1
|
Ono M, Satou Y. Spectrum of Treg and self-reactive T cells: single cell perspectives from old friend HTLV-1. DISCOVERY IMMUNOLOGY 2024; 3:kyae006. [PMID: 38863793 PMCID: PMC11165433 DOI: 10.1093/discim/kyae006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/27/2024] [Accepted: 05/09/2024] [Indexed: 06/13/2024]
Abstract
Despite extensive regulatory T cell (Treg) research, fundamental questions on in vivo dynamics remain to be answered. The current study aims to dissect several interwoven concepts in Treg biology, highlighting the 'self-reactivity' of Treg and their counterparts, namely naturally-arising memory-phenotype T-cells, as a key mechanism to be exploited by a human retroviral infection. We propose the novel key concept, Periodic T cell receptor (TCR)-signalled T-cells, capturing self-reactivity in a quantifiable manner using the Nr4a3-Timer-of-cell-kinetics-and-activity (Tocky) technology. Periodic and brief TCR signals in self-reactive T-cells contrast with acute TCR signals during inflammation. Thus, we propose a new two-axis model for T-cell activation by the two types of TCR signals or antigen recognition, elucidating how Foxp3 expression and acute TCR signals actively regulate Periodic TCR-signalled T-cells. Next, we highlight an underappreciated branch of immunological research on Human T-cell Leukemia Virus type 1 (HTLV-1) that precedes Treg studies, illuminating the missing link between the viral infection, CD25, and Foxp3. Based on evidence by single-cell analysis, we show how the viral infection exploits the regulatory mechanisms for T-cell activation and suggests a potential role of periodic TCR signalling in infection and malignant transformation. In conclusion, the new perspectives and models in this study provide a working framework for investigating Treg within the self-reactive T-cell spectrum, expected to advance understanding of HTLV-1 infection, cancer, and immunotherapy strategies for these conditions.
Collapse
Affiliation(s)
- Masahiro Ono
- Department of Life Sciences, Imperial College London, London, United Kingdom
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Yorifumi Satou
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
2
|
Ono M. Unraveling T-cell dynamics using fluorescent timer: Insights from the Tocky system. Biophys Physicobiol 2024; 21:e211010. [PMID: 39175859 PMCID: PMC11338677 DOI: 10.2142/biophysico.bppb-v21.s010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 02/14/2024] [Indexed: 08/24/2024] Open
Abstract
Understanding the temporal dynamics of T-cell transcription is crucial for insights into immune cell function and development. In this study, we show the features of the Timer-of-Cell-Kinetics-and-Activity (Tocky) system, which enables analysis of temporal dynamics of cell activities and differentiation, leveraging Fluorescent Timer protein, which spontaneously changes its emission spectrum from blue to red fluorescence in known kinetics, as reporters. The current study examines the properties of the Tocky system, highlighting the Timer-Angle approach, which is a core algorithm of Tocky analysis and converts Timer Blue and Red fluorescence into Timer Angle and Intensity by trigonometric transformation. Importantly, Tocky analyzes time-related events within individual cells by the two phases of measurements, distinguishing between (1) the temporal sequence of cellular activities and differentiation within the time domain, and (2) the transcription frequency within the frequency domain. The transition from time measurement to frequency analysis, particularly at the Persistent locus that bridges these domains, highlights that system's unique property in what is measured and analyzed by Tocky. Intriguingly, the sustained transcriptional activities observed in cells at the Persistent locus may have unique biological features as demonstrated in activated regulatory T-cells (Treg) and pathogenic T-cells, respectively, using Foxp3-Tocky and Nr4a3-Tocky models. In conclusion, the Tocky system can provide crucial data for advancing our understanding of T-cell dynamics and function.
Collapse
Affiliation(s)
- Masahiro Ono
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, United Kingdom
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, 860-0811, Japan
| |
Collapse
|
3
|
Shelyakin PV, Lupyr KR, Egorov ES, Kofiadi IA, Staroverov DB, Kasatskaya SA, Kriukova VV, Shagina IA, Merzlyak EM, Nakonechnaya TO, Latysheva EA, Manto IA, Khaitov MR, Lukyanov SA, Chudakov DM, Britanova OV. Naïve Regulatory T Cell Subset Is Altered in X-Linked Agammaglobulinemia. Front Immunol 2021; 12:697307. [PMID: 34489944 PMCID: PMC8417104 DOI: 10.3389/fimmu.2021.697307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/29/2021] [Indexed: 11/14/2022] Open
Abstract
The interplay between T- and B-cell compartments during naïve, effector and memory T cell maturation is critical for a balanced immune response. Primary B-cell immunodeficiency arising from X-linked agammaglobulinemia (XLA) offers a model to explore B cell impact on T cell subsets, starting from the thymic selection. Here we investigated characteristics of naïve and effector T cell subsets in XLA patients, revealing prominent alterations in the corresponding T-cell receptor (TCR) repertoires. We observed immunosenescence in terms of decreased diversity of naïve CD4+ and CD8+ TCR repertoires in XLA donors. The most substantial alterations were found within naïve CD4+ subsets, and we have investigated these in greater detail. In particular, increased clonality and convergence, along with shorter CDR3 regions, suggested narrower focused antigen-specific maturation of thymus-derived naïve Treg (CD4+CD45RA+CD27+CD25+) in the absence of B cells - normally presenting diverse self and commensal antigens. The naïve Treg proportion among naïve CD4 T cells was decreased in XLA patients, supporting the concept of impaired thymic naïve Treg selection. Furthermore, the naïve Treg subset showed prominent differences at the transcriptome level, including increased expression of genes specific for antigen-presenting and myeloid cells. Altogether, our findings suggest active B cell involvement in CD4 T cell subsets maturation, including B cell-dependent expansion of the naïve Treg TCR repertoire that enables better control of self-reactive T cells.
