1
|
Bitterlich LM, Tunstead C, Hogan AE, Ankrum JA, English K. Mesenchymal stromal cells can block palmitate training of macrophages via cyclooxygenase-2 and interleukin-1 receptor antagonist. Cytotherapy 2025; 27:169-180. [PMID: 39580716 DOI: 10.1016/j.jcyt.2024.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/16/2024] [Accepted: 10/21/2024] [Indexed: 11/26/2024]
Abstract
Innate training of macrophages can be beneficial for the clearance of pathogens. However, for certain chronic conditions, innate training can have detrimental effects due to an excessive production of pro-inflammatory cytokines. Obesity is a condition that is associated with a range of increased pro-inflammatory training stimuli including the free fatty acid palmitate. Mesenchymal stromal cells (MSCs) are powerful immunomodulators and known to suppress inflammatory macrophages via a range of soluble factors. We show that palmitate training of murine bone-marrow-derived macrophages and human monocyte-derived macrophages (MDMs) results in an increased production of TNFα and IL-6 upon stimulation with lipopolysaccharide and is associated with epigenetic remodeling. Palmitate training led to metabolic changes, however, MSCs did not alter the metabolic profile of human MDMs. Using a transwell system, we demonstrated that human bone marrow MSCs block palmitate training in both murine and human macrophages suggesting the involvement of secreted factors. MSC disruption of the training process occurs through more than one pathway. Suppression of palmitate-enhanced TNFα production is associated with cyclooxygenase-2 activity in MSCs, while secretion of interleukin-1 receptor antagonist by MSCs is required to suppress palmitate-enhanced IL-6 production in MDMs.
Collapse
Affiliation(s)
- Laura M Bitterlich
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Ireland; Department of Biology, Maynooth University, Maynooth, Ireland
| | - Courteney Tunstead
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Ireland; Department of Biology, Maynooth University, Maynooth, Ireland
| | - Andrew E Hogan
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Ireland; Department of Biology, Maynooth University, Maynooth, Ireland
| | - James A Ankrum
- University of Iowa Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa, USA; Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa, USA
| | - Karen English
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Ireland; Department of Biology, Maynooth University, Maynooth, Ireland.
| |
Collapse
|
2
|
Chen Q, Su Y, Yang Z, Lin Q, Ke Y, Xing D, Li H. Bibliometric mapping of mesenchymal stem cell therapy for bone regeneration from 2013 to 2023. Front Med (Lausanne) 2025; 11:1484097. [PMID: 39835103 PMCID: PMC11743382 DOI: 10.3389/fmed.2024.1484097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 12/05/2024] [Indexed: 01/22/2025] Open
Abstract
Mesenchymal stem cells (MSCs) have shown significant potential in bone regeneration and regenerative medicine in recent years. With the advancement of tissue engineering, MSCs have been increasingly applied in bone repair and regeneration, and their clinical application potential has grown through interdisciplinary approaches involving biomaterials and genetic engineering. However, there is a lack of systematic reviews summarizing their applications in bone regeneration. To address this gap, we analyzed the latest research on MSCs for bone regeneration published from 2013 to 2023. Using the Web of Science Core Collection, we conducted a literature search in December 2024 and employed bibliometric tools like CiteSpace and VOSviewer for a comprehensive analysis of the key research trends. Our findings focus on the development of cell engineering, highlighting the advantages, limitations, and future prospects of MSC applications in bone regeneration. These insights aim to enhance understanding of MSC-based bone regeneration, inspire new research directions, and facilitate the clinical translation of MSC research.
Collapse
Affiliation(s)
- Qianqian Chen
- Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
- Arthritis Clinic & Research Center, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yiqi Su
- Arthritis Clinic & Research Center, Peking University People’s Hospital, Peking University, Beijing, China
| | - Zhen Yang
- Arthritis Clinic & Research Center, Peking University People’s Hospital, Peking University, Beijing, China
| | - Qiyuan Lin
- Arthritis Clinic & Research Center, Peking University People’s Hospital, Peking University, Beijing, China
| | - Yan Ke
- Arthritis Clinic & Research Center, Peking University People’s Hospital, Peking University, Beijing, China
- Arthritis Institute, Peking University, Beijing, China
| | - Dan Xing
- Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
- Arthritis Clinic & Research Center, Zhejiang Chinese Medical University, Hangzhou, China
- Arthritis Clinic & Research Center, Peking University People’s Hospital, Peking University, Beijing, China
- Arthritis Institute, Peking University, Beijing, China
| | - Hui Li
- Arthritis Clinic & Research Center, Peking University People’s Hospital, Peking University, Beijing, China
- Arthritis Institute, Peking University, Beijing, China
| |
Collapse
|
3
|
Dunbar H, Hawthorne IJ, Tunstead C, Dunlop M, Volkova E, Weiss DJ, dos Santos CC, Armstrong ME, Donnelly SC, English K. The VEGF-Mediated Cytoprotective Ability of MIF-Licensed Mesenchymal Stromal Cells in House Dust Mite-Induced Epithelial Damage. Eur J Immunol 2025; 55:e202451205. [PMID: 39502000 PMCID: PMC11739667 DOI: 10.1002/eji.202451205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 10/16/2024] [Accepted: 10/23/2024] [Indexed: 01/06/2025]
Abstract
Enhancing mesenchymal stromal cell (MSC) therapeutic efficacy through licensing with proinflammatory cytokines is now well established. We have previously shown that macrophage migration inhibitory factor (MIF)-licensed MSCs exerted significantly enhanced therapeutic efficacy in reducing inflammation in house dust mite (HDM)-driven allergic asthma. Soluble mediators released into the MSC secretome boast cytoprotective properties equal to those associated with the cell itself. In asthma, epithelial barrier damage caused by the inhalation of allergens like HDM drives goblet cell hyperplasia. Vascular endothelial growth factor (VEGF) plays a pivotal role in the repair and maintenance of airway epithelial integrity. Human bone marrow-derived MSCs expressed the MIF receptors CD74, CXCR2, and CXCR4. Endogenous MIF from high MIF expressing CATT7 bone marrow-derived macrophages increased MSC production of VEGF through the MIF CXCR4 chemokine receptor, where preincubation with CXCR4 inhibitor mitigated this effect. CATT7-MIF licensed MSC conditioned media containing increased levels of VEGF significantly enhanced bronchial epithelial wound healing via migration and proliferation in vitro. Blocking VEGFR2 or the use of mitomycin C abrogated this effect. Furthermore, CATT7-MIF MSC CM significantly decreased goblet cell hyperplasia after the HDM challenge in vivo. This was confirmed to be VEGF-dependent, as the use of anti-human VEGF neutralising antibody abrogated this effect. Overall, this study highlights that MIF-licenced MSCs show enhanced production of VEGF, which has the capacity to repair the lung epithelium.
Collapse
Affiliation(s)
- Hazel Dunbar
- Kathleen Lonsdale Institute for Human Health ResearchMaynooth UniversityMaynooth, Co. KildareIreland
- Department of BiologyMaynooth UniversityMaynooth, Co. KildareIreland
| | - Ian J. Hawthorne
- Kathleen Lonsdale Institute for Human Health ResearchMaynooth UniversityMaynooth, Co. KildareIreland
- Department of BiologyMaynooth UniversityMaynooth, Co. KildareIreland
| | - Courteney Tunstead
- Kathleen Lonsdale Institute for Human Health ResearchMaynooth UniversityMaynooth, Co. KildareIreland
- Department of BiologyMaynooth UniversityMaynooth, Co. KildareIreland
| | - Molly Dunlop
- Kathleen Lonsdale Institute for Human Health ResearchMaynooth UniversityMaynooth, Co. KildareIreland
- Department of BiologyMaynooth UniversityMaynooth, Co. KildareIreland
| | - Evelina Volkova
- Kathleen Lonsdale Institute for Human Health ResearchMaynooth UniversityMaynooth, Co. KildareIreland
- Department of BiologyMaynooth UniversityMaynooth, Co. KildareIreland
| | - Daniel J. Weiss
- Department of Medicine, 226 Health Sciences Research Facility, Larner College of MedicineUniversity of VermontBurlingtonVermontUSA
| | - Claudia C. dos Santos
- The Keenan Research Centre for Biomedical Science of St. Michael's HospitalTorontoOntarioCanada
- Institute of Medical Sciences and Interdepartmental Division of Critical CareFaculty of MedicineUniversity of TorontoTorontoOntarioCanada
| | | | - Seamas C. Donnelly
- Department of MedicineTrinity College Dublin and Tallaght HospitalDublinIreland
| | - Karen English
- Kathleen Lonsdale Institute for Human Health ResearchMaynooth UniversityMaynooth, Co. KildareIreland
- Department of BiologyMaynooth UniversityMaynooth, Co. KildareIreland
| |
Collapse
|
4
|
Wei S, Shou Z, Yang D, Sun L, Guo Y, Wang Y, Zan X, Li L, Zhang C. Ultra-Long-Term Anti-Inflammatory Polyphenol Capsule to Remodel the Microenvironment for Accelerating Osteoarthritis Healing by Single Dosage. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407425. [PMID: 39556697 DOI: 10.1002/advs.202407425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 11/03/2024] [Indexed: 11/20/2024]
Abstract
Osteoarthritis (OA) is a common chronic inflammatory disease that leads to disability and death. Existing therapeutic agents often require frequent use, which can lead to drug resistance and long-term side effects. Polyphenols have anti-inflammatory and antioxidant potential. However, they are limited by their short half-life and low bioavailability. This work presents a novel pure polyphenol capsule for sustained release of polyphenols, which is self-assembled via hydrophobic and hydrogen bonds. The capsule enhances cellular uptake, scavenges reactive oxygen and nitrogen species, reduces inflammatory markers, and remodels the OA microenvironment by inhibiting the p38 MAPK pathway. The capsule overcomes the limitations of short half-life and low bioavailability of polyphenols and achieves single-dose cure in mouse and dog OA models, providing an optimal therapeutic window for OA repair. Taking advantage of simple manufacturing, convenient administration, and pure polyphenol composition, these capsules show great potential for clinical treatment of osteoarthritis and chronic inflammatory diseases.
Collapse
Affiliation(s)
- Shaoyin Wei
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325035, China
- Wenzhou Key Laboratory of Perioperative Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China
| | - Zeyu Shou
- Department of Orthopedics, Zhuji Affiliated Hospital of Wenzhou Medical University, Shaoxing, 311800, China
| | - Dong Yang
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325035, China
- Wenzhou Key Laboratory of Perioperative Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China
| | - Linxiao Sun
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Yan Guo
- Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion, School of Materials Science and Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Yang Wang
- Wenzhou Key Laboratory of Perioperative Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China
| | - Xingjie Zan
- Wenzhou Key Laboratory of Perioperative Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China
| | - Lianxin Li
- Department of Orthopaedics Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Chunwu Zhang
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| |
Collapse
|
5
|
Hazrati A, Mirarefin SMJ, Malekpour K, Rahimi A, Khosrojerdi A, Rasouli A, Akrami S, Soudi S. Mesenchymal stem cell application in pulmonary disease treatment with emphasis on their interaction with lung-resident immune cells. Front Immunol 2024; 15:1469696. [PMID: 39582867 PMCID: PMC11581898 DOI: 10.3389/fimmu.2024.1469696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/01/2024] [Indexed: 11/26/2024] Open
Abstract
Due to the vital importance of the lungs, lung-related diseases and their control are very important. Severe inflammatory responses mediated by immune cells were among the leading causes of lung tissue pathology and damage during the COVID-19 pandemic. In addition, uncontrolled immune cell responses can lead to lung tissue damage in other infectious and non-infectious diseases. It is essential to control immune responses in a way that leads to homeostasis. Immunosuppressive drugs only suppress inflammatory responses and do not affect the homeostasis of reactions. The therapeutic application of mesenchymal stem cells (MSCs), in addition to restoring immune homeostasis, can promote the regeneration of lung tissue through the production of growth factors and differentiation into lung-related cells. However, the communication between MSCs and immune cells after treatment of pulmonary diseases is essential, and investigating this can help develop a clinical perspective. Different studies in the clinical phase showed that MSCs can reverse fibrosis, increase regeneration, promote airway remodeling, and reduce damage to lung tissue. The proliferation and differentiation potential of MSCs is one of the mechanisms of their therapeutic effects. Furthermore, they can secrete exosomes that affect the function of lung cells and immune cells and change their function. Another important mechanism is that MSCs reduce harmful inflammatory responses through communication with innate and adaptive immune cells, which leads to a shift of the immune system toward regulatory and hemostatic responses.
Collapse
Affiliation(s)
- Ali Hazrati
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Kosar Malekpour
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Arezou Rahimi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Arezou Khosrojerdi
- Infectious Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Ashkan Rasouli
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Susan Akrami
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sara Soudi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
6
|
Artamonov MY, Sokov EL. Intraosseous Delivery of Mesenchymal Stem Cells for the Treatment of Bone and Hematological Diseases. Curr Issues Mol Biol 2024; 46:12672-12693. [PMID: 39590346 PMCID: PMC11592824 DOI: 10.3390/cimb46110752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
Mesenchymal stem cells are used most in regenerative medicine due to their capacities in differentiation and immune modulation. The intraosseous injection of MSC into the bone has been recommended because of expected outcomes for retention, bioavailability, and enhanced therapeutic efficacy, particularly in conditions involving the bone, such as osteoporosis and osteonecrosis. A review of the intraosseous delivery of mesenchymal stem cells in comparison with intravenous and intra-arterial delivery methods will be subjected to critical examination. This delivery mode fares better regarding paracrine signaling and immunomodulation attributes, which are the cornerstone of tissue regeneration and inflammation reduction. The local complications and technical challenges still apply with this method. This study was more focused on further research soon to be conducted to further elucidate long-term safety and efficacy of intraosseous mesenchymal stem cell therapy. Though much has been achieved with very impressive progress in this field, it is worth noting that more studies need to be put into place so that this technique can be established as a routine approach, especially with further research in biomaterials, gene therapy, and personalized medicine.
