/j.jconrel.2017.08.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 08/16/2017] [Accepted: 08/18/2017] [Indexed: 01/22/2023]
Abstract
We describe a novel live oral vaccine type. Conceptually, this vaccine is based on a non-lytic, recombinant filamentous bacteriophage that displays an antigen of interest. To provide proof of concept we used the amino-terminal part of a conserved influenza A virus epitope, i.e. matrix protein 2 ectodomain (M2e) residues 2 to 16, as the antigen of interest. Rather than using the phages as purified virus-like particles as a vaccine, these phages were delivered to intestinal Peyer's patches as a live bacterium-phage combination that comprises Escherichia coli cells that conditionally express invasin derived from Yersinia pseudotuberculosis. Invasin-expressing E. coli cells were internalized by mammalian Hep-2 cells in vitro and adhered to mouse intestinal microfold (M) cells ex vivo. Invasin-expressing E. coli cells were permissive for recombinant filamentous bacteriophage f88 that displays M2e and became persistently infected. Oral administration of the live engineered E. coli-invasin-phage combination to mice induced M2e-specific serum IgG antibodies. Mice that had been immunized with invasin-expressing E. coli cells that carried M2e2-16 displaying fd phages seroconverted to M2e and showed partial protection against challenge with influenza A virus. Oral delivery of a live vaccine comprising a bacterial host that is targeted to Peyer's patches and is persistently infected with an antigen-displaying phage, can thus be exploited as an oral vaccine.
Collapse
Affiliation(s)
- Lei Deng
- VIB-UGent Center for Medical Biotechnology, VIB, Technologiepark, 927, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, Ghent, Belgium
| | - Kenny Roose
- VIB-UGent Center for Medical Biotechnology, VIB, Technologiepark, 927, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, Ghent, Belgium
| | - Emma R Job
- VIB-UGent Center for Medical Biotechnology, VIB, Technologiepark, 927, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, Ghent, Belgium
| | - Riet De Rycke
- Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, Ghent, Belgium; Inflammation Research Center, VIB, Technologiepark 927, Ghent, Belgium
| | - Evelien Van Hamme
- Inflammation Research Center, VIB, Technologiepark 927, Ghent, Belgium
| | - Amanda Gonçalves
- Inflammation Research Center, VIB, Technologiepark 927, Ghent, Belgium
| | - Eef Parthoens
- Inflammation Research Center, VIB, Technologiepark 927, Ghent, Belgium
| | - Laetitia Cicchelero
- Laboratory of Gene Therapy, Faculty of Veterinary Sciences, Ghent University, Merelbeke, Belgium
| | - Niek Sanders
- Laboratory of Gene Therapy, Faculty of Veterinary Sciences, Ghent University, Merelbeke, Belgium
| | - Walter Fiers
- VIB-UGent Center for Medical Biotechnology, VIB, Technologiepark, 927, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, Ghent, Belgium.
| | - Xavier Saelens
- VIB-UGent Center for Medical Biotechnology, VIB, Technologiepark, 927, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, Ghent, Belgium.
| |
Collapse
|
11
|
Hajam IA, Lee JH. An Influenza HA and M2e Based Vaccine Delivered by a Novel Attenuated Salmonella Mutant Protects Mice against Homologous H1N1 Infection. Front Microbiol 2017; 8:872. [PMID: 28555133 PMCID: PMC5430049 DOI: 10.3389/fmicb.2017.00872] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 04/28/2017] [Indexed: 12/27/2022] Open
Abstract
Attenuated Salmonella strains constitute a promising technology for the development of a more efficient multivalent protein based vaccines. In this study, we constructed a novel attenuated strain of Salmonella for the delivery and expression of the H1N1 hemagglutinin (HA) and the conserved extracellular domain of the matrix protein 2 (M2e). We demonstrated that the constructed Salmonella strain exhibited efficient HA and M2e protein expressions and little cytotoxicity and pathogenicity in mice. Using BALB/c mice as the model, we showed that the mice vaccinated with a Salmonella strain expressing HA and M2e protein antigens, respectively, induced significant production of HA and M2e-specific serum IgG1 and IgG2a responses, and of anti-HA interferon-γ producing T cells. Furthermore, immunization with Salmonella-HA-M2e-based vaccine via different routes provided protection in 66.66% orally, 100% intramuscularly, and 100% intraperitoneally immunized mice against the homologous H1N1 virus while none of the animals survived treated with either the PBS or the Salmonella carrying empty expression vector. Ex vivo stimulated dendritic cells (DCs) with heat killed Salmonella expressing HA demonstrated that DCs play an important role in the elicitation of HA-specific humoral immune responses in mice. In summary, Salmonella-HA-M2e-based vaccine elicits efficient antigen-specific humoral and cellular immune responses, and provides significant immune protection against a highly pathogenic H1N1 influenza virus.