Collapse
Affiliation(s)
- Pavel V Shelyakin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Ksenia R Lupyr
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Evgeny S Egorov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Ilya A Kofiadi
- FSBI "NRC Institute of Immunology" FMBA of Russia, Moscow, Russia
| | - Dmitriy B Staroverov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Sofya A Kasatskaya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia.,Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Valeriia V Kriukova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Irina A Shagina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Ekaterina M Merzlyak
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Tatiana O Nakonechnaya
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia
| | | | - Irina A Manto
- FSBI "NRC Institute of Immunology" FMBA of Russia, Moscow, Russia
| | - Musa R Khaitov
- FSBI "NRC Institute of Immunology" FMBA of Russia, Moscow, Russia
| | - Sergey A Lukyanov
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Dmitriy M Chudakov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia.,Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Olga V Britanova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
4
|
Kalicińska E, Szymczak D, Zińczuk A, Adamik B, Smiechowicz J, Skalec T, Nowicka-Suszko D, Biernat M, Bogucka-Fedorczuk A, Rybka J, Martuszewski A, Gozdzik W, Simon K, Wróbel T. Immunosuppression as a Hallmark of Critical COVID-19: Prospective Study. Cells 2021; 10:1293. [PMID: 34071149 PMCID: PMC8224622 DOI: 10.3390/cells10061293] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/16/2021] [Accepted: 05/21/2021] [Indexed: 12/15/2022] Open
Abstract
The dysregulation of both the innate and adaptive responses to SARS-CoV-2 have an impact on the course of COVID-19, and play a role in the clinical outcome of the disease. Here, we performed a comprehensive analysis of peripheral blood lymphocyte subpopulations in 82 patients with COVID-19, including 31 patients with a critical course of the disease. In COVID-19 patients who required hospitalization we analyzed T cell subsets, including Treg cells, as well as TCRα/β and γ/δ, NK cells, and B cells, during the first two weeks after admission to hospital due to the SARS-CoV-2 infection, with marked reductions in leukocytes subpopulations, especially in critically ill COVID-19 patients. We showed decreased levels of Th, Ts cells, Treg cells (both naïve and induced), TCRα/β and γ/δ cells, as well as CD16+CD56+NK cells in ICU compared to non-ICU COVID-19 patients. We observed impaired function of T and NK cells in critically ill COVID-19 patients with extremely low levels of secreted cytokines. We found that the IL-2/INFγ ratio was the strongest indicator of a critical course of COVID-19, and was associated with fatal outcomes. Our findings showed markedly impaired innate and adaptive responses in critically ill COVID-19 patients, and suggest that the immunosuppressive state in the case of a critical course of SARS-CoV-2 infection might reflect subsequent clinical deterioration and predict a fatal outcome.
Collapse
Affiliation(s)
- Elżbieta Kalicińska
- Department and Clinic of Hematology, Blood Neoplasms, and Bone Marrow Transplantation, Wroclaw Medical University, 50-367 Wroclaw, Poland; (D.S.); (M.B.); (A.B.-F.); (J.R.); (T.W.)
| | - Donata Szymczak
- Department and Clinic of Hematology, Blood Neoplasms, and Bone Marrow Transplantation, Wroclaw Medical University, 50-367 Wroclaw, Poland; (D.S.); (M.B.); (A.B.-F.); (J.R.); (T.W.)
| | - Aleksander Zińczuk
- Department of Infectious Diseases and Hepatology, Wroclaw Medical University, 51-149 Wroclaw, Poland; (A.Z.); (K.S.)
- Department of Forensic Medicine, Wroclaw Medical University, 50-345 Wroclaw, Poland
| | - Barbara Adamik
- Department of Anesthesiology and Intensive Therapy, Wroclaw Medical University, 50-556 Wroclaw, Poland; (B.A.); (J.S.); (T.S.); (W.G.)
| | - Jakub Smiechowicz
- Department of Anesthesiology and Intensive Therapy, Wroclaw Medical University, 50-556 Wroclaw, Poland; (B.A.); (J.S.); (T.S.); (W.G.)
| | - Tomasz Skalec
- Department of Anesthesiology and Intensive Therapy, Wroclaw Medical University, 50-556 Wroclaw, Poland; (B.A.); (J.S.); (T.S.); (W.G.)
| | - Danuta Nowicka-Suszko
- Department of Dermatology and Venereology and Allergology, Wroclaw Medical University, 50-368 Wroclaw, Poland;
| | - Monika Biernat
- Department and Clinic of Hematology, Blood Neoplasms, and Bone Marrow Transplantation, Wroclaw Medical University, 50-367 Wroclaw, Poland; (D.S.); (M.B.); (A.B.-F.); (J.R.); (T.W.)
| | - Aleksandra Bogucka-Fedorczuk
- Department and Clinic of Hematology, Blood Neoplasms, and Bone Marrow Transplantation, Wroclaw Medical University, 50-367 Wroclaw, Poland; (D.S.); (M.B.); (A.B.-F.); (J.R.); (T.W.)
| | - Justyna Rybka
- Department and Clinic of Hematology, Blood Neoplasms, and Bone Marrow Transplantation, Wroclaw Medical University, 50-367 Wroclaw, Poland; (D.S.); (M.B.); (A.B.-F.); (J.R.); (T.W.)
| | - Adrian Martuszewski
- Students Scientific Association, Department and Clinic of Hematology, Blood Neoplasms, and Bone Marrow Transplantation, Wroclaw Medical University, 50-367 Wroclaw, Poland;
| | - Waldemar Gozdzik
- Department of Anesthesiology and Intensive Therapy, Wroclaw Medical University, 50-556 Wroclaw, Poland; (B.A.); (J.S.); (T.S.); (W.G.)
| | - Krzysztof Simon
- Department of Infectious Diseases and Hepatology, Wroclaw Medical University, 51-149 Wroclaw, Poland; (A.Z.); (K.S.)
