1
|
Liu D, Zhao J, Li L, Wang J, Wang C, Wu Y, Huang Y, Xing D, Chen W. CD73: agent development potential and its application in diabetes and atherosclerosis. Front Immunol 2024; 15:1515875. [PMID: 39735551 PMCID: PMC11672340 DOI: 10.3389/fimmu.2024.1515875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 11/25/2024] [Indexed: 12/31/2024] Open
Abstract
CD73, an important metabolic and immune escape-promoting gene, catalyzes the hydrolysis of adenosine monophosphate (AMP) to adenosine (ADO). AMP has anti-inflammatory and vascular relaxant properties, while ADO has a strong immunosuppressive effect, suggesting that CD73 has pro-inflammatory and immune escape effects. However, CD73 also decreased proinflammatory reaction, suggesting that CD73 has a positive side to the body. Indeed, CD73 plays a protective role in diabetes, while with age, CD73 changes from anti-atherosclerosis to pro-atherosclerosis. The upregulation of CD73 with agents, including AGT-5, Aire-overexpressing DCs, Aspirin, BAFFR-Fc, CD4+ peptide, ICAs, IL-2 therapies, SAgAs, sCD73, stem cells, RAD51 inhibitor, TLR9 inhibitor, and VD, decreased diabetes and atherosclerosis development. However, the downregulation of CD73 with agents, including benzothiadiazine derivatives and CD73 siRNA, reduced atherosclerosis. Notably, many CD73 agents were investigated in clinical trials. However, no agents were used to treat diabetes and atherosclerosis. Most agents were CD73 inhibitors. Only FP-1201, a CD73 agonist, was investigated in clinical trials but its further development was discontinued. In addition, many lncRNAs, circRNAs, and genes are located at the same chromosomal location as CD73. In particular, circNT5E promoted CD73 expression. circNT5E may be a promising target for agent development. This mini-review focuses on the current state of knowledge of CD73 in diabetes, atherosclerosis, and its potential role in agent development.
Collapse
Affiliation(s)
- Dan Liu
- Guangdong Provincial People’s Hospital, Zhuhai Hospital (Jinwan Central Hospital of Zhuhai), Zhuhai, Guangdong, China
| | - Jingjing Zhao
- Sleep Medicine Center, Huai’an No.3 People’s Hospital, Huaian Second Clinical College of Xuzhou Medical University, Huaian, China
| | - Ling Li
- Department of Pharmacy, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Jie Wang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, China
| | - Chao Wang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, China
| | - Yudong Wu
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, China
| | - Yucun Huang
- Guangdong Provincial People’s Hospital, Zhuhai Hospital (Jinwan Central Hospital of Zhuhai), Zhuhai, Guangdong, China
| | - Dongming Xing
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, China
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Wujun Chen
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, China
| |
Collapse
|
2
|
Shapiro MR, Peters LD, Brown ME, Cabello-Kindelan C, Posgai AL, Bayer AL, Brusko TM. Insulin-like Growth Factor-1 Synergizes with IL-2 to Induce Homeostatic Proliferation of Regulatory T Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1108-1122. [PMID: 37594278 PMCID: PMC10511790 DOI: 10.4049/jimmunol.2200651] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 08/01/2023] [Indexed: 08/19/2023]
Abstract
IL-2 has been proposed to restore tolerance via regulatory T cell (Treg) expansion in autoimmunity, yet off-target effects necessitate identification of a combinatorial approach allowing for lower IL-2 dosing. We recently reported reduced levels of immunoregulatory insulin-like growth factor-1 (IGF1) during type 1 diabetes progression. Thus, we hypothesized that IGF1 would synergize with IL-2 to expand Tregs. We observed IGF1 receptor was elevated on murine memory and human naive Treg subsets. IL-2 and IGF1 promoted PI3K/Akt signaling in Tregs, inducing thymically-derived Treg expansion beyond either agent alone in NOD mice. Increased populations of murine Tregs of naive or memory, as well as CD5lo polyclonal or CD5hi likely self-reactive, status were also observed. Expansion was attributed to increased IL-2Rγ subunit expression on murine Tregs exposed to IL-2 and IGF1 as compared with IL-2 or IGF1 alone. Assessing translational capacity, incubation of naive human CD4+ T cells with IL-2 and IGF1 enhanced thymically-derived Treg proliferation in vitro, without the need for TCR ligation. We then demonstrated that IGF1 and IL-2 or IL-7, which is also IL-2Rγ-chain dependent, can be used to induce proliferation of genetically engineered naive human Tregs or T conventional cells, respectively. These data support the potential use of IGF1 in combination with common γ-chain cytokines to drive homeostatic T cell expansion, both in vitro and in vivo, for cellular therapeutics and ex vivo gene editing.