Collapse
Affiliation(s)
| | - Evgeniy L. Sokov
- Department of Algology and Rehabilitation, Peoples’ Friendship University, Moscow 117198, Russia;
| |
Collapse
|
7
|
Li Y, Hunter A, Wakeel MM, Sun G, Lau RWK, Broughton BRS, Pino IEO, Deng Z, Zhang T, Murthi P, Del Borgo MP, Widdop RE, Polo JM, Ricardo SD, Samuel CS. The renoprotective efficacy and safety of genetically-engineered human bone marrow-derived mesenchymal stromal cells expressing anti-fibrotic cargo. Stem Cell Res Ther 2024; 15:375. [PMID: 39443975 PMCID: PMC11515549 DOI: 10.1186/s13287-024-03992-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/09/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Kidney fibrosis is a hallmark of chronic kidney disease (CKD) and compromises the viability of transplanted human bone marrow-derived mesenchymal stromal cells (BM-MSCs). Hence, BM-MSCs were genetically-engineered to express the anti-fibrotic and renoprotective hormone, human relaxin-2 (RLX) and green fluorescent protein (BM-MSCs-eRLX + GFP), which enabled BM-MSCs-eRLX + GFP delivery via a single intravenous injection. METHODS BM-MSCs were lentiviral-transduced with human relaxin-2 cDNA and GFP, under a eukaryotic translation elongation factor-1α promoter (BM-MSCs-eRLX + GFP) or GFP alone (BM-MSCs-eGFP). The ability of BM-MSCs-eRLX + GFP to differentiate, proliferate, migrate, produce RLX and cytokines was evaluated in vitro, whilst BM-MSC-eRLX + GFP vs BM-MSCs-eGFP homing to the injured kidney and renoprotective effects were evaluated in preclinical models of ischemia reperfusion injury (IRI) and high salt (HS)-induced hypertensive CKD in vivo. The long-term safety of BM-MSCs-RLX + GFP was also determined 9-months after treatment cessation in vivo. RESULTS When cultured for 3- or 7-days in vitro, 1 × 106 BM-MSCs-eRLX + GFP produced therapeutic RLX levels, and secreted an enhanced but finely-tuned cytokine profile without compromising their proliferation or differentiation capacity compared to naïve BM-MSCs. BM-MSCs-eRLX + GFP were identified in the kidney 2-weeks post-administration and retained the therapeutic effects of RLX in vivo. 1-2 × 106 BM-MSCs-eRLX + GFP attenuated the IRI- or therapeutically abrogated the HS-induced tubular epithelial damage and interstitial fibrosis, and significantly reduced the HS-induced hypertension, glomerulosclerosis and proteinuria. This was to an equivalent extent as RLX and BM-MSCs administered separately but to a broader extent than BM-MSCs-eGFP or the angiotensin-converting enzyme inhibitor, perindopril. Additionally, these renoprotective effects of BM-MSCs-eRLX + GFP were maintained in the presence of perindopril co-treatment, highlighting their suitability as adjunct therapies to ACE inhibition. Importantly, no major long-term adverse effects of BM-MSCs-eRLX + GFP were observed. CONCLUSIONS BM-MSCs-eRLX + GFP produced greater renoprotective and therapeutic efficacy over that of BM-MSCs-eGFP or ACE inhibition, and may represent a novel and safe treatment option for acute kidney injury and hypertensive CKD.
Collapse
Affiliation(s)
- Yifang Li
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
- Department of Pharmacology, Monash University, Clayton, VIC, 3800, Australia
| | - Alex Hunter
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
- Department of Pharmacology, Monash University, Clayton, VIC, 3800, Australia
| | - Miqdad M Wakeel
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
- Department of Pharmacology, Monash University, Clayton, VIC, 3800, Australia
| | - Guizhi Sun
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, 3800, Australia
| | - Ricky W K Lau
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
- Department of Pharmacology, Monash University, Clayton, VIC, 3800, Australia
| | - Brad R S Broughton
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
- Department of Pharmacology, Monash University, Clayton, VIC, 3800, Australia
| | - Ivan E Oyarce Pino
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
- Department of Pharmacology, Monash University, Clayton, VIC, 3800, Australia
| | - Zihao Deng
- Department of Medicine (Alfred Hospital), Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia
| | - Tingfang Zhang
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
- Department of Pharmacology, Monash University, Clayton, VIC, 3800, Australia
| | - Padma Murthi
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
- Department of Pharmacology, Monash University, Clayton, VIC, 3800, Australia
| | - Mark P Del Borgo
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
- Department of Pharmacology, Monash University, Clayton, VIC, 3800, Australia
| | - Robert E Widdop
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
- Department of Pharmacology, Monash University, Clayton, VIC, 3800, Australia
| | - Jose M Polo
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, 3800, Australia
- Adelaide Centre for Epigenetics, School of Biomedicine, The University of Adelaide, Adelaide, SA, 5005, Australia
- The South Australian Immunogenomics Cancer Institute, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Sharon D Ricardo
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia.
- Department of Pharmacology, Monash University, Clayton, VIC, 3800, Australia.
| | - Chrishan S Samuel
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia.
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia.
- Department of Pharmacology, Monash University, Clayton, VIC, 3800, Australia.
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
8
|
Nakako S, Koh H, Sogabe N, Kuno M, Makuuchi Y, Takakuwa T, Okamura H, Nishimoto M, Nakashima Y, Hino M, Nakamae H. Successful treatment with mesenchymal stem cells for steroid-refractory late-onset idiopathic pneumonia syndrome following allogeneic hematopoietic cell transplantation. Transpl Immunol 2024; 86:102107. [PMID: 39142540 DOI: 10.1016/j.trim.2024.102107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/09/2024] [Accepted: 08/10/2024] [Indexed: 08/16/2024]
Abstract
The reportedly poor outcome of late-onset idiopathic pneumonia syndrome (IPS) necessitates new approaches to its treatment. A 55-year-old man who had undergone allogeneic hematopoietic cell transplantation (allo-HCT) for myelodysplastic syndrome 1 year ago developed dyspnea with acute skin graft-versus-host disease (GVHD) flare-up while tapering immunosuppressive agents. He presented with acute respiratory distress syndrome with ground-glass opacities in the right upper and left lower lobes. All infectious tests, including multiplex polymerase chain reaction of nasal wash, were negative, and broad-spectrum antibiotic therapy was refractory. The patient was diagnosed with late-onset IPS and was refractory to methylprednisolone pulse therapy. He then showed a favorable response to mesenchymal stem cell (MSC) infusion. After eight infusions of MSCs, he had no IPS recurrence for over one year. Recently, preclinical studies have reported the potential therapeutic utility of MSC infusion for treating IPS, and our case supports its potential for treating late-onset IPS.
Collapse
Affiliation(s)
- Soichiro Nakako
- Department of Hematology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan.
| | - Hideo Koh
- Department of Hematology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan; Department of Preventive Medicine and Environmental Health, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Nobuhiro Sogabe
- Department of Hematology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Masatomo Kuno
- Department of Hematology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Yosuke Makuuchi
- Department of Hematology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Teruhito Takakuwa
- Department of Hematology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Hiroshi Okamura
- Department of Hematology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Mitsutaka Nishimoto
- Department of Hematology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Yasuhiro Nakashima
- Department of Hematology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Masayuki Hino
- Department of Hematology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Hirohisa Nakamae
- Department of Hematology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
9
|
Dunbar H, Hawthorne IJ, Tunstead C, McNamee EN, Weiss DJ, Armstrong ME, Donnelly SC, English K. Mesenchymal stromal cells dampen trained immunity in house dust mite-primed macrophages expressing human macrophage migration inhibitory factor polymorphism. Cytotherapy 2024; 26:1245-1251. [PMID: 38819366 DOI: 10.1016/j.jcyt.2024.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/08/2024] [Accepted: 05/08/2024] [Indexed: 06/01/2024]
Abstract
BACKGROUND Trained immunity results in long-term immunological memory, provoking a faster and greater immune response when innate immune cells encounter a secondary, often heterologous, stimulus. We have previously shown that house dust mite (HDM)-induced innate training is amplified in mice expressing the human macrophage migration inhibitory factor (MIF) CATT7 functional polymorphism. AIM This study investigated the ability of mesenchymal stromal cells (MSCs) to modulate MIF-driven trained immunity both in vitro and in vivo. METHODS Compared with wild-type mice, in vivo HDM-primed bone marrow-derived macrophages (BMDMs) from CATT7 mice expressed significantly higher levels of M1-associated genes following lipopolysaccharide stimulation ex vivo. Co-cultures of CATT7 BMDMs with MSCs suppressed this HDM-primed effect, with tumor necrosis factor alpha (TNF-α) being significantly decreased in a cyclooxygenase 2 (COX-2)-dependent manner. Interestingly, interleukin 6 (IL-6) was suppressed by MSCs independently of COX-2. In an in vitro training assay, MSCs significantly abrogated the enhanced production of pro-inflammatory cytokines by HDM-trained CATT7 BMDMs when co-cultured at the time of HDM stimulus on day 0, displaying their therapeutic efficacy in modulating an overzealous human MIF-dependent immune response. Utilizing an in vivo model of HDM-induced trained immunity, MSCs administered systemically on day 10 and day 11 suppressed this trained phenomenon by significantly reducing TNF-α and reducing IL-6 and C-C motif chemokine ligand 17 (CCL17) production. CONCLUSIONS This novel study elucidates how MSCs can attenuate an MIF-driven, HDM-trained response in CATT7 mice in a model of allergic airway inflammation.
Collapse
Affiliation(s)
- Hazel Dunbar
- Department of Biology, Maynooth University, Maynooth, Ireland; Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Ireland
| | - Ian J Hawthorne
- Department of Biology, Maynooth University, Maynooth, Ireland; Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Ireland
| | - Courteney Tunstead
- Department of Biology, Maynooth University, Maynooth, Ireland; Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Ireland
| | - Eóin N McNamee
- Department of Biology, Maynooth University, Maynooth, Ireland; Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Ireland
| | - Daniel J Weiss
- Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Michelle E Armstrong
- Department of Medicine, Trinity College Dublin and Tallaght University Hospital, Dublin, Ireland
| | - Seamas C Donnelly
- Department of Medicine, Trinity College Dublin and Tallaght University Hospital, Dublin, Ireland
| | - Karen English
- Department of Biology, Maynooth University, Maynooth, Ireland; Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Ireland.
| |
Collapse
|
10
|
Wang F, Zhang S, Xu Y, He W, Wang X, He Z, Shang J, Zhenyu Z. Mapping the landscape: A bibliometric perspective on autophagy in spinal cord injury. Medicine (Baltimore) 2024; 103:e38954. [PMID: 39029042 PMCID: PMC11398829 DOI: 10.1097/md.0000000000038954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/21/2024] Open
Abstract
BACKGROUND Spinal cord injury (SCI) is a severe condition that often leads to persistent damage of nerve cells and motor dysfunction. Autophagy is an intracellular system that regulates the recycling and degradation of proteins and lipids, primarily through lysosomal-dependent organelle degradation. Numerous publications have highlighted the involvement of autophagy in the secondary injury of SCI. Therefore, gaining a comprehensive understanding of autophagy research is crucial for designing effective therapies for SCI. METHODS Dates were obtained from Web of Science, including articles and article reviews published from its inception to October 2023. VOSviewer, Citespace, and SCImago were used to visualized analysis. Bibliometric analysis was conducted using the Web of Science data, focusing on various categories such as publications, authors, journals, countries, organizations, and keywords. This analysis was aimed to summarize the knowledge map of autophagy and SCI. RESULTS From 2009 to 2023, the number of annual publications in this field exhibited wave-like growth, with the highest number of publications recorded in 2020 (44 publications). Our analysis identified Mei Xifan as the most prolific author, while Kanno H emerged as the most influential author based on co-citations. Neuroscience Letters was found to have published the largest number of papers in this field. China was the most productive country, contributing 232 publications, and Wenzhou Medical University was the most active organization, publishing 39 papers. CONCLUSION We demonstrated a comprehensive overview of the relationship between autophagy and SCI utilizing bibliometric tools. This article could help to enhance the understanding of the field about autophagy and SCI, foster collaboration among researchers and organizations, and identify potential therapeutic targets for treatment.
Collapse
Affiliation(s)
- Fei Wang
- Department of Orthopedic Surgery, Shaoxing People's Hospital, Zhejiang University, School of Medicine, Shaoxing, Zhejiang Province, China
| | - Songou Zhang
- Ningbo University, School of Medicine, Ningbo, Zhejiang Province, China
| | - Yangjun Xu
- School of Medicine, Shaoxing University, Shaoxing City, Zhejiang Province, China
| | - Wei He
- Department of Orthopedic Surgery, Shaoxing People's Hospital, Zhejiang University, School of Medicine, Shaoxing, Zhejiang Province, China
| | - Xiang Wang
- Department of Thoracic Surgery, Shaoxing People's Hospital, Shaoxing, Zhejiang Province, China
| | - Zhongwei He
- School of Medicine, Shaoxing University, Shaoxing City, Zhejiang Province, China
| | - Jinxiang Shang
- Department of Orthopedic, Affiliated Hospital of Shaoxing University, Shaoxing, Zhejiang Province, China
| | - Zhang Zhenyu
- School of Medicine, Shaoxing University, Shaoxing City, Zhejiang Province, China
| |
Collapse
|
11
|
Rodham P, Khaliq F, Giannoudis V, Giannoudis PV. Cellular therapies for bone repair: current insights. J Orthop Traumatol 2024; 25:28. [PMID: 38789881 PMCID: PMC11132192 DOI: 10.1186/s10195-024-00768-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 05/01/2024] [Indexed: 05/26/2024] Open
Abstract
Mesenchymal stem cells are core to bone homeostasis and repair. They both provide the progenitor cells from which bone cells are formed and regulate the local cytokine environment to create a pro-osteogenic environment. Dysregulation of these cells is often seen in orthopaedic pathology and can be manipulated by the physician treating the patient. This narrative review aims to describe the common applications of cell therapies to bone healing whilst also suggesting the future direction of these techniques.
Collapse
Affiliation(s)
- Paul Rodham
- Academic Department of Trauma and Orthopaedics, School of Medicine, University of Leeds, Leeds, UK
| | - Farihah Khaliq
- Academic Department of Trauma and Orthopaedic Surgery, School of Medicine, University of Leeds, Leeds, UK
| | - Vasileos Giannoudis
- Academic Department of Trauma and Orthopaedics, School of Medicine, University of Leeds, Leeds, UK
| | - Peter V Giannoudis
- Academic Department of Trauma and Orthopaedics, School of Medicine, University of Leeds, Leeds, UK.
- NIHR Leeds Biomedical Research Centre, Chapel Allerton Hospital, Leeds, UK.
| |
Collapse
|
12
|
Kurawaki S, Nakashima A, Ishiuchi N, Kanai R, Maeda S, Sasaki K, Masaki T. Mesenchymal stem cells pretreated with interferon-gamma attenuate renal fibrosis by enhancing regulatory T cell induction. Sci Rep 2024; 14:10251. [PMID: 38704512 PMCID: PMC11069572 DOI: 10.1038/s41598-024-60928-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 04/29/2024] [Indexed: 05/06/2024] Open
Abstract
Mesenchymal stem cells (MSCs) exert their anti-inflammatory and anti-fibrotic effects by secreting various humoral factors. Interferon-gamma (IFN-γ) can enhance these effects of MSCs, and enhancement of regulatory T (Treg) cell induction is thought to be an underlying mechanism. However, the extent to which Treg cell induction by MSCs pretreated with IFN-γ (IFN-γ MSCs) ameliorates renal fibrosis remains unknown. In this study, we investigated the effects of Treg cell induction by IFN-γ MSCs on renal inflammation and fibrosis using an siRNA knockdown system. Administration of IFN-γ MSCs induced Treg cells and inhibited infiltration of inflammatory cells in ischemia reperfusion injury (IRI) rats more drastically than control MSCs without IFN-γ pretreatment. In addition, administration of IFN-γ MSCs more significantly attenuated renal fibrosis compared with control MSCs. Indoleamine 2,3-dioxygenase (IDO) expression levels in conditioned medium from MSCs were enhanced by IFN-γ pretreatment. Moreover, IDO1 knockdown in IFN-γ MSCs reduced their anti-inflammatory and anti-fibrotic effects in IRI rats by reducing Treg cell induction. Our findings suggest that the increase of Treg cells induced by enhanced secretion of IDO by IFN-γ MSCs played a pivotal role in their anti-fibrotic effects. Administration of IFN-γ MSCs may potentially be a useful therapy to prevent renal fibrosis progression.
Collapse
Affiliation(s)
- So Kurawaki
- Department of Nephrology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Ayumu Nakashima
- Department of Nephrology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan.