| | - Tomasz Wróbel
- Department and Clinic of Hematology, Blood Neoplasms, and Bone Marrow Transplantation, Wroclaw Medical University, 50-367 Wroclaw, Poland; (D.S.); (M.B.); (A.B.-F.); (J.R.); (T.W.)
| |
Collapse
|
5
|
Taefehshokr N, Taefehshokr S, Heit B. Mechanisms of Dysregulated Humoral and Cellular Immunity by SARS-CoV-2. Pathogens 2020; 9:E1027. [PMID: 33302366 PMCID: PMC7762606 DOI: 10.3390/pathogens9121027] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 11/30/2020] [Accepted: 12/06/2020] [Indexed: 02/06/2023] Open
Abstract
The current coronavirus disease 2019 (COVID-19) pandemic, a disease caused by severe acute respiratory syndrome corona virus 2 (SARS-CoV-2), was first identified in December 2019 in China, and has led to thousands of mortalities globally each day. While the innate immune response serves as the first line of defense, viral clearance requires activation of adaptive immunity, which employs B and T cells to provide sanitizing immunity. SARS-CoV-2 has a potent arsenal of mechanisms used to counter this adaptive immune response through processes, such as T cells depletion and T cell exhaustion. These phenomena are most often observed in severe SARS-CoV-2 patients, pointing towards a link between T cell function and disease severity. Moreover, neutralizing antibody titers and memory B cell responses may be short lived in many SARS-CoV-2 patients, potentially exposing these patients to re-infection. In this review, we discuss our current understanding of B and T cells immune responses and activity in SARS-CoV-2 pathogenesis.
Collapse
Affiliation(s)
- Nima Taefehshokr
- Department of Microbiology and Immunology, Center for Human Immunology, The University of Western Ontario, London, ON N0M 2N0, Canada;
| | - Sina Taefehshokr
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 51368, Iran;
| | - Bryan Heit
- Department of Microbiology and Immunology, Center for Human Immunology, The University of Western Ontario, London, ON N0M 2N0, Canada;
- Robarts Research Institute, London, ON N6A 5K8, Canada
| |
Collapse
|
6
|
Kalfaoglu B, Almeida-Santos J, Tye CA, Satou Y, Ono M. T-cell dysregulation in COVID-19. Biochem Biophys Res Commun 2020; 538:204-210. [PMID: 33220925 PMCID: PMC7648511 DOI: 10.1016/j.bbrc.2020.10.079] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 10/27/2020] [Indexed: 02/07/2023]
Abstract
T-cells play key roles in immunity to COVID-19 as well as the development of severe disease. T-cell immunity to COVID-19 is mediated through differentiated CD4+ T-cells and cytotoxic CD8+ T-cells, although their differentiation is often atypical and ambiguous in COVID-19 and single cell dynamics of key genes need to be characterized. Notably, T-cells are dysregulated in severe COVID-19 patients, although their molecular features are still yet to be fully revealed. Importantly, it is not clear which T-cell activities are beneficial and protective and which ones can contribute to the development of severe COVID-19. In this article, we examine the latest evidence and discuss the key features of T-cell responses in COVID-19, showing how T-cells are dysregulated in severe COVID-19 patients. Particularly, we highlight the impairment of FOXP3 induction in CD4+ T-cells and how the impaired FOXP3 expression can lead to the differentiation of abnormally activated (hyperactivated) T-cells and the dysregulated T-cell responses in severe patients. Furthermore, we characterise the feature of hyperactivated T-cells, showing their potential contribution to T-cell dysregulation and immune-mediated tissue destruction (immunopathology) in COVID-19.
Collapse
Affiliation(s)
| | - José Almeida-Santos
- Department of Life Sciences, Imperial College London, UK; Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | | | - Yorifumi Satou
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Japan
| | - Masahiro Ono
- Department of Life Sciences, Imperial College London, UK; International Research Center for Medical Sciences, Kumamoto University, Japan.
| |
Collapse
|
7
|
Kalfaoglu B, Almeida-Santos J, Tye CA, Satou Y, Ono M. T-Cell Hyperactivation and Paralysis in Severe COVID-19 Infection Revealed by Single-Cell Analysis. Front Immunol 2020; 11:589380. [PMID: 33178221 PMCID: PMC7596772 DOI: 10.3389/fimmu.2020.589380] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/16/2020] [Indexed: 12/11/2022] Open
Abstract
Severe COVID-19 patients show various immunological abnormalities including T-cell reduction and cytokine release syndrome, which can be fatal and is a major concern of the pandemic. However, it is poorly understood how T-cell dysregulation can contribute to the pathogenesis of severe COVID-19. Here we show single cell-level mechanisms for T-cell dysregulation in severe COVID-19, demonstrating new pathogenetic mechanisms of T-cell activation and differentiation underlying severe COVID-19. By in silico sorting CD4+ T-cells from a single cell RNA-seq dataset, we found that CD4+ T-cells were highly activated and showed unique differentiation pathways in the lung of severe COVID-19 patients. Notably, those T-cells in severe COVID-19 patients highly expressed immunoregulatory receptors and CD25, whilst repressing the expression of FOXP3. Furthermore, we show that CD25+ hyperactivated T-cells differentiate into multiple helper T-cell lineages, showing multifaceted effector T-cells with Th1 and Th2 characteristics. Lastly, we show that CD25-expressing hyperactivated T-cells produce the protease Furin, which facilitates the viral entry of SARS-CoV-2. Collectively, CD4+ T-cells from severe COVID-19 patients are hyperactivated and FOXP3-mediated negative feedback mechanisms are impaired in the lung, which may promote immunopathology. Therefore, our study proposes a new model of T-cell hyperactivation and paralysis that drives immunopathology in severe COVID-19.