Collapse
Affiliation(s)
- Irshad A Hajam
- College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National UniversityIksan, South Korea
| | - John H Lee
- College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National UniversityIksan, South Korea
| |
Collapse
|
12
|
Kolpe A, Schepens B, Fiers W, Saelens X. M2-based influenza vaccines: recent advances and clinical potential. Expert Rev Vaccines 2016; 16:123-136. [DOI: 10.1080/14760584.2017.1240041] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Annasaheb Kolpe
- Medical Biotechnology Center, VIB, Ghent, B-9052, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Bert Schepens
- Medical Biotechnology Center, VIB, Ghent, B-9052, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Walter Fiers
- Medical Biotechnology Center, VIB, Ghent, B-9052, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Xavier Saelens
- Medical Biotechnology Center, VIB, Ghent, B-9052, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| |
Collapse
|
13
|
Epitope Mapping of Avian Influenza M2e Protein: Different Species Recognise Various Epitopes. PLoS One 2016; 11:e0156418. [PMID: 27362795 PMCID: PMC4928777 DOI: 10.1371/journal.pone.0156418] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 05/14/2016] [Indexed: 12/12/2022] Open
Abstract
A common approach for developing diagnostic tests for influenza virus detection is the use of mouse or rabbit monoclonal and/or polyclonal antibodies against a target antigen of the virus. However, comparative mapping of the target antigen using antibodies from different animal sources has not been evaluated before. This is important because identification of antigenic determinants of the target antigen in different species plays a central role to ensure the efficiency of a diagnostic test, such as competitive ELISA or immunohistochemistry-based tests. Interest in the matrix 2 ectodomain (M2e) protein of avian influenza virus (AIV) as a candidate for a universal vaccine and also as a marker for detection of virus infection in vaccinated animals (DIVA) is the rationale for the selection of this protein for comparative mapping evaluation. This study aimed to map the epitopes of the M2e protein of avian influenza virus H5N1 using chicken, mouse and rabbit monoclonal or monospecific antibodies. Our findings revealed that rabbit antibodies (rAbs) recognized epitope 6EVETPTRN13 of the M2e, located at the N-terminal of the protein, while mouse (mAb) and chicken antibodies (cAbs) recognized epitope 10PTRNEWECK18, located at the centre region of the protein. The findings highlighted the difference between the M2e antigenic determinants recognized by different species that emphasized the importance of comparative mapping of antibody reactivity from different animals to the same antigen, especially in the case of multi-host infectious agents such as influenza. The findings are of importance for antigenic mapping, as well as diagnostic test and vaccine development.
Collapse
|
14
|
Tan HX, Gilbertson BP, Jegaskanda S, Alcantara S, Amarasena T, Stambas J, McAuley JL, Kent SJ, De Rose R. Recombinant influenza virus expressing HIV-1 p24 capsid protein induces mucosal HIV-specific CD8 T-cell responses. Vaccine 2016; 34:1172-9. [PMID: 26826545 DOI: 10.1016/j.vaccine.2016.01.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 12/24/2015] [Accepted: 01/17/2016] [Indexed: 10/22/2022]
Abstract
Influenza viruses are promising mucosal vaccine vectors for HIV but their use has been limited by difficulties in engineering the expression of large amounts of foreign protein. We developed recombinant influenza viruses incorporating the HIV-1 p24 gag capsid into the NS-segment of PR8 (H1N1) and X31 (H3N2) influenza viruses with the use of multiple 2A ribosomal skip sequences. Despite the insertion of a sizable HIV-1 gene into the influenza genome, recombinant viruses were readily rescued to high titers. Intracellular expression of p24 capsid was confirmed by in vitro infection assays. The recombinant influenza viruses were subsequently tested as mucosal vaccines in BALB/c mice. Recombinant viruses were attenuated and safe in immunized mice. Systemic and mucosal HIV-specific CD8 T-cell responses were elicited in mice that were immunized via intranasal route with a prime-boost regimen. Isolated HIV-specific CD8 T-cells displayed polyfunctional cytokine and degranulation profiles. Mice boosted via intravaginal route induced recall responses from the distal lung mucosa and developed heightened HIV-specific CD8 T-cell responses in the vaginal mucosa. These findings demonstrate the potential utility of recombinant influenza viruses as vaccines for mucosal immunity against HIV-1 infection.
Collapse
Affiliation(s)
- Hyon-Xhi Tan
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Victoria 3010, Australia
| | - Brad P Gilbertson
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Victoria 3010, Australia
| | - Sinthujan Jegaskanda
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Victoria 3010, Australia; Laboratory of Infectious Diseases, NIAID, NIH, Bethesda, MD 20892, United States
| | - Sheilajen Alcantara
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Victoria 3010, Australia
| | - Thakshila Amarasena
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Victoria 3010, Australia
| | - John Stambas
- School of Medicine, Deakin University, Geelong, Victoria, Australia; CSIRO Animal Health Laboratories, Geelong, Victoria, Australia
| | - Julie L McAuley
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Victoria 3010, Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Victoria 3010, Australia; Melbourne Sexual Health Centre, Alfred Hospital, Monash University Central Clinical School, Victoria, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Melbourne, Victoria, Australia.
