1
|
Moghimyfiroozabad S, Paul MA, Bellenger L, Selimi F. A molecularly defined subpopulation of oligodendrocyte precursor cells controls the generation of myelinating oligodendrocytes during postnatal development. PLoS Biol 2024; 22:e3002655. [PMID: 38985832 PMCID: PMC11236193 DOI: 10.1371/journal.pbio.3002655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 05/02/2024] [Indexed: 07/12/2024] Open
Abstract
Oligodendrocyte precursor cells (OPCs) are a class of glial cells that uniformly tiles the entire central nervous system (CNS). They play several key functions across the brain including the generation of oligodendrocytes and the control of myelination. Whether the functional diversity of OPCs is the result of genetically defined subpopulations or of their regulation by external factors has not been definitely established. We discovered that a subpopulation of OPCs found across the brain is defined by the expression of C1ql1, a gene previously described for its synaptic function in neurons. This subpopulation starts to appear during the first postnatal week in the mouse cortex. Ablation of C1ql1-expressing OPCs in the mouse leads to a massive lack of oligodendrocytes and myelination in many brain regions. This deficit cannot be rescued, even though some OPCs escape Sox10-driven ablation and end up partially compensating the OPC loss in the adult. Therefore, C1ql1 is a molecular marker of a functionally non-redundant subpopulation of OPCs, which controls the generation of myelinating oligodendrocytes.
Collapse
Affiliation(s)
- Shayan Moghimyfiroozabad
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, Université PSL, Paris, France
| | - Maela A Paul
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, Université PSL, Paris, France
| | - Lea Bellenger
- ARTbio Bioinformatics Analysis Facility, Sorbonne Université, Inserm U1156, CNRS FR 3631, Institut Français de Bioinformatique (IFB), Paris, France
| | - Fekrije Selimi
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, Université PSL, Paris, France
| |
Collapse
|
2
|
Gonzalez MA, Olivas IM, Bencomo‐Alvarez AE, Rubio AJ, Barreto‐Vargas C, Lopez JL, Dang SK, Solecki JP, McCall E, Astudillo G, Velazquez VV, Schenkel K, Reffell K, Perkins M, Nguyen N, Apaflo JN, Alvidrez E, Young JE, Lara JJ, Yan D, Senina A, Ahmann J, Varley KE, Mason CC, Eide CA, Druker BJ, Nurunnabi M, Padilla O, Bajpeyi S, Eiring AM. Loss of G0/G1 switch gene 2 (G0S2) promotes disease progression and drug resistance in chronic myeloid leukaemia (CML) by disrupting glycerophospholipid metabolism. Clin Transl Med 2022; 12:e1146. [PMID: 36536477 PMCID: PMC9763536 DOI: 10.1002/ctm2.1146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022] Open
Abstract
Tyrosine kinase inhibitors (TKIs) targeting BCR::ABL1 have turned chronic myeloid leukaemia (CML) from a fatal disease into a manageable condition for most patients. Despite improved survival, targeting drug-resistant leukaemia stem cells (LSCs) remains a challenge for curative CML therapy. Aberrant lipid metabolism can have a large impact on membrane dynamics, cell survival and therapeutic responses in cancer. While ceramide and sphingolipid levels were previously correlated with TKI response in CML, the role of lipid metabolism in TKI resistance is not well understood. We have identified downregulation of a critical regulator of lipid metabolism, G0/G1 switch gene 2 (G0S2), in multiple scenarios of TKI resistance, including (1) BCR::ABL1 kinase-independent TKI resistance, (2) progression of CML from the chronic to the blast phase of the disease, and (3) in CML versus normal myeloid progenitors. Accordingly, CML patients with low G0S2 expression levels had a worse overall survival. G0S2 downregulation in CML was not a result of promoter hypermethylation or BCR::ABL1 kinase activity, but was rather due to transcriptional repression by MYC. Using CML cell lines, patient samples and G0s2 knockout (G0s2-/- ) mice, we demonstrate a tumour suppressor role for G0S2 in CML and TKI resistance. Our data suggest that reduced G0S2 protein expression in CML disrupts glycerophospholipid metabolism, correlating with a block of differentiation that renders CML cells resistant to therapy. Altogether, our data unravel a new role for G0S2 in regulating myeloid differentiation and TKI response in CML, and suggest that restoring G0S2 may have clinical utility.