Collapse
Affiliation(s)
- Melanie R. Shapiro
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, Diabetes Institute, University of Florida, Gainesville, FL
| | - Leeana D. Peters
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, Diabetes Institute, University of Florida, Gainesville, FL
| | - Matthew E. Brown
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, Diabetes Institute, University of Florida, Gainesville, FL
| | | | - Amanda L. Posgai
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, Diabetes Institute, University of Florida, Gainesville, FL
| | - Allison L. Bayer
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL
| | - Todd M. Brusko
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, Diabetes Institute, University of Florida, Gainesville, FL
- Department of Pediatrics, College of Medicine, Diabetes Institute, University of Florida, Gainesville, FL
| |
Collapse
|
3
|
Buonvicino D, Ranieri G, Guasti D, Pistolesi A, La Rocca AI, Rapizzi E, Chiarugi A. Early derangement of axonal mitochondria occurs in a mouse model of progressive but not relapsing-remitting multiple sclerosis. Neurobiol Dis 2023; 178:106015. [PMID: 36702320 DOI: 10.1016/j.nbd.2023.106015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 01/18/2023] [Accepted: 01/22/2023] [Indexed: 01/24/2023] Open
Abstract
INTRODUCTION Derangement of axonal mitochondrial bioenergetics occurs during progressive multiple sclerosis (PMS). However, whether this is a delayed epiphenomenon or an early causative event of disease progression waits to be understood. Answering this question might further our knowledge of mechanisms underlying neurobiology of PMS and related therapy. METHODS MOG35-55-immunized NOD and PLP139-151-immunized SJL female mice were adopted as models of progressive or relapsing-remitting experimental autoimmune encephalomyelitis (EAE), respectively. Multiple parameters of mitochondrial homeostasis were analyzed in the mouse spinal cord during the early asymptomatic stage, also evaluating the effects of scavenging mitochondrial reactive oxygen species with Mito-TEMPO. RESULTS Almost identical lumbar spinal cord immune infiltrates consisting of Th1 cells and neutrophils without B and Th17 lymphocytes occurred early upon immunization in both mouse strains. Still, only NOD mice showed axon-restricted dysregulation of mitochondrial homeostasis, with reduced mtDNA contents and increased cristae area. Increased expression of mitochondrial respiratory complex subunits Nd2, Cox1, Atp5d, Sdha also exclusively occurred in lumbar spinal cord of NOD and not SJL mice. Accordingly, in this region genes regulating mitochondrial morphology (Opa1, Mfn1, Mfn2 and Atp5j2) and mitochondriogenesis (Pgc1α, Foxo, Hif-1α and Nrf2) were induced early upon immunization. A reduced extent of mitochondrial derangement occurred in the thoracic spinal cord. Notably, the mitochondrial radical scavenger Mito-TEMPO reduced H2O2 content and prevented both mtDNA depletion and cristae remodeling, having no effects on dysregulation of mitochondrial transcriptome. DISCUSSION We provide here the first evidence that axonal-restricted derangement of mitochondrial homeostasis already occurs during the asymptomatic state exclusively in a mouse model of PMS. Data further our understanding of mechanisms related to EAE progression, and point to very early axonal mitochondrial dysfunction as central to the neuropathogenesis of MS evolution.
Collapse
Affiliation(s)
- Daniela Buonvicino
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy.
| | - Giuseppe Ranieri
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| | - Daniele Guasti
- Imaging Platform, Department of Experimental & Clinical Medicine, University of Florence, Florence, Italy
| | - Alessandra Pistolesi
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| | - Antonino Iurato La Rocca
- Department of Neuroscience, Psychology, Drug Sciences, and Child Health (NEUROFARBA),University of Florence, Florence, Italy
| | - Elena Rapizzi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Alberto Chiarugi
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| |
Collapse
|
4
|
Wan S, Xu W, Xie B, Guan C, Song X. The potential of regulatory T cell-based therapies for alopecia areata. Front Immunol 2023; 14:1111547. [PMID: 37205097 PMCID: PMC10186346 DOI: 10.3389/fimmu.2023.1111547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 04/07/2023] [Indexed: 05/21/2023] Open
Abstract
Cytotoxic T lymphocyte has been a concern for the etiopathogenesis of alopecia areata (AA), some recent evidence suggests that the regulatory T (Treg) cell deficiency is also a contributing factor. In the lesional scalp of AA, Treg cells residing in the follicles are impaired, leading to dysregulated local immunity and hair follicle (HF) regeneration disorders. New strategies are emerging to modulate Treg cells' number and function for autoimmune diseases. There is much interest to boost Treg cells in AA patients to suppress the abnormal autoimmunity of HF and stimulate hair regeneration. With few satisfactory therapeutic regimens available for AA, Treg cell-based therapies could be the way forward. Specifically, CAR-Treg cells and novel formulations of low-dose IL-2 are the alternatives.
Collapse
Affiliation(s)
- Sheng Wan
- Department of Dermatology, Hangzhou Third People’s Hospital, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wen Xu
- School of Medicine, Zhejiang University, Yuhangtang, Hangzhou, China
| | - Bo Xie
- Department of Dermatology, Hangzhou Third People’s Hospital, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Cuiping Guan
- Department of Dermatology, Hangzhou Third People’s Hospital, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Xiuzu Song, ; Cuiping Guan,
| | - Xiuzu Song
- Department of Dermatology, Hangzhou Third People’s Hospital, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Xiuzu Song, ; Cuiping Guan,
| |
Collapse
|
5
|
Borg DJ, Faridi P, Giam KL, Reeves P, Fotheringham AK, McCarthy DA, Leung S, Ward MS, Harcourt BE, Ayala R, Scheijen JL, Briskey D, Dudek NL, Schalkwijk CG, Steptoe R, Purcell AW, Forbes JM. Short Duration Alagebrium Chloride Therapy Prediabetes Does Not Inhibit Progression to Autoimmune Diabetes in an Experimental Model. Metabolites 2021; 11:426. [PMID: 34203471 PMCID: PMC8305727 DOI: 10.3390/metabo11070426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 12/17/2022] Open
Abstract
Mechanisms by which advanced glycation end products (AGEs) contribute to type 1 diabetes (T1D) pathogenesis are poorly understood. Since life-long pharmacotherapy with alagebrium chloride (ALT) slows progression to experimental T1D, we hypothesized that acute ALT therapy delivered prediabetes, may be effective. However, in female, non-obese diabetic (NODShiLt) mice, ALT administered prediabetes (day 50-100) did not protect against experimental T1D. ALT did not decrease circulating AGEs or their precursors. Despite this, pancreatic β-cell function was improved, and insulitis and pancreatic CD45.1+ cell infiltration was reduced. Lymphoid tissues were unaffected. ALT pre-treatment, prior to transfer of primed GC98 CD8+ T cell receptor transgenic T cells, reduced blood glucose concentrations and delayed diabetes, suggesting islet effects rather than immune modulation by ALT. Indeed, ALT did not reduce interferon-γ production by leukocytes from ovalbumin-pre-immunised NODShiLt mice and NODscid recipients given diabetogenic ALT treated NOD splenocytes were not protected against T1D. To elucidate β-cell effects, NOD-derived MIN6N8 β-cell major histocompatibility complex (MHC) Class Ia surface antigens were examined using immunopeptidomics. Overall, no major changes in the immunopeptidome were observed during the various treatments with all peptides exhibiting allele specific consensus binding motifs. As expected, longer MHC Class Ia peptides were captured bound to H-2Db than H-2Kb under all conditions. Moreover, more 10-12 mer peptides were isolated from H-2Db after AGE modified bovine serum albumin (AGE-BSA) treatment, compared with bovine serum albumin (BSA) or AGE-BSA+ALT treatment. Proteomics of MIN6N8 cells showed enrichment of processes associated with catabolism, the immune system, cell cycling and presynaptic endocytosis with AGE-BSA compared with BSA treatments. These data show that short-term ALT intervention, given prediabetes, does not arrest experimental T1D but transiently impacts β-cell function.