| | - Robert De Rose
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Victoria 3010, Australia
| |
Collapse
|
15
|
Zeng W, Horrocks KJ, Tan ACL, Jackson DC. Chemical Synthesis of Monomeric, Dimeric and Tetrameric Forms of the Ectodomain of Influenza Matrix 2 Protein. European J Org Chem 2016. [DOI: 10.1002/ejoc.201501569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
16
|
Zeng W, Tan ACL, Horrocks K, Jackson DC. A lipidated form of the extracellular domain of influenza M2 protein as a self-adjuvanting vaccine candidate. Vaccine 2015; 33:3526-32. [PMID: 26049002 DOI: 10.1016/j.vaccine.2015.05.053] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 05/18/2015] [Accepted: 05/21/2015] [Indexed: 12/15/2022]
Abstract
The highly conserved extracellular domain of Matrix protein 2 (M2e) of influenza A virus has been previously investigated as a potential target for an universal influenza vaccine. In this study we prepared four lipopeptide influenza vaccine candidates in which the TLR2 agonist S-[2,3-bis(palmitoyloxy)propyl] cysteine, (Pam2Cys) was attached to either the N- or C-terminus of the M2e consensus sequence SLLTEVETPIRNEWGCRCNDSSDP and its analogue sequence with the two cysteine residues replaced with serine residues. The results of animal study show that each of these lipopeptides induced strong M2e-specific antibody responses in the absence of extraneous T helper cell epitope(s) which are normally incorporated in the previous studies or addition of extraneous adjuvant and that these antibodies are protective against lethal challenge with influenza virus. Comparison of different routes of inoculation demonstrated that intranasal administration of M2e lipopeptide induced higher titers of IgA and IgG2b antibodies in the bronchoalveolar lavage than did subcutaneous vaccination and was better at mitigating the severity of viral challenge. Finally, we show that anti-M2e antibody specificities absent from the antibody repertoire elicited by a commercially available influenza vaccine and by virus infection can be introduced by immunization with M2e-lipopeptide and boosted by viral challenge. Immunization with this lipidated form of the M2e epitope therefore offers a means of using a widely conserved epitope to generate protective antibodies which are not otherwise induced.
Collapse
Affiliation(s)
- Weiguang Zeng
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne 3010, Victoria, Australia.
| | - Amabel C L Tan
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne 3010, Victoria, Australia
| | - Kylie Horrocks
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne 3010, Victoria, Australia
| | - David C Jackson
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne 3010, Victoria, Australia
| |
Collapse
|
17
|
Protection against Influenza A Virus Challenge with M2e-Displaying Filamentous Escherichia coli Phages. PLoS One 2015; 10:e0126650. [PMID: 25973787 PMCID: PMC4431709 DOI: 10.1371/journal.pone.0126650] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 04/04/2015] [Indexed: 01/04/2023] Open
Abstract
Human influenza viruses are responsible for annual epidemics and occasional pandemics that cause severe illness and mortality in all age groups worldwide. Matrix protein 2 (M2) of influenza A virus is a tetrameric type III membrane protein that functions as a proton-selective channel. The extracellular domain of M2 (M2e) is conserved in human and avian influenza A viruses and is being pursued as a component for a universal influenza A vaccine. To develop a M2e vaccine that is economical and easy to purify, we genetically fused M2e amino acids 2-16 to the N-terminus of pVIII, the major coat protein of filamentous bacteriophage f88. We show that the resulting recombinant f88-M2e2-16 phages are replication competent and display the introduced part of M2e on the phage surface. Immunization of mice with purified f88-M2e2-16 phages in the presence of incomplete Freund's adjuvant, induced robust M2e-specific serum IgG and protected BALB/c mice against challenge with human and avian influenza A viruses. Thus, replication competent filamentous bacteriophages can be used as efficient and economical carriers to display conserved B cell epitopes of influenza A.
Collapse
|
18
|
Deng L, Cho KJ, Fiers W, Saelens X. M2e-Based Universal Influenza A Vaccines. Vaccines (Basel) 2015; 3:105-36. [PMID: 26344949 PMCID: PMC4494237 DOI: 10.3390/vaccines3010105] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 12/23/2014] [Accepted: 01/30/2015] [Indexed: 12/13/2022] Open
Abstract
The successful isolation of a human influenza virus in 1933 was soon followed by the first attempts to develop an influenza vaccine. Nowadays, vaccination is still the most effective method to prevent human influenza disease. However, licensed influenza vaccines offer protection against antigenically matching viruses, and the composition of these vaccines needs to be updated nearly every year. Vaccines that target conserved epitopes of influenza viruses would in principle not require such updating and would probably have a considerable positive impact on global human health in case of a pandemic outbreak. The extracellular domain of Matrix 2 (M2e) protein is an evolutionarily conserved region in influenza A viruses and a promising epitope for designing a universal influenza vaccine. Here we review the seminal and recent studies that focused on M2e as a vaccine antigen. We address the mechanism of action and the clinical development of M2e-vaccines. Finally, we try to foresee how M2e-based vaccines could be implemented clinically in the future.
Collapse
Affiliation(s)
- Lei Deng
- Inflammation Research Center, VIB, Technologiepark 927, B-9052 Ghent, Belgium.
