1
|
Montazersaheb S, Ehsani A, Fathi E, Farahzadi R, Vietor I. An Overview of Autophagy in Hematopoietic Stem Cell Transplantation. Front Bioeng Biotechnol 2022; 10:849768. [PMID: 35677295 PMCID: PMC9168265 DOI: 10.3389/fbioe.2022.849768] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
Autophagy is a fundamental homeostatic process crucial for cellular adaptation in response to metabolic stress. Autophagy exerts its effect through degrading intracellular components and recycling them to produce macromolecular precursors and energy. This physiological process contributes to cellular development, maintenance of cellular/tissue homeostasis, immune system regulation, and human disease. Allogeneic hematopoietic stem cell transplantation (HSCT) is the only preferred therapy for most bone marrow-derived cancers. Unfortunately, HSCT can result in several serious and sometimes untreatable conditions due to graft-versus-host disease (GVHD), graft failure, and infection. These are the major cause of morbidity and mortality in patients receiving the transplant. During the last decade, autophagy has gained a considerable understanding of its role in various diseases and cellular processes. In light of recent research, it has been confirmed that autophagy plays a crucial role in the survival and function of hematopoietic stem cells (HSCs), T-cell differentiation, antigen presentation, and responsiveness to cytokine stimulation. Despite the importance of these events to HSCT, the role of autophagy in HSCT as a whole remains relatively ambiguous. As a result of the growing use of autophagy-modulating agents in the clinic, it is imperative to understand how autophagy functions in allogeneic HSCT. The purpose of this literature review is to elucidate the established and implicated roles of autophagy in HSCT, identifying this pathway as a potential therapeutic target for improving transplant outcomes.
Collapse
Affiliation(s)
- Soheila Montazersaheb
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Ehsani
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ezzatollah Fathi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Raheleh Farahzadi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- *Correspondence: Raheleh Farahzadi, ; Ilja Vietor,
| | - Ilja Vietor
- Institute of Cell Biology, Medical University of Innsbruck, Biocenter, Innsbruck, Austria
- *Correspondence: Raheleh Farahzadi, ; Ilja Vietor,
| |
Collapse
|
2
|
Oliverio S, Beltran JSO, Occhigrossi L, Bordoni V, Agrati C, D'Eletto M, Rossin F, Borelli P, Amarante-Mendes GP, Demidov O, Barlev NA, Piacentini M. Transglutaminase Type 2 is Involved in the Hematopoietic Stem Cells Homeostasis. BIOCHEMISTRY (MOSCOW) 2021; 85:1159-1168. [PMID: 33202201 DOI: 10.1134/s0006297920100041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Type 2 transglutaminase (TG2) is a multifunctional protein involved in various biological processes playing a key regulatory role in cell homeostasis such as cell death and autophagy. New evidence is emerging that support an important role of autophagy in regulating normal hematopoiesis. Prompted by these findings, in this study we investigated in vivo involvement of TG2 in mouse hematopoiesis under normal or nutrient deprivation conditions. We found that the number and rate of differentiation of bone marrow hematopoietic stem cell was decreased in the TG2 knockout mice. We present evidence showing that these effects on hematopoietic system are very likely due to the TG2-dependent impairment of autophagy. In fact, stimulation of autophagy by starvation is able to rescue the block of the differentiation of stem cells progenitors in the TG2 KO mice. It was also shown that the RhoA/ERK½ pathway, known to be essential for regulation of the bone marrow progenitor cells homeostasis, was significantly impaired in the absence of TG2. Hence, this study expanded our knowledge about TG2 discovering a role of this enzyme in regulation of hematopoiesis.