- Department of Stem Cell Biology and Medicine, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan.
| | - Naoki Ishiuchi
- Department of Nephrology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
- Department of Stem Cell Biology and Medicine, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Ryo Kanai
- Department of Nephrology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Satoshi Maeda
- Department of Stem Cell Biology and Medicine, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
- TWOCELLS Company, Limited, 16-35 Hijiyama-honmachi, Minami-ku, Hiroshima, 732-0816, Japan
| | - Kensuke Sasaki
- Department of Nephrology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Takao Masaki
- Department of Nephrology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan.
| |
Collapse
|
13
|
Wang X, Mijiti W, Yi Z, Jia Q, Ma J, Xie Z. Immunomodulatory effects of hydatid antigens on mesenchymal stem cells: gene expression alterations and functional consequences. Front Microbiol 2024; 15:1381401. [PMID: 38655088 PMCID: PMC11035891 DOI: 10.3389/fmicb.2024.1381401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 03/25/2024] [Indexed: 04/26/2024] Open
Abstract
Background Cystic echinococcosis, caused by the larval stage of Echinococcus granulosus, remains a global health challenge. Mesenchymal stem cells (MSCs) are renowned for their regenerative and immunomodulatory properties. Given the parasite's mode of establishment, we postulate that MSCs likely play a pivotal role in the interaction between the parasite and the host. This study aims to explore the response of MSCs to antigens derived from Echinococcus granulosus, the etiological agent of hydatid disease, with the hypothesis that exposure to these antigens may alter MSC function and impact the host's immune response to the parasite. Methods MSCs were isolated from mouse bone marrow and co-cultured with ESPs, HCF, or pLL antigens. We conducted high-throughput sequencing to examine changes in the MSCs' mRNA expression profile. Additionally, cell cycle, migration, and secretory functions were assessed using various assays, including CCK8, flow cytometry, real-time PCR, Western blot, and ELISA. Results Our analysis revealed that hydatid antigens significantly modulate the mRNA expression of genes related to cytokine and chemokine activity, impacting MSC proliferation, migration, and cytokine secretion. Specifically, there was a downregulation of chemokines (MCP-1, CXCL1) and pro-inflammatory cytokines (IL-6, NOS2/NO), alongside an upregulation of anti-inflammatory mediators (COX2/PGE2). Furthermore, all antigens reduced MSC migration, and significant alterations in cellular metabolism-related pathways were observed. Conclusion Hydatid disease antigens induce a distinct immunomodulatory response in MSCs, characterized by a shift towards an anti-inflammatory phenotype and reduced cell migration. These changes may contribute to the parasite's ability to evade host defenses and persist within the host, highlighting the complex interplay between MSCs and hydatid disease antigens. This study provides valuable insights into the pathophysiology of hydatid disease and may inform the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Xin Wang
- Department of Orthopedics and Trauma, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, Xinjiang, China
| | - Wubulikasimu Mijiti
- Department of Orthopedics and Trauma, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, Xinjiang, China
| | - Zhifei Yi
- Department of Orthopedics and Trauma, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, Xinjiang, China
| | - Qiyu Jia
- Department of Orthopedics and Trauma, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, Xinjiang, China
| | - Junchao Ma
- Department of Orthopedics and Trauma, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, Xinjiang, China
| | - Zengru Xie
- Department of Orthopedics and Trauma, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, Xinjiang, China
- Key Laboratory of High Incidence Disease Research in Xingjiang (Xinjiang Medical University), Ministry of Education, Ürümqi, Xinjiang, China
- Xinjiang Clinical Research Center for Orthopedics, Xinjiang Medical University, Ürümqi, Xinjiang, China
| |
Collapse
|
14
|
Ito T, Rojasawasthien T, Takeuchi SY, Okamoto H, Okumura N, Shirakawa T, Matsubara T, Kawamoto T, Kokabu S. Royal Jelly Enhances the Ability of Myoblast C2C12 Cells to Differentiate into Multilineage Cells. Molecules 2024; 29:1449. [PMID: 38611729 PMCID: PMC11013243 DOI: 10.3390/molecules29071449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024] Open
Abstract
Royal jelly (RJ) is recognized as beneficial to mammalian health. Multilineage differentiation potential is an important property of mesenchymal stem cells (MSCs). C2C12 cells have an innate ability to differentiate into myogenic cells. Like MSCs, C2C12 cells can also differentiate into osteoblast- and adipocyte-lineage cells. We recently reported that RJ enhances the myogenic differentiation of C2C12 cells. However, the effect of RJ on osteoblast or adipocyte differentiation is still unknown. Here in this study, we have examined the effect of RJ on the osteoblast and adipocyte differentiation of C2C12 cells. Protease-treated RJ was used to reduce the adverse effects caused by RJ supplementation. To induce osteoblast or adipocyte differentiation, cells were treated with bone morphogenetic proteins (BMP) or peroxisome proliferator-activated receptor γ (PPARγ) agonist, respectively. RNA-seq was used to analyze the effect of RJ on gene expression. We found that RJ stimulates osteoblast and adipocyte differentiation. RJ regulated 279 genes. RJ treatment upregulated glutathione-related genes. Glutathione, the most abundant antioxidative factor in cells, has been shown to promote osteoblast differentiation in MSC and MSC-like cells. Therefore, RJ may promote osteogenesis, at least in part, through the antioxidant effects of glutathione. RJ enhances the differentiation ability of C2C12 cells into multiple lineages, including myoblasts, osteoblasts, and adipocytes.
Collapse
Affiliation(s)
- Takumi Ito
- Division of Molecular Signaling and Biochemistry, Kyushu Dental University, Fukuoka 803-8580, Japan; (T.I.); (T.R.); (S.Y.T.); (T.M.)
- Division of Orofacial Functions and Orthodontics, Kyushu Dental University, Fukuoka 803-8580, Japan; (T.S.); (T.K.)
| | - Thira Rojasawasthien
- Division of Molecular Signaling and Biochemistry, Kyushu Dental University, Fukuoka 803-8580, Japan; (T.I.); (T.R.); (S.Y.T.); (T.M.)
| | - Sachiko Yamashita Takeuchi
- Division of Molecular Signaling and Biochemistry, Kyushu Dental University, Fukuoka 803-8580, Japan; (T.I.); (T.R.); (S.Y.T.); (T.M.)
| | - Hideto Okamoto
- Institute for Bee Products and Health Science, Yamada Bee Company, Inc., Okayama 708-0393, Japan; (H.O.); (N.O.)
| | - Nobuaki Okumura
- Institute for Bee Products and Health Science, Yamada Bee Company, Inc., Okayama 708-0393, Japan; (H.O.); (N.O.)
| | - Tomohiko Shirakawa
- Division of Orofacial Functions and Orthodontics, Kyushu Dental University, Fukuoka 803-8580, Japan; (T.S.); (T.K.)
| | - Takuma Matsubara
- Division of Molecular Signaling and Biochemistry, Kyushu Dental University, Fukuoka 803-8580, Japan; (T.I.); (T.R.); (S.Y.T.); (T.M.)
| | - Tatsuo Kawamoto
- Division of Orofacial Functions and Orthodontics, Kyushu Dental University, Fukuoka 803-8580, Japan; (T.S.); (T.K.)
| | - Shoichiro Kokabu
- Division of Molecular Signaling and Biochemistry, Kyushu Dental University, Fukuoka 803-8580, Japan; (T.I.); (T.R.); (S.Y.T.); (T.M.)
| |
Collapse
|
15
|
Najar M, Bouhtit F, Rahmani S, Bouali A, Melki R, Najimi M, Lewalle P, Merimi M. The immunogenic profile and immunomodulatory function of mesenchymal stromal / stem cells in the presence of Ptychotis verticillata. Heliyon 2024; 10:e24822. [PMID: 38317994 PMCID: PMC10838760 DOI: 10.1016/j.heliyon.2024.e24822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 01/15/2024] [Accepted: 01/15/2024] [Indexed: 02/07/2024] Open
Abstract
Mesenchymal stromal/stem cells (MSCs) are considered to be a promising immunotherapeutic tool due to their easy accessibility, culture expansion possibilities, safety profile, and immunomodulatory properties. Although several studies have demonstrated the therapeutic effects of MSCs, their efficacy needs to be improved while also preserving their safety. It has been suggested that cell homeostasis may be particularly sensitive to plant extracts. The impact of natural compounds on immunity is thus a fascinating and growing field. Ptychotis verticillata and its bioactive molecules, carvacrol and thymol, are potential candidates for improving MSC therapeutic effects. They can be used as immunotherapeutic agents to regulate MSC functions and behavior during immunomodulation. Depending on their concentrations and incubation time, these compounds strengthened the immunomodulatory functions of MSCs while maintaining their immune-evasive profile. Incubating MSCs with carvacrol and thymol does not alter their hypoimmunogenicity, as no induction of the allogeneic immune response was observed. MSCs also showed enhanced abilities to reduce the proliferation of activated T cells. Thus, MSCs are immunologically responsive to bioactive molecules derived from PV. The bioactivity may depend on the whole phyto-complex of the oil. These findings may contribute to the development of safe and efficient immunotherapeutic MSCs by using medicinal plant-derived active molecules.
Collapse
Affiliation(s)
- Mehdi Najar
- Faculty of Medicine, ULB721, Université Libre de Bruxelles, 1070 Brussels, Belgium
- Osteoarthritis Research Unit, Department of Medicine, University of Montreal Hospital Research Center (CRCHUM), University of Montreal, Montreal H2X 0A9, QC, Canada
| | - Fatima Bouhtit
- Laboratory of Experimental Hematology, Jules Bordet Institute, Université Libre de Bruxelles, 1000 Brussels, Belgium
- LBBES Laboratory, Genetics and Immune Cell Therapy Unit, Faculty of Sciences, University Mohammed Premier, Oujda 60000, Morocco
| | - Saida Rahmani
- Laboratory of Experimental Hematology, Jules Bordet Institute, Université Libre de Bruxelles, 1000 Brussels, Belgium
| | - Abderrahim Bouali
- LBBES Laboratory, Genetics and Immune Cell Therapy Unit, Faculty of Sciences, University Mohammed Premier, Oujda 60000, Morocco
| | - Rahma Melki
- LBBES Laboratory, Genetics and Immune Cell Therapy Unit, Faculty of Sciences, University Mohammed Premier, Oujda 60000, Morocco
| | - Mustapha Najimi
- Laboratory of Pediatric Hepatology and Cell Therapy, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Philippe Lewalle
- Laboratory of Experimental Hematology, Jules Bordet Institute, Université Libre de Bruxelles, 1000 Brussels, Belgium
| | - Makram Merimi
- LBBES Laboratory, Genetics and Immune Cell Therapy Unit, Faculty of Sciences, University Mohammed Premier, Oujda 60000, Morocco
| |
Collapse
|
16
|
Qiu Y, Li C, Sheng S. Efficacy and safety of stem cell therapy for Crohn's disease: a meta-analysis of randomized controlled trials. Stem Cell Res Ther 2024; 15:28. [PMID: 38303054 PMCID: PMC10835827 DOI: 10.1186/s13287-024-03637-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/17/2024] [Indexed: 02/03/2024] Open
Abstract
PURPOSE Small-scale clinical trials have provided evidence suggesting the effectiveness of stem-cell therapy (SCT) for patients diagnosed with Crohn's disease (CD). The objective of the research was to systematically assess the effectiveness and safety of SCT for individuals diagnosed with CD through a comprehensive review and meta-analysis. METHODS A search was conducted in Medline (PubMed), CENTER (Cochrane Library), and Embase (Ovid) to find randomized controlled trials (RCTs) that assessed the impact of SCT on the occurrence of clinical remission (CR) and severe adverse events (SAE) among patients diagnosed with CD. The Cochrane Q test and estimation of I2 were used to assess heterogeneity among studies. After incorporating heterogeneity, a random-effects model was employed for data pooling. RESULTS Overall, 12 RCTs involving 632 adult patients with medically refractory CD or CD-related fistula were included. In comparison with placebo or no treatment, SCT showed a greater likelihood of CR (odds ratio [OR] 2.08, 95% CI 1.39-3.12, p < 0.001) without any notable heterogeneity (I2 = 0%). Consistent results were observed in subgroup analyses based on study design, patient diagnosis, source and type of stem cells, and follow-up durations, with all p-values for subgroup analyses being greater than 0.05. The occurrence of SAE was similar among patients assigned to SCT and the placebo/no treatment cohorts (OR 0.70, 95% CI 0.37-1.33, p = 0.28; I2 = 0%). CONCLUSIONS For patients with medically refractory CD or CD-related fistula, SCT may be an alternatively effective and safe treatment.
Collapse
Affiliation(s)
- Yunfeng Qiu
- Department of Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Changfeng Li
- Department of Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Shihou Sheng
- Department of Gastrointestinal Surgery, China-Japan Union Hospital of Jilin University, No. 126, Xiantai Street, Changchun, 130033, China.
| |
Collapse
|
17
|
Zhang W, Lee PL, Li J, Komatsu C, Wang Y, Sun H, DeSanto M, Washington K, Gorantla V, Kokai L, Solari MG. Local Delivery of Adipose Stem Cells Promotes Allograft Survival in a Rat Hind-Limb Model of Vascularized Composite Allotransplantation. Plast Reconstr Surg 2024; 153:79e-90e. [PMID: 37014960 DOI: 10.1097/prs.0000000000010510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2023]
Abstract
BACKGROUND Adipose stem cells (ASCs) are a promising cell-based immunotherapy because of their minimally invasive harvest, high yield, and immunomodulatory capacity. In this study, the authors investigated the effects of local versus systemic ASC delivery on vascularized composite allotransplant survival and alloimmune regulation. METHODS Lewis rats received hind-limb transplants from Brown Norway rats and were administered donor-derived ASCs (passage 3 or 4, 1 × 10 6 cells/rat) locally in the allograft, or contralateral limb, or systemically at postoperative day 1. Recipients were treated intraperitoneally with rabbit anti-rat lymphocyte serum on postoperative days 1 and 4 and daily tacrolimus for 21 days. Limb allografts were monitored for clinical signs of rejection. Donor cell chimerism, immune cell differentiation, and cytokine expression in recipient lymphoid organs were measured by flow cytometric analysis. The immunomodulation function of ASCs was tested by mixed lymphocyte reaction assay and ASC stimulation studies. RESULTS Local-ASC-treated recipients achieved significant prolonged allograft survival (85.7% survived >130 days; n = 6) compared with systemic-ASC and contralateral-ASC groups. Secondary donor skin allografts transplanted to the local-ASC long-term surviving recipients accepted permanently without additional immunosuppression. The increases in donor cell chimerism and regulatory T-cells were evident in blood and draining lymph nodes of the local-ASC group. Moreover, mixed lymphocyte reaction showed that ASCs inhibited donor-specific T-cell proliferation independent of direct ASC-T-cell contact. ASCs up-regulated antiinflammatory molecules in response to cytokine stimulation in vitro. CONCLUSION Local delivery of ASCs promoted long-term survival and modulated alloimmune responses in a full major histocompatibility complex-mismatched vascularized composite allotransplantation model and was more effective than systemic administration. CLINICAL RELEVANCE STATEMENT ASCs are a readily available and abundant source of therapeutic cells that could decrease the amount of systemic immunosuppression required to maintain limb and face allografts.