Collapse
Affiliation(s)
- Bahire Kalfaoglu
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - José Almeida-Santos
- Department of Life Sciences, Imperial College London, London, United Kingdom.,Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Chanidapa Adele Tye
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Yorifumi Satou
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Masahiro Ono
- Department of Life Sciences, Imperial College London, London, United Kingdom.,International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
8
|
MHC-II alleles shape the CDR3 repertoires of conventional and regulatory naïve CD4 + T cells. Proc Natl Acad Sci U S A 2020; 117:13659-13669. [PMID: 32482872 DOI: 10.1073/pnas.2003170117] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
T cell maturation and activation depend upon T cell receptor (TCR) interactions with a wide variety of antigenic peptides displayed in a given major histocompatibility complex (MHC) context. Complementarity-determining region 3 (CDR3) is the most variable part of the TCRα and -β chains, which govern interactions with peptide-MHC complexes. However, it remains unclear how the CDR3 landscape is shaped by individual MHC context during thymic selection of naïve T cells. We established two mouse strains carrying distinct allelic variants of H2-A and analyzed thymic and peripheral production and TCR repertoires of naïve conventional CD4+ T (Tconv) and naïve regulatory CD4+ T (Treg) cells. Compared with tuberculosis-resistant C57BL/6 (H2-Ab) mice, the tuberculosis-susceptible H2-Aj mice had fewer CD4+ T cells of both subsets in the thymus. In the periphery, this deficiency was only apparent for Tconv and was compensated for by peripheral reconstitution for Treg We show that H2-Aj favors selection of a narrower and more convergent repertoire with more hydrophobic and strongly interacting amino acid residues in the middle of CDR3α and CDR3β, suggesting more stringent selection against a narrower peptide-MHC-II context. H2-Aj and H2-Ab mice have prominent reciprocal differences in CDR3α and CDR3β features, probably reflecting distinct modes of TCR fitting to MHC-II variants. These data reveal the mechanics and extent of how MHC-II shapes the naïve CD4+ T cell CDR3 landscape, which essentially defines adaptive response to infections and self-antigens.
Collapse
|
9
|
Ono M. Control of regulatory T-cell differentiation and function by T-cell receptor signalling and Foxp3 transcription factor complexes. Immunology 2020; 160:24-37. [PMID: 32022254 DOI: 10.1111/imm.13178] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 12/18/2019] [Accepted: 01/11/2020] [Indexed: 12/11/2022] Open
Abstract
The transcription factor Foxp3 controls the differentiation and function of regulatory T-cells (Treg). Studies in the past decades identified numerous Foxp3-interacting protein partners. However, it is still not clear how Foxp3 produces the Treg-type transcriptomic landscape through cooperating with its partners. Here I show the current understanding of how Foxp3 transcription factor complexes regulate the differentiation, maintenance and functional maturation of Treg. Importantly, T-cell receptor (TCR) signalling plays central roles in Treg differentiation and Foxp3-mediated gene regulation. Differentiating Treg will have recognized their cognate antigens and received TCR signals before initiating Foxp3 transcription, which is triggered by TCR-induced transcription factors including NFAT, AP-1 and NF-κB. Once expressed, Foxp3 seizes TCR signal-induced transcriptional and epigenetic mechanisms through interacting with AML1/Runx1 and NFAT. Thus, Foxp3 modifies gene expression dynamics of TCR-induced genes, which constitute cardinal mechanisms for Treg-mediated immune suppression. Next, I discuss the following key topics, proposing new mechanistic models for Foxp3-mediated gene regulation: (i) how Foxp3 transcription is induced and maintained by the Foxp3-inducing enhanceosome and the Foxp3 autoregulatory transcription factor complex; (ii) molecular mechanisms for effector Treg differentiation (i.e. Treg maturation); (iii) how Foxp3 activates or represses its target genes through recruiting coactivators and corepressors; (iv) the 'decision-making' Foxp3-containing transcription factor complex for Th17 and Treg differentiation; and (v) the roles of post-translational modification in Foxp3 regulation. Thus, this article provides cutting-edge understanding of molecular biology of Foxp3 and Treg, integrating findings by biochemical and genomic studies.
Collapse
Affiliation(s)
- Masahiro Ono
- Department of Life Sciences, Imperial College London, London, UK
| |
Collapse
|
10
|
Meng ZJ, Wu JH, Zhou M, Sun SW, Miao SY, Han HL, Chen L, Xiong XZ. Peripheral blood CD4+ T cell populations by CD25 and Foxp3 expression as a potential biomarker: reflecting inflammatory activity in chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis 2019; 14:1669-1680. [PMID: 31440043 PMCID: PMC6679698 DOI: 10.2147/copd.s208977] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 06/25/2019] [Indexed: 12/27/2022] Open
Abstract
Background The temporally dynamic changes of CD25 and Foxp3 expression in CD4+ T cells are initiated by T cell receptor (TCR) signals strength or frequency. There is a deficiency of peripheral markers for assessing COPD activity, and the current study was conducted to explore whether peripheral CD4+ T cell populations based on CD25 and Foxp3 expression could serve as an indicator for COPD inflammatory activity. Methods The distribution and phenotypic characteristics of CD4+CD25±Foxp3± T cells from peripheral blood in different populations were determined by flow cytometry. The model for the differentiation of CD4+ T cells populations by CD25 and Foxp3 expression was explored in vitro. Results The frequencies of peripheral CD4+CD25+Foxp3- T cells and CD4+CD25+Foxp3+ T cells were increased in AECOPD patients, whereas the frequency of CD4+CD25-Foxp3+ T cells was increased in SCOPD patients without receiving systemic treatment. Phenotypic analysis revealed that CD4+CD25+Foxp3- T cells, CD4+CD25+Foxp3+ T cells and CD4+CD25-Foxp3+ T cells had received antigenic stimulation and resembled central memory or effector memory T cells. The differentiation of CD4+ T cells populations by CD25 and Foxp3 expression was dictated by TCR signals. The paired study indicated that the frequencies of CD4+CD25+Foxp3- T cells, CD4+CD25+Foxp3+ T cells and CD4+CD25- Foxp3+ T cells were decreased while the frequency of CD4+CD25-Foxp3- T cells were increased in the same patients from AECOPD to convalescence. Conclusions Collectively, we propose that the dynamic changes of CD4+ T cell populations by CD25 and Foxp3 expression could function as potential biomarkers for reflecting inflammatory activity in COPD.