Collapse
Affiliation(s)
- Danielle J. Borg
- Glycation and Diabetes Complications, Mater Research Institute, The University of Queensland, Translational Research Institute, Brisbane, QLD 4102, Australia; (D.J.B.); (A.K.F.); (D.A.M.); (S.L.); (M.S.W.); (B.E.H.)
- Pregnancy and Development, Mater Research Institute, The University of Queensland, South Brisbane, QLD 4101, Australia
| | - Pouya Faridi
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia; (P.F.); (K.L.G.); (R.A.); (N.L.D.); (A.W.P.)
| | - Kai Lin Giam
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia; (P.F.); (K.L.G.); (R.A.); (N.L.D.); (A.W.P.)
| | - Peta Reeves
- Tolerance and Autoimmunity Group, The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, QLD 4102, Australia; (P.R.); (R.S.)
| | - Amelia K. Fotheringham
- Glycation and Diabetes Complications, Mater Research Institute, The University of Queensland, Translational Research Institute, Brisbane, QLD 4102, Australia; (D.J.B.); (A.K.F.); (D.A.M.); (S.L.); (M.S.W.); (B.E.H.)
| | - Domenica A. McCarthy
- Glycation and Diabetes Complications, Mater Research Institute, The University of Queensland, Translational Research Institute, Brisbane, QLD 4102, Australia; (D.J.B.); (A.K.F.); (D.A.M.); (S.L.); (M.S.W.); (B.E.H.)
| | - Sherman Leung
- Glycation and Diabetes Complications, Mater Research Institute, The University of Queensland, Translational Research Institute, Brisbane, QLD 4102, Australia; (D.J.B.); (A.K.F.); (D.A.M.); (S.L.); (M.S.W.); (B.E.H.)
| | - Micheal S. Ward
- Glycation and Diabetes Complications, Mater Research Institute, The University of Queensland, Translational Research Institute, Brisbane, QLD 4102, Australia; (D.J.B.); (A.K.F.); (D.A.M.); (S.L.); (M.S.W.); (B.E.H.)
| | - Brooke E. Harcourt
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, VIC 3052, Australia
| | - Rochelle Ayala
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia; (P.F.); (K.L.G.); (R.A.); (N.L.D.); (A.W.P.)
| | - Jean L. Scheijen
- Laboratory for Metabolism and Vascular Medicine, Department of Internal Medicine, Maastricht University, 6211 Maastricht, The Netherlands; (J.L.S.); (C.G.S.)
- Cardiovascular Research Institute Maastricht, 6211 Maastricht, The Netherlands
| | - David Briskey
- School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, QLD 4067, Australia;
| | - Nadine L. Dudek
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia; (P.F.); (K.L.G.); (R.A.); (N.L.D.); (A.W.P.)
| | - Casper G. Schalkwijk
- Laboratory for Metabolism and Vascular Medicine, Department of Internal Medicine, Maastricht University, 6211 Maastricht, The Netherlands; (J.L.S.); (C.G.S.)
- Cardiovascular Research Institute Maastricht, 6211 Maastricht, The Netherlands
| | - Raymond Steptoe
- Tolerance and Autoimmunity Group, The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, QLD 4102, Australia; (P.R.); (R.S.)
| | - Anthony W. Purcell
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia; (P.F.); (K.L.G.); (R.A.); (N.L.D.); (A.W.P.)
| | - Josephine M. Forbes
- Glycation and Diabetes Complications, Mater Research Institute, The University of Queensland, Translational Research Institute, Brisbane, QLD 4102, Australia; (D.J.B.); (A.K.F.); (D.A.M.); (S.L.); (M.S.W.); (B.E.H.)
