1
|
Nobre DC, Delgado-Pinar E, Cunha C, Sérgio Seixas de Melo J. The role of the oxime group in the excited state deactivation processes of indirubin. Phys Chem Chem Phys 2024; 26:7416-7423. [PMID: 38351859 DOI: 10.1039/d3cp05260e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
The introduction of an oxime group into indirubin (INR) derivatives, including INROx, MINROx, and 6-BrINROx, and its impact on the spectral and photophysical properties of INR was investigated using a combination of fast-transient absorption (fs-TA/fs-UC) and steady-state fluorescence techniques. The oxime group introduces structural modifications that promote a rapid keto-enol tautomeric equilibrium and enhance the excited-state proton transfer (ESPT) process compared to its analogue, INR. In the oxime-indirubin derivatives investigated, the ESPT process is notably more efficient than what is observed in INR and indigo, occurring extremely fast (<1 ps) in all solvents, except for the viscous solvent glycerol. The more rapid deactivation mechanism precludes the formation of an intermediate species (syn-rotamer), as observed with INR. These findings are corroborated by time-dependent density functional theory (TDDFT) calculations. The work demonstrates that introducing an oxime group to INR, whether in nature or in the laboratory, results in an enhancement of its photostability.
Collapse
Affiliation(s)
- Danîela C Nobre
- University of Coimbra, CQC-ISM, Department of Chemistry, P3004-535 Coimbra, Portugal.
| | - Estefanía Delgado-Pinar
- University of Coimbra, CQC-ISM, Department of Chemistry, P3004-535 Coimbra, Portugal.
- Instituto de Ciencia Molecular, Departamento de Química Inorgánica, Universidad de Valencia, C/Catedrático José Beltrán 2, 46980, Paterna, Valencia, Spain
| | - Carla Cunha
- University of Coimbra, CQC-ISM, Department of Chemistry, P3004-535 Coimbra, Portugal.
| | | |
Collapse
|
2
|
Karahan E, Gençoğlu Katmerlikaya T, Önal E, Dağ A, Gürek AG, Ahsen V. New imidazolidindionedioximes and their Pt(II) complexes: synthesis and investigation of their antitumoral activities on breast cancer cells. Turk J Chem 2024; 48:582-596. [PMID: 39296792 PMCID: PMC11407372 DOI: 10.55730/1300-0527.3681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 08/20/2024] [Accepted: 01/22/2024] [Indexed: 09/21/2024] Open
Abstract
Breast cancer is one of the most common types of cancer worldwide and has the most lethality ratio for females among all cancers. Although current cancer therapeutics have made considerable advancements, there is still room for improvement in terms of efficacy. Many anticancer drugs have a risk of causing serious adverse effects due to their nonspecific cytotoxic effects on both tumor and healthy cells. New therapeutics might have a greater ability to kill cancer cells, reduce the volume of tumors, and improve overall therapy response rates. Herein, we report the efficient synthesis and characterization of three amphi vic-dioximes and their six novel mono-, which are extremely rare in platinum chemistry, and bisplatinum(II) complexes for breast cancer treatment. Antitumoral activities of Pt(II) complexes have been investigated on CCD-1079Sk healthy fibroblast cell line, MCF-7 and MDA-MB-231 human breast cancer cell lines. Cytotoxicity, cell cycle, and apoptotic assays were performed. All new Pt(II) complexes exhibited selective antiproliferative effects on breast cancer cells by showing less cytotoxicity to healthy cells than known anticancer drugs cisplatin and bicalutamide. In vitro studies show that these new Pt complexes have high anticancer and antiproliferative effects and may be new alternatives to existing anticancer drugs.