Collapse
Affiliation(s)
- Wensheng Zhang
- From the Department of Plastic Surgery
- McGowan Institute for Regenerative Medicine, University of Pittsburgh
- Wilford Hall Ambulatory Surgical Center, 59th Medical Wing Office of Science and Technology, Joint Base San Antonio
| | | | - Jingjing Li
- From the Department of Plastic Surgery
- Department of Burn and Plastic Surgery, Xiangya Hospital, Central South University
| | | | - Yong Wang
- Department of Surgery, Division of Plastic and Reconstructive Surgery, University of Colorado Anschutz Medical Campus
| | | | - Marisa DeSanto
- Ohio University Heritage College of Osteopathic Medicine
| | - Kia Washington
- Department of Surgery, Division of Plastic and Reconstructive Surgery, University of Colorado Anschutz Medical Campus
| | - Vijay Gorantla
- McGowan Institute for Regenerative Medicine, University of Pittsburgh
- Institute for Regenerative Medicine, Wake Forest School of Medicine
| | - Lauren Kokai
- From the Department of Plastic Surgery
- McGowan Institute for Regenerative Medicine, University of Pittsburgh
| | - Mario G Solari
- From the Department of Plastic Surgery
- McGowan Institute for Regenerative Medicine, University of Pittsburgh
| |
Collapse
|
18
|
Taeb S, Rostamzadeh D, Mafi S, Mofatteh M, Zarrabi A, Hushmandi K, Safari A, Khodamoradi E, Najafi M. Update on Mesenchymal Stem Cells: A Crucial Player in Cancer Immunotherapy. Curr Mol Med 2024; 24:98-113. [PMID: 36573062 DOI: 10.2174/1566524023666221226143814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 10/17/2022] [Accepted: 10/17/2022] [Indexed: 12/28/2022]
Abstract
The idea of cancer immunotherapy has spread, and it has made tremendous progress with the advancement of new technology. Immunotherapy, which serves to assist the natural defenses of the body in eradicating cancerous cells, is a remarkable achievement that has revolutionized both cancer research and cancer treatments. Currently, the use of stem cells in immunotherapy is widespread and shares a special characteristic, including cancer cell migration, bioactive component release, and immunosuppressive activity. In the context of cancer, mesenchymal stem cells (MSCs) are rapidly being identified as vital stromal regulators of tumor progression. MSCs therapy has been implicated in treating a wide range of diseases, including bone damage, autoimmune diseases, and particularly hematopoietic abnormalities, providing stem cell-based therapy with an extra dimension. Moreover, the implication of MSCs does not have ethical concerns, and the complications known in pluripotent and totipotent stem cells are less common in MSCs. MSCs have a lot of distinctive characteristics that, when coupled, make them excellent for cellular-based immunotherapy and as vehicles for gene and drug delivery in a variety of inflammations and malignancies. MSCs can migrate to the inflammatory site and exert immunomodulatory responses via cell-to-cell contacts with lymphocytes by generating soluble substances. In the current review, we discuss the most recent research on the immunological characteristics of MSCs, their use as immunomodulatory carriers, techniques for approving MSCs to adjust their immunological contour, and their usages as vehicles for delivering therapeutic as well as drugs and genes engineered to destroy tumor cells.
Collapse
Affiliation(s)
- Shahram Taeb
- Department of Radiology, School of Paramedical Sciences, Guilan University of Medical Sciences, Rasht, Iran
| | - Davoud Rostamzadeh
- Department of Clinical Biochemistry, Yasuj University of Medical Sciences, Yasuj, Iran
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Sahar Mafi
- Department of Clinical Biochemistry, Yasuj University of Medical Sciences, Yasuj, Iran
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Mohammad Mofatteh
- Sir William Dunn School of Pathology, Medical Sciences Division, University of Oxford, South Parks Road, Oxford OX1 3RE, United Kingdom
- Lincoln College, University of Oxford, Turl Street, Oxford OX1 3DR, United Kingdom
| | - Ali Zarrabi
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, Istanbul, Turkey
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul, Turkey
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Arash Safari
- Department of Radiology, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ehsan Khodamoradi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
19
|
Kharazinejad E, Hassanzadeh G, Sahebkar A, Yousefi B, Reza Sameni H, Majidpoor J, Golchini E, Taghdiri Nooshabadi V, Mousavi M. The Comparative Effects of Schwann Cells and Wharton's Jelly Mesenchymal Stem Cells on the AIM2 Inflammasome Activity in an Experimental Model of Spinal Cord Injury. Neuroscience 2023; 535:1-12. [PMID: 37890609 DOI: 10.1016/j.neuroscience.2023.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/15/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023]
Abstract
Inflammasome activation and the consequent release of pro-inflammatory cytokines play a crucial role in the development of sensory/motor deficits following spinal cord injury (SCI). Immunomodulatory activities are exhibited by Schwann cells (SCs) and Wharton's jelly mesenchymal stem cells (WJ-MSCs). In this study, we aimed to compare the effectiveness of these two cell sources in modulating the absent in melanoma 2 (AIM2) inflammasome complex in rats with SCI. The Basso, Beattie, Bresnahan (BBB) test, Nissl staining, and Luxol fast blue (LFB) staining were performed to evaluate locomotor function, neuronal survival, and myelination, respectively. Real-time polymerase chain reaction (RT-PCR), Western blotting, and enzyme-linked immunosorbent assay (ELISA) were employed to analyze the gene and protein expressions of inflammasome components, including AIM2, ASC, caspase-1, interleukin-1β (IL-1β), and IL-18. Both gene and protein expressions of all evaluated factors were decreased after SC or WJ-MSC treatment, with a more pronounced effect observed in the SCs group (P < 0.05). Additionally, SCs promoted neuronal survival and myelination. Moreover, the administration of 3 × 105 cells resulted in motor recovery improvement in both treatment groups (P < 0.05). Although not statistically significant, these effects were more prominent in the SC-treated animals. In conclusion, SC therapy demonstrated greater efficacy in targeting AIM2 inflammasome activation and the associated inflammatory pathway in SCI experiments compared to WJ-MSCs.
Collapse
Affiliation(s)
- Ebrahim Kharazinejad
- Department of Anatomy, Faculty of Medicine, Abadan University of Medical Sciences, Abadan, Iran
| | - Gholamreza Hassanzadeh
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Digital Health, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Behpour Yousefi
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran; Department of Anatomy, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Hamid Reza Sameni
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran; Department of Tissue Engineering and Applied Cell Science, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Jamal Majidpoor
- Department of Anatomy, Faculty of Medicine, Infectious Diseases Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Ehsan Golchini
- Department of Operating Room, School of Paramedical Sciences, Alborz University of Medical Sciences, Karaj, Iran
| | - Vajihe Taghdiri Nooshabadi
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran; Department of Tissue Engineering and Applied Cell Science, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Mahboubeh Mousavi
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran; Department of Anatomy, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran.
| |
Collapse
|
20
|
Mahajan A, Bhattacharyya S. Immunomodulation by mesenchymal stem cells during osteogenic differentiation: Clinical implications during bone regeneration. Mol Immunol 2023; 164:143-152. [PMID: 38011783 DOI: 10.1016/j.molimm.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 11/08/2023] [Accepted: 11/12/2023] [Indexed: 11/29/2023]
Abstract
Critical bone defects resulting in delayed and non-union are a major concern in the field of orthopedics. Over the past decade, mesenchymal stem cells (MSCs) have become a promising frontier for bone repair and regeneration owing to their high expansion rate and osteogenic differentiation potential ex vivo. MSCs have also long been associated with their ability to modulate immune response in the recipients. These can even skew the immune response towards pro-inflammatory or anti-inflammatory type by sensing their local microenvironment. MSCs adopt anti-inflammatory phenotype at bone injury site and secrete various immunomodulatory factors such as IDO, NO, TGFβ1 and PGE-2 which have redundant role in osteoblast differentiation and bone formation. As such, several studies have also sought to decipher the immunomodulatory effects of osteogenically differentiated MSCs. The present review discusses the immunomodulatory status of MSCs during their osteogenic differentiation and summarizes few mechanisms that cause immunosuppression by osteogenically differentiated MSCs and its implication during bone healing.
Collapse
Affiliation(s)
- Aditi Mahajan
- Department of Biophysics, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Shalmoli Bhattacharyya
- Department of Biophysics, Post Graduate Institute of Medical Education and Research, Chandigarh, India.
| |
Collapse
|
21
|
Zhang Y, Wei J, Yu X, Chen L, Ren R, Dong Y, Wang S, Zhu M, Ming N, zhu Z, Gao C, Xiong W. CXCL chemokines-mediated communication between macrophages and BMSCs on titanium surface promotes osteogenesis via the actin cytoskeleton pathway. Mater Today Bio 2023; 23:100816. [PMID: 37859997 PMCID: PMC10582501 DOI: 10.1016/j.mtbio.2023.100816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 09/06/2023] [Accepted: 09/22/2023] [Indexed: 10/21/2023] Open
Abstract
The refined functional cell subtypes in the immune microenvironment of specific titanium (Ti) surface and their collaborative role in promoting bone marrow mesenchymal stem cells (BMSCs) driven bone integration need to be comprehensively characterized. This study employed a simplified co-culture system to investigate the dynamic, temporal crosstalk between macrophages and BMSCs on the Ti surface. The M2-like sub-phenotype of macrophages, characterized by secretion of CXCL chemokines, emerges as a crucial mediator for promoting BMSC osteogenic differentiation and bone integration in the Ti surface microenvironment. Importantly, these two cells maintain their distinct functional phenotypes through a mutually regulatory interplay. The secretion of CXCL3, CXCL6, and CXCL14 by M2-like macrophages plays a pivotal role. The process activates CXCR2 and CCR1 receptors, triggering downstream regulatory effects on the actin cytoskeleton pathway within BMSCs, ultimately fostering osteogenic differentiation. Reciprocally, BMSCs secrete pleiotrophin (PTN), a key player in regulating macrophage differentiation. This secretion maintains the M2-like phenotype via the Sdc3 receptor-mediated cell adhesion molecules pathway. Our findings provide a novel insight into the intricate communication and mutual regulatory mechanisms operating between BMSCs and macrophages on the Ti surface, highlight specific molecular events governing cell-cell interactions in the osteointegration, inform the surface design of orthopedic implants, and advance our understanding of osteointegration.
Collapse
Affiliation(s)
- Yayun Zhang
- Department of Orthopedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China
- Trauma Center/Department of Emergency and Trauma Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China
| | - Jiemao Wei
- Department of Orthopedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China
| | - Xingbang Yu
- Department of Orthopedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China
| | - Liangxi Chen
- Department of Orthopedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China
| | - Ranyue Ren
- Department of Orthopedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China
| | - Yimin Dong
- Department of Orthopedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China
| | - Sibo Wang
- Department of Orthopedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China
| | - Meipeng Zhu
- Department of Orthopedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China
| | - Nannan Ming
- The State Key Laboratory of Refractories and Metallurgy Institute of Advanced Materials and Nanotechnology Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Ziwei zhu
- Department of Orthopedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China
| | - Chenghao Gao
- Department of Orthopedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China
| | - Wei Xiong
- Department of Orthopedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China
| |
Collapse
|
22
|
Haseli M, Pinzon-Herrera L, Hao X, Wickramasinghe SR, Almodovar J. Novel Strategy to Enhance Human Mesenchymal Stromal Cell Immunosuppression: Harnessing Interferon-Gamma Presentation in Metal-Organic Frameworks Embedded on Heparin/Collagen Multilayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:16472-16483. [PMID: 37944116 DOI: 10.1021/acs.langmuir.3c02355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
The immunomodulatory potential of human mesenchymal stromal cells (hMSCs) can be boosted when exposed to interferon-gamma (IFN-γ). While pretreating hMSCs with IFN-γ is a common practice to enhance their immunomodulatory effects, the challenge lies in maintaining a continuous IFN-γ presence within cellular environments. Therefore, in this research, we investigate the sustainable presence of IFN-γ in the cell culture medium by immobilizing it in water-stable metal-organic frameworks (MOFs) [PCN-333(Fe)]. The immobilized IFN-γ in MOFs was coated on top of multilayers composed of combinations of heparin (HEP) and collagen (COL) that were used as a bioactive surface. Multilayers were created by using a layer-by-layer assembly technique, with the final layer alternating between collagen (COL) and heparin (HEP). We evaluated the viability, differentiation, and immunomodulatory activity of hMSCs cultured on (HEP/COL) coated with immobilized IFN-γ in MOFs after 3 and 6 days of culture. Cell viability, compared to tissue culture plastic, was not affected by immobilized IFN-γ in MOFs when they were coated on (HEP/COL) multilayers. We also verified that the osteogenic and adipogenic differentiation of the hMSCs remained unchanged. The immunomodulatory activity of hMSCs was evaluated by examining the expression of indoleamine 2,3-dioxygenase (IDO) and 11 essential immunomodulatory markers. After 6 days of culture, IDO expression and the expression of 11 immunomodulatory markers were higher in (HEP/COL) coated with immobilized IFN-γ in MOFs. Overall, (HEP/COL) multilayers coated with immobilized IFN-γ in MOFs provide a sustained presentation of cytokines to potentiate the hMSC immunomodulatory activity.
Collapse
Affiliation(s)
- Mahsa Haseli
- Ralph E. Martin Department of Chemical Engineering, 3202 Bell Engineering Center, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Luis Pinzon-Herrera
- Ralph E. Martin Department of Chemical Engineering, 3202 Bell Engineering Center, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Xiaolei Hao
- Department of Biomedical Engineering, University of Arkansas, John A. White, Jr. Engineering Hall, 790 W. Dickson St. Suite 120, Fayetteville, Arkansas 72701, United States
| | - S Ranil Wickramasinghe
- Ralph E. Martin Department of Chemical Engineering, 3202 Bell Engineering Center, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Jorge Almodovar
- Ralph E. Martin Department of Chemical Engineering, 3202 Bell Engineering Center, University of Arkansas, Fayetteville, Arkansas 72701, United States
| |
Collapse
|
23
|
Payet M, Septembre-Malaterre A, Gasque P, Guillot X. Human Synovial Mesenchymal Stem Cells Expressed Immunoregulatory Factors IDO and TSG6 in a Context of Arthritis Mediated by Alphaviruses. Int J Mol Sci 2023; 24:15932. [PMID: 37958918 PMCID: PMC10649115 DOI: 10.3390/ijms242115932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/26/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023] Open
Abstract
Infection by arthritogenic alphaviruses (aavs) can lead to reactive arthritis, which is characterized by inflammation and persistence of the virus; however, its mechanisms remain ill-characterized. Intriguingly, it has been shown that viral persistence still takes place in spite of robust innate and adaptive immune responses, characterized notably by the infiltration of macrophages (sources of TNF-alpha) as well as T/NK cells (sources of IFN-gamma) in the infected joint. Aavs are known to target mesenchymal stem cells (MSCs) in the synovium, and we herein tested the hypothesis that the infection of MSCs may promote the expression of immunoregulators to skew the anti-viral cellular immune responses. We compared the regulated expression via human synovial MSCs of pro-inflammatory mediators (e.g., IL-1β, IL6, CCL2, miR-221-3p) to that of immunoregulators (e.g., IDO, TSG6, GAS6, miR146a-5p). We used human synovial tissue-derived MSCs which were infected with O'Nyong-Nyong alphavirus (ONNV, class II aav) alone, or combined with recombinant human TNF-α or IFN-γ, to mimic the clinical settings. We confirmed via qPCR and immunofluorescence that ONNV infected human synovial tissue-derived MSCs. Interestingly, ONNV alone did not regulate the expression of pro-inflammatory mediators. In contrast, IDO, TSG6, and GAS6 mRNA expression were increased in response to ONNV infection alone, but particularly when combined with both recombinant cytokines. ONNV infection equally decreased miR-146a-5p and miR-221-3p in the untreated cells and abrogated the stimulatory activity of the recombinant TNF-α but not the IFN-gamma. Our study argues for a major immunoregulatory phenotype of MSCs infected with ONNV which may favor virus persistence in the inflamed joint.