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, VIC 3052, Australia
- Mater Clinical School, The University of Queensland, Brisbane, QLD 4101, Australia
| |
Collapse
|
6
|
Loaiza Naranjo JD, Bergot AS, Buckle I, Hamilton-Williams EE. A Question of Tolerance-Antigen-Specific Immunotherapy for Type 1 Diabetes. Curr Diab Rep 2020; 20:70. [PMID: 33169191 DOI: 10.1007/s11892-020-01363-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/26/2020] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW Antigen-specific immunotherapy (ASI) is a long sought-after goal for type 1 diabetes (T1D), with the potential of greater long-term safety than non-specific immunotherapy. We review the most recent advances in identification of target islet epitopes, delivery platforms and the ongoing challenges. RECENT FINDINGS It is now recognised that human proinsulin contains a hotspot of epitopes targeted in people with T1D. Beta-cell neoantigens are also under investigation as ASI target epitopes. Consideration of the predicted HLA-specificity of the target antigen for subject selection is now being incorporated into trial design. Cell-free ASI approaches delivering antigen with or without additional immunomodulatory agents can induce antigen-specific regulatory T cell responses, including in patients and many novel nanoparticle-based platforms are under development. ASI for T1D is rapidly advancing with a number of modalities currently being trialled in patients and many more under development in preclinical models.
Collapse
Affiliation(s)
- Jeniffer D Loaiza Naranjo
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD, 4102, Australia
| | - Anne-Sophie Bergot
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD, 4102, Australia
| | - Irina Buckle
- Mater Research Institute UQ, The University of Queensland, Woolloongabba, QLD, 4102, Australia
| | - Emma E Hamilton-Williams
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD, 4102, Australia.
| |
Collapse
|
7
|
Ye C, Low BE, Wiles MV, Brusko TM, Serreze DV, Driver JP. CD70 Inversely Regulates Regulatory T Cells and Invariant NKT Cells and Modulates Type 1 Diabetes in NOD Mice. THE JOURNAL OF IMMUNOLOGY 2020; 205:1763-1777. [PMID: 32868408 DOI: 10.4049/jimmunol.2000148] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 07/31/2020] [Indexed: 11/19/2022]
Abstract
The CD27-CD70 costimulatory pathway is essential for the full activation of T cells, but some studies show that blocking this pathway exacerbates certain autoimmune disorders. In this study, we report on the impact of CD27-CD70 signaling on disease progression in the NOD mouse model of type 1 diabetes (T1D). Specifically, our data demonstrate that CD70 ablation alters thymocyte selection and increases circulating T cell levels. CD27 signaling was particularly important for the thymic development and peripheral homeostasis of Foxp3+Helios+ regulatory T cells, which likely accounts for our finding that CD70-deficient NOD mice develop more-aggressive T1D onset. Interestingly, we found that CD27 signaling suppresses the thymic development and effector functions of T1D-protective invariant NKT cells. Thus, rather than providing costimulatory signals, the CD27-CD70 axis may represent a coinhibitory pathway for this immunoregulatory T cell population. Moreover, we showed that a CD27 agonist Ab reversed the effects of CD70 ablation, indicating that the phenotypes observed in CD70-deficient mice were likely due to a lack of CD27 signaling. Collectively, our results demonstrate that the CD27-CD70 costimulatory pathway regulates the differentiation program of multiple T cell subsets involved in T1D development and may be subject to therapeutic targeting.
Collapse
Affiliation(s)
- Cheng Ye
- Department of Animal Sciences, University of Florida, Gainesville, FL 32611
| | | | | | - Todd M Brusko
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, FL 32610
| | | | - John P Driver
- Department of Animal Sciences, University of Florida, Gainesville, FL 32611;
| |
Collapse
|
8
|
Khoryati L, Pham MN, Sherve M, Kumari S, Cook K, Pearson J, Bogdani M, Campbell DJ, Gavin MA. An IL-2 mutein engineered to promote expansion of regulatory T cells arrests ongoing autoimmunity in mice. Sci Immunol 2020; 5:eaba5264. [PMID: 32817295 PMCID: PMC7643170 DOI: 10.1126/sciimmunol.aba5264] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 07/17/2020] [Indexed: 12/18/2022]
Abstract
Interleukin-2 (IL-2) controls the homeostasis and function of regulatory T (Treg) cells, and defects in the IL-2 pathway contribute to multiple autoimmune diseases. Although recombinant IL-2 therapy has been efficacious in certain inflammatory conditions, the capacity for IL-2 to also activate inflammatory effector responses highlights the need for IL-2-based therapeutics with improved Treg cell specificity. From a panel of rationally designed murine IL-2 variants, we identified IL-2 muteins with reduced potency and enhanced Treg cell selectivity due to increased dependence on the IL-2 receptor component CD25. As an Fc-fused homodimer, the optimal Fc.IL-2 mutein induced selective Treg cell enrichment and reduced agonism of effector cells across a wide dose range. Furthermore, despite being a weaker agonist, overall Treg cell growth was greater and more sustained due to reduced receptor-mediated clearance of the Fc.IL-2 mutein compared with Fc-fused wild-type IL-2. Preferential Treg cell enrichment was also observed in the presence of activated pathogenic T cells in the pancreas of nonobese diabetic (NOD) mice, despite a loss of Treg cell selectivity in an IL-2R proximal response. These properties facilitated potent and extended resolution of NOD diabetes with infrequent dosing schedules.
Collapse
Affiliation(s)
- Liliane Khoryati
- Immunology Research Program, Benaroya Research Institute, Seattle, WA 98101, USA
| | - Minh Nguyet Pham
- Immunology Research Program, Benaroya Research Institute, Seattle, WA 98101, USA
| | - McKenna Sherve
- Immunology Research Program, Benaroya Research Institute, Seattle, WA 98101, USA
| | - Swarnima Kumari
- Immunology Research Program, Benaroya Research Institute, Seattle, WA 98101, USA
| | - Kevin Cook
- Pharmacokinetics and Drug Metabolism, Amgen Research, South San Francisco, CA 94080, USA
| | - Josh Pearson
- Pharmacokinetics and Drug Metabolism, Amgen Research, South San Francisco, CA 94080, USA
| | - Marika Bogdani
- Matrix Biology Program, Benaroya Research Institute, Seattle, WA 98101, USA
| | - Daniel J Campbell
- Immunology Research Program, Benaroya Research Institute, Seattle, WA 98101, USA.