Collapse
Affiliation(s)
- S Oliverio
- Department of Biology, University of Rome "Tor Vergata", Rome, 00133, Italy
| | - J S O Beltran
- Department of Biology, University of Rome "Tor Vergata", Rome, 00133, Italy.,Clinical and Experimental Hematology Laboratory, Department of Clinical and Toxicological Analysis, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - L Occhigrossi
- Department of Biology, University of Rome "Tor Vergata", Rome, 00133, Italy
| | - V Bordoni
- National Institute for Infectious Diseases I. R. C. C. S. "Lazzaro Spallanzani" Rome, 00149, Italy
| | - C Agrati
- National Institute for Infectious Diseases I. R. C. C. S. "Lazzaro Spallanzani" Rome, 00149, Italy
| | - M D'Eletto
- Department of Biology, University of Rome "Tor Vergata", Rome, 00133, Italy
| | - F Rossin
- Department of Biology, University of Rome "Tor Vergata", Rome, 00133, Italy
| | - P Borelli
- Clinical and Experimental Hematology Laboratory, Department of Clinical and Toxicological Analysis, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - G P Amarante-Mendes
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - O Demidov
- Laboratory of Molecular Medicine, Institute of Cytology, Russian Academy of Sciences, St.-Petersburg, 194064, Russia
| | - N A Barlev
- Laboratory of Molecular Medicine, Institute of Cytology, Russian Academy of Sciences, St.-Petersburg, 194064, Russia
| | - M Piacentini
- Department of Biology, University of Rome "Tor Vergata", Rome, 00133, Italy. .,National Institute for Infectious Diseases I. R. C. C. S. "Lazzaro Spallanzani" Rome, 00149, Italy.,Laboratory of Molecular Medicine, Institute of Cytology, Russian Academy of Sciences, St.-Petersburg, 194064, Russia
| |
Collapse
|
3
|
Broxmeyer HE, Liu Y, Kapur R, Orschell CM, Aljoufi A, Ropa JP, Trinh T, Burns S, Capitano ML. Fate of Hematopoiesis During Aging. What Do We Really Know, and What are its Implications? Stem Cell Rev Rep 2020; 16:1020-1048. [PMID: 33145673 PMCID: PMC7609374 DOI: 10.1007/s12015-020-10065-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2020] [Indexed: 12/11/2022]
Abstract
There is an ongoing shift in demographics such that older persons will outnumber young persons in the coming years, and with it age-associated tissue attrition and increased diseases and disorders. There has been increased information on the association of the aging process with dysregulation of hematopoietic stem (HSC) and progenitor (HPC) cells, and hematopoiesis. This review provides an extensive up-to date summary on the literature of aged hematopoiesis and HSCs placed in context of potential artifacts of the collection and processing procedure, that may not be totally representative of the status of HSCs in their in vivo bone marrow microenvironment, and what the implications of this are for understanding aged hematopoiesis. This review covers a number of interactive areas, many of which have not been adequately explored. There are still many unknowns and mechanistic insights to be elucidated to better understand effects of aging on the hematopoietic system, efforts that will take multidisciplinary approaches, and that could lead to means to ameliorate at least some of the dysregulation of HSCs and HPCs associated with the aging process. Graphical Abstract.
Collapse
Affiliation(s)
- Hal E Broxmeyer
- Department of Microbiology and Immunology, Indiana University School of Medicine, 950 West Walnut Street, R2-302, Indianapolis, IN, 46202-5181, USA.
| | - Yan Liu
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Reuben Kapur
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Christie M Orschell
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Arafat Aljoufi
- Department of Microbiology and Immunology, Indiana University School of Medicine, 950 West Walnut Street, R2-302, Indianapolis, IN, 46202-5181, USA
| | - James P Ropa
- Department of Microbiology and Immunology, Indiana University School of Medicine, 950 West Walnut Street, R2-302, Indianapolis, IN, 46202-5181, USA
| | - Thao Trinh
- Department of Microbiology and Immunology, Indiana University School of Medicine, 950 West Walnut Street, R2-302, Indianapolis, IN, 46202-5181, USA
| | - Sarah Burns
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Maegan L Capitano
- Department of Microbiology and Immunology, Indiana University School of Medicine, 950 West Walnut Street, R2-302, Indianapolis, IN, 46202-5181, USA.