Collapse
Affiliation(s)
- Zhao-Ji Meng
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| | - Jiang-Hua Wu
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| | - Mei Zhou
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| | - Sheng-Wen Sun
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| | - Shuai-Ying Miao
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| | - Hong-Li Han
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| | - Long Chen
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| | - Xian-Zhi Xiong
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| |
Collapse
|
11
|
Regulatory B and T lymphocytes in multiple sclerosis: friends or foes? AUTOIMMUNITY HIGHLIGHTS 2018; 9:9. [PMID: 30415321 PMCID: PMC6230324 DOI: 10.1007/s13317-018-0109-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 10/17/2018] [Indexed: 12/12/2022]
Abstract
Current clinical experience with immunomodulatory agents and monoclonal antibodies in principle has established the benefit of depleting lymphocytic populations in relapsing–remitting multiple sclerosis (RRMS). B and T cells may exert multiple pro-inflammatory actions, but also possess regulatory functions making their role in RRMS pathogenesis much more complex. There is no clear correlation of Tregs and Bregs with clinical features of the disease. Herein, we discuss the emerging data on regulatory T and B cell subset distributions in MS and their roles in the pathophysiology of MS and its murine model, experimental autoimmune encephalomyelitis (EAE). In addition, we summarize the immunomodulatory properties of certain MS therapeutic agents through their effect on such regulatory cell subsets and their relevance to clinical outcomes.
Collapse
|
12
|
Copland A, Bending D. Foxp3 Molecular Dynamics in Treg in Juvenile Idiopathic Arthritis. Front Immunol 2018; 9:2273. [PMID: 30333832 PMCID: PMC6175987 DOI: 10.3389/fimmu.2018.02273] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 09/12/2018] [Indexed: 12/25/2022] Open
Abstract
Since the identification of the regulatory T-cell (Treg)-associated transcription factor Foxp3, there have been intensive research efforts to understand its biology and roles in maintaining immune homeostasis. It is well established that thymic selection of a repertoire of self-reactive Foxp3+ T-cells provides an essential mechanism to minimize reactions to self-antigens in the periphery, and thus aid in the prevention of autoimmunity. It is clear from both genetic and immunological analyses of juvenile idiopathic arthritis (JIA) patients that T-cells have a strong role to play in both the initiation and propagation of disease. The current paradigm is to view autoimmunity as a consequence of an imbalance between inflammatory and immunoregulatory mechanisms. This view has led to the assigning of cells and inflammatory mediators to different classes based on their assumed pro- or anti-inflammatory roles. This is typically reported as ratios of effector T-cells to Treg cells. Problematically, many analyses are based on static “snapshots-in-time,” even though both mouse models and human patient studies have highlighted the dynamic nature of Foxp3+ T-cells in vivo, which can exhibit plasticity and time-dependent functional states. In this review, we discuss the role of Foxp3 dynamics in the control of T-cell responses in childhood arthritis, by reviewing evidence in humans and relevant mouse models of inflammatory disease. Whilst the cellular dynamics of Treg have been well evaluated—leading to standard data outputs such as frequency, quantity and quality (often assessed by in vitro suppressive capacity)—we discuss how recent insights into the molecular dynamics of Foxp3 transcription and its post-translational control may open up tantalizing new avenues for immunotherapies to treat autoimmune arthritis.
Collapse
Affiliation(s)
- Alastair Copland
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - David Bending
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
13
|
Rahman A, Tiwari A, Narula J, Hickling T. Importance of Feedback and Feedforward Loops to Adaptive Immune Response Modeling. CPT Pharmacometrics Syst Pharmacol 2018; 7:621-628. [PMID: 30198637 PMCID: PMC6202469 DOI: 10.1002/psp4.12352] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 08/15/2018] [Indexed: 12/15/2022] Open
Abstract
The human adaptive immune system is a very complex network of different types of cells, cytokines, and signaling molecules. This complex network makes it difficult to understand the system level regulations. To properly explain the immune system, it is necessary to explicitly investigate the presence of different feedback and feedforward loops (FFLs) and their crosstalks. Considering that these loops increase the complexity of the system, the mathematical modeling has been proved to be an important tool to explain such complex biological systems. This review focuses on these regulatory loops and discusses their importance on systems modeling of the immune system.
Collapse
|
14
|
Bending D, Ono M. From stability to dynamics: understanding molecular mechanisms of regulatory T cells through Foxp3 transcriptional dynamics. Clin Exp Immunol 2018; 197:14-23. [PMID: 30076771 PMCID: PMC6591142 DOI: 10.1111/cei.13194] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2018] [Indexed: 12/30/2022] Open
Abstract
Studies on regulatory T cells (Treg) have focused on thymic Treg as a stable lineage of immunosuppressive T cells, the differentiation of which is controlled by the transcription factor forkhead box protein 3 (Foxp3). This lineage perspective, however, may constrain hypotheses regarding the role of Foxp3 and Tregin vivo, particularly in clinical settings and immunotherapy development. In this review, we synthesize a new perspective on the role of Foxp3 as a dynamically expressed gene, and thereby revisit the molecular mechanisms for the transcriptional regulation of Foxp3. In particular, we introduce a recent advancement in the study of Foxp3‐mediated T cell regulation through the development of the Timer of cell kinetics and activity (Tocky) system, and show that the investigation of Foxp3 transcriptional dynamics can reveal temporal changes in the differentiation and function of Tregin vivo. We highlight the role of Foxp3 as a gene downstream of T cell receptor (TCR) signalling and show that temporally persistent TCR signals initiate Foxp3 transcription in self‐reactive thymocytes. In addition, we feature the autoregulatory transcriptional circuit for the Foxp3 gene as a mechanism for consolidating Treg differentiation and activating their suppressive functions. Furthermore, we explore the potential mechanisms behind the dynamic regulation of epigenetic modifications and chromatin architecture for Foxp3 transcription. Lastly, we discuss the clinical relevance of temporal changes in the differentiation and activation of Treg.