Collapse
Affiliation(s)
- Mayra A. Gonzalez
- Department of Molecular and Translational MedicineCenter of Emphasis in CancerTexas Tech University Health Sciences Center El PasoEl PasoTexasUSA
| | - Idaly M. Olivas
- Department of Molecular and Translational MedicineCenter of Emphasis in CancerTexas Tech University Health Sciences Center El PasoEl PasoTexasUSA
- L. Frederick Francis Graduate School of Biomedical SciencesTexas Tech University Health Sciences Center El PasoEl PasoTexasUSA
| | - Alfonso E. Bencomo‐Alvarez
- Department of Molecular and Translational MedicineCenter of Emphasis in CancerTexas Tech University Health Sciences Center El PasoEl PasoTexasUSA
| | - Andres J. Rubio
- Department of Molecular and Translational MedicineCenter of Emphasis in CancerTexas Tech University Health Sciences Center El PasoEl PasoTexasUSA
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El PasoEl PasoTexasUSA
| | | | - Jose L. Lopez
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El PasoEl PasoTexasUSA
| | - Sara K. Dang
- L. Frederick Francis Graduate School of Biomedical SciencesTexas Tech University Health Sciences Center El PasoEl PasoTexasUSA
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El PasoEl PasoTexasUSA
| | - Jonathan P. Solecki
- L. Frederick Francis Graduate School of Biomedical SciencesTexas Tech University Health Sciences Center El PasoEl PasoTexasUSA
| | - Emily McCall
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El PasoEl PasoTexasUSA
| | - Gonzalo Astudillo
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El PasoEl PasoTexasUSA
| | - Vanessa V. Velazquez
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El PasoEl PasoTexasUSA
| | - Katherine Schenkel
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El PasoEl PasoTexasUSA
| | - Kelaiah Reffell
- L. Frederick Francis Graduate School of Biomedical SciencesTexas Tech University Health Sciences Center El PasoEl PasoTexasUSA
| | - Mariah Perkins
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El PasoEl PasoTexasUSA
| | - Nhu Nguyen
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El PasoEl PasoTexasUSA
| | - Jehu N. Apaflo
- Metabolic, Nutrition and Exercise Research (MiNER) Laboratory, Department of KinesiologyUniversity of Texas at El PasoEl PasoTexasUSA
| | - Efren Alvidrez
- Department of Pharmaceutical SciencesSchool of PharmacyUniversity of Texas at El PasoEl PasoTexasUSA
| | - James E. Young
- L. Frederick Francis Graduate School of Biomedical SciencesTexas Tech University Health Sciences Center El PasoEl PasoTexasUSA
| | - Joshua J. Lara
- L. Frederick Francis Graduate School of Biomedical SciencesTexas Tech University Health Sciences Center El PasoEl PasoTexasUSA
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El PasoEl PasoTexasUSA
| | - Dongqing Yan
- Huntsman Cancer InstituteThe University of UtahSalt Lake CityUtahUSA
| | - Anna Senina
- Huntsman Cancer InstituteThe University of UtahSalt Lake CityUtahUSA
| | - Jonathan Ahmann
- Huntsman Cancer InstituteThe University of UtahSalt Lake CityUtahUSA
| | | | - Clinton C. Mason
- Huntsman Cancer InstituteThe University of UtahSalt Lake CityUtahUSA
| | - Christopher A. Eide
- Knight Cancer InstituteDivision of Hematology/Medical OncologyOregon Health & Science UniversityPortlandOregonUSA
| | - Brian J. Druker
- Knight Cancer InstituteDivision of Hematology/Medical OncologyOregon Health & Science UniversityPortlandOregonUSA
| | - Md Nurunnabi
- Department of Pharmaceutical SciencesSchool of PharmacyUniversity of Texas at El PasoEl PasoTexasUSA
| | - Osvaldo Padilla
- Department of PathologyTexas Tech University Health Sciences Center El PasoEl PasoTexasUSA
| | - Sudip Bajpeyi
- Metabolic, Nutrition and Exercise Research (MiNER) Laboratory, Department of KinesiologyUniversity of Texas at El PasoEl PasoTexasUSA
| | - Anna M. Eiring
- Department of Molecular and Translational MedicineCenter of Emphasis in CancerTexas Tech University Health Sciences Center El PasoEl PasoTexasUSA
- L. Frederick Francis Graduate School of Biomedical SciencesTexas Tech University Health Sciences Center El PasoEl PasoTexasUSA
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El PasoEl PasoTexasUSA
| |
Collapse
|
3
|