- Department of Immunology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Marc A Gavin
- Immunology Research Program, Benaroya Research Institute, Seattle, WA 98101, USA.
| |
Collapse
|
9
|
Godoy GJ, Paira DA, Olivera C, Breser ML, Sanchez LR, Motrich RD, Rivero VE. Differences in T regulatory cells between mouse strains frequently used in immunological research. Immunol Lett 2020; 223:17-25. [DOI: 10.1016/j.imlet.2020.04.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 02/25/2020] [Accepted: 04/10/2020] [Indexed: 12/13/2022]
|
10
|
Bergot AS, Buckle I, Cikaluru S, Naranjo JL, Wright CM, Zheng G, Talekar M, Hamilton-Williams EE, Thomas R. Regulatory T Cells Induced by Single-Peptide Liposome Immunotherapy Suppress Islet-Specific T Cell Responses to Multiple Antigens and Protect from Autoimmune Diabetes. THE JOURNAL OF IMMUNOLOGY 2020; 204:1787-1797. [PMID: 32111734 DOI: 10.4049/jimmunol.1901128] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 01/27/2020] [Indexed: 12/20/2022]
Abstract
Ag-specific tolerizing immunotherapy is considered the optimal strategy to control type 1 diabetes, a childhood disease involving autoimmunity toward multiple islet antigenic peptides. To understand whether tolerizing immunotherapy with a single peptide could control diabetes driven by multiple Ags, we coencapsulated the high-affinity CD4+ mimotope (BDC2.5mim) of islet autoantigen chromogranin A (ChgA) with or without calcitriol (1α,25-dihydroxyvitamin D3) into liposomes. After liposome administration, we followed the endogenous ChgA-specific immune response with specific tetramers. Liposome administration s.c., but not i.v., induced ChgA-specific Foxp3+ and Foxp3- PD1+ CD73+ ICOS+ IL-10+ peripheral regulatory T cells in prediabetic mice, and liposome administration at the onset of hyperglycemia significantly delayed diabetes progression. After BDC2.5mim/calcitriol liposome administration, adoptive transfer of CD4+ T cells suppressed the development of diabetes in NOD severe combined immunodeficiency mice receiving diabetogenic splenocytes. After BDC2.5mim/calcitriol liposome treatment and expansion of ChgA-specific peripheral regulatory T cells. IFN-γ production and expansion of islet-specific glucose-6-phosphatase catalytic subunit-related protein-specific CD8+ T cells were also suppressed in pancreatic draining lymph node, demonstrating bystander tolerance at the site of Ag presentation. Thus, liposomes encapsulating the single CD4+ peptide, BDC2.5mim, and calcitriol induce ChgA-specific CD4+ T cells that regulate CD4+ and CD8+ self-antigen specificities and autoimmune diabetes in NOD mice.
Collapse
Affiliation(s)
- Anne-Sophie Bergot
- The University of Queensland Diamantina Institute, University of Queensland, Brisbane, Queensland 4102, Australia
| | - Irina Buckle
- The University of Queensland Diamantina Institute, University of Queensland, Brisbane, Queensland 4102, Australia
| | - Sumana Cikaluru
- The University of Queensland Diamantina Institute, University of Queensland, Brisbane, Queensland 4102, Australia
| | - Jennifer Loaiza Naranjo
- The University of Queensland Diamantina Institute, University of Queensland, Brisbane, Queensland 4102, Australia
| | - Casey Maree Wright
- The University of Queensland Diamantina Institute, University of Queensland, Brisbane, Queensland 4102, Australia
| | - Guoliang Zheng
- The University of Queensland Diamantina Institute, University of Queensland, Brisbane, Queensland 4102, Australia
| | - Meghna Talekar
- The University of Queensland Diamantina Institute, University of Queensland, Brisbane, Queensland 4102, Australia
| | - Emma E Hamilton-Williams
- The University of Queensland Diamantina Institute, University of Queensland, Brisbane, Queensland 4102, Australia
| | - Ranjeny Thomas
- The University of Queensland Diamantina Institute, University of Queensland, Brisbane, Queensland 4102, Australia
| |
Collapse
|
11
|
Godoy GJ, Olivera C, Paira DA, Salazar FC, Ana Y, Stempin CC, Motrich RD, Rivero VE. T Regulatory Cells From Non-obese Diabetic Mice Show Low Responsiveness to IL-2 Stimulation and Exhibit Differential Expression of Anergy-Related and Ubiquitination Factors. Front Immunol 2019; 10:2665. [PMID: 31824482 PMCID: PMC6886461 DOI: 10.3389/fimmu.2019.02665] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 10/28/2019] [Indexed: 11/13/2022] Open
Abstract
Foxp3+ Regulatory T cells (Tregs) are pivotal for the maintenance of tolerance. Alterations in their number and/or function have been proposed to occur in the autoimmune-prone non-obese diabetic (NOD) mouse. Comparing the frequencies and absolute numbers of CD4+Foxp3+CD25+ Tregs among 4 to 6-week old NOD, B6, and BALB/c mice, we observed differences in counts and Foxp3 expression in Tregs from secondary lymphoid organs, but not in the thymus. Upon TCR and IL-2 stimulation, NOD Tregs showed lower responses than Tregs from B6 and BALB/c mice. Indeed, NOD Tregs responded with less proliferation and with smaller increments in the expression of CD25, LAP-1, CD39, PD-1, PD-L1, and LAG-3, when in vitro cultured for 3 days with anti-CD3/CD28 in the absence or presence of IL-2, Tregs from NOD mice showed to be highly dependent on IL-2 to maintain Foxp3 expression. Moreover, NOD Tregs become producers of IL-17 and INF-gamma more easily than Tregs from the other strains. In addition, NOD Tregs showed lower responsiveness to IL-2, with significantly reduced levels of pSTAT5, even at high IL-2 doses, with respect to B6 and BALB/c Tregs. Interestingly, NOD Tregs exhibit differences in the expression of SOCS3, GRAIL, and OTUB1 when compared with Tregs from B6 and BALB/c mice. Both, at steady state conditions and also after activation, Tregs from NOD mice showed increased levels of OTUB1 and low levels of GRAIL. In addition, NOD Tregs had differences in the expression of ubiquitin related molecules that play a role in the maintenance of Foxp3 cellular pools. Indeed, significantly higher STUB1/USP7 ratios were detected in NOD Tregs, both at basal conditions and after stimulation, compared to in B6 and BALB/c Tregs. Moreover, the addition of a proteasome inhibitor to cell cultures, conferred NOD Tregs the ability to retain Foxp3 expression. Herein, we provide evidence indicating a differential expression of SOCS3, GRAIL, and STUB1/USP7 in Tregs from NOD mice, factors known to be involved in IL-2R signaling and to affect Foxp3 stability. These findings add to the current knowledge of the immunobiology of Tregs and may be related to the known insufficiency of Tregs from NOD mice to maintain self-tolerance.