- Department for Biomedical Molecular Biology, Ghent University, Technologiepark 927, B-9052 Ghent, Belgium.
| | - Ki Joon Cho
- Inflammation Research Center, VIB, Technologiepark 927, B-9052 Ghent, Belgium.
- Department for Biomedical Molecular Biology, Ghent University, Technologiepark 927, B-9052 Ghent, Belgium.
| | - Walter Fiers
- Inflammation Research Center, VIB, Technologiepark 927, B-9052 Ghent, Belgium.
- Department for Biomedical Molecular Biology, Ghent University, Technologiepark 927, B-9052 Ghent, Belgium.
| | - Xavier Saelens
- Inflammation Research Center, VIB, Technologiepark 927, B-9052 Ghent, Belgium.
- Department for Biomedical Molecular Biology, Ghent University, Technologiepark 927, B-9052 Ghent, Belgium.
| |
Collapse
|
19
|
Gowthaman U, Mushtaq K, Tan AC, Rai PK, Jackson DC, Agrewala JN. Challenges and solutions for a rational vaccine design for TB-endemic regions. Crit Rev Microbiol 2015; 41:389-98. [PMID: 24495096 DOI: 10.3109/1040841x.2013.859125] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Vaccines have been successful for global eradication or control of dreaded diseases such as smallpox, diphtheria, tetanus, yellow fever, whooping cough, polio, and measles. Unfortunately, this success has not been achieved for controlling tuberculosis (TB) worldwide. Bacillus Calmette Guérin (BCG) is the only available vaccine against TB. Paradoxically, BCG has deciphered success in the Western world but has failed in TB-endemic areas. In this article, we highlight and discuss the aspects of immunity responsible for controlling Mycobacterium tuberculosis infection and factors responsible for the failure of BCG in TB-endemic countries. In addition, we also suggest strategies that contribute toward the development of successful vaccine in protecting populations where BCG has failed.
Collapse
|
20
|
Cobbin JCA, Zeng W, Jackson DC, Brown LE. Different arms of the adaptive immune system induced by a combination vaccine work in concert to provide enhanced clearance of influenza. PLoS One 2014; 9:e115356. [PMID: 25522323 PMCID: PMC4270762 DOI: 10.1371/journal.pone.0115356] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Accepted: 11/21/2014] [Indexed: 11/19/2022] Open
Abstract
Current split influenza virus vaccines that induce strain-specific neutralising antibodies provide some degree of protection against influenza infection but there is a clear need to improve their effectiveness. The constant antigenic drift of influenza viruses means that vaccines are often not an exact match to the circulating strain and so levels of relevant antibodies may not be sufficiently high to afford protection. In the situation where the emergent influenza virus is completely novel, as is the case with pandemic strains, existing vaccines may provide no benefit. In this study we tested the concept of a combination vaccine consisting of sub-optimal doses of split influenza virus vaccine mixed with a cross-protective T-cell inducing lipopeptide containing the TLR2 ligand Pam2Cys. Mice immunised with combination vaccines showed superior levels of lung viral clearance after challenge compared to either split virus or lipopeptide alone, mediated through activation of enhanced humoral and/or additional cellular responses. The mechanism of action of these vaccines was dependent on the route of administration, with intranasal administration being superior to subcutaneous and intramuscular routes, potentially through the induction of memory CD8+ T cells in the lungs. This immunisation strategy not only provides a mechanism for minimising the dose of split virus antigen but also, through the induction of cross-protective CD8+ T cells, proves a breadth of immunity to provide potential benefit upon encounter with serologically diverse influenza isolates.
Collapse
Affiliation(s)
- Joanna C. A. Cobbin
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute of Infection and Immunity, Parkville, Victoria, Australia
| | - Weiguang Zeng
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute of Infection and Immunity, Parkville, Victoria, Australia
| | - David C. Jackson
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute of Infection and Immunity, Parkville, Victoria, Australia
| | - Lorena E. Brown
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute of Infection and Immunity, Parkville, Victoria, Australia
- * E-mail:
| |
Collapse
|
21
|
Chua BY, Brown LE, Jackson DC. Considerations for the rapid deployment of vaccines against H7N9 influenza. Expert Rev Vaccines 2014; 13:1327-37. [PMID: 25017993 DOI: 10.1586/14760584.2014.938641] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The threat of an outbreak of avian-origin influenza H7N9 and the devastating consequences that a pandemic could have on global population health and economies has mobilized programs of constant surveillance and the implementation of preemptive plans. Central to these plans is the production of prepandemic vaccines that can be rapidly deployed to minimize disease severity and deaths resulting from such an occurrence. In this article, we review current H7N9 vaccine strategies in place and the available technologies and options that can help accelerate vaccine production and increase dose-sparing capabilities to provide enough vaccines to cover the population. We also present possible means of reducing disease impact during the critical period after an outbreak occurs before a strain matched vaccine becomes available and consider the use of existing stockpiles and seed strains of phylogenetically related subtypes, alternate vaccination regimes and vaccine forms that induce cross-reactive immunity.