Liang Z, Diao W, Jiang Y, Zhang Y. G0S2 ameliorates oxidized low-density lipoprotein-induced vascular endothelial cell injury by regulating mitochondrial apoptosis. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:1383. [PMID: 36660674 PMCID: PMC9843419 DOI: 10.21037/atm-22-5618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/19/2022] [Indexed: 01/01/2023]
Abstract
Background Oxidative low-density lipoprotein (ox-LDL)-induced endothelial cell damage is a major risk factor for atherosclerosis and its related cardiovascular diseases. The G0/G1 switch gene 2 (G0S2) is a multifunctional protein which has been poorly studied in atherosclerosis. Methods In this study, ox-LDL was utilized to construct a human aortic endothelial cell (HAEC) injury model. Results It was found that ox-LDL impaired cell viability, augmented lactate dehydrogenase (LDH) release, and reduced G0S2 levels in HAECs in a dose-dependent manner. Further, G0S2 overexpression improved the viability and restrained apoptosis of HAECs treated by ox-LDL. Conversely, G0S2 depletion decreased the viability and aggravated apoptosis of HAECs treated by ox-LDL. At the molecular level, G0S2 overexpression significantly increased the secretion of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPH-Px), promoted intracellular reactive oxygen species (ROS) production and malondialdehyde (MDA) content in HAECs under either normal or ox-LDL conditions. Meanwhile, the ox-LDL-induced mitochondrial dysfunction, as demonstrated by decreased mitochondrial membrane potential, translocation of mitochondrial cytochrome c (Cyt-c) to the cytoplasm, and activation of caspase-3 and caspase-9, was significantly reversed by G0S2 overexpression. In addition, G0S2 overexpression promoted the activation of AMP-activated protein kinase (AMPK) and increased the expression of nuclear factor erythroid-2-related factor-2 (Nrf2), sirtuin 1 (SIRT1) and heme oxygenase 1 (HO-1) under normal and ox-LDL conditions. Conclusions This study demonstrated that G0S2 protects against ox-LDL-induced vascular endothelial cell injury by regulating oxidative damage and mitochondrial homeostasis and may be a promising target for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Zenghui Liang
- Department of Vascular Surgery, the Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Wenjie Diao
- Department of Cardiac Surgery, the First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Yiyao Jiang
- Department of Cardiac Surgery, the First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Yanrong Zhang
- Department of Vascular Surgery, the Third Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
4
|
Cai X, Li H, Wang M, Chu E, Wei N, Lin J, Hu Y, Dai J, Chen A, Zheng H, Zhang Q, Zhong Y, Chang R, Wu S, Xiao Y, Liu C. mTOR Participates in the Formation, Maintenance, and Function of Memory CD8 +T Cells Regulated by Glycometabolism. Biochem Pharmacol 2022; 204:115197. [PMID: 35926651 DOI: 10.1016/j.bcp.2022.115197] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/21/2022] [Accepted: 07/27/2022] [Indexed: 11/02/2022]
Abstract
Memory CD8+T cells participate in the fight against infection and tumorigenesis as well as in autoimmune disease progression because of their efficient and rapid immune response, long-term survival, and continuous differentiation. At each stage of their formation, maintenance, and function, the cell metabolism must be adjusted to match the functional requirements of the specific stage. Notably, enhanced glycolytic metabolism can generate sufficient levels of adenosine triphosphate (ATP) to form memory CD8+T cells, countering the view that glycolysis prevents the formation of memory CD8+T cells. This review focuses on how glycometabolism regulates memory CD8+T cells and highlights the key mechanisms through which the mammalian target of rapamycin (mTOR) signaling pathway affects memory CD8+T cell formation, maintenance, and function by regulating glycometabolism. In addition, different subpopulations of memory CD8+T cells exhibit different metabolic flexibility during their formation, survival, and functional stages, during which the energy metabolism may be critical. These findings which may explain why enhanced glycolytic metabolism can give rise to memory CD8+T cells. Modulating the metabolism of memory CD8+T cells to influence specific cell fates may be useful for disease treatment.