Collapse
Affiliation(s)
- Emrah Karahan
- Department of Chemistry, Gebze Technical University, Kocaeli, Turkiye
| | | | - Emel Önal
- Faculty of Engineering, Doğuş University, İstanbul, Turkiye
| | - Aydan Dağ
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Bezmiâlem Vakıf University, İstanbul, Turkiye
- Pharmaceutical Application and Research Center, Bezmiâlem Vakıf University, İstanbul, Turkiye
| | - Ayşe Gül Gürek
- Department of Chemistry, Gebze Technical University, Kocaeli, Turkiye
| | - Vefa Ahsen
- Department of Chemistry, Gebze Technical University, Kocaeli, Turkiye
| |
Collapse
|
3
|
Seo SH, Kim E, Lee S, Lee Y, Han DH, Go H, Seong JK, Choi K. Inhibition of CXXC5 function reverses obesity-related metabolic diseases. Clin Transl Med 2022; 12:e742. [PMID: 35384342 PMCID: PMC8982507 DOI: 10.1002/ctm2.742] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/28/2022] [Accepted: 02/07/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Metabolic diseases, including type 2 diabetes, have long been considered incurable, chronic conditions resulting from a variety of pathological conditions in obese patients. Growing evidence suggests the Wnt/β-catenin pathway is a major pathway in adipose tissue remodelling, pancreatic β-cell regeneration and energy expenditure through regulation of key metabolic target genes in various tissues. CXXC5-type zinc finger protein 5 (CXXC5) is identified negative feedback regulator of the Wnt/β-catenin pathway that functions via Dishevelled (Dvl) binding. METHODS Expression level of CXXC5 was characterised in clinical samples and diabetes-induced mice model. Diabetes-induced mice model was established by using high-fat diet (HFD). HFD-fed mice treated with KY19334, a small molecule inhibiting CXXC5-Dvl protein-protein interaction (PPI), was used to assess the role of CXXC5 in metabolic diseases. RESULTS Here, we show that CXXC5 is overexpressed with suppression of Wnt/β-catenin signalling in visceral adipose tissues of patients with obesity-related diabetes. Meanwhile, Cxxc5-/- mice fed an HFD exhibited resistance to metabolic dysregulation. KY19334 restores the lowered Wnt/β-catenin signalling and reverses metabolic abnormalities as observed in HFD-fed Cxxc5-/- mice. Administration of KY19334 on HFD-fed mice had a long-lasting glucose-controlling effect through remodelling of adipocytes and regeneration of pancreatic β-cells. CONCLUSION Overall, the inhibition of CXXC5 function by small molecule-mediated interference of Dvl binding is a potential therapeutic strategy for the treatment of obesity-related diabetes.
Collapse
Affiliation(s)
- Seol Hwa Seo
- Department of BiotechnologyCollege of Life Science and BiotechnologyYonsei UniversitySeoulRepublic of Korea
| | - Eunhwan Kim
- Department of BiotechnologyCollege of Life Science and BiotechnologyYonsei UniversitySeoulRepublic of Korea
| | | | - Yong‐ho Lee
- Department of Internal MedicineYonsei UniversitySeoulRepublic of Korea
| | - Dai Hoon Han
- Department of surgeryYonsei University College of MedicineSeoulRepublic of Korea
| | - Hyesun Go
- Korea Mouse Phenotyping CenterSeoul National UniversitySeoulRepublic of Korea
| | - Je Kyung Seong
- Korea Mouse Phenotyping CenterSeoul National UniversitySeoulRepublic of Korea
| | - Kang‐Yell Choi
- Department of BiotechnologyCollege of Life Science and BiotechnologyYonsei UniversitySeoulRepublic of Korea
- CK Regeon Inc.SeoulRepublic of Korea
| |
Collapse
|
4
|
Kurgan N, Islam H, Matusiak JBL, Baranowski BJ, Stoikos J, Fajardo VA, MacPherson REK, Gurd BJ, Klentrou P. Subcutaneous adipose tissue sclerostin is reduced and Wnt signaling is enhanced following 4-weeks of sprint interval training in young men with obesity. Physiol Rep 2022; 10:e15232. [PMID: 35312183 PMCID: PMC8935536 DOI: 10.14814/phy2.15232] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 06/01/2023] Open
Abstract