Collapse
Affiliation(s)
- Brendon Y Chua
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria 3010, Australia
| | | | | |
Collapse
|
22
|
Wibowo N, Hughes FK, Fairmaid EJ, Lua LHL, Brown LE, Middelberg APJ. Protective efficacy of a bacterially produced modular capsomere presenting M2e from influenza: extending the potential of broadly cross-protecting epitopes. Vaccine 2014; 32:3651-5. [PMID: 24795225 DOI: 10.1016/j.vaccine.2014.04.062] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Revised: 02/23/2014] [Accepted: 04/21/2014] [Indexed: 12/01/2022]
Abstract
Influenza A viruses drift and shift, emerging as antigenically distinct strains that lead to epidemics and pandemics of varying severity. Even epitopes associated with broad cross-protection against different strains, such as the ectodomain of matrix protein 2 (M2e), mutate unpredictably. Vaccine protective efficacy is only ensured when the emerging virus lies within the vaccine's cross-protective domain, which is poorly defined in most situations. When virus emerges outside this domain it is essential to rapidly re-engineer the vaccine and hence re-center the cross-protective domain on the new virus. This approach of vaccine re-engineering in response to virus change is the cornerstone of the current influenza control system, based on annual prediction and/or pandemic reaction. This system could become more responsive, and perhaps preventative, if its speed could be improved. Here, we demonstrate vaccine efficacy of a rapidly manufacturable modular capsomere presenting the broadly cross-protecting M2e epitope from influenza. M2e inserted into a viral capsomere at the DNA level was expressed in Escherichia coli as a fusion protein (Wibowo et al., 2013). Immunization of mice with this modular capsomere adjuvanted with conventional aluminum hydroxide induced high (more than 10(5) endpoint titer) levels of M2e-specific antibodies that reduced disease severity and viral load in the lungs of challenged mice. The combination of rapid manufacturability of modular capsomere presented in this study, and the established cross-protective efficacy of M2e, allow rapid matching of vaccine to the circulating virus and hence rapid re-centering of the vaccine's cross-protective domain onto the virus. This approach synergizes the discussed benefits of broadly cross-protecting epitopes with rapid scale-up vaccine manufacture using microbial cell factories.
Collapse
Affiliation(s)
- Nani Wibowo
- The University of Queensland, Australian Institute for Bioengineering and Nanotechnology, Centre for Biomolecular Engineering, St Lucia, QLD 4072, Australia
| | - Fiona K Hughes
- The University of Queensland, Australian Institute for Bioengineering and Nanotechnology, Centre for Biomolecular Engineering, St Lucia, QLD 4072, Australia
| | - Emily J Fairmaid
- The University of Melbourne, Department of Microbiology and Immunology, Parkville, VIC 3010, Australia
| | - Linda H L Lua
- The University of Queensland, Protein Expression Facility, St Lucia, QLD 4072, Australia
| | - Lorena E Brown
- The University of Melbourne, Department of Microbiology and Immunology, Parkville, VIC 3010, Australia
| | - Anton P J Middelberg
- The University of Queensland, Australian Institute for Bioengineering and Nanotechnology, Centre for Biomolecular Engineering, St Lucia, QLD 4072, Australia.
| |
Collapse
|
23
|
Zhang H, Wang L, Compans RW, Wang BZ. Universal influenza vaccines, a dream to be realized soon. Viruses 2014; 6:1974-91. [PMID: 24784572 PMCID: PMC4036552 DOI: 10.3390/v6051974] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 04/05/2014] [Accepted: 04/22/2014] [Indexed: 12/21/2022] Open
Abstract
Due to frequent viral antigenic change, current influenza vaccines need to be re-formulated annually to match the circulating strains for battling seasonal influenza epidemics. These vaccines are also ineffective in preventing occasional outbreaks of new influenza pandemic viruses. All these challenges call for the development of universal influenza vaccines capable of conferring broad cross-protection against multiple subtypes of influenza A viruses. Facilitated by the advancement in modern molecular biology, delicate antigen design becomes one of the most effective factors for fulfilling such goals. Conserved epitopes residing in virus surface proteins including influenza matrix protein 2 and the stalk domain of the hemagglutinin draw general interest for improved antigen design. The present review summarizes the recent progress in such endeavors and also covers the encouraging progress in integrated antigen/adjuvant delivery and controlled release technology that facilitate the development of an affordable universal influenza vaccine.