Collapse
Affiliation(s)
- Xuepei Cai
- Department of Orthodontics, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Haokun Li
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Manyi Wang
- Department of Orthodontics, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Edward Chu
- Department of Oncology and Cancer Therapeutics Program, Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ning Wei
- Department of Oncology and Cancer Therapeutics Program, Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jiayu Lin
- Department of Orthodontics, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Yun Hu
- Department of Orthodontics, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Jingtao Dai
- Department of Orthodontics, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Aijie Chen
- Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Hua Zheng
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qianbing Zhang
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yuxia Zhong
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Ruoshui Chang
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Sha Wu
- Department of Immunology, School of Basic Medical Sciences, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China; Key Laboratory of Functional Proteomics of Guangdong Province, Guangzhou, China; National Demonstration Center for Experimental Education of Basic Medical Sciences of China, Guangzhou, China.
| | - Yaomu Xiao
- Department of Orthodontics, Stomatological Hospital, Southern Medical University, Guangzhou, China.
| | - Chufeng Liu
- Department of Orthodontics, Stomatological Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
5
|
Deb B, O’Brien DR, Chunawala ZS, Bharucha AE. Duodenal Mucosal Expression of COVID-19-Related Genes in Health, Diabetic Gastroenteropathy, and Functional Dyspepsia. J Clin Endocrinol Metab 2022; 107:e2600-e2609. [PMID: 35090021 PMCID: PMC8807322 DOI: 10.1210/clinem/dgac038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Indexed: 11/19/2022]
Abstract
CONTEXT SARS-CoV-2 infects the gastrointestinal tract and may be associated with symptoms that resemble diabetic gastroparesis. Why patients with diabetes who contract COVID-19 are more likely to have severe disease is unknown. OBJECTIVE We aimed to compare the duodenal mucosal expression of SARS-CoV-2 and inflammation-related genes in diabetes gastroenteropathy (DGE), functional dyspepsia (FD), and healthy controls. METHODS Gastrointestinal transit, and duodenal mucosal mRNA expression of selected genes were compared in 21 controls, 39 DGE patients, and 37 FD patients from a tertiary referral center. Pathway analyses were performed. RESULTS Patients had normal, delayed (5 FD [13%] and 13 DGE patients [33%]; P = 0.03 vs controls), or rapid (5 FD [12%] and 5 DGE [12%]) gastric emptying (GE). Compared with control participants, 100 SARS-CoV-2-related genes were increased in DGE (FDR < 0.05) vs 13 genes in FD; 71 of these 100 genes were differentially expressed in DGE vs FD but only 3 between DGE patients with normal vs delayed GE. Upregulated genes in DGE include the SARS-CoV2 viral entry genes CTSL (|Fold change [FC]|=1.16; FDR < 0.05) and CTSB (|FC|=1.24; FDR < 0.05) and selected genes involved in viral replication (eg, EIF2 pathways) and inflammation (CCR2, CXCL2, and LCN2, but not other inflammation-related pathways eg, IL-2 and IL-6 signaling). CONCLUSION Several SARS-CoV-2-related genes were differentially expressed between DGE vs healthy controls and vs FD but not between DGE patients with normal vs delayed GE, suggesting that the differential expression is related to diabetes per se. The upregulation of CTSL and CTSB and replication genes may predispose to SARS-CoV2 infection of the gastrointestinal tract in diabetes.