Collapse
Affiliation(s)
- Gloria J Godoy
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICET, Córdoba, Argentina.,Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Carolina Olivera
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICET, Córdoba, Argentina.,Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Daniela A Paira
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICET, Córdoba, Argentina.,Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Florencia C Salazar
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICET, Córdoba, Argentina.,Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Yamile Ana
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICET, Córdoba, Argentina.,Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Cinthia C Stempin
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICET, Córdoba, Argentina.,Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Ruben D Motrich
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICET, Córdoba, Argentina.,Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Virginia E Rivero
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICET, Córdoba, Argentina.,Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
12
|
Abstract
PURPOSE OF REVIEW Evidence is mounting that disturbances in the gut microbiota play a role in the rising incidence of type 1 diabetes (T1D) and new technologies are expanding our ability to understand microbial function and host interactions. Longitudinal data from large cohorts of children at risk of T1D are nor solidifying our understanding of the function of the microbiota in this disease. RECENT FINDINGS Although taxonomic changes in the gut microbiota associated with T1D are relatively modest, a functional defect in production of short-chain fatty acids (SCFAs) remains as a unifying feature across multiple studies and populations. Dysbiosis of the microbiota in T1D has been linked to decreased gut barrier and exocrine pancreas function. We explore factors contributing to the disturbed microbiota in T1D such as infant diet, probiotic use and genetic risk linked to defective immune regulation. We also discuss the interplay between immunotherapy, the gut immune response and the microbiota. SUMMARY Functional alterations in the microbiota are linked to pathogenesis of T1D and these findings provide a rationale for future investigations aimed at establishing a healthy microbiota and promoting SCFA production and prevention of T1D.
Collapse
Affiliation(s)
- Patrick G Gavin
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, Queensland, Australia
| | | |
Collapse
|
13
|
Mullaney JA, Stephens JE, Geeling BE, Hamilton-Williams EE. Early-life exposure to gut microbiota from disease-protected mice does not impact disease outcome in type 1 diabetes susceptible NOD mice. Immunol Cell Biol 2018; 97:97-103. [DOI: 10.1111/imcb.12201] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 09/04/2018] [Accepted: 09/05/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Jane A Mullaney
- The University of Queensland Diamantina Institute; University of Queensland; Translational Research Institute; Brisbane QLD Australia
| | - Juliette E Stephens
- The University of Queensland Diamantina Institute; University of Queensland; Translational Research Institute; Brisbane QLD Australia
| | - Brooke E Geeling
- The University of Queensland Diamantina Institute; University of Queensland; Translational Research Institute; Brisbane QLD Australia
| | - Emma E Hamilton-Williams
- The University of Queensland Diamantina Institute; University of Queensland; Translational Research Institute; Brisbane QLD Australia
| |
Collapse
|
14
|
Mullaney JA, Stephens JE, Costello ME, Fong C, Geeling BE, Gavin PG, Wright CM, Spector TD, Brown MA, Hamilton-Williams EE. Type 1 diabetes susceptibility alleles are associated with distinct alterations in the gut microbiota. MICROBIOME 2018; 6:35. [PMID: 29454391 PMCID: PMC5816355 DOI: 10.1186/s40168-018-0417-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 01/26/2018] [Indexed: 05/29/2023]
Abstract
BACKGROUND Dysbiosis of the gut microbiota has been implicated in the pathogenesis of many autoimmune conditions including type 1 diabetes (T1D). It is unknown whether changes in the gut microbiota observed in T1D are due to environmental drivers, genetic risk factors, or both. Here, we have performed an analysis of associations between the gut microbiota and T1D genetic risk using the non-obese diabetic (NOD) mouse model of T1D and the TwinsUK cohort. RESULTS Through the analysis of five separate colonies of T1D susceptible NOD mice, we identified similarities in NOD microbiome that were independent of animal facility. Introduction of disease protective alleles at the Idd3 and Idd5 loci (IL2, Ctla4, Slc11a1, and Acadl) resulted in significant alterations in the NOD microbiome. Disease-protected strains exhibited a restoration of immune regulatory pathways within the gut which could also be reestablished using IL-2 therapy. Increased T1D disease risk from IL-2 pathway loci in the TwinsUK cohort of human subjects resulted in some similar microbiota changes to those observed in the NOD mouse. CONCLUSIONS These findings demonstrate for the first time that type 1 diabetes-associated genetic variants that restore immune tolerance to islet antigens also result in functional changes in the gut immune system and resultant changes in the microbiota.