| |
Collapse
|
4
|
Harris J, Lang T, Thomas JP, Sukkar MB, Nabar NR, Kehrl JH. Autophagy and inflammasomes. Mol Immunol 2017; 86:10-15. [DOI: 10.1016/j.molimm.2017.02.013] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 02/16/2017] [Accepted: 02/19/2017] [Indexed: 12/25/2022]
|
5
|
Li H, Chen C, Yao H, Li X, Yang N, Qiao J, Xu K, Zeng L. Identification of Suitable Reference Genes for mRNA Studies in Bone Marrow in a Mouse Model of Hematopoietic Stem Cell Transplantation. Transplant Proc 2017; 48:2826-2832. [PMID: 27788825 DOI: 10.1016/j.transproceed.2016.07.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 07/14/2016] [Indexed: 11/24/2022]
Abstract
BACKGROUND Bone marrow micro-environment changes during hematopoietic stem cell transplantation (HSCT) with subsequent alteration of genes expression. Quantitative polymerase chain reaction (q-PCR) is a reliable and reproducible technique for the analysis of gene expression. To obtain more accurate results, it is essential to find a reference during HSCT. However, which gene is suitable during HSCT remains unclear. This study aimed to identify suitable reference genes for mRNA studies in bone marrow after HSCT. METHODS C57BL/6 mice were treated with either total body irradiation (group T) or busulfan/cyclophosphamide (BU/CY) (group B) followed by infusion of bone marrow cells. Normal mice without treatments were served as a control. All samples (group T + group B + control) were defined as group G. On days 7, 14, and 21 after transplantation, transcription levels of 7 candidate genes, ACTB, B2M, GAPDH, HMBS, HPRT, SDHA, and YWHAZ, in bone marrow cells were measured by use of real-time quantitative PCR. The expression stability of these 7 candidate reference genes were analyzed by 2 statistical software programs, GeNorm and NormFinder. RESULTS Our results showed that ACTB displayed the highest expression in group G, with lowest expression of PSDHA in group T and HPRT in groups B and G. Analysis of expression stability by use of GeNorm or NormFinder demonstrated that expression of B2M in bone marrow were much more stable during HSCT, compared with other candidate genes including commonly used reference genes GAPDH and ACTB. CONCLUSIONS ACTB could be used as a suitable reference gene for mRNA studies in bone marrow after HSCT.
Collapse
Affiliation(s)
- H Li
- Department of Clinical Laboratory, the Affiliated Hospital of Xuzhou Medical College, Xuzhou, China
| | - C Chen
- Blood Diseases Institute, Xuzhou Medical College, Xuzhou, China; Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China
| | - H Yao
- Blood Diseases Institute, Xuzhou Medical College, Xuzhou, China; Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China
| | - X Li
- Blood Diseases Institute, Xuzhou Medical College, Xuzhou, China; Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China
| | - N Yang
- Blood Diseases Institute, Xuzhou Medical College, Xuzhou, China; Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China
| | - J Qiao
- Blood Diseases Institute, Xuzhou Medical College, Xuzhou, China; Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China; Department of Hematology, the Affiliated Hospital of Xuzhou Medical College, Xuzhou, China
| | - K Xu
- Blood Diseases Institute, Xuzhou Medical College, Xuzhou, China; Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China; Department of Hematology, the Affiliated Hospital of Xuzhou Medical College, Xuzhou, China.
| | - L Zeng
- Blood Diseases Institute, Xuzhou Medical College, Xuzhou, China; Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China; Department of Hematology, the Affiliated Hospital of Xuzhou Medical College, Xuzhou, China.
| |
Collapse
|
6
|
Ding L, Wang S, Qu X, Wang J. Tanshinone IIA sensitizes oral squamous cell carcinoma to radiation due to an enhanced autophagy. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2016; 46:264-269. [PMID: 27521571 DOI: 10.1016/j.etap.2016.07.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 06/14/2016] [Accepted: 07/29/2016] [Indexed: 06/06/2023]
Abstract
PURPOSE Tanshinone IIA (TanIIA), which is derived from the roots of Salvia miltiorrhiza (Danshen), has multiple pharmacological activities. However, the radiosensitivezing activity of TanIIA in oral cancer cells has not been studied extensively. The purpose of this study is to investigate the radiosensitizing effects of TanIIA in human oral squamous cell carcinoma SCC090 and examined the underlying mechanisms. METHODS Clonogenic assay was used to investigate the radiosensitizing effect of TanIIA on SCC090. And then, apoptosis and reactive oxygen species (ROS) induced by the combination of TanIIA with radiation were analyzed by Flow cytometry. Finally, autophagy was detected by monodansylcadervarine (MDC) staining. RESULTS TanIIA could significantly sensitize SCC090 to radiation. Meanwhile, an increase ROS generation after exposed to the combination treatment was found. In addition, the protein levels of Beclin 1, Atg5 and LC3-II, three important proteins involved in autophagy were increased in cells. CONCLUSIONS TanIIA exerted a strong radiosensitizing effect on SCC090 comparing with the simple drug or single radiation treatment, which was due to an enhanced ROS generation and autophagy.