Collapse
Affiliation(s)
- Brototo Deb
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Daniel R O’Brien
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Zainali S Chunawala
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Adil E Bharucha
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
6
|
Magri K, Eftedal I, Petroni Magri V, Matity L, Azzopardi CP, Muscat S, Pace NP. Acute Effects on the Human Peripheral Blood Transcriptome of Decompression Sickness Secondary to Scuba Diving. Front Physiol 2021; 12:660402. [PMID: 34177613 PMCID: PMC8222921 DOI: 10.3389/fphys.2021.660402] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/12/2021] [Indexed: 01/22/2023] Open
Abstract
Decompression sickness (DCS) develops due to inert gas bubble formation in bodily tissues and in the circulation, leading to a wide range of potentially serious clinical manifestations. Its pathophysiology remains incompletely understood. In this study, we aim to explore changes in the human leukocyte transcriptome in divers with DCS compared to closely matched unaffected controls after uneventful diving. Cases (n = 7) were divers developing the typical cutis marmorata rash after diving with a confirmed clinical diagnosis of DCS. Controls (n = 6) were healthy divers who surfaced from a ≥25 msw dive without decompression violation or evidence of DCS. Blood was sampled at two separate time points-within 8 h of dive completion and 40-44 h later. Transcriptome analysis by RNA-Sequencing followed by bioinformatic analysis was carried out to identify differentially expressed genes and relate their function to biological pathways. In DCS cases, we identified enrichment of transcripts involved in acute inflammation, activation of innate immunity and free radical scavenging pathways, with specific upregulation of transcripts related to neutrophil function and degranulation. DCS-induced transcriptomic events were reversed at the second time point following exposure to hyperbaric oxygen. The observed changes are consistent with findings from animal models of DCS and highlight a continuum between the responses elicited by uneventful diving and diving complicated by DCS. This study sheds light on the inflammatory pathophysiology of DCS and the associated immune response. Such data may potentially be valuable in the search for novel treatments targeting this disease.
Collapse
Affiliation(s)
- Kurt Magri
- Hyperbaric Unit, Department of Medicine, Mater Dei Hospital, Msida, Malta
| | - Ingrid Eftedal
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, NTNU Norwegian University of Science and Technology, Trondheim, Norway
- Faculty of Nursing and Health Sciences, Nord University, Bodø, Norway
| | - Vanessa Petroni Magri
- Department of Clinical Pharmacology and Therapeutics, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| | - Lyubisa Matity
- Hyperbaric Unit, Department of Medicine, Mater Dei Hospital, Msida, Malta
| | | | - Stephen Muscat
- Hyperbaric Unit, Department of Medicine, Mater Dei Hospital, Msida, Malta
| | - Nikolai Paul Pace
- Centre for Molecular Medicine and Biobanking, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| |
Collapse
|
7
|
Kim SM, Cho SY, Kim MW, Roh SR, Shin HS, Suh YH, Geum D, Lee MA. Genome-Wide Analysis Identifies NURR1-Controlled Network of New Synapse Formation and Cell Cycle Arrest in Human Neural Stem Cells. Mol Cells 2020; 43:551-571. [PMID: 32522891 PMCID: PMC7332357 DOI: 10.14348/molcells.2020.0071] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/01/2020] [Accepted: 05/09/2020] [Indexed: 02/07/2023] Open
Abstract
Nuclear receptor-related 1 (Nurr1) protein has been identified as an obligatory transcription factor in midbrain dopaminergic neurogenesis, but the global set of human NURR1 target genes remains unexplored. Here, we identified direct gene targets of NURR1 by analyzing genome-wide differential expression of NURR1 together with NURR1 consensus sites in three human neural stem cell (hNSC) lines. Microarray data were validated by quantitative PCR in hNSCs and mouse embryonic brains and through comparison to published human data, including genome-wide association study hits and the BioGPS gene expression atlas. Our analysis identified ~40 NURR1 direct target genes, many of them involved in essential protein modules such as synapse formation, neuronal cell migration during brain development, and cell cycle progression and DNA replication. Specifically, expression of genes related to synapse formation and neuronal cell migration correlated tightly with NURR1 expression, whereas cell cycle progression correlated negatively with it, precisely recapitulating midbrain dopaminergic development. Overall, this systematic examination of NURR1-controlled regulatory networks provides important insights into this protein's biological functions in dopamine-based neurogenesis.