Collapse
Affiliation(s)
- Jane A. Mullaney
- Translational Research Institute, The University of Queensland Diamantina Institute, University of Queensland, Brisbane, QLD Australia
- AgResearch Limited, Grasslands Research Centre, Palmerston North, New Zealand
| | - Juliette E. Stephens
- Translational Research Institute, The University of Queensland Diamantina Institute, University of Queensland, Brisbane, QLD Australia
| | - Mary-Ellen Costello
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Translational Research Institute, Brisbane, QLD Australia
| | - Cai Fong
- Translational Research Institute, The University of Queensland Diamantina Institute, University of Queensland, Brisbane, QLD Australia
| | - Brooke E. Geeling
- Translational Research Institute, The University of Queensland Diamantina Institute, University of Queensland, Brisbane, QLD Australia
| | - Patrick G. Gavin
- Translational Research Institute, The University of Queensland Diamantina Institute, University of Queensland, Brisbane, QLD Australia
| | - Casey M. Wright
- Translational Research Institute, The University of Queensland Diamantina Institute, University of Queensland, Brisbane, QLD Australia
| | - Timothy D. Spector
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, SE1 7EH UK
| | - Matthew A. Brown
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Translational Research Institute, Brisbane, QLD Australia
| | - Emma E. Hamilton-Williams
- Translational Research Institute, The University of Queensland Diamantina Institute, University of Queensland, Brisbane, QLD Australia
- Translational Research Institute, The University of Queensland Diamantina Institute, 37 Kent St, Woolloongabba, QLD 4102 Australia
| |
Collapse
|
15
|
Single and combined effect of retinoic acid and rapamycin modulate the generation, activity and homing potential of induced human regulatory T cells. PLoS One 2017; 12:e0182009. [PMID: 28746369 PMCID: PMC5529012 DOI: 10.1371/journal.pone.0182009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 07/11/2017] [Indexed: 12/29/2022] Open
Abstract
Adoptive transfer of CD4+CD25+FOXP3+ regulatory T cells (Treg cells) has been successfully utilized to treat graft versus host disease and represents a promising strategy for the treatment of autoimmune diseases and transplant rejection. The aim of this study was to evaluate the effects of all-trans retinoic acid (atRA) and rapamycin (RAPA) on the number, phenotype, homing markers expression, DNA methylation, and function of induced human Treg cells in short-term cultures. Naive T cells were polyclonally stimulated and cultured for five days in the presence of different combinations of IL-2, TGF-β1, atRA and RAPA. The resulting cells were characterized by the expression of FOXP3, activation, surface and homing markers. Methylation of the Conserved Non-coding Sequence 2 was also evaluated. Functional comparison of the different culture conditions was performed by suppression assays in vitro. Culturing naive human T cells with IL-2/TGFβ1 resulted in the generation of 54.2% of Treg cells (CD4+CD25+FOXP3+) whereas the addition of 100 nM atRA increased the yield of Treg cells to 66% (p = 0.0088). The addition of RAPA did not increase the number of Treg cells in any of these settings. Treg cells generated in the presence of atRA had an increased expression of the β7 integrin to nearly 100% of the generated Treg cells, while RAPA treated cells showed enhanced expression of CXCR4. The differential expression of homing molecules highlights the possibility of inducing Treg cells with differential organ-specific homing properties. Neither atRA nor RAPA had an effect on the highly methylated CNS2 sites, supporting reports that their contribution to the lineage stability of Treg cells is not mediated by methylation changes in this locus. Treg cells generated in the presence of RAPA show the most potent suppression effect on the proliferation of effector cells.
Collapse
|
16
|
Schwedhelm K, Thorpe J, Murray SA, Gavin M, Speake C, Greenbaum C, Cerosaletti K, Buckner J, Long SA. Attenuated IL-2R signaling in CD4 memory T cells of T1D subjects is intrinsic and dependent on activation state. Clin Immunol 2017. [PMID: 28645874 DOI: 10.1016/j.clim.2017.06.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The IL-2/IL-2R pathway is implicated in type 1 diabetes (T1D). While its role in regulatory T cell (Treg) biology is well characterized, mechanisms that influence IL-2 responses in effector T cells (Teff) are less well understood. We compared IL-2 responses in 95 healthy control and 98 T1D subjects. In T1D, low IL-2 responsiveness was most pronounced in memory Teff. Unlike Treg, CD25 expression did not influence the Teff responses. Reduced IL-2 responses in memory Teff were not rescued by resting, remained lower after activation and proliferation, and were absent in type 2 diabetes. Comparing basal IL-2 responses in resting versus activated cells, memory Teff displayed lower, but more sustained, responses to IL-2 overtime. These results suggest that T1D-associated defects in the Teff compartment are due to intrinsic factors related to activation. Evaluation of both Teff and Treg IL-2R signaling defects in T1D subjects may inform selection of therapies.