Collapse
Affiliation(s)
- Lijuan Ding
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China
| | - Shudong Wang
- Department of Cardiology, The First Hospital of Jilin University, Changchun 130021, China
| | - Xiaozhang Qu
- Department of Endocrinology, The Second Part of the First Hospital, Jilin University, Changchun 130021, China
| | - Jiafeng Wang
- Department of Endodontics, School and Hospital of Stomatology, Jilin University, Changchun 130021, China.
| |
Collapse
|
7
|
Li WD, Du XL, Qian AM, Hu N, Kong LS, Wei S, Li CL, Li XQ. Metformin regulates differentiation of bone marrow-derived endothelial progenitor cells via multiple mechanisms. Biochem Biophys Res Commun 2015; 465:803-9. [PMID: 26319555 DOI: 10.1016/j.bbrc.2015.08.091] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Accepted: 08/20/2015] [Indexed: 12/17/2022]
Abstract
OBJECTIVE The aim of this study was to investigate the effect of metformin on endothelial progenitor cells (EPCs) differentiation and the possible mechanisms. METHODS EPCs were treated with metformin and differentiation, migration and tube formation of EPCs were evaluated. Moreover, we also assessed the AMPK-mTOR-p70S6K pathway, AMPK related autophagy pathway and eNOS-NO pathway to explore the mechanisms. RESULTS Metformin treatment could significantly increase differentiation of EPCs. On the mechanisms, increased level of AMPKand eNOS phosphorylation, LC3 expression and NO production, and decreased mTOR, p70 S6K as well as TGF-β expression were found in EPCs. The AMPK inhibitor compound C, Atg5 knocking-down and eNOS inhibitor l-NAME could reverse the effect exerted by metformin. CONCLUSIONS Our results here showed that metformin could regulate the differentiation of EPCs. Autophagy related pathway and AMPK-eNOS-NO pathway were involved in the mechanisms.
Collapse
Affiliation(s)
- Wen-Dong Li
- Department of Vascular Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiao-Long Du
- Department of Vascular Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Ai-Min Qian
- Department of Vascular Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Nan Hu
- Department of Vascular Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Ling-Shang Kong
- Department of Vascular Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Sen Wei
- Department of Vascular Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Cheng-Long Li
- Department of Vascular Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiao-Qiang Li
- Department of Vascular Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
8
|
Brennan TV, Rendell VR, Yang Y. Innate immune activation by tissue injury and cell death in the setting of hematopoietic stem cell transplantation. Front Immunol 2015; 6:101. [PMID: 25852683 PMCID: PMC4360715 DOI: 10.3389/fimmu.2015.00101] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 02/23/2015] [Indexed: 11/22/2022] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (Allo-HSCT) with donor lymphocyte infusion is the mainstay of treatment for many types of hematological malignancies, but the therapeutic effect and prevention of relapse is complicated by donor T-cell recognition and attack of host tissue in a process known as graft-versus-host disease (GvHD). Cytotoxic myeloablative conditioning regimens used prior to Allo-HSCT result in the release of endogenous innate immune activators that are increasingly recognized for their role in creating a pro-inflammatory milieu. This increased inflammatory state promotes allogeneic T-cell activation and the induction and perpetuation of GvHD. Here, we review the processes of cellular response to injury and cell death that are relevant following Allo-HSCT and present the current evidence for a causative role of a variety of endogenous innate immune activators in the mediation of sterile inflammation following Allo-HSCT. Finally, we discuss the potential therapeutic strategies that target the endogenous pathways of innate immune activation to decrease the incidence and severity of GvHD following Allo-HSCT.
Collapse
Affiliation(s)
- Todd V Brennan
- Department of Surgery, Duke University , Durham, NC , USA
| | | | - Yiping Yang
- Department of Medicine, Duke University , Durham, NC , USA ; Department of Immunology, Duke University , Durham, NC , USA
| |
Collapse
|