Collapse
Affiliation(s)
- Han Zhang
- Department of Microbiology and Immunology, and Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | - Li Wang
- Department of Microbiology and Immunology, and Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | - Richard W Compans
- Department of Microbiology and Immunology, and Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | - Bao-Zhong Wang
- Department of Microbiology and Immunology, and Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
24
|
The design and proof of concept for a CD8(+) T cell-based vaccine inducing cross-subtype protection against influenza A virus. Immunol Cell Biol 2012; 91:96-104. [PMID: 23146941 DOI: 10.1038/icb.2012.54] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In this study, we examined the reactivity of human peripheral blood mononuclear cells to a panel of influenza A virus (IAV) CD8(+) T-cell epitopes that are recognised by the major human leukocyte antigen (HLA) groups represented in the human population. We examined the level of recognition in a sample of the human population and the potential coverage that could be achieved if these were incorporated into a T-cell epitope-based vaccine. We then designed a candidate influenza vaccine that incorporated three of the examined HLA-A2-restricted influenza epitopes into Pam2Cys-based lipopeptides. These lipopeptides do not require the addition of an adjuvant and can be delivered directly to the respiratory mucosa enabling the generation of local memory cell populations that are crucial for clearance of influenza. Intranasal administration of a mixture of three lipopeptides to HLA-A2 transgenic HHD mice elicited multiple CD8(+) T-cell specificities in the spleen and lung that closely mimicked the response generated following natural infection with influenza. These CD8(+) T cells were associated with viral reduction following H3N1 influenza virus challenge for as long as 3 months after lipopeptide administration. In addition, lipopeptides containing IAV-targeting epitopes conferred substantial benefit against death following infection with a virulent H1N1 strain. Because CD8(+) T cell epitopes are often derived from highly conserved regions of influenza viruses, such vaccines need not be reformulated annually and unlike current antibody-inducing vaccines could provide cross-protective immunity against newly emerging pandemic viruses.
Collapse
|
25
|
Hashemi H, Pouyanfard S, Bandehpour M, Noroozbabaei Z, Kazemi B, Saelens X, Mokhtari-Azad T. Immunization with M2e-displaying T7 bacteriophage nanoparticles protects against influenza A virus challenge. PLoS One 2012; 7:e45765. [PMID: 23029232 PMCID: PMC3454340 DOI: 10.1371/journal.pone.0045765] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 08/23/2012] [Indexed: 12/17/2022] Open
Abstract
Considering the emergence of highly pathogenic influenza viruses and threat of worldwide pandemics, there is an urgent need to develop broadly-protective influenza vaccines. In this study, we demonstrate the potential of T7 bacteriophage-based nanoparticles with genetically fused ectodomain of influenza A virus M2 protein (T7-M2e) as a candidate universal flu vaccine. Immunization of mice with non-adjuvanted T7-M2e elicited M2e-specific serum antibody responses that were similar in magnitude to those elicited by M2e peptide administered in Freund’s adjuvant. Comparable IgG responses directed against T7 phage capsomers were induced following vaccination with wild type T7 or T7-M2e. T7-M2e immunization induced balanced amounts of IgG1 and IgG2a antibodies and these antibodies specifically recognized native M2 on the surface of influenza A virus-infected mammalian cells. The frequency of IFN-γ-secreting T cells induced by T7-M2e nanoparticles was comparable to those elicited by M2e peptide emulsified in Freund’s adjuvant. Emulsification of T7-M2e nanoparticles in Freund’s adjuvant, however, induced a significantly stronger T cell response. Furthermore, T7-M2e-immunized mice were protected against lethal challenge with an H1N1 or an H3N2 virus, implying the induction of hetero-subtypic immunity in our mouse model. T7-M2e-immunized mice displayed considerable weight loss and had significantly reduced viral load in their lungs compared to controls. We conclude that display of M2e on the surface of T7 phage nanoparticles offers an efficient and economical opportunity to induce cross-protective M2e-based immunity against influenza A.
Collapse
Affiliation(s)
- Hamidreza Hashemi
- Department of Virology, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mojgan Bandehpour
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Biotechnology Department, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Noroozbabaei
- Department of Virology, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahram Kazemi
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Biotechnology Department, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- * E-mail: (BK); (TM)
| | - Xavier Saelens
- Department for Molecular Biomedical Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Talat Mokhtari-Azad
- Department of Virology, Tehran University of Medical Sciences, Tehran, Iran
- * E-mail: (BK); (TM)
| |
Collapse
|
26
|
Gowthaman U, Rai PK, Khan N, Jackson DC, Agrewala JN. Lipidated promiscuous peptides vaccine for tuberculosis-endemic regions. Trends Mol Med 2012; 18:607-14. [PMID: 22939171 DOI: 10.1016/j.molmed.2012.07.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 07/10/2012] [Accepted: 07/20/2012] [Indexed: 10/27/2022]
Abstract
Despite nine decades of Bacillus Calmette--Guérin (BCG) vaccination, tuberculosis continues to be a major global health challenge. Clinical trials worldwide have proved the inadequacy of the BCG vaccine in preventing the manifestation of pulmonary tuberculosis in adults. Ironically, the efficacy of BCG is poorest in tuberculosis endemic areas. Factors such as nontuberculous or environmental mycobacteria and helminth infestation have been suggested to limit the efficacy of BCG. Hence, in high TB-burden countries, radically novel strategies of vaccination are urgently required. Here we showcase the properties of lipidated promiscuous peptide vaccines that target and activate cells of the innate and adaptive immune systems by employing a Toll-like receptor-2 agonist, S-[2,3-bis(palmitoyloxy)propyl]cysteine (Pam2Cys). Such a strategy elicits robust protection and enduring memory responses by type 1 T helper cells (Th1). Consequently, lipidated peptides may yield a better vaccine than BCG.