Collapse
Affiliation(s)
- Melissa Payet
- Research Unit ‘Etudes Pharmaco-Immunologiques’ UR EPI, Université de la Réunion, 97400 Saint-Denis, La Réunion, France; (M.P.); (A.S.-M.)
| | - Axelle Septembre-Malaterre
- Research Unit ‘Etudes Pharmaco-Immunologiques’ UR EPI, Université de la Réunion, 97400 Saint-Denis, La Réunion, France; (M.P.); (A.S.-M.)
| | - Philippe Gasque
- Research Unit ‘Etudes Pharmaco-Immunologiques’ UR EPI, Université de la Réunion, 97400 Saint-Denis, La Réunion, France; (M.P.); (A.S.-M.)
- Immunology Laboratory (LICE-OI), CHU Bellepierre, Reunion University Hospital, 97400 Saint-Denis, La Réunion, France
| | - Xavier Guillot
- Research Unit ‘Etudes Pharmaco-Immunologiques’ UR EPI, Université de la Réunion, 97400 Saint-Denis, La Réunion, France; (M.P.); (A.S.-M.)
- Rheumatology Clinical Department, CHU Bellepierre, Reunion University Hospital, 97400 Saint-Denis, La Réunion, France
| |
Collapse
|
24
|
Hawthorne IJ, Dunbar H, Tunstead C, Schorpp T, Weiss DJ, Enes SR, Dos Santos CC, Armstrong ME, Donnelly SC, English K. Human macrophage migration inhibitory factor potentiates mesenchymal stromal cell efficacy in a clinically relevant model of allergic asthma. Mol Ther 2023; 31:3243-3258. [PMID: 37735872 PMCID: PMC10638061 DOI: 10.1016/j.ymthe.2023.09.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/28/2023] [Accepted: 09/14/2023] [Indexed: 09/23/2023] Open
Abstract
Current asthma therapies focus on reducing symptoms but fail to restore existing structural damage. Mesenchymal stromal cell (MSC) administration can ameliorate airway inflammation and reverse airway remodeling. However, differences in patient disease microenvironments seem to influence MSC therapeutic effects. A polymorphic CATT tetranucleotide repeat at position 794 of the human macrophage migration inhibitory factor (hMIF) gene has been associated with increased susceptibility to and severity of asthma. We investigated the efficacy of human MSCs in high- vs. low-hMIF environments and the impact of MIF pre-licensing of MSCs using humanized MIF mice in a clinically relevant house dust mite (HDM) model of allergic asthma. MSCs significantly attenuated airway inflammation and airway remodeling in high-MIF-expressing CATT7 mice but not in CATT5 or wild-type littermates. Differences in efficacy were correlated with increased MSC retention in the lungs of CATT7 mice. MIF licensing potentiated MSC anti-inflammatory effects at a previously ineffective dose. Mechanistically, MIF binding to CD74 expressed on MSCs leads to upregulation of cyclooxygenase 2 (COX-2) expression. Blockade of CD74 or COX-2 function in MSCs prior to administration attenuated the efficacy of MIF-licensed MSCs in vivo. These findings suggest that MSC administration may be more efficacious in severe asthma patients with high MIF genotypes (CATT6/7/8).
Collapse
Affiliation(s)
- Ian J Hawthorne
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare, Ireland; Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Hazel Dunbar
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare, Ireland; Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Courteney Tunstead
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare, Ireland; Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Tamara Schorpp
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare, Ireland; Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Daniel J Weiss
- Department of Medicine, 226 Health Sciences Research Facility, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | - Sara Rolandsson Enes
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, 22100 Lund, Sweden
| | - Claudia C Dos Santos
- The Keenan Research Centre for Biomedical Science of St. Michael's Hospital, 30 Bond Street, Toronto, ON, Canada; Institute of Medical Sciences and Interdepartmental Division of Critical Care, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | | | | | - Karen English
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare, Ireland; Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland.
| |
Collapse
|
25
|
Dehnavi S, Sadeghi M, Tavakol Afshari J, Mohammadi M. Interactions of mesenchymal stromal/stem cells and immune cells following MSC-based therapeutic approaches in rheumatoid arthritis. Cell Immunol 2023; 393-394:104771. [PMID: 37783061 DOI: 10.1016/j.cellimm.2023.104771] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/21/2023] [Accepted: 09/21/2023] [Indexed: 10/04/2023]
Abstract
Rheumatoid arthritis (RA) is considered to be a degenerative and progressive autoimmune disorder. Although several medicinal regimens are used to treat RA, potential adverse events such as metabolic disorders and increased risk of infection, as well as drug resistance in some patients, make it essential to find an effective and safe therapeutic approach. Mesenchymal stromal/stem cells (MSCs) are a group of non-hematopoietic stromal cells with immunomodulatory and inhibitory potential. These cells exert their regulatory properties through direct cell-to-cell interactions and paracrine effects on various immune and non-immune cells. As conventional therapeutic approaches for RA are limited due to their side effects, and some patients became refractory to the treatment, MSCs are considered as a promising alternative treatment for RA. In this review, we introduced various experimental and clinical studies conducted to evaluate the therapeutic effects of MSCs on animal models of arthritis and RA patients. Then, possible modulatory and suppressive effects of MSCs on different innate and adaptive immune cells, including dendritic cells, neutrophils, macrophages, natural killer cells, B lymphocytes, and various subtypes of T cells, were categorized and summarized. Finally, limitations and future considerations for the efficient application of MSCs as a therapeutic approach in RA patients were presented.
Collapse
Affiliation(s)
- Sajad Dehnavi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahvash Sadeghi
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Mojgan Mohammadi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
26
|
Mohammadi TC, Jazi K, Bolouriyan A, Soleymanitabar A. Stem cells in treatment of crohn's disease: Recent advances and future directions. Transpl Immunol 2023; 80:101903. [PMID: 37541629 DOI: 10.1016/j.trim.2023.101903] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/11/2023] [Accepted: 07/22/2023] [Indexed: 08/06/2023]
Abstract
BACKGROUND AND AIM Crohn's disease (CD) is an inflammatory bowel disease that can affect any part of the intestine. There is currently no recognized cure for CD because its cause is unknown. One of the modern approaches that have been suggested for the treatment of CD and other inflammatory-based disorders is cell therapy. METHODS Search terms were stem cell therapy, CD, adipose-derived stem cells, mesenchymal stem cells, and fistula. Of 302 related studies, we removed duplicate and irrelevant papers and identified the ones with proper information related to our scope of the research by reviewing all the abstracts and categorizing each study into the proper section. RESULTS AND CONCLUSION Nowadays, stem cell therapy is widely implied in treating CD. Although mesenchymal and adipose-derived tissue stem cells proved to be safe in treating Crohn's-associated fistula, there are still debates on an optimal protocol to use. Additionally, there is still a lack of evidence on the efficacy of stem cell therapy for intestinal involvement of CD. Future investigations should focus on preparing a standard protocol as well as luminal stem cell therapy in patients.
Collapse
Affiliation(s)
| | - Kimia Jazi
- Student Research Committee, Faculty of Medicine, Medical University of Qom, Qom, Iran
| | - Alireza Bolouriyan
- Student Research Committee, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
27
|
Bouche Djatche WH, Zhu H, Ma W, Li Y, Li Z, Zhao H, Liu Z, Qiao H. Potential of mesenchymal stem cell-derived conditioned medium/secretome as a therapeutic option for ocular diseases. Regen Med 2023; 18:795-807. [PMID: 37702008 DOI: 10.2217/rme-2023-0089] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023] Open
Abstract
Research has shown that the therapeutic effect of mesenchymal stem cells (MSCs) is partially due to its secreted factors as opposed to the implantation of the cells into the treated tissue or tissue replacement. MSC secretome, especially in the form of conditioned medium (MSC-CM) is now being explored as an alternative to MSCs transplantation. Despite the observed benefits of MSC-CM, only a few clinical trials have evaluated it and other secretome components in the treatment of eye diseases. This review provides insight into the potential therapeutic use of MSC-CM in eye conditions, such as corneal diseases, dry eye, glaucoma, retinal diseases and uveitis. We discuss the current evidence, some limitations, and the progress that remains to be achieved before clinical translation becomes possible.
Collapse
Affiliation(s)
| | - Huimin Zhu
- School of Basic Medicine, Shanxi Medical University, Taiyuan, 030001, China
| | - Wenlei Ma
- School of Basic Medicine, Shanxi Medical University, Taiyuan, 030001, China
| | - Yue Li
- School of Basic Medicine, Shanxi Medical University, Taiyuan, 030001, China
| | - Ziang Li
- School of Basic Medicine, Shanxi Medical University, Taiyuan, 030001, China
| | - Hong Zhao
- School of Basic Medicine, Shanxi Medical University, Taiyuan, 030001, China
| | - Zhizhen Liu
- School of Basic Medicine, Shanxi Medical University, Taiyuan, 030001, China
| | - Hua Qiao
- School of Basic Medicine, Shanxi Medical University, Taiyuan, 030001, China
| |
Collapse
|
28
|
Dimova A, Erceg Ivkošić I, Brlek P, Dimov S, Pavlović T, Bokun T, Primorac D. Novel Approach in Rectovaginal Fistula Treatment: Combination of Modified Martius Flap and Autologous Micro-Fragmented Adipose Tissue. Biomedicines 2023; 11:2509. [PMID: 37760949 PMCID: PMC10525900 DOI: 10.3390/biomedicines11092509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
In this paper, we introduce an innovative therapeutic approach for managing rectovaginal fistulas (RVF), by combining the modified Martius flap and micro-fragmented adipose tissue (MFAT) enriched with mesenchymal stem cells (MSC). This novel approach aims to deal with the difficulties associated with RVF, a medically complex condition with a lack of effective treatment options. We present the case of a 45-year-old female patient with a 15-year history of Crohn's disease (CD). During the preceding eight years, she had encountered substantial difficulties resulting from a rectovaginal fistula (RVF) that was active and considerable in size (measuring 3.5 cm in length and 1 cm in width). Her condition was accompanied by tissue alterations at both the vaginal and rectal openings. Following her admission to our hospital, the patient's case was discussed during both surgical and multidisciplinary hospital team (IRB) meetings. The team decided to combine a modified Martius flap with autologous MFAT containing MSCs. The results were remarkable, leading to comprehensive anatomical and clinical resolution of the RVF. Equally significant was the improvement in the patient's overall quality of life and sexual satisfaction during the one-year follow-up period. The integration of the modified Martius flap with MFAT emerges as a highly promising approach for addressing CD-related RVFs that had historically been, and still are, difficult to treat, given their often refractory nature and low healing success rates.
Collapse
Affiliation(s)
- Ana Dimova
- St. Catherine Specialty Hospital, 10000 Zagreb, Croatia
| | - Ivana Erceg Ivkošić
- St. Catherine Specialty Hospital, 10000 Zagreb, Croatia
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Petar Brlek
- St. Catherine Specialty Hospital, 10000 Zagreb, Croatia
- School of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Stefan Dimov
- St. Catherine Specialty Hospital, 10000 Zagreb, Croatia
| | - Tomislav Pavlović
- St. Catherine Specialty Hospital, 10000 Zagreb, Croatia
- School of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | | | - Dragan Primorac
- St. Catherine Specialty Hospital, 10000 Zagreb, Croatia
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- School of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Medical School, University of Split, 21000 Split, Croatia
- Department of Biochemistry & Molecular Biology, The Pennsylvania State University, State College, PA 16802, USA
- The Henry C. Lee College of Criminal Justice and Forensic Sciences, University of New Haven, West Haven, CT 06516, USA
- Medical School REGIOMED, 96450 Coburg, Germany
- Medical School, University of Rijeka, 51000 Rijeka, Croatia
- National Forensic Sciences University, Gandhinagar 382007, India
| |
Collapse
|
29
|
Kim OH, Jeon TJ, So YI, Shin YK, Lee HJ. Applications of Bioinspired Platforms for Enhancing Immunomodulatory Function of Mesenchymal Stromal Cells. Int J Stem Cells 2023; 16:251-259. [PMID: 37385634 PMCID: PMC10465339 DOI: 10.15283/ijsc22211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 07/01/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) have attracted scientific and medical interest due to their self-renewing properties, pluripotency, and paracrine function. However, one of the main limitations to the clinical application of MSCs is their loss of efficacy after transplantation in vivo. Various bioengineering technologies to provide stem cell niche-like conditions have the potential to overcome this limitation. Here, focusing on the stem cell niche microenvironment, studies to maximize the immunomodulatory potential of MSCs by controlling biomechanical stimuli, including shear stress, hydrostatic pressure, stretch, and biophysical cues, such as extracellular matrix mimetic substrates, are discussed. The application of biomechanical forces or biophysical cues to the stem cell microenvironment will be beneficial for enhancing the immunomodulatory function of MSCs during cultivation and overcoming the current limitations of MSC therapy.
Collapse
Affiliation(s)
- Ok-Hyeon Kim
- Department of Anatomy and Cell Biology, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Tae Jin Jeon
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, Korea
| | - Young In So
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, Korea
| | - Yong Kyoo Shin
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Hyun Jung Lee
- Department of Anatomy and Cell Biology, College of Medicine, Chung-Ang University, Seoul, Korea
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, Korea
| |
Collapse
|
30
|
Bicer M, Fidan O. Can mesenchymal stem/stromal cells and their secretomes combat bacterial persisters? World J Microbiol Biotechnol 2023; 39:276. [PMID: 37567959 DOI: 10.1007/s11274-023-03725-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/07/2023] [Indexed: 08/13/2023]
Abstract
The increasing number of life-threatening infections caused by persister bacteria is associated with various issues, including antimicrobial resistance and biofilm formation. Infections due to persister cells are often difficult to suppress without the use of last-resort antibiotics. Throughout the world, bacterial persistence and resistance create an unmet clinical demand for the exploration of newly introduced therapeutic approaches. Mesenchymal stem / stromal cells (MSCs) have an antimicrobial activity to protect against bacterial infections, including those caused by bacterial persisters. MSCs have substantial potential to secrete antimicrobial peptides (AMPs), including cathelicidin, beta-defensins, lipocalin-2, hepcidin, indoleamine 2,3-dioxygenase (IDO), cysteine proteases, and inducible nitric oxide synthases (iNOS). MSCs possess the potential to contribute to innate immunity by regulating the immune response. Recently, MSCs and their secreted components have been reported to improve antimicrobial activity. Bactericidal activity by MSCs and their secretomes has been shown to be mediated in part by the secretion of AMPs. Even though they were discovered more than 80 years ago, therapeutic options for persisters are restricted, and there is an urgent need for alternative treatment regimens. Hence, this review intends to critically assess the current literature on the effects of MSCs and their secretomes on persister bacteria. MSCs and their secretome-based therapies could be preferred as an up-and-coming approach to reinforce the antimicrobial efficiency in persister infections.