Sclerostin is a Wnt/β-catenin antagonist, mainly secreted by osteocytes, and most known for its role in reducing bone formation. Studies in rodents suggest sclerostin can also regulate adipose tissue mass and metabolism, representing bone-adipose tissue crosstalk. Exercise training has been shown to reduce plasma sclerostin levels; but the effects of exercise on sclerostin and Wnt/β-catenin signaling specifically within adipose tissue has yet to be examined. The purpose of this study was to examine subcutaneous WAT (scWAT) sclerostin content and Wnt signaling in response to exercise training in young men with obesity. To this end, 7 male participants (BMI = 35 ± 4; 25 ± 4 years) underwent 4 weeks of sprint interval training (SIT) involving 4 weekly sessions consisting of a 5-min warmup, followed by 8 × 20 s intervals at 170% of work rate at VO2peak , separated by 10 s of rest. Serum and scWAT were sampled at rest both pre- and post-SIT. Despite no changes in serum sclerostin levels, we found a significant decrease in adipose sclerostin content (-37%, p = 0.04), an increase in total β-catenin (+52%, p = 0.03), and no changes in GSK3β serine 9 phosphorylation. There were also concomitant reductions in serum TNF-α (-0.36 pg/ml, p = 0.03) and IL-6 (-1.44 pg/ml, p = 0.05) as well as an increase in VO2peak (+5%, p = 0.03) and scWAT COXIV protein content (+95%, p = 0.04). In conclusion, scWAT sclerostin content was reduced and β-catenin content was increased following SIT in young men with excess adiposity, suggesting a role of sclerostin in regulating human adipose tissue in response to exercise training.
Collapse
Affiliation(s)
- Nigel Kurgan
- Department of KinesiologyBrock UniversitySt. CatharinesOntarioCanada
- Centre for Bone and Muscle HealthBrock UniversitySt. CatharinesOntarioCanada
| | - Hashim Islam
- School of Health and Exercise SciencesUniversity of British Columbia OkanaganKelownaBritish ColumbiaCanada
| | | | - Bradley J. Baranowski
- Centre for Bone and Muscle HealthBrock UniversitySt. CatharinesOntarioCanada
- Department of Health SciencesBrock UniversitySt. CatharinesOntarioCanada
| | - Joshua Stoikos
- Department of KinesiologyBrock UniversitySt. CatharinesOntarioCanada
- Centre for Bone and Muscle HealthBrock UniversitySt. CatharinesOntarioCanada
| | - Val A. Fajardo
- Department of KinesiologyBrock UniversitySt. CatharinesOntarioCanada
- Centre for Bone and Muscle HealthBrock UniversitySt. CatharinesOntarioCanada
| | | | - Brendon J. Gurd
- Department of KinesiologyQueens UniversityKingstonOntarioCanada
| | - Panagiota Klentrou
- Department of KinesiologyBrock UniversitySt. CatharinesOntarioCanada
- Centre for Bone and Muscle HealthBrock UniversitySt. CatharinesOntarioCanada
| |
Collapse
|
5
|
The Potential to Fight Obesity with Adipogenesis Modulating Compounds. Int J Mol Sci 2022; 23:ijms23042299. [PMID: 35216415 PMCID: PMC8879274 DOI: 10.3390/ijms23042299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/06/2022] [Accepted: 02/11/2022] [Indexed: 02/06/2023] Open
Abstract
Obesity is an increasingly severe public health problem, which brings huge social and economic burdens. Increased body adiposity in obesity is not only tightly associated with type 2 diabetes, but also significantly increases the risks of other chronic diseases including cardiovascular diseases, fatty liver diseases and cancers. Adipogenesis describes the process of the differentiation and maturation of adipocytes, which accumulate in distributed adipose tissue at various sites in the body. The major functions of white adipocytes are to store energy as fat during periods when energy intake exceeds expenditure and to mobilize this stored fuel when energy expenditure exceeds intake. Brown/beige adipocytes contribute to non-shivering thermogenesis upon cold exposure and adrenergic stimulation, and thereby promote energy consumption. The imbalance of energy intake and expenditure causes obesity. Recent interest in epigenetics and signaling pathways has utilized small molecule tools aimed at modifying obesity-specific gene expression. In this review, we discuss compounds with adipogenesis-related signaling pathways and epigenetic modulating properties that have been identified as potential therapeutic agents which cast some light on the future treatment of obesity.