Collapse
Affiliation(s)
- Uthaman Gowthaman
- Immunology Laboratory, CSIR-Institute of Microbial Technology, Chandigarh-160036, India
| | | | | | | | | |
Collapse
|
27
|
Wolf AI, Mozdzanowska K, Williams KL, Singer D, Richter M, Hoffmann R, Caton AJ, Otvos L, Erikson J. Vaccination with M2e-based multiple antigenic peptides: characterization of the B cell response and protection efficacy in inbred and outbred mice. PLoS One 2011; 6:e28445. [PMID: 22180783 PMCID: PMC3236751 DOI: 10.1371/journal.pone.0028445] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Accepted: 11/08/2011] [Indexed: 01/06/2023] Open
Abstract
Background The extracellular domain of the influenza A virus protein matrix protein 2 (M2e) is remarkably conserved between various human isolates and thus is a viable target antigen for a universal influenza vaccine. With the goal of inducing protection in multiple mouse haplotypes, M2e-based multiple antigenic peptides (M2e-MAP) were synthesized to contain promiscuous T helper determinants from the Plasmodium falciparum circumsporozoite protein, the hepatitis B virus antigen and the influenza virus hemagglutinin. Here, we investigated the nature of the M2e-MAP-induced B cell response in terms of the distribution of antibody (Ab) secreting cells (ASCs) and Ab isotypes, and tested the protective efficacy in various mouse strains. Methodology/Principal Findings Immunization of BALB/c mice with M2e-MAPs together with potent adjuvants, CpG 1826 oligonucleotides (ODN) and cholera toxin (CT) elicited high M2e-specific serum Ab titers that protected mice against viral challenge. Subcutaneous (s.c.) and intranasal (i.n.) delivery of M2e-MAPs resulted in the induction of IgG in serum and airway secretions, however only i.n. immunization induced anti-M2e IgA ASCs locally in the lungs, correlating with M2-specific IgA in the bronchio-alveolar lavage (BAL). Interestingly, both routes of vaccination resulted in equal protection against viral challenge. Moreover, M2e-MAPs induced cross-reactive and protective responses to diverse M2e peptides and variant influenza viruses. However, in contrast to BALB/c mice, immunization of other inbred and outbred mouse strains did not induce protective Abs. This correlated with a defect in T cell but not B cell responsiveness to the M2e-MAPs. Conclusion/Significance Anti-M2e Abs induced by M2e-MAPs are highly cross-reactive and can mediate protection to variant viruses. Although synthetic MAPs are promising designs for vaccines, future constructs will need to be optimized for use in the genetically heterogeneous human population.
Collapse
Affiliation(s)
- Amaya I. Wolf
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | | | - Katie L. Williams
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - David Singer
- Center for Biotechnology and Biomedicine, Institute of Bioanalytical Chemistry, Universität Leipzig, Leipzig, Germany
| | - Monique Richter
- Center for Biotechnology and Biomedicine, Institute of Bioanalytical Chemistry, Universität Leipzig, Leipzig, Germany
| | - Ralf Hoffmann
- Center for Biotechnology and Biomedicine, Institute of Bioanalytical Chemistry, Universität Leipzig, Leipzig, Germany
| | - Andrew J. Caton
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - Laszlo Otvos
- Department of Biology, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Jan Erikson
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
28
|
Lugade AA, Bianchi-Smiraglia A, Pradhan V, Elkin G, Murphy TF, Thanavala Y. Lipid motif of a bacterial antigen mediates immune responses via TLR2 signaling. PLoS One 2011; 6:e19781. [PMID: 21611194 PMCID: PMC3096640 DOI: 10.1371/journal.pone.0019781] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Accepted: 04/04/2011] [Indexed: 01/21/2023] Open
Abstract
The cross-talk between the innate and the adaptive immune system is facilitated
by the initial interaction of antigen with dendritic cells. As DCs express a
large array of TLRs, evidence has accumulated that engagement of these molecules
contributes to the activation of adaptive immunity. We have evaluated the
immunostimulatory role of the highly-conserved outer membrane lipoprotein P6
from non-typeable Haemophilus influenzae (NTHI) to determine
whether the presence of the lipid motif plays a critical role on its
immunogenicity. We undertook a systematic analysis of the role that the lipid
motif plays in the activation of DCs and the subsequent stimulation of
antigen-specific T and B cells. To facilitate our studies, recombinant P6
protein that lacked the lipid motif was generated. Mice immunized with
non-lipidated rP6 were unable to elicit high titers of anti-P6 Ig. Expression of
the lipid motif on P6 was also required for proliferation and cytokine secretion
by antigen-specific T cells. Upregulation of T cell costimulatory molecules was
abrogated in DCs exposed to non-lipidated rP6 and in
TLR2−/− DCs exposed to native P6, thereby resulting
in diminished adaptive immune responses. Absence of either the lipid motif on
the antigen or TLR2 expression resulted in diminished cytokine production from
stimulated DCs. Collectively; our data suggest that the lipid motif of the
lipoprotein antigen is essential for triggering TLR2 signaling and effective
stimulation of APCs. Our studies establish the pivotal role of a bacterial lipid
motif on activating both innate and adaptive immune responses to an otherwise
poorly immunogenic protein antigen.