Collapse
Affiliation(s)
- Mesude Bicer
- Department of Bioengineering, Faculty of Life and Natural Sciences, Abdullah Gul University, Kayseri, 38080, Turkey.
| | - Ozkan Fidan
- Department of Bioengineering, Faculty of Life and Natural Sciences, Abdullah Gul University, Kayseri, 38080, Turkey
| |
Collapse
|
31
|
Rivas IL, Soltero-Rivera M, Vapniarsky N, Arzi B. Stromal cell therapy in cats with feline chronic gingivostomatitis: current perspectives and future direction. J Feline Med Surg 2023; 25:1098612X231185395. [PMID: 37548494 PMCID: PMC10811994 DOI: 10.1177/1098612x231185395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Feline chronic gingivostomatitis (FCGS) is a painful, immune-mediated, oral mucosal inflammatory disease in cats. The etiology of FCGS remains unclear, with evidence pointing potentially toward a viral cause. Full-mouth tooth extraction is the current standard of care, and cats that are non-responsive to extraction therapy may need lifelong medical management and, in some cases, euthanasia. Adipose-derived mesenchymal stromal cells (adMSCs) have been demonstrated to have advantages in the treatment and potentially the cure of non-responsive FCGS in cats. Therefore, adMSCs have attracted a series of ongoing clinical trials in the past decade. AdMSC therapy immediately after full-mouth tooth extraction was not explored, and we postulate that it may benefit the overall success rate of FCGS therapy. Here, we aim to summarize the current knowledge and impact of adMSCs for the therapeutic management of FCGS and to suggest a novel modified approach to further increase the efficacy of FCGS treatment in cats.
Collapse
Affiliation(s)
- Iris L Rivas
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Maria Soltero-Rivera
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Natalia Vapniarsky
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA, USA
- Veterinary Institute for Regenerative Cures, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Boaz Arzi
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA, USA
- Veterinary Institute for Regenerative Cures, School of Veterinary Medicine, University of California, Davis, CA, USA
| |
Collapse
|
32
|
Tan ST, Aisyah PB, Firmansyah Y, Nathasia N, Budi E, Hendrawan S. Effectiveness of Secretome from Human Umbilical Cord Mesenchymal Stem Cells in Gel (10% SM-hUCMSC Gel) for Chronic Wounds (Diabetic and Trophic Ulcer) - Phase 2 Clinical Trial. J Multidiscip Healthc 2023; 16:1763-1777. [PMID: 37383529 PMCID: PMC10295509 DOI: 10.2147/jmdh.s408162] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/30/2023] [Indexed: 06/30/2023] Open
Abstract
Background Chronic wounds carry financial burdens and increase morbidity and mortality, especially in diabetic ulcers and Hansen's Morbus. More than 50% of chronic ulcers are difficult to heal with regular treatment and require new types of therapy such as the use of secretome of human umbilical cord mesenchymal stem cells (SM-hUCMSC). Methods This experimental study was carried out to see the effectiveness of using SM-hUCMSC in diabetic ulcers and Hansen's Morbus in four medical facilities (multicentre). The level of active secretion has been measured by default in 10% SM-hUCMSC gel, used as a treatment intervention. The primary outcome is wound healing in terms of the length, width, and extent of the wound. The secondary is the side effects of treatment 2 weeks after administration. Follow-up visits will be scheduled at 1 and 2 weeks post-treatment. Results Forty-one chronic ulcers successfully followed the study until the end. In patients with chronic ulcers, the mean ulcer length, width, and area were 1.60 (0,50-13,0), 1.3 (0,5-6,0), and 2.21 (0,25-78) cm square, respectively, before interventions and 1 (0-12), 0,8 (0-6,0), and 1 (0-72) square cm after interventions at the second follow-up. The change between the beginning and end of the intervention was significant (p-value <0.05). Conclusion The use of 10% SM-hUCMSC gel topically has been proven effective in accelerating the process of wound healing, especially chronic ulcers with side effects that are not present in this study.
Collapse
Affiliation(s)
- Sukmawati Tansil Tan
- Department of Dermatology and Venereology, Faculty of Medicine, Tarumanagara University, Jakarta, Indonesia
| | | | | | | | - Erwin Budi
- Faculty of Medicine, Tarumanagara University, Jakarta, Indonesia
| | - Siufui Hendrawan
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Tarumanagara University, Jakarta, Indonesia
- Tarumanagara Human Cell Technology Laboratory, Tarumanagara University, Jakarta, Indonesia
| |
Collapse
|
33
|
Baouche M, Ochota M, Locatelli Y, Mermillod P, Niżański W. Mesenchymal Stem Cells: Generalities and Clinical Significance in Feline and Canine Medicine. Animals (Basel) 2023; 13:1903. [PMID: 37370414 DOI: 10.3390/ani13121903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/29/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent cells: they can proliferate like undifferentiated cells and have the ability to differentiate into different types of cells. A considerable amount of research focuses on the potential therapeutic benefits of MSCs, such as cell therapy or tissue regeneration, and MSCs are considered powerful tools in veterinary regenerative medicine. They are the leading type of adult stem cells in clinical trials owing to their immunosuppressive, immunomodulatory, and anti-inflammatory properties, as well as their low teratogenic risk compared with pluripotent stem cells. The present review details the current understanding of the fundamental biology of MSCs. We focus on MSCs' properties and their characteristics with the goal of providing an overview of therapeutic innovations based on MSCs in canines and felines.
Collapse
Affiliation(s)
- Meriem Baouche
- Department of Reproduction and Clinic of Farm Animals, Wrocław University of Environmental and Life Sciences, 50-366 Wrocław, Poland
| | - Małgorzata Ochota
- Department of Reproduction and Clinic of Farm Animals, Wrocław University of Environmental and Life Sciences, 50-366 Wrocław, Poland
| | - Yann Locatelli
- Physiology of Reproduction and Behaviors (PRC), UMR085, INRAE, CNRS, University of Tours, 37380 Nouzilly, France
- Museum National d'Histoire Naturelle, Réserve Zoologique de la Haute Touche, 36290 Obterre, France
| | - Pascal Mermillod
- Physiology of Reproduction and Behaviors (PRC), UMR085, INRAE, CNRS, University of Tours, 37380 Nouzilly, France
| | - Wojciech Niżański
- Department of Reproduction and Clinic of Farm Animals, Wrocław University of Environmental and Life Sciences, 50-366 Wrocław, Poland
| |
Collapse
|
34
|
Kushioka J, Chow SKH, Toya M, Tsubosaka M, Shen H, Gao Q, Li X, Zhang N, Goodman SB. Bone regeneration in inflammation with aging and cell-based immunomodulatory therapy. Inflamm Regen 2023; 43:29. [PMID: 37231450 DOI: 10.1186/s41232-023-00279-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/09/2023] [Indexed: 05/27/2023] Open
Abstract
Aging of the global population increases the incidence of osteoporosis and associated fragility fractures, significantly impacting patient quality of life and healthcare costs. The acute inflammatory reaction is essential to initiate healing after injury. However, aging is associated with "inflammaging", referring to the presence of systemic low-level chronic inflammation. Chronic inflammation impairs the initiation of bone regeneration in elderly patients. This review examines current knowledge of the bone regeneration process and potential immunomodulatory therapies to facilitate bone healing in inflammaging.Aged macrophages show increased sensitivity and responsiveness to inflammatory signals. While M1 macrophages are activated during the acute inflammatory response, proper resolution of the inflammatory phase involves repolarizing pro-inflammatory M1 macrophages to an anti-inflammatory M2 phenotype associated with tissue regeneration. In aging, persistent chronic inflammation resulting from the failure of M1 to M2 repolarization leads to increased osteoclast activation and decreased osteoblast formation, thus increasing bone resorption and decreasing bone formation during healing.Inflammaging can impair the ability of stem cells to support bone regeneration and contributes to the decline in bone mass and strength that occurs with aging. Therefore, modulating inflammaging is a promising approach for improving bone health in the aging population. Mesenchymal stem cells (MSCs) possess immunomodulatory properties that may benefit bone regeneration in inflammation. Preconditioning MSCs with pro-inflammatory cytokines affects MSCs' secretory profile and osteogenic ability. MSCs cultured under hypoxic conditions show increased proliferation rates and secretion of growth factors. Resolution of inflammation via local delivery of anti-inflammatory cytokines is also a potential therapy for bone regeneration in inflammaging. Scaffolds containing anti-inflammatory cytokines, unaltered MSCs, and genetically modified MSCs can also have therapeutic potential. MSC exosomes can increase the migration of MSCs to the fracture site and enhance osteogenic differentiation and angiogenesis.In conclusion, inflammaging can impair the proper initiation of bone regeneration in the elderly. Modulating inflammaging is a promising approach for improving compromised bone healing in the aging population.
Collapse
Affiliation(s)
- Junichi Kushioka
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA.
| | - Simon Kwoon-Ho Chow
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Masakazu Toya
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Masanori Tsubosaka
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Huaishuang Shen
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Qi Gao
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Xueping Li
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Ning Zhang
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Stuart B Goodman
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
35
|
Gao Y, Duan R, Li H, Jiang L, Tao T, Liu X, Zhu L, Li Z, Chen B, Zheng S, Lin X, Su W. Single-cell analysis of immune cells on gingiva-derived mesenchymal stem cells in experimental autoimmune uveitis. iScience 2023; 26:106729. [PMID: 37216113 PMCID: PMC10192653 DOI: 10.1016/j.isci.2023.106729] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 03/22/2023] [Accepted: 04/19/2023] [Indexed: 05/24/2023] Open
Abstract
Gingiva-derived mesenchymal stem cells (GMSCs) have shown astonishing efficacy in the treatment of various autoimmune diseases. However, the mechanisms underlying these immunosuppressive properties remain poorly understood. Here, we generated a lymph node single-cell transcriptomic atlas of GMSC-treated experimental autoimmune uveitis mice. GMSC exerted profound rescue effects on T cells, B cells, dendritic cells, and monocytes. GMSCs rescued the proportion of T helper 17 (Th17) cells and increased the proportion of regulatory T cells. In addition to globally altered transcriptional factors (Fosb and Jund), we observed cell type-dependent gene regulation (e.g., Il17a and Rac1 in Th17 cells), highlighting the GMSCs' cell type-dependent immunomodulatory capacity. GMSCs strongly influenced the phenotypes of Th17 cells, suppressing the formation of the highly inflammatory CCR6-CCR2+ phenotype and enhancing the production of interleukin (IL) -10 in the CCR6+CCR2+ phenotype. Integration of the glucocorticoid-treated transcriptome suggests a more specific immunosuppressive effect of GMSCs on lymphocytes.
Collapse
Affiliation(s)
- Yuehan Gao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 51000, China
| | - Runping Duan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 51000, China
| | - He Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 51000, China
| | - Loujing Jiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 51000, China
| | - Tianyu Tao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 51000, China
| | - Xiuxing Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 51000, China
| | - Lei Zhu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 51000, China
| | - Zhaohuai Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 51000, China
| | - Binyao Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 51000, China
| | - Songguo Zheng
- The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 51000, China
| | - Xianchai Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 51000, China
| | - Wenru Su
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 51000, China
| |
Collapse
|
36
|
Brown TK, Alharbi S, Ho KJ, Jiang B. Prosthetic vascular grafts engineered to combat calcification: Progress and future directions. Biotechnol Bioeng 2023; 120:953-969. [PMID: 36544433 PMCID: PMC10023339 DOI: 10.1002/bit.28316] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Calcification in prosthetic vascular conduits is a major challenge in cardiac and vascular surgery that compromises the long-term performance of these devices. Significant research efforts have been made to understand the etiology of calcification in the cardiovascular system and to combat calcification in various cardiovascular devices. Novel biomaterial design and tissue engineering strategies have shown promise in preventing or delaying calcification in prosthetic vascular grafts. In this review, we highlight recent advancements in the development of acellular prosthetic vascular grafts with preclinical success in attenuating calcification through advanced biomaterial design. We also discuss the mechanisms of action involved in the designs that will contribute to the further understanding of cardiovascular calcification. Lastly, recent insights into the etiology of vascular calcification will guide the design of future prosthetic vascular grafts with greater potential for translational success.
Collapse
Affiliation(s)
- Taylor K. Brown
- Department of Biomedical Engineering, Northwestern University, Chicago, IL
| | - Sara Alharbi
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Karen J. Ho
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Bin Jiang
- Department of Biomedical Engineering, Northwestern University, Chicago, IL
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL
| |
Collapse
|
37
|
Evaluation of the relationship between mesenchymal stem cells and immune system in vitro conditions. Mol Biol Rep 2023; 50:4347-4356. [PMID: 36935445 DOI: 10.1007/s11033-023-08374-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 03/03/2023] [Indexed: 03/21/2023]
Abstract
BACKGROUND Mesenchymal stem cells (MSCs), are a novel therapeutic option as the most common cell source, play an important role in the immunomodulation. In this study, it was aimed to determine the effect of MSCs on cytokines secreted by the immune system cells. METHODS Intracellular cytokine levels (Interleukin-4 (IL-4), Interferon-γ (IFN-γ), and Interleukin-17 (IL-17)) detected by flow cytometry before and after co-culture between peripheral blood mononuclear cells (PBMCs) and MCSs. At the same time, supernatant cytokine levels were measured using the ELISA. RESULTS In our study, MSCs were isolated from cord blood (CB) and Wharton's Jelly (WJ), and their surface markers (CD44 (100%), CD73 (99.6%), CD90 (100%), CD105 (88%)) shown by flow cytometry method. Both CB-MSCs and WJ-MSCs were used in co-culture MSC/PBMC ratios of 1/5 and 1/10, incubation times of 24 h and 72 h. In the present study, when we compared co-cultures of CB-MSC or WJ-MSC with PBMCs, intracellular levels of cytokines IFN-γ, IL-17 (pro-inflamatory) and IL-4 (anti-inflamatory) were increased, and supernatant levels were decreased significantly (p < 0.05). The level of transforming growth factor beta (TGF-β) (anti-inflamatory) was significantly decreased for both CB-MSC and WJ-MSC in supernatant (p < 0.05). CONCLUSIONS It was investigated pro-inflammatory and anti-inflammatory effects of CB-MSCs and WJ-MSCs on PBMCs with the obtained results. According to the results, MSCs demonstrated different immunologic effects after the incubation time and ratios. For further studies, it should be known between interaction of MSCs and immune system.
Collapse
|
38
|
Rossner P, Cervena T, Echalar B, Palacka K, Milcova A, Novakova Z, Sima M, Simova Z, Vankova J, Holan V. Metal Nanoparticles with Antimicrobial Properties: The Toxicity Response in Mouse Mesenchymal Stem Cells. TOXICS 2023; 11:253. [PMID: 36977018 PMCID: PMC10057305 DOI: 10.3390/toxics11030253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/01/2023] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
Some metal nanoparticles (NP) are characterized by antimicrobial properties with the potential to be used as alternative antibiotics. However, NP may negatively impact human organism, including mesenchymal stem cells (MSC), a cell population contributing to tissue growth and regeneration. To address these issues, we investigated the toxic effects of selected NP (Ag, ZnO, and CuO) in mouse MSC. MSC were treated with various doses of NP for 4 h, 24 h, and 48 h and multiple endpoints were analyzed. Reactive oxygen species were generated after 48 h CuO NP exposure. Lipid peroxidation was induced after 4 h and 24 h treatment, regardless of NP and/or tested dose. DNA fragmentation and oxidation induced by Ag NP showed dose responses for all the periods. For other NP, the effects were observed for shorter exposure times. The impact on the frequency of micronuclei was weak. All the tested NP increased the sensitivity of MSC to apoptosis. The cell cycle was most affected after 24 h, particularly for Ag NP treatment. In summary, the tested NP induced numerous adverse changes in MSC. These results should be taken into consideration when planning the use of NP in medical applications where MSC are involved.