Collapse
|
6
|
Keshavarzi M, Moradbeygi F, Mobini K, Ghaffarian Bahraman A, Mohammadi P, Ghaedi A, Mohammadi-Bardbori A. The interplay of aryl hydrocarbon receptor/WNT/CTNNB1/Notch signaling pathways regulate amyloid beta precursor mRNA/protein expression and effected the learning and memory of mice. Toxicol Res (Camb) 2021; 11:147-161. [PMID: 35237419 PMCID: PMC8882790 DOI: 10.1093/toxres/tfab120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/22/2021] [Accepted: 12/01/2021] [Indexed: 12/31/2022] Open
Abstract
The amyloid beta precursor protein (APP) plays a pathophysiological role in the development of Alzheimer's disease as well as a physiological role in neuronal growth and synaptogenesis. The aryl hydrocarbon receptor (AhR)/WNT/Catenin Beta 1 (CTNNB1)/Notch signaling pathways stamp in many functions, including development and growth of neurons. However, the regulatory role of AhR-/WNT-/CTNNB1-/Notch-induced APP expression and its influence on hippocampal-dependent learning and memory deficits is not clear. Male BALB/C mice received 6-formylindolo[3,2-b]carbazole (an AhR agonist), CH223191(an AhR antagonist), DAPT (an inhibitor of Notch signaling), and XAV-939 (a WNT pathway inhibitor) at a single dose of 100 μg/kg, 1, 5 , and 5 mg/kg of body weight, respectively, via intraperitoneal injection alone or in combination. Gene expression analyses and protein assay were performed on the 7th and 29th days. To assess the hippocampal-dependent memory, all six mice also underwent contextual fear conditioning on the 28th day after treatments. Our results showed that endogenous ligand of AhR has a regulatory effect on APP gene. Also, the interaction of AhR/WNT/CTNNB1 has a positive regulatory effect, but Notch has a negative regulatory effect on the mRNA and protein expression of APP, which have a correlation with mice's learning skills and memory.
Collapse
Affiliation(s)
- Majid Keshavarzi
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran,Department of Environmental Health, Faculty of Health, Sabzevar University of Medical Sciences, Sabzevar 7146864685, Iran
| | - Fatemeh Moradbeygi
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran
| | - Keivan Mobini
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran
| | - Ali Ghaffarian Bahraman
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran,Occupational Environment Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Parisa Mohammadi
- Department of Environmental Health, Faculty of Health, Sabzevar University of Medical Sciences, Sabzevar 7146864685, Iran
| | - Afsaneh Ghaedi
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran
| | - Afshin Mohammadi-Bardbori
- Correspondence address. Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran. Tel.: +98(71)32425374; Fax: +98(71)32424326; E-mail:
| |
Collapse
|
7
|
Tsuji H, Kondo M, Odani W, Takino T, Takeda R, Sakai T. Treatment with indigo plant (Polygonum tinctorium Lour) improves serum lipid profiles in Wistar rats fed a high-fat diet. THE JOURNAL OF MEDICAL INVESTIGATION 2021; 67:158-162. [PMID: 32378600 DOI: 10.2152/jmi.67.158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
We investigated the effects of Polygonum tinctorium Lour (PTL), a plant commonly known as indigo, on biological parameters in an animal model of high-fat diet-induced obesity. Wistar rats fed a high-fat diet and treated with PTL showed lower serum levels of triglycerides and total cholesterol levels and a higher serum levels of HDL cholesterol than those in Wistar rats fed a high-fat diet without PTL treatment. The weight of mesenteric fat in PTL-treated rats was decreased compared to that in control rats not treated with PTL. In addition, energy metabolic rate in the dark period, but not in the light period, in PTL-treated rats was higher than that in control rats. Although a significant difference was not observed, body weight in PTL-treated rats tended to be decreased compared to that in control rats. The results show that PTL improves serum lipid profiles in Wistar rats with high-fat diet-induced obesity. J. Med. Invest. 67 : 158-162, February, 2020.