Collapse
Affiliation(s)
- Soo Min Kim
- Department of Brain Science, Ajou University School of Medicine, Suwon 6499, Korea
- Neuroscience Graduate Program, Department of Biomedical Sciences, Graduate School of Ajou University, Suwon 16499, Korea
| | | | - Min Woong Kim
- Department of Brain Science, Ajou University School of Medicine, Suwon 6499, Korea
- Neuroscience Graduate Program, Department of Biomedical Sciences, Graduate School of Ajou University, Suwon 16499, Korea
| | - Seung Ryul Roh
- Department of Brain Science, Ajou University School of Medicine, Suwon 6499, Korea
- Neuroscience Graduate Program, Department of Biomedical Sciences, Graduate School of Ajou University, Suwon 16499, Korea
| | - Hee Sun Shin
- Department of Brain Science, Ajou University School of Medicine, Suwon 6499, Korea
- Neuroscience Graduate Program, Department of Biomedical Sciences, Graduate School of Ajou University, Suwon 16499, Korea
| | - Young Ho Suh
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Dongho Geum
- Department of Medical Science, Korea University Medical School, Seoul 02841, Korea
| | - Myung Ae Lee
- Department of Brain Science, Ajou University School of Medicine, Suwon 6499, Korea
- Neuroscience Graduate Program, Department of Biomedical Sciences, Graduate School of Ajou University, Suwon 16499, Korea
| |
Collapse
|
8
|
Zhang S, Zhang E, Long J, Hu Z, Peng J, Liu L, Tang F, Li L, Ouyang Y, Zeng Z. Immune infiltration in renal cell carcinoma. Cancer Sci 2019; 110:1564-1572. [PMID: 30861269 PMCID: PMC6501001 DOI: 10.1111/cas.13996] [Citation(s) in RCA: 224] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 03/01/2019] [Accepted: 03/07/2019] [Indexed: 12/13/2022] Open
Abstract
Immune infiltration of tumors is closely associated with clinical outcome in renal cell carcinoma (RCC). Tumor‐infiltrating immune cells (TIICs) regulate cancer progression and are appealing therapeutic targets. The purpose of this study was to determine the composition of TIICs in RCC and further reveal the independent prognostic values of TIICs. CIBERSORT, an established algorithm, was applied to estimate the proportions of 22 immune cell types based on gene expression profiles of 891 tumors. Cox regression was used to evaluate the association of TIICs and immune checkpoint modulators with overall survival (OS). We found that CD8+ T cells were associated with prolonged OS (hazard ratio [HR] = 0.09, 95% confidence interval [CI].01‐.53; P = 0.03) in chromophobe carcinoma (KICH). A higher proportion of regulatory T cells was associated with a worse outcome (HR = 1.59, 95% CI 1.23‐.06; P < 0.01) in renal clear cell carcinoma (KIRC). In renal papillary cell carcinoma (KIRP), M1 macrophages were associated with a favorable outcome (HR = .43, 95% CI .25‐.72; P < 0.01), while M2 macrophages indicated a worse outcome (HR = 2.55, 95% CI 1.45‐4.47; P < 0.01). Moreover, the immunomodulator molecules CTLA4 and LAG3 were associated with a poor prognosis in KIRC, and IDO1 and PD‐L2 were associated with a poor prognosis in KIRP. This study indicates TIICs are important determinants of prognosis in RCC meanwhile reveals potential targets and biomarkers for immunotherapy development.