Collapse
Affiliation(s)
- Pavel Rossner
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine CAS, 142 00 Prague, Czech Republic
| | - Tereza Cervena
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine CAS, 142 00 Prague, Czech Republic
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine CAS, 142 00 Prague, Czech Republic
| | - Barbora Echalar
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine CAS, 142 00 Prague, Czech Republic
| | - Katerina Palacka
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine CAS, 142 00 Prague, Czech Republic
| | - Alena Milcova
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine CAS, 142 00 Prague, Czech Republic
| | - Zuzana Novakova
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine CAS, 142 00 Prague, Czech Republic
| | - Michal Sima
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine CAS, 142 00 Prague, Czech Republic
| | - Zuzana Simova
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine CAS, 142 00 Prague, Czech Republic
| | - Jolana Vankova
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine CAS, 142 00 Prague, Czech Republic
| | - Vladimir Holan
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine CAS, 142 00 Prague, Czech Republic
| |
Collapse
|
39
|
Dysregulated balance in Th17/Treg axis of Pristane-induced lupus mouse model, are mesenchymal stem cells therapeutic? Int Immunopharmacol 2023; 117:109699. [PMID: 36867923 DOI: 10.1016/j.intimp.2023.109699] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/20/2022] [Accepted: 01/04/2023] [Indexed: 03/05/2023]
Abstract
BACKGROUND Despite advances in general and targeted immunosuppressive therapies, limiting all mainstay treatment options in refractory systemic lupus erythematosus (SLE) cases has necessitated the development of new therapeutic strategies. Mesenchymal stem cells (MSCs) have recently emerged with unique properties, including a solid propensity to reduce inflammation, exert immunomodulatory effects, and repair injured tissues. METHODS An animal model of acquired SLE mice was induced via intraperitoneal immunization with Pristane and affirmed by measuring specific biomarkers. Bone marrow (BM) MSCs were isolated from healthy BALB/c mice and cultured in vitro, then were identified and confirmed by flow cytometry and cytodifferentiation. Systemic MSCs transplantation was performed and then several parameters were analyzed and compared, including specific cytokines (IL-17, IL-4, IFN-ɣ, TGF-β) at the serum level, the percentage of Th cell subsets (Treg/Th17, Th1/Th2) in splenocytes, and also the relief of lupus nephritis, respectively by enzyme-linked immunosorbent assay (ELISA), flow cytometry analysis and by hematoxylin & eosin staining and also immunofluorescence assessment. Experiments were carried out with different initiation treatment time points (early and late stages of disease). Analysis of variance (ANOVA) followed by post hoc Tukey's test was used for multiple comparisons. RESULTS The rate of proteinuria, anti-double-stranded deoxyribonucleic acid (anti-dsDNA) antibodies, and serum creatinine levels decreased with BM-MSCs transplantation. These results were associated with attenuated lupus renal pathology in terms of reducing IgG and C3 deposition and lymphocyte infiltration. Our findings suggested that TGF-β (associated with lupus microenvironment) can contribute to MSC-based immunotherapy by modulating the population of TCD4+ cell subsets. Obtained results indicated that MSCs-based cytotherapy could negatively affect the progression of induced SLE by recovering the function of Treg cells, suppressing Th1, Th2, and Th17 lymphocyte function, and downregulating their pro-inflammatory cytokines. CONCLUSION MSC-based immunotherapy showed a delayed effect on the progression of acquired SLE in a lupus microenvironment-dependent manner. Allogenic MSCs transplantation revealed the ability to re-establish the balance of Th17/Treg, Th1/Th2 and restore the plasma cytokines network in a pattern dependent on disease conditions. The conflicting results of early versus advanced therapy suggest that MSCs may produce different effects depending on when they are administered and their activation status.
Collapse
|
40
|
Polarized Anti-Inflammatory Mesenchymal Stem Cells Increase Hippocampal Neurogenesis and Improve Cognitive Function in Aged Mice. Int J Mol Sci 2023; 24:ijms24054490. [PMID: 36901920 PMCID: PMC10003244 DOI: 10.3390/ijms24054490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 03/02/2023] Open
Abstract
Age-related decline in cognitive functions is associated with reduced hippocampal neurogenesis caused by changes in the systemic inflammatory milieu. Mesenchymal stem cells (MSC) are known for their immunomodulatory properties. Accordingly, MSC are a leading candidate for cell therapy and can be applied to alleviate inflammatory diseases as well as aging frailty via systemic delivery. Akin to immune cells, MSC can also polarize into pro-inflammatory MSC (MSC1) and anti-inflammatory MSC (MSC2) following activation of Toll-like receptor 4 (TLR4) and TLR3, respectively. In the present study, we apply pituitary adenylate cyclase-activating peptide (PACAP) to polarize bone-marrow-derived MSC towards an MSC2 phenotype. Indeed, we found that polarized anti-inflammatory MSC were able to reduce the plasma levels of aging related chemokines in aged mice (18-months old) and increased hippocampal neurogenesis following systemic administration. Similarly, aged mice treated with polarized MSC displayed improved cognitive function in the Morris water maze and Y-maze assays compared with vehicle- and naïve-MSC-treated mice. Changes in neurogenesis and Y-maze performance were negatively and significantly correlated with sICAM, CCL2 and CCL12 serum levels. We conclude that polarized PACAP-treated MSC present anti-inflammatory properties that can mitigate age-related changes in the systemic inflammatory milieu and, as a result, ameliorate age related cognitive decline.
Collapse
|
41
|
Lv Z, Cai X, Bian Y, Wei Z, Zhu W, Zhao X, Weng X. Advances in Mesenchymal Stem Cell Therapy for Osteoarthritis: From Preclinical and Clinical Perspectives. Bioengineering (Basel) 2023; 10:bioengineering10020195. [PMID: 36829689 PMCID: PMC9952673 DOI: 10.3390/bioengineering10020195] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/21/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023] Open
Abstract
The prevalence of osteoarthritis (OA), a degenerative disorder of joints, has substantially increased in recent years. Its key pathogenic hallmarks include articular cartilage destruction, synovium inflammation, and bone remodeling. However, treatment outcomes are unsatisfactory. Until recently, common therapy methods, such as analgesic and anti-inflammatory treatments, were aimed to treat symptoms that cannot be radically cured. Mesenchymal stem cells (MSCs), i.e., mesoderm non-hematopoietic cells separated from bone marrow, adipose tissue, umbilical cord blood, etc., have been intensively explored as an emerging technique for the treatment of OA over the last few decades. According to existing research, MSCs may limit cartilage degradation in OA by interfering with cellular immunity and secreting a number of active chemicals. This study aimed to examine the potential mechanism of MSCs in the treatment of OA and conduct a thorough review of both preclinical and clinical data.
Collapse
Affiliation(s)
- Zehui Lv
- Department of Orthopaedics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Xuejie Cai
- Department of Orthopaedics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Yixin Bian
- Department of Orthopaedics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Zhanqi Wei
- Department of Orthopaedics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Wei Zhu
- Department of Orthopaedics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Xiuli Zhao
- Department of Medical Genetics, Institute of Basic Medical Sciences, School of Basic Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
- Correspondence: (X.Z.); (X.W.)
| | - Xisheng Weng
- Department of Orthopaedics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
- Department of State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
- Correspondence: (X.Z.); (X.W.)
| |
Collapse
|
42
|
Yu S, Klomjit N, Jiang K, Zhu XY, Ferguson CM, Conley SM, Obeidat Y, Kellogg TA, McKenzie T, Heimbach JK, Lerman A, Lerman LO. Human Obesity Attenuates Cardioprotection Conferred by Adipose Tissue-Derived Mesenchymal Stem/Stromal Cells. J Cardiovasc Transl Res 2023; 16:221-232. [PMID: 35616881 DOI: 10.1007/s12265-022-10279-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 05/17/2022] [Indexed: 12/15/2022]
Abstract
To explore the impact of obesity on reparative potency of adipose tissue-derived mesenchymal stromal/stem cells (A-MSC) in hypertensive cardiomyopathy, A-MSC were harvested from subcutaneous fat of obese and age-matched non-obese human subjects during bariatric or kidney donation surgeries, and then injected into mice 2 weeks after inducing renovascular hypertension (RVH) or sham surgery. Two weeks later, left ventricular (LV) function and deformation were estimated in vivo by micro-magnetic resonance imaging and myocardial damage ex vivo. Blood pressure and myocardial wall thickening were elevated in RVH + Vehicle and normalized only by lean-A-MSC. Both A-MSC types reduced LV mass and normalized the reduced LV peak strain radial in RVH, yet obese-A-MSC also impaired LV systolic function. A-MSC alleviated myocardial tissue damage in RVH, but lean-A-MSC decreased oxidative stress more effectively. Obese-A-MSC also showed increased cellular inflammation in vitro. Therefore, obese-A-MSC are less effective than lean-A-MSC in blunting hypertensive cardiomyopathy in mice with RVH.
Collapse
Affiliation(s)
- Shasha Yu
- Division of Nephrology and Hypertension, Mayo Clinic, 200 First St SW, Rochester, MN, 55905, USA
- Department of Cardiology, First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Nattawat Klomjit
- Division of Nephrology and Hypertension, Mayo Clinic, 200 First St SW, Rochester, MN, 55905, USA
| | - Kai Jiang
- Division of Nephrology and Hypertension, Mayo Clinic, 200 First St SW, Rochester, MN, 55905, USA
| | - Xiang Y Zhu
- Division of Nephrology and Hypertension, Mayo Clinic, 200 First St SW, Rochester, MN, 55905, USA
| | - Christopher M Ferguson
- Division of Nephrology and Hypertension, Mayo Clinic, 200 First St SW, Rochester, MN, 55905, USA
| | - Sabena M Conley
- Division of Nephrology and Hypertension, Mayo Clinic, 200 First St SW, Rochester, MN, 55905, USA
| | - Yasin Obeidat
- Division of Nephrology and Hypertension, Mayo Clinic, 200 First St SW, Rochester, MN, 55905, USA
| | | | | | | | - Amir Lerman
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Lilach O Lerman
- Division of Nephrology and Hypertension, Mayo Clinic, 200 First St SW, Rochester, MN, 55905, USA.
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
43
|
Harna B, Kalra P, Arya S, Jeyaraman N, Nallakumarasamy A, Jeyaraman M, Rajendran RL, Oh EJ, Khanna M, Rajendran UM, Chung HY, Ahn BC, Gangadaran P. Mesenchymal stromal cell therapy for patients with rheumatoid arthritis. Exp Cell Res 2023; 423:113468. [PMID: 36621669 DOI: 10.1016/j.yexcr.2023.113468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/22/2022] [Accepted: 01/04/2023] [Indexed: 01/07/2023]
Abstract
Management of relapses and refractory rheumatoid arthritis (RA) patients is complex and difficult. Even after the administration of new biological disease-modifying anti-rheumatic drugs (DMARDs), only a few patients achieve the complete remission phase. DMARDs help only in modifying the disease activity, which sooner or later fails. They do not manage the disease at the patho-etiological level. There are some serious side effects as well as drug interaction with DMARDs. There are few subsets of RA patients who do not respond to DMARDs, reasons unknown. Mesenchymal stem cells (MSCs) provide a promising alternative, especially in such cases. This review elaborates on the studies pertaining to the application of MSCs in rheumatoid arthritis over the last two decades. A total of 14 studies (one review article) including 447 patients were included in the study. Most of the studies administered MSCs in refractory RA patients through the intravenous route with varied dosages and frequency of administration. MSCs help in RA treatment via various mechanisms including paracrine effects. All the studies depicted a better clinical outcome with minimal adverse events. The functional scores including the VAS scores improved significantly in all studies irrespective of dosage and source of MSCs. The majority of the studies depicted no complications. Although the use of MSCs in RA is still in the early stages requiring further refinement in the source of MSCs, dosage, and frequency. The role of MSCs in the management of RA has a promising prospect. MSCs target the RA at the molecular level and has the potential to manage refractory RA cases not responding to conventional treatment. Multicentric, large sample populations, and long-term studies are required to ascertain efficacy and safety.
Collapse
Affiliation(s)
- Bushu Harna
- Department of Orthopaedics, Maulana Azad Medical College, New Delhi, 110002, India; Indian Stem Cell Study Group (ISCSG) Association, Lucknow, 226010, Uttar Pradesh, India; Fellow in Orthopaedic Rheumatology, Dr. RML National Law University, Lucknow, 226010, Uttar Pradesh, India
| | - Pulkit Kalra
- Department of Orthopaedics, Maulana Azad Medical College, New Delhi, 110002, India
| | - Shivali Arya
- Department of Radiodiagnosis, Maulana Azad Medical College, New Delhi, 110002, India
| | - Naveen Jeyaraman
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow, 226010, Uttar Pradesh, India; Fellow in Orthopaedic Rheumatology, Dr. RML National Law University, Lucknow, 226010, Uttar Pradesh, India; Fellow in Regenerative Interventional Orthobiologics, Dr. RML National Law University, Lucknow, 226010, Uttar Pradesh, India; Department of Orthopaedics, Rathimed Specialty Hospital, Chennai, 600040, Tamil Nadu, India
| | - Arulkumar Nallakumarasamy
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow, 226010, Uttar Pradesh, India; Fellow in Orthopaedic Rheumatology, Dr. RML National Law University, Lucknow, 226010, Uttar Pradesh, India; Fellow in Regenerative Interventional Orthobiologics, Dr. RML National Law University, Lucknow, 226010, Uttar Pradesh, India; Department of Orthopaedics, All India Institute of Medical Sciences, Bhubaneswar, 751019, Odisha, India
| | - Madhan Jeyaraman
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow, 226010, Uttar Pradesh, India; Department of Orthopaedics, ACS Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai, 600056, Tamil Nadu, India; Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, 201310, Uttar Pradesh, India; South Texas Orthopaedic Research Institute (STORI Inc.), Laredo, TX, 78045, USA.
| | - Ramya Lakshmi Rajendran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, 41944, South Korea
| | - Eun Jung Oh
- Department of Plastic and Reconstructive Surgery, CMRI, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, 41944, South Korea
| | - Manish Khanna
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow, 226010, Uttar Pradesh, India
| | | | - Ho Yun Chung
- Department of Plastic and Reconstructive Surgery, CMRI, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, 41944, South Korea
| | - Byeong-Cheol Ahn
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, 41944, South Korea; BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, 41944, South Korea.
| | - Prakash Gangadaran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, 41944, South Korea; BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, 41944, South Korea.
| |
Collapse
|
44
|
Malekpour K, Hazrati A, Soudi S, Hashemi SM. Mechanisms behind therapeutic potentials of mesenchymal stem cell mitochondria transfer/delivery. J Control Release 2023; 354:755-769. [PMID: 36706838 DOI: 10.1016/j.jconrel.2023.01.059] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/21/2023] [Accepted: 01/22/2023] [Indexed: 01/29/2023]
Abstract
Mesenchymal stromal/stem cells (MSCs) perform their therapeutic effects through various mechanisms, including their ability to differentiate, producing different growth factors, immunomodulatory factors, and extracellular vesicles (EVs). In addition to the mentioned mechanisms, a new aspect of the therapeutic potential of MSCs has recently been noticed, which occurs through mitochondrial transfer. Various methods of MSCs mitochondria transfer have been used in studies to benefit from their therapeutic potential. Among these methods, mitochondrial transfer after MSCs transplantation in cell-to-cell contact, EVs-mediated transfer of mitochondria, and the use of MSCs isolated mitochondria (MSCs-mt) are well studied. Pathological conditions can affect the cells in the damaged microenvironment and lead to cells mitochondrial damage. Since the defect in the mitochondrial function of the cell leads to a decrease in ATP production and the subsequent cell death, restoring the mitochondrial content, functions, and hemostasis can affect the functions of the damaged cell. Various studies show that the transfer of MSCs mitochondria to other cells can affect vital processes such as proliferation, differentiation, cell metabolism, inflammatory responses, cell senescence, cell stress, and cell migration. These changes in cell attributes and behavior are very important for therapeutic purposes. For this reason, their investigation can play a significant role in the direction of the researchers'.