Collapse
Affiliation(s)
- Hiroko Tsuji
- Department of Public Health and Applied Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan.,Faculity of Human Life Science, Shikoku University, Oujin-cho 123-1, Tokushima 771-1192, Japan
| | - Maki Kondo
- Faculity of Human Life Science, Shikoku University, Oujin-cho 123-1, Tokushima 771-1192, Japan
| | - Wataru Odani
- Faculity of Human Life Science, Shikoku University, Oujin-cho 123-1, Tokushima 771-1192, Japan
| | - Tasuku Takino
- Faculity of Human Life Science, Shikoku University, Oujin-cho 123-1, Tokushima 771-1192, Japan
| | - Risako Takeda
- Department of Public Health and Applied Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan.,Faculity of Human Life Science, Shikoku University, Oujin-cho 123-1, Tokushima 771-1192, Japan
| | - Tohru Sakai
- Department of Public Health and Applied Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| |
Collapse
|
8
|
Ryu YC, Lee DH, Shim J, Park J, Kim YR, Choi S, Bak SS, Sung YK, Lee SH, Choi KY. KY19382, a novel activator of Wnt/β-catenin signalling, promotes hair regrowth and hair follicle neogenesis. Br J Pharmacol 2021; 178:2533-2546. [PMID: 33751552 PMCID: PMC8251890 DOI: 10.1111/bph.15438] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 02/25/2021] [Accepted: 02/28/2021] [Indexed: 01/01/2023] Open
Abstract
Background and Purpose The promotion of hair regeneration and growth heavily depends on the activation of Wnt/β‐catenin signalling in the hair follicle, including dermal papilla (DP). KY19382, one of the newly synthesized analogues of indirubin‐3′‐monoxime (I3O), was identified as a Wnt/β‐catenin signalling activator via inhibition of the interaction between CXXC‐type zinc finger protein 5 (CXXC5) and dishevelled (Dvl). Given the close relationship between the Wnt/β‐catenin signalling and hair regeneration, we investigated the effect of KY19382 on hair regrowth and hair follicle neogenesis. Experimental Approach In vitro hair induction effects of KY19382 were performed in human DP cells. The hair elongation effects of KY19382 were confirmed through the human hair follicle and vibrissa culture system. In vivo hair regeneration abilities of KY19382 were identified in three models: hair regrowth, wound‐induced hair follicle neogenesis (WIHN) and hair patch assays using C57BL/6 mice. The hair regeneration abilities were analysed by immunoblotting, alkaline phosphatase (ALP) and immunohistochemical staining. Key Results KY19382 activated Wnt/β‐catenin signalling and elevated expression of ALP and the proliferation marker PCNA in DP cells. KY19382 also increased hair length in ex vivo‐cultured mouse vibrissa and human hair follicles and induced hair regrowth in mice. Moreover, KY19382 significantly promoted the generation of de novo hair follicles as shown by WIHN and hair patch assays. Conclusion and Implications These results indicate that KY19382 is a potential therapeutic drug that exhibits effective hair regeneration ability via activation of the Wnt/β‐catenin signalling for alopecia treatments.
Collapse
Affiliation(s)
- Yeong Chan Ryu
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Dong-Hwan Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Jiyong Shim
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Jiyeon Park
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - You-Rin Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Sehee Choi
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Soon Sun Bak
- Department of Immunology, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Young Kwan Sung
- Department of Immunology, School of Medicine, Kyungpook National University, Daegu, Korea
| | | | - Kang-Yell Choi
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea.,CK Biotech Inc, Engineering Research Park, Seoul, Korea
| |
Collapse
|
9
|
Wei G, Sun H, Liu JL, Dong K, Liu J, Zhang M. Indirubin, a small molecular deriving from connectivity map (CMAP) screening, ameliorates obesity-induced metabolic dysfunction by enhancing brown adipose thermogenesis and white adipose browning. Nutr Metab (Lond) 2020; 17:21. [PMID: 32190098 PMCID: PMC7076951 DOI: 10.1186/s12986-020-00440-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 03/06/2020] [Indexed: 02/11/2023] Open
Abstract
Background Obesity occurs when the