Collapse
Affiliation(s)
- Shichao Zhang
- Immune Cells and Antibody Engineering Research Center of Guizhou Province/Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang, China.,School of Biology and Engineering, Guizhou Medical University, Guiyang, China
| | - Erdong Zhang
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Jinhua Long
- Affiliated Tumor Hospital, Guizhou Medical University, Guiyang, China
| | - Zuquan Hu
- Immune Cells and Antibody Engineering Research Center of Guizhou Province/Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang, China.,School of Biology and Engineering, Guizhou Medical University, Guiyang, China
| | - Jian Peng
- Immune Cells and Antibody Engineering Research Center of Guizhou Province/Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang, China.,School of Biology and Engineering, Guizhou Medical University, Guiyang, China
| | - Lina Liu
- Immune Cells and Antibody Engineering Research Center of Guizhou Province/Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang, China.,School of Biology and Engineering, Guizhou Medical University, Guiyang, China
| | - Fuzhou Tang
- Immune Cells and Antibody Engineering Research Center of Guizhou Province/Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang, China.,School of Biology and Engineering, Guizhou Medical University, Guiyang, China
| | - Long Li
- Department of Nephrology, The Third Affiliated Hospital of Guizhou Medical University, Duyun, China
| | - Yan Ouyang
- Immune Cells and Antibody Engineering Research Center of Guizhou Province/Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang, China.,School of Biology and Engineering, Guizhou Medical University, Guiyang, China
| | - Zhu Zeng
- Immune Cells and Antibody Engineering Research Center of Guizhou Province/Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang, China.,School of Biology and Engineering, Guizhou Medical University, Guiyang, China.,School of Basic Medical Science, Guizhou Medical University, Guiyang, China
| |
Collapse
|
9
|
Yamada T, Kanoh M, Nabe S, Yasuoka T, Suzuki J, Matsumoto A, Kuwahara M, Maruyama S, Fujimoto T, Sakisuka R, Yasukawa M, Yamashita M. Menin Plays a Critical Role in the Regulation of the Antigen-Specific CD8+ T Cell Response upon Listeria Infection. THE JOURNAL OF IMMUNOLOGY 2016; 197:4079-4089. [PMID: 27798149 DOI: 10.4049/jimmunol.1502295] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 09/12/2016] [Indexed: 02/06/2023]
Abstract
Menin, a tumor suppressor protein, is encoded by the MEN1 gene in humans. Certain germinal mutations of MEN1 induce an autosomal-dominant syndrome that is characterized by concurrent parathyroid adenomas and several other tumor types. Although menin is also expressed in hematopoietic lineages, its role in CD8+ T cells remains unclear. We generated Meninflox/flox CD4-Cre (Menin-KO) mice by crossing Meninflox/flox mice with CD4-Cre transgenic (Tg) mice to determine the role of menin in CD8+ T cells. Wild-type (WT) and Menin-KO mice were infected with Listeria monocytogenes expressing OVA to analyze the immune response of Ag-specific CD8+ T cells. Menin deficiency resulted in an impaired primary immune response by CD8+ T cells. On day 7, there were fewer Menin-KO OVA-specific CD8+ T cells compared with WT cells. Next, we adoptively transferred WT and Menin-KO OT-1 Tg CD8+ T cells into congenic recipient mice and infected them with L. monocytogenes expressing OVA to determine the CD8+ T cell-intrinsic effect. Menin-KO OT-1 Tg CD8+ T cells were outcompeted by the WT cells upon infection. Increased expression of Blimp-1 and T-bet, cell cycle inhibitors, and proapoptotic genes was observed in the Menin-KO OT-1 Tg CD8+ T cells upon infection. These data suggest that menin inhibits differentiation into terminal effectors and positively controls proliferation and survival of Ag-specific CD8+ T cells that are activated upon infection. Collectively, our study uncovered an important role for menin in the immune response of CD8+ T cells to infection.