Collapse
Affiliation(s)
- D Bending
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, UK.,Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, UK
| | - M Ono
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, UK
| |
Collapse
|
15
|
Bradley A, Hashimoto T, Ono M. Elucidating T Cell Activation-Dependent Mechanisms for Bifurcation of Regulatory and Effector T Cell Differentiation by Multidimensional and Single-Cell Analysis. Front Immunol 2018; 9:1444. [PMID: 30061879 PMCID: PMC6048294 DOI: 10.3389/fimmu.2018.01444] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 06/11/2018] [Indexed: 11/13/2022] Open
Abstract
In T cells, T cell receptor (TCR) signaling initiates downstream transcriptional mechanisms for T cell activation and differentiation. Foxp3-expressing regulatory T cells (Treg) require TCR signals for their suppressive function and maintenance in the periphery. It is, however, unclear how TCR signaling controls the transcriptional program of Treg. Since most of studies identified the transcriptional features of Treg in comparison to naïve T cells, the relationship between Treg and non-naïve T cells including memory-phenotype T cells (Tmem) and effector T cells (Teff) is not well understood. Here, we dissect the transcriptomes of various T cell subsets from independent datasets using the multidimensional analysis method canonical correspondence analysis (CCA). We show that at the cell population level, resting Treg share gene modules for activation with Tmem and Teff. Importantly, Tmem activate the distinct transcriptional modules for T cell activation, which are uniquely repressed in Treg. The activation signature of Treg is dependent on TCR signals and is more actively operating in activated Treg. Furthermore, by using a new CCA-based method, single-cell combinatorial CCA, we analyzed unannotated single-cell RNA-seq data from tumor-infiltrating T cells, and revealed that FOXP3 expression occurs predominantly in activated T cells. Moreover, we identified FOXP3-driven and T follicular helper-like differentiation pathways in tumor microenvironments, and their bifurcation point, which is enriched with recently activated T cells. Collectively, our study reveals the activation mechanisms downstream of TCR signals for the bifurcation of Treg and Teff differentiation and their maturation processes.
Collapse
Affiliation(s)
- Alla Bradley
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Tetsuo Hashimoto
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Masahiro Ono
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, United Kingdom
| |
Collapse
|
16
|
Bending D, Paduraru A, Ducker CB, Prieto Martín P, Crompton T, Ono M. A temporally dynamic Foxp3 autoregulatory transcriptional circuit controls the effector Treg programme. EMBO J 2018; 37:embj.201899013. [PMID: 29991564 PMCID: PMC6092677 DOI: 10.15252/embj.201899013] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 05/15/2018] [Accepted: 06/12/2018] [Indexed: 11/24/2022] Open
Abstract
Regulatory T cells (Treg) are negative regulators of the immune response; however, it is poorly understood whether and how Foxp3 transcription is induced and regulated in the periphery during T‐cell responses. Using Foxp3‐Timer of cell kinetics and activity (Tocky) mice, which report real‐time Foxp3 expression, we show that the flux of new Foxp3 expressors and the rate of Foxp3 transcription are increased during inflammation. These persistent dynamics of Foxp3 transcription determine the effector Treg programme and are dependent on a Foxp3 autoregulatory transcriptional circuit. Persistent Foxp3 transcriptional activity controls the expression of coinhibitory molecules, including CTLA‐4 and effector Treg signature genes. Using RNA‐seq, we identify two groups of surface proteins based on their relationship to the temporal dynamics of Foxp3 transcription, and we show proof of principle for the manipulation of Foxp3 dynamics by immunotherapy: new Foxp3 flux is promoted by anti‐TNFRII antibody, and high‐frequency Foxp3 expressors are targeted by anti‐OX40 antibody. Collectively, our study dissects time‐dependent mechanisms behind Foxp3‐driven T‐cell regulation and establishes the Foxp3‐Tocky system as a tool to investigate the mechanisms behind T‐cell immunotherapies.
Collapse
Affiliation(s)
- David Bending
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, UK
| | - Alina Paduraru
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, UK
| | - Catherine B Ducker
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, UK
| | - Paz Prieto Martín
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, UK
| | - Tessa Crompton
- UCL Great Ormond Street Institute of Child Health, London, UK
| | - Masahiro Ono
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, UK
| |
Collapse
|
17
|
Bending D, Prieto Martín P, Paduraru A, Ducker C, Marzaganov E, Laviron M, Kitano S, Miyachi H, Crompton T, Ono M. A timer for analyzing temporally dynamic changes in transcription during differentiation in vivo. J Cell Biol 2018; 217:2931-2950. [PMID: 29941474 PMCID: PMC6080944 DOI: 10.1083/jcb.201711048] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 02/06/2018] [Accepted: 05/14/2018] [Indexed: 01/01/2023] Open
Abstract
Bending et al. establish a new tool, Timer of cell kinetics and activity (Tocky), revealing the temporal dynamics of cellular activation and differentiation in vivo. The tool analyzes the temporal sequence of molecular processes during cellular differentiation and can classify cells based on the frequency they receive signaling events in vivo. Understanding the mechanisms of cellular differentiation is challenging because differentiation is initiated by signaling pathways that drive temporally dynamic processes, which are difficult to analyze in vivo. We establish a new tool, Timer of cell kinetics and activity (Tocky; or toki [time in Japanese]). Tocky uses the fluorescent Timer protein, which spontaneously shifts its emission spectrum from blue to red, in combination with computer algorithms to reveal the dynamics of differentiation in vivo. Using a transcriptional target of T cell receptor (TCR) signaling, we establish Nr4a3-Tocky to follow downstream effects of TCR signaling. Nr4a3-Tocky reveals the temporal sequence of events during regulatory T cell (Treg) differentiation and shows that persistent TCR signals occur during Treg generation. Remarkably, antigen-specific T cells at the site of autoimmune inflammation also show persistent TCR signaling. In addition, by generating Foxp3-Tocky, we reveal the in vivo dynamics of demethylation of the Foxp3 gene. Thus, Tocky is a tool for cell biologists to address previously inaccessible questions by directly revealing dynamic processes in vivo.