Collapse
Affiliation(s)
- Kosar Malekpour
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Hazrati
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sara Soudi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Seyed Mahmoud Hashemi
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran..
| |
Collapse
|
45
|
Ouyang Y, Zhao J, Wang S. Multifunctional hydrogels based on chitosan, hyaluronic acid and other biological macromolecules for the treatment of inflammatory bowel disease: A review. Int J Biol Macromol 2023; 227:505-523. [PMID: 36495992 DOI: 10.1016/j.ijbiomac.2022.12.032] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/28/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
Hydrogel is a three-dimensional network polymer material rich in water. It is widely used in the biomedical field because of its unique physical and chemical properties and good biocompatibility. In recent years, the incidence of inflammatory bowel disease (IBD) has gradually increased, and the disadvantages caused by traditional drug treatment of IBD have emerged. Therefore, there is an urgent need for new treatments to alleviate IBD. Hydrogel has become a potential therapeutic platform. However, there is a lack of comprehensive review of functional hydrogels for IBD treatment. This paper first summarizes the pathological changes in IBD sites. Then, the action mechanisms of hydrogels prepared from chitosan, sodium alginate, hyaluronic acid, functionalized polyethylene glycol, cellulose, pectin, and γ-polyglutamic acid on IBD were described from aspects of drug delivery, peptide and protein delivery, biologic therapies, loading probiotics, etc. In addition, the advanced functions of IBD treatment hydrogels were summarized, with emphasis on adhesion, synergistic therapy, pH sensitivity, particle size, and temperature sensitivity. Finally, the future development direction of IBD treatment hydrogels has been prospected.
Collapse
Affiliation(s)
- Yongliang Ouyang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093,China
| | - Jiulong Zhao
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, No. 168 Changhai Road, Shanghai 200433, China
| | - Shige Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093,China.
| |
Collapse
|
46
|
Dozois EJ, Lightner AL, Dietz AB, Fletcher JG, Lee YS, Friton JJ, Faubion WA. Durable Response in Patients With Refractory Fistulizing Perianal Crohn's Disease Using Autologous Mesenchymal Stem Cells on a Dissolvable Matrix: Results from the Phase I Stem Cell on Matrix Plug Trial. Dis Colon Rectum 2023; 66:243-252. [PMID: 36538706 DOI: 10.1097/dcr.0000000000002579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND Refractory perianal Crohn's disease remains notoriously difficult to treat. We developed a novel technology using a commercially available bioabsorbable fistula plug to deliver autologous adipose-derived mesenchymal stem cells. OBJECTIVE This study aimed to assess therapeutic safety and feasibility in the completed STOMP (stem cells on matrix plugs) phase 1 clinical trial. DESIGN Prospective single-arm phase I clinical trial. SETTING Tertiary academic medical center. PATIENTS Adults (aged 18-65 y) with complex single-tract Crohn's disease perianal fistula who have failed conventional therapy were included in this study. INTERVENTION Autologous adipose-derived mesenchymal stem cells were isolated, ex vivo culture expanded, and seeded onto a commercially available bioabsorbable fistula plug. Six weeks later, patients returned to the operating room for removal of the seton and placement of the stem cell-loaded plug. MAIN OUTCOME MEASURES Patients were followed up for a total of 8 visits through 12 months. Safety was the primary end point; clinical healing and MRI response were secondary end points. RESULTS Twenty patients (12 females; mean age 36 y) were treated with the stem cell-loaded plug. Of the 20 patients enrolled, 3 were not included in the 12-month analysis because of study withdrawal. Through 12 months, no patient experienced a serious adverse event related to the stem cell-loaded plug. Four patients experienced 7 serious adverse events and 12 patients experienced 22 adverse events. Complete clinical healing occurred in 14 of 18 patients at 6 months and 13 of 17 patients at 12 months. MRI response was observed in 12 of 18 patients at 6 months. LIMITATIONS The main limitations were the small sample size and restrictive inclusion criteria. CONCLUSIONS A stem cell-loaded plug can safely and effectively deliver cell-based therapy for patients with single-tract fistulizing perianal Crohn's disease. See Video Abstract at http://links.lww.com/DCR/C70 . RESPUESTA DURADERA OBSERVADA EN PACIENTES CON ENFERMEDAD DE CROHN PERIANAL FISTULIZANTE REFRACTARIA MEDIANTE EL USO DE CLULAS MADRE MESENQUIMALES AUTLOGAS EN UNA MATRIZ DISOLUBLE RESULTADOS DEL ENSAYO DE FASE I STEM CELL ON MATRIX PLUG ANTECEDENTES:La enfermedad de Crohn perianal refractaria sigue siendo notoriamente difícil de tratar. Desarrollamos una tecnología novedosa utilizando un tapón de fístula bioabsorbible disponible comercialmente para administrar células madre mesenquimales derivadas de tejido adiposo autólogo.OBJETIVO:Evaluar la seguridad y viabilidad terapéutica en el ensayo finalizado STOMP.DISEÑO:Ensayo clínico prospectivo de fase I de un solo brazo.AJUSTE:Centro médico académico terciario.PACIENTES:Adultos (18-65) con fístula perianal compleja de la enfermedad de Crohn de un solo tracto que han fracasado con la terapia convencional.INTERVENCIÓN:Se aislaron células madre mesenquimales derivadas de tejido adiposo autólogo, se expandieron en cultivo ex vivo y se sembraron en un tapón de fístula bioabsorbible disponible comercialmente. Seis semanas después, los pacientes regresaron al quirófano para retirar el setón y colocar el tapón cargado de células madre.PRINCIPALES MEDIDAS DE RESULTADO:Los pacientes fueron seguidos durante un total de 8 visitas durante 12 meses. La seguridad fue el criterio principal de valoración; la curación clínica y la respuesta a la resonancia magnética fueron criterios de valoración secundarios.RESULTADOS:Veinte pacientes (12 mujeres, edad media 36 años) fueron tratados con el tapón cargado de células madre. De los 20 pacientes inscritos, tres no se incluyeron en el análisis de 12 meses porque se retiraron del estudio. A lo largo de 12 meses, ningún paciente experimentó un evento adverso grave relacionado con el tapón cargado de células madre. Cuatro pacientes experimentaron 7 eventos adversos graves y 12 pacientes experimentaron 22 eventos adversos. La curación clínica completa ocurrió en 14 de 18 pacientes a los 6 meses y en 13 de 17 pacientes a los 12 meses. La respuesta a la resonancia magnética se observó en 12 de 18 pacientes a los 6 meses.LIMITACIONES:Las principales limitaciones son el tamaño pequeño de la muestra y los criterios de inclusión restrictivos.CONCLUSIONES:Un tapón cargado de células madre se puede administrar de manera segura y efectiva, una terapia basada en células para pacientes con enfermedad de Crohn perianal fistulizante de un solo tracto. Consule Video Resumen en http://links.lww.com/DCR/C70 . (Traducción- Dr. Yesenia Rojas-Khalil ).
Collapse
Affiliation(s)
- Eric J Dozois
- Department of Colon and Rectal Surgery, Mayo Clinic, Rochester, Minnesota
| | - Amy L Lightner
- Department of Colon and Rectal Surgery, Mayo Clinic, Rochester, Minnesota
| | - Allan B Dietz
- Department of Laboratory Medicine, Mayo Clinic, Rochester, Minnesota
| | | | - Yong S Lee
- Department of Radiology, Mayo Clinic, Rochester, Minnesota
| | - Jessica J Friton
- Department of Gastroenterology, Mayo Clinic, Rochester Minnesota
| | | |
Collapse
|
47
|
Mesenchymal Stem Cells and Their Exocytotic Vesicles. Int J Mol Sci 2023; 24:ijms24032085. [PMID: 36768406 PMCID: PMC9916886 DOI: 10.3390/ijms24032085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/21/2023] Open
Abstract
Mesenchymal stem cells (MSCs), as a kind of pluripotent stem cells, have attracted much attention in orthopedic diseases, geriatric diseases, metabolic diseases, and sports functions due to their osteogenic potential, chondrogenic differentiation ability, and adipocyte differentiation. Anti-inflammation, anti-fibrosis, angiogenesis promotion, neurogenesis, immune regulation, and secreted growth factors, proteases, hormones, cytokines, and chemokines of MSCs have been widely studied in liver and kidney diseases, cardiovascular and cerebrovascular diseases. In recent years, many studies have shown that the extracellular vesicles of MSCs have similar functions to MSCs transplantation in all the above aspects. Here we review the research progress of MSCs and their exocrine vesicles in recent years.
Collapse
|
48
|
Engineering Strategies of Islet Product for Endocrine Regeneration. ENGINEERED REGENERATION 2023. [DOI: 10.1016/j.engreg.2023.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
|
49
|
Wu Z, Li W, Cheng S, Liu J, Wang S. Novel fabrication of bioengineered injectable chitosan hydrogel loaded with conductive nanoparticles to improve therapeutic potential of mesenchymal stem cells in functional recovery after ischemic myocardial infarction. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2023; 47:102616. [PMID: 36374915 DOI: 10.1016/j.nano.2022.102616] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/19/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022]
Abstract
In recent decades, myocardial regeneration through stem cell transplantation and tissue engineering has been viewed as a promising technique for treating myocardial infarction. As a result, the researcher attempts to see whether co-culturing modified mesenchymal stem cells with Au@Ch-SF macro-hydrogel and H9C2 may help with tissue regeneration and cardiac function recovery. The gold nanoparticles (Au) incorporated into the chitosan-silk fibroin hydrogel (Au@Ch-SF) were validated using spectral and microscopic examinations. The most essential elements of hydrogel groups were investigated in detail, including weight loss, mechanical strength, and drug release rate. Initially, the cardioblast cells (H9C2 cells) was incubated with Au@Ch-SF macro-hydrogel, followed by mesenchymal stem cells (2 × 105) were transplanted into the Au@Ch-SF macro-hydrogel+H9C2 culture at the ratio of 2:1. Further, cardiac phenotype development, cytokines expression and tissue regenerative performance of modified mesenchymal stem cells treatment were studied through various in vitro and in vivo analyses. The Au@Ch-SF macro-hydrogel gelation time was much faster than that of Ch and Ch-SF hydrogels, showing that Ch and SF exhibited greater intermolecular interactions. The obtained Au@Ch-SF macro-hydrogel has no toxicity on mesenchymal stem cells (MS) or cardiac myoblast (H9C2) cells, according to the biocompatibility investigation. MS cells co-cultured with Au@Ch-SF macro-hydrogel and H9C2 cells also stimulated cardiomyocyte fiber restoration, which has been confirmed in myocardial infarction rats using -MHC and Cx43 myocardial indicators. We developed a novel method of co-cultured therapy using MS cells, Au@Ch-SF macro-hydrogel, and H9C2 cells which could promote the regenerative activities in myocardial ischemia cells. These study findings show that co-cultured MS therapy might be effective for the treatment of myocardial injury.
Collapse
Affiliation(s)
- Zheng Wu
- Department of 28 Division of Cardiovascular, Beijing Anzhen Hospital, Capital Medical University, PR China; Department of 28 Division of Cardiovascular, Beijing Institute of Heart, Lung and Blood Vessel Diseases, PR China
| | - Wenzheng Li
- Department of 28 Division of Cardiovascular, Beijing Anzhen Hospital, Capital Medical University, PR China; Department of 28 Division of Cardiovascular, Beijing Institute of Heart, Lung and Blood Vessel Diseases, PR China
| | - Shujuan Cheng
- Department of 28 Division of Cardiovascular, Beijing Anzhen Hospital, Capital Medical University, PR China; Department of 28 Division of Cardiovascular, Beijing Institute of Heart, Lung and Blood Vessel Diseases, PR China
| | - Jinghua Liu
- Department of 28 Division of Cardiovascular, Beijing Anzhen Hospital, Capital Medical University, PR China; Department of 28 Division of Cardiovascular, Beijing Institute of Heart, Lung and Blood Vessel Diseases, PR China.
| | - Shaoping Wang
- Department of 28 Division of Cardiovascular, Beijing Anzhen Hospital, Capital Medical University, PR China; Department of 28 Division of Cardiovascular, Beijing Institute of Heart, Lung and Blood Vessel Diseases, PR China
| |
Collapse
|
50
|
Colombini A, Libonati F, Cangelosi D, Lopa S, De Luca P, Coviello DA, Moretti M, de Girolamo L. Inflammatory priming with IL-1β promotes the immunomodulatory behavior of adipose derived stem cells. Front Bioeng Biotechnol 2022; 10:1000879. [PMID: 36338130 PMCID: PMC9632288 DOI: 10.3389/fbioe.2022.1000879] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/05/2022] [Indexed: 11/15/2023] Open
Abstract
Inflammatory processes contribute to osteoarthritis (OA) severity and progression. Mesenchymal stem cells, particularly those derived from adipose tissue (ASCs), are able to sense and control the inflammatory environment. This immunomodulatory potential can be boosted by different priming strategies based on inflammatory stimulation. The aim of the present study is to investigate the transcriptional modulation of a huge panel of genes and functionally verify the predicted immunomodulatory ability of ASCs after interleukin one beta (IL-1β) priming. ASCs were isolated from adipose tissue obtained from three donors and expanded. After stimulation with 1 ng/ml of IL-1β for 48 h, cells were collected for gene array and functional tests. Pooled cells from three donors were used for RNA extraction and gene array analysis. Gene Ontology (GO) enrichment analysis and Gene Set Enrichment Analysis (GSEA) were performed to assess the involvement of the modulated genes after priming in specific biological processes and pathways. Functional co-culture tests of ASCs with T cells and macrophages were performed to assess the ability of primed ASCs to modulate immune cell phenotype. Among the overall genes analyzed in the gene array, about the 18% were up- or down-regulated in ASCs after IL-1β priming. GO enrichment analysis of up- or down-regulated genes in ASCs after IL-1β priming allowed identifying specific pathways involved in the modulation of inflammation and extracellular matrix remodeling. The main processes enriched according to the GSEA are related to the inflammatory response and cell proliferative processes. Functional tests on immune cells showed that primed and non-primed ASCs induced a decrease in the CD3+ T lymphocytes survival rate and an anti-inflammatory macrophage polarization. In conclusion, IL-1β priming represents a tailored strategy to enhance the ability of ASCs to direct macrophages towards an anti-inflammatory phenotype and, consequently, improve the efficacy of ASCs in counteracting the OA inflammatory component.
Collapse
Affiliation(s)
| | - Francesca Libonati
- Orthopaedic Biotechnology Lab, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Davide Cangelosi
- Unità di Bioinformatica Clinica, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Silvia Lopa
- Cell and Tissue Engineering Laboratory, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Paola De Luca
- Orthopaedic Biotechnology Lab, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | | | - Matteo Moretti
- Cell and Tissue Engineering Laboratory, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
- Regenerative Medicine Technologies Lab, Ente Ospedaliero Cantonale, Laboratories for Translational Research (LRT), Bellinzona, Switzerland
- Department of Surgery, Ente Ospedaliero Cantonale, Service of Orthopaedics and Traumatology, Lugano, Switzerland
- Faculty of Biomedical Sciences, Euler Institute, Lugano, Switzerland
| | - Laura de Girolamo
- Orthopaedic Biotechnology Lab, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| |
Collapse
|