Collapse
Affiliation(s)
| | - Jerill Thorpe
- Translational Research Program, Benaroya Research Institute, Seattle, WA, USA
| | - Sara A Murray
- Systems Immunology Program, Benaroya Research Institute, Seattle, WA, USA
| | - Marc Gavin
- Translational Research Program, Benaroya Research Institute, Seattle, WA, USA
| | - Cate Speake
- Diabetes Clinical Research Program, Benaroya Research Institute, Seattle, WA, USA
| | - Carla Greenbaum
- Diabetes Clinical Research Program, Benaroya Research Institute, Seattle, WA, USA
| | - Karen Cerosaletti
- Translational Research Program, Benaroya Research Institute, Seattle, WA, USA
| | - Jane Buckner
- Translational Research Program, Benaroya Research Institute, Seattle, WA, USA
| | - S Alice Long
- Translational Research Program, Benaroya Research Institute, Seattle, WA, USA.
| |
Collapse
|
17
|
CD11a/ICAM-1 blockade combined with IL-2 targeting therapy causes a paradoxical acceleration of type 1 diabetes. Immunol Cell Biol 2017; 95:803-813. [PMID: 28611472 DOI: 10.1038/icb.2017.49] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 06/06/2017] [Accepted: 06/07/2017] [Indexed: 12/12/2022]
Abstract
Enhancement of regulatory T-cell (Treg) function is the goal of many immunotherapies aimed at treating type 1 diabetes (T1D). The use of interleukin (IL)-2 is hindered by its effects on other populations such as effector T cells and NK cells. Combination therapies aimed at suppressing effector T cells while using IL-2 to expand Tregs could be beneficial and have been trialed in T1D patients. We have investigated a combination therapy using IL-2 and αCD11a blocking antibody to simultaneously expand Tregs and suppress the activation and migration of autoreactive T cells. When non-obese diabetic mice were treated with low-dose IL-2/anti-IL-2 complexes (IL-2c) and αCD11a, significant Treg expansion occurred in both the spleen and pancreas. Activation and IFNγ production by islet-specific T cells was robustly suppressed in the periphery following IL-2c/αCD11a treatment. Surprisingly, combination therapy accelerated diabetes onset compared with control treatments. Analysis of IL-2 responsive populations found that combination therapy increased the activation of CD8+ T cells and natural killer (NK) cells specifically within the pancreas despite concomitant Treg expansion. Blocking effector T-cell migration with the inhibitor FTY720 together with IL-2c treatment also resulted in intra-pancreatic expansion of effector cell populations. Thus, inhibiting effector T-cell migration into the islets unleashes islet-resident pathogenic effectors in the presence of low doses of exogenous IL-2.
Collapse
|
18
|
Hamilton-Williams EE, Bergot AS, Reeves PLS, Steptoe RJ. Maintenance of peripheral tolerance to islet antigens. J Autoimmun 2016; 72:118-25. [PMID: 27255733 DOI: 10.1016/j.jaut.2016.05.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 05/19/2016] [Accepted: 05/23/2016] [Indexed: 01/04/2023]
Abstract
Reestablishment of immune tolerance to the insulin-producing beta cells is the desired goal for type 1 diabetes (T1D) treatment and prevention. Immune tolerance to multiple islet antigens is defective in individuals with T1D, but the mechanisms involved are multifaceted and may involve loss of thymic and peripheral tolerance. In this review we discuss our current understanding of the varied mechanisms by which peripheral tolerance to islet antigens is maintained in healthy individuals where genetic protection from T1D is present and how this fails in those with genetic susceptibility to disease. Novel findings in regards to expression of neo-islet antigens, non-classical regulatory cell subsets and the impact of specific genetic variants on tolerance induction are discussed.
Collapse
Affiliation(s)
- Emma E Hamilton-Williams
- The University of Queensland Diamantina Institute, University of Queensland, Translational Research Institute, Brisbane, QLD, Australia.
| | - Anne-Sophie Bergot
- The University of Queensland Diamantina Institute, University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
| | - Peta L S Reeves
- The University of Queensland Diamantina Institute, University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
| | - Raymond J Steptoe
- The University of Queensland Diamantina Institute, University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
| |
Collapse
|
19
|
López-Abente J, Correa-Rocha R, Pion M. Functional Mechanisms of Treg in the Context of HIV Infection and the Janus Face of Immune Suppression. Front Immunol 2016; 7:192. [PMID: 27242797 PMCID: PMC4871867 DOI: 10.3389/fimmu.2016.00192] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 05/02/2016] [Indexed: 12/20/2022] Open
Abstract
Regulatory T cells (Tregs) play an important role in infections, by modulating host immune responses and avoiding the overreactive immunity that in the case of human immunodeficiency virus (HIV) infection leads to a marked erosion and deregulation of the entire immune system. Therefore, the suppressive function of Treg in HIV-infected patients is critical because of their implication on preventing the immune hyperactivation, even though it could also have a detrimental effect by suppressing HIV-specific immune responses. In recent years, several studies have shown that HIV-1 can directly infect Treg, disturbing their phenotype and suppressive capacity via different mechanisms. These effects include Foxp3 and CD25 downregulation, and the impairment of suppressive capacity. This review describes the functional mechanisms of Treg to modulate immune activation during HIV infection, and how such control is no longer fine-tune orchestrated once Treg itself get infected. We will review the current knowledge about the HIV effects on the Treg cytokine expression, on pathways implying the participation of different ectoenzymes (i.e., CD39/CD73 axis), transcription factors (ICER), and lastly on cyclic adenosine monophosphate (cAMP), one of the keystones in Treg-suppressive function. To define which are the HIV effects upon these regulatory mechanisms is crucial not only for the comprehension of immune deregulation in HIV-infected patients but also for the correct understanding of the role of Tregs in HIV infection.
Collapse
Affiliation(s)
- Jacobo López-Abente
- Laboratory of Immunoregulation, "Gregorio Marañón" Health Research Institute (IISGM) , Madrid , Spain
| | - Rafael Correa-Rocha
- Laboratory of Immunoregulation, "Gregorio Marañón" Health Research Institute (IISGM) , Madrid , Spain
| | - Marjorie Pion
- Laboratory of Immunoregulation, "Gregorio Marañón" Health Research Institute (IISGM) , Madrid , Spain
| |
Collapse
|