Collapse
Affiliation(s)
- David Bending
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, England, UK
| | - Paz Prieto Martín
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, England, UK
| | - Alina Paduraru
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, England, UK
| | - Catherine Ducker
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, England, UK
| | - Erik Marzaganov
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, England, UK
| | - Marie Laviron
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, England, UK
| | - Satsuki Kitano
- Institute for Viral Research, Kyoto University, Kyoto, Japan
| | - Hitoshi Miyachi
- Institute for Viral Research, Kyoto University, Kyoto, Japan
| | - Tessa Crompton
- University College London Great Ormond Street Institute of Child Health, London, England, UK
| | - Masahiro Ono
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, England, UK
| |
Collapse
|
18
|
Knochelmann HM, Dwyer CJ, Bailey SR, Amaya SM, Elston DM, Mazza-McCrann JM, Paulos CM. When worlds collide: Th17 and Treg cells in cancer and autoimmunity. Cell Mol Immunol 2018; 15:458-469. [PMID: 29563615 PMCID: PMC6068176 DOI: 10.1038/s41423-018-0004-4] [Citation(s) in RCA: 351] [Impact Index Per Article: 50.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 01/08/2018] [Accepted: 01/09/2018] [Indexed: 12/24/2022] Open
Abstract
The balance between Th17 cells and regulatory T cells (Tregs) has emerged as a prominent factor in regulating autoimmunity and cancer. Th17 cells are vital for host defense against pathogens but have also been implicated in causing autoimmune disorders and cancer, though their role in carcinogenesis is less well understood. Tregs are required for self-tolerance and defense against autoimmunity and often correlate with cancer progression. This review addresses the importance of a functional homeostasis between these two subsets in health and the consequences of its disruption when these forces collide in disease. Importantly, we discuss the ability of Th17 cells to mediate cancer regression in immunotherapy, including adoptive transfer and checkpoint blockade therapy, and the therapeutic possibilities of purposefully offsetting the Th17/Treg balance to treat patients with cancer as well as those with autoimmune diseases.
Collapse
Affiliation(s)
- Hannah M Knochelmann
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA.
- Department of Dermatology and Dermatologic Surgery, Medical University of South Carolina, Charleston, SC, USA.
| | - Connor J Dwyer
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
- Department of Dermatology and Dermatologic Surgery, Medical University of South Carolina, Charleston, SC, USA
| | - Stefanie R Bailey
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
- Department of Dermatology and Dermatologic Surgery, Medical University of South Carolina, Charleston, SC, USA
| | - Sierra M Amaya
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
- Department of Dermatology and Dermatologic Surgery, Medical University of South Carolina, Charleston, SC, USA
| | - Dirk M Elston
- Department of Dermatology and Dermatologic Surgery, Medical University of South Carolina, Charleston, SC, USA
| | - Joni M Mazza-McCrann
- Department of Dermatology and Dermatologic Surgery, Medical University of South Carolina, Charleston, SC, USA
| | - Chrystal M Paulos
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA.
- Department of Dermatology and Dermatologic Surgery, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
19
|
Bending D, Ono M. Interplay between the skin barrier and immune cells in patients with atopic dermatitis unraveled by means of mathematical modeling. J Allergy Clin Immunol 2017; 139:1790-1792. [DOI: 10.1016/j.jaci.2017.03.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 03/07/2017] [Accepted: 03/27/2017] [Indexed: 02/08/2023]
|
20
|
Nonoverlapping roles of PD-1 and FoxP3 in maintaining immune tolerance in a novel autoimmune pancreatitis mouse model. Proc Natl Acad Sci U S A 2016; 113:8490-5. [PMID: 27410049 DOI: 10.1073/pnas.1608873113] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
PD-1 (programmed-death 1), an immune-inhibitory receptor required for immune self-tolerance whose deficiency causes autoimmunity with variable severity and tissue specificity depending on other genetic factors, is expressed on activated T cells, including the transcription factor FoxP3(+) Treg cells known to play critical roles in maintaining immune tolerance. However, whether PD-1 expression by the Treg cells is required for their immune regulatory function, especially in autoimmune settings, is still unclear. We found that mice with partial FoxP3 insufficiency developed early-onset lympho-proliferation and lethal autoimmune pancreatitis only when PD-1 is absent. The autoimmune phenotype was rescued by the transfer of FoxP3-sufficient T cells, regardless of whether they were derived from WT or PD-1-deficient mice, indicating that Treg cells dominantly protect against development of spontaneous autoimmunity without intrinsic expression of PD-1. The absence of PD-1 combined with partial FoxP3 insufficiency, however, led to generation of ex-FoxP3 T cells with proinflammatory properties and expansion of effector/memory T cells that contributed to the autoimmune destruction of target tissues. Altogether, the results suggest that PD-1 and FoxP3 work collaboratively in maintaining immune tolerance mostly through nonoverlapping pathways. Thus, PD-1 is modulating the activation threshold and maintaining the balance between regulatory and effector T cells, whereas FoxP3 is sufficient for dominant regulation through maintaining the integrity of the Treg function. We suggest that genetic or environmental factors that even moderately affect the expression of both PD-1 and FoxP3 can cause life-threatening autoimmune diseases by disrupting the T-cell homeostasis.