Collapse
Affiliation(s)
- Amit A. Lugade
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, New
York, United States of America
| | - Anna Bianchi-Smiraglia
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, New
York, United States of America
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo,
New York, United States of America
| | - Vandana Pradhan
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, New
York, United States of America
| | - Galina Elkin
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, New
York, United States of America
| | - Timothy F. Murphy
- Department of Medicine, University at Buffalo, State University of New
York, Buffalo, New York, United States of America
| | - Yasmin Thanavala
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, New
York, United States of America
- * E-mail:
| |
Collapse
|
29
|
Zeng W, Horrocks KJ, Robevska G, Wong CY, Azzopardi K, Tauschek M, Robins-Browne RM, Jackson DC. A modular approach to assembly of totally synthetic self-adjuvanting lipopeptide-based vaccines allows conformational epitope building. J Biol Chem 2011; 286:12944-51. [PMID: 21321114 DOI: 10.1074/jbc.m111.227744] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The technology described here allows the chemical synthesis of vaccines requiring correctly folded epitopes and that contain difficult or long peptide sequences. The final self-adjuvanting product promotes strong humoral and/or cell-mediated immunity. A module containing common components of the vaccine (T helper cell epitope and the adjuvanting lipid moiety S-[2,3-bis(palmitoyloxy)propyl]cysteine) was assembled to enable a plug and play approach to vaccine assembly. The inclusion within the module of a chemical group with chemical properties complementary and orthogonal to a chemical group present in the target epitope allowed chemoselective ligation of the two vaccine components. The heat-stable enterotoxin of enterotoxigenic Escherichia coli that requires strict conformational integrity for biological activity and the reproductive hormone luteinizing hormone-releasing hormone were used as the target epitopes for the antibody vaccines. An epitope from the acid polymerase of influenza virus was used to assemble a CD8(+) T cell vaccine. Evaluation of each vaccine candidate in animals demonstrated the feasibility of the approach and that the type of immune response required, viz. antibody or cytotoxic T lymphocyte, dictates the nature of the chemical linkage between the module and target epitope. The use of a thioether bond between the module and target epitope had little or no adverse effect on antibody responses, whereas the use of a disulfide bond between the module and target epitope almost completely abrogated the antibody response. In contrast, better cytotoxic T lymphocyte responses were obtained when a disulfide bond was used.
Collapse
Affiliation(s)
- Weiguang Zeng
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Ng WC, Wong V, Muller B, Rawlin G, Brown LE. Prevention and treatment of influenza with hyperimmune bovine colostrum antibody. PLoS One 2010; 5:e13622. [PMID: 21049034 PMCID: PMC2964324 DOI: 10.1371/journal.pone.0013622] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Accepted: 10/02/2010] [Indexed: 12/22/2022] Open
Abstract
Background Despite the availability of specific vaccines and antiviral drugs, influenza continues to impose a heavy toll on human health worldwide. Passive transfer of specific antibody (Ab) may provide a useful means of preventing or treating disease in unvaccinated individuals or those failing to adequately seroconvert, especially now that resistance to antiviral drugs is on the rise. However, preparation of appropriate Ab in large scale, quickly and on a yearly basis is viewed as a significant logistical hurdle for this approach to control seasonal influenza. Methodology/Principal Findings In this study, bovine colostrum, which contains approximately 500 g of IgG per milking per animal, has been investigated as a source of polyclonal antibody for delivery to the respiratory tract. IgG and F(ab')2 were purified from the hyperimmune colostrum of cows vaccinated with influenza A/Puerto Rico/8/34 (PR8) vaccine and were shown to have high hemagglutination-inhibitory and virus-neutralizing titers. In BALB/c mice, a single administration of either IgG or F(ab')2 could prevent the establishment of infection with a sublethal dose of PR8 virus when given as early as 7 days prior to exposure to virus. Pre-treated mice also survived an otherwise lethal dose of virus, the IgG- but not the F(ab')2-treated mice showing no weight loss. Successful reduction of established infection with this highly virulent virus was also observed with a single treatment 24 hr after virus exposure. Conclusions/Significance These data suggest that a novel and commercially-scalable technique for preparing Ab from hyperimmune bovine colostrum could allow production of a valuable substitute for antiviral drugs to control influenza with the advantage of eliminating the need for daily administration.
Collapse
Affiliation(s)
- Wy Ching Ng
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, Victoria, Australia
| | - Victor Wong
- Immuron Limited, North Melbourne, Victoria, Australia
| | - Brian Muller
- Immuron Limited, North Melbourne, Victoria, Australia
| | - Grant Rawlin
- Immuron Limited, North Melbourne, Victoria, Australia
| | - Lorena E. Brown
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, Victoria, Australia
- * E-mail:
| |
Collapse
|