Collapse
Affiliation(s)
- Takeshi Yamada
- Department of Infection and Host Defenses, Graduate School of Medicine, Ehime University, Shitsukawa, Toon, Ehime 791-0295, Japan;
| | - Makoto Kanoh
- Department of Infection and Host Defenses, Graduate School of Medicine, Ehime University, Shitsukawa, Toon, Ehime 791-0295, Japan
| | - Shogo Nabe
- Department of Hematology, Clinical Immunology, and Infectious diseases, Graduate School of Medicine, Ehime University, Shitsukawa, Toon, Ehime 791-0295, Japan
| | - Toshiaki Yasuoka
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Ehime University, Shitsukawa, Toon, Ehime 791-0295, Japan
| | - Junpei Suzuki
- Department of Hematology, Clinical Immunology, and Infectious diseases, Graduate School of Medicine, Ehime University, Shitsukawa, Toon, Ehime 791-0295, Japan.,Department of Immunology, Graduate School of Medicine, Ehime University, Shitsukawa, Toon, Ehime 791-0295, Japan; and.,Translational Research Center, Ehime University Hospital, Shitsukawa, Toon, Ehime 791-0295, Japan
| | - Akira Matsumoto
- Department of Infection and Host Defenses, Graduate School of Medicine, Ehime University, Shitsukawa, Toon, Ehime 791-0295, Japan
| | - Makoto Kuwahara
- Department of Immunology, Graduate School of Medicine, Ehime University, Shitsukawa, Toon, Ehime 791-0295, Japan; and.,Translational Research Center, Ehime University Hospital, Shitsukawa, Toon, Ehime 791-0295, Japan
| | - Saho Maruyama
- Department of Immunology, Graduate School of Medicine, Ehime University, Shitsukawa, Toon, Ehime 791-0295, Japan; and
| | - Takuya Fujimoto
- Department of Infection and Host Defenses, Graduate School of Medicine, Ehime University, Shitsukawa, Toon, Ehime 791-0295, Japan
| | - Ryo Sakisuka
- Department of Infection and Host Defenses, Graduate School of Medicine, Ehime University, Shitsukawa, Toon, Ehime 791-0295, Japan
| | - Masaki Yasukawa
- Department of Hematology, Clinical Immunology, and Infectious diseases, Graduate School of Medicine, Ehime University, Shitsukawa, Toon, Ehime 791-0295, Japan
| | - Masakatsu Yamashita
- Department of Immunology, Graduate School of Medicine, Ehime University, Shitsukawa, Toon, Ehime 791-0295, Japan; and.,Translational Research Center, Ehime University Hospital, Shitsukawa, Toon, Ehime 791-0295, Japan
| |
Collapse
|
10
|
Deletion of the putative tumor suppressor gene, G0s2, does not affect progression of Eμ-Myc driven lymphomas in mice. Leuk Res 2015; 40:100-2. [PMID: 26654706 DOI: 10.1016/j.leukres.2015.11.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 11/16/2015] [Accepted: 11/17/2015] [Indexed: 01/09/2023]
Abstract
Several recent reports have suggested that the G0/G1 switch gene 2 (G0S2) is a potential tumor suppressor in leukemia. Here we show that deletion of the G0s2 gene in mouse does not affect the latency of cancer progression in the Eμ-Myc model of lymphoma. Our findings do not rule out the possibility that G0S2 may be playing a role in other forms of leukemia, but clearly show that the commonly used Eμ-Myc transgenic is not the correct model to conduct studies on G0s2.
Collapse
|