Collapse
|
21
|
Fujii H, Josse J, Tanioka M, Miyachi Y, Husson F, Ono M. Regulatory T Cells in Melanoma Revisited by a Computational Clustering of FOXP3+ T Cell Subpopulations. THE JOURNAL OF IMMUNOLOGY 2016; 196:2885-92. [PMID: 26864030 PMCID: PMC4777917 DOI: 10.4049/jimmunol.1402695] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 12/21/2015] [Indexed: 12/14/2022]
Abstract
CD4+ T cells that express the transcription factor FOXP3 (FOXP3+ T cells) are commonly regarded as immunosuppressive regulatory T cells (Tregs). FOXP3+ T cells are reported to be increased in tumor-bearing patients or animals and are considered to suppress antitumor immunity, but the evidence is often contradictory. In addition, accumulating evidence indicates that FOXP3 is induced by antigenic stimulation and that some non-Treg FOXP3+ T cells, especially memory-phenotype FOXP3low cells, produce proinflammatory cytokines. Accordingly, the subclassification of FOXP3+ T cells is fundamental for revealing the significance of FOXP3+ T cells in tumor immunity, but the arbitrariness and complexity of manual gating have complicated the issue. In this article, we report a computational method to automatically identify and classify FOXP3+ T cells into subsets using clustering algorithms. By analyzing flow cytometric data of melanoma patients, the proposed method showed that the FOXP3+ subpopulation that had relatively high FOXP3, CD45RO, and CD25 expressions was increased in melanoma patients, whereas manual gating did not produce significant results on the FOXP3+ subpopulations. Interestingly, the computationally identified FOXP3+ subpopulation included not only classical FOXP3high Tregs, but also memory-phenotype FOXP3low cells by manual gating. Furthermore, the proposed method successfully analyzed an independent data set, showing that the same FOXP3+ subpopulation was increased in melanoma patients, validating the method. Collectively, the proposed method successfully captured an important feature of melanoma without relying on the existing criteria of FOXP3+ T cells, revealing a hidden association between the T cell profile and melanoma, and providing new insights into FOXP3+ T cells and Tregs.
Collapse
Affiliation(s)
- Hiroko Fujii
- Department of Dermatology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Julie Josse
- Laboratoire de Mathématiques Appliquées, Agrocampus Ouest, 35042 Rennes Cedex, France
| | - Miki Tanioka
- Department of Dermatology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Yoshiki Miyachi
- Department of Dermatology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - François Husson
- Laboratoire de Mathématiques Appliquées, Agrocampus Ouest, 35042 Rennes Cedex, France
| | - Masahiro Ono
- Department of Dermatology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan; Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, United Kingdom; and Immunobiology, University College London Institute of Child Health, London WC1N 1EH, United Kingdom
| |
Collapse
|
22
|
Bending D, Giannakopoulou E, Lom H, Wedderburn LR. Synovial Regulatory T Cells Occupy a Discrete TCR Niche in Human Arthritis and Require Local Signals To Stabilize FOXP3 Protein Expression. THE JOURNAL OF IMMUNOLOGY 2015; 195:5616-24. [PMID: 26561546 PMCID: PMC4671090 DOI: 10.4049/jimmunol.1500391] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 10/09/2015] [Indexed: 12/20/2022]
Abstract
Although there is great interest in harnessing the immunosuppressive potential of FOXP3+ regulatory T cells (Tregs) for treating autoimmunity, a sizeable knowledge gap exists regarding Treg fate in human disease. In juvenile idiopathic arthritis (JIA) patients, we have previously reported that atypical CD25+FOXP3− Treg-like cells uniquely populate the inflamed site. Intriguingly, their proportions relative to CD25+FOXP3+ Tregs associate with arthritis course, suggesting a role in disease. The ontogeny of these FOXP3− Treg-like cells is, however, unknown. In this study, we interrogated clonal relationships between CD4+ T cell subsets in JIA, using high-throughput TCR repertoire analysis. We reveal that FOXP3+ Tregs possess highly exclusive TCRβ usage from conventional T cells, in blood, and also at the inflamed site, where they are clonally expanded. Intriguingly, the repertoires of FOXP3+ Tregs in synovial fluid are highly overlapping with CD25+FOXP3− Treg-like cells, indicating fluctuations in FOXP3 expression in the inflamed joint. Furthermore, cultured synovial Tregs rapidly downregulated FOXP3 protein (but not mRNA), and this process was prevented by addition of synovial fluid from JIA patients, through an IL-6–independent mechanism. Our findings suggest that most Tregs arise from a separate lineage from conventional T cells, and that this repertoire divergence is largely maintained under chronic inflammatory conditions. We propose that subsequent Treg expansions at the inflamed site creates an environment that leads to competition for limited resources within the synovium, resulting in the destabilization of FOXP3 expression in some Tregs.
Collapse
Affiliation(s)
- David Bending
- Infection, Inflammation and Rheumatology Section, Institute of Child Health, University College London, London WC1N 1EH, United Kingdom
| | - Eirini Giannakopoulou
- Infection, Inflammation and Rheumatology Section, Institute of Child Health, University College London, London WC1N 1EH, United Kingdom
| | - Hannah Lom
- Infection, Inflammation and Rheumatology Section, Institute of Child Health, University College London, London WC1N 1EH, United Kingdom
| | - Lucy R Wedderburn
- Infection, Inflammation and Rheumatology Section, Institute of Child Health, University College London, London WC1N 1EH, United Kingdom
| |
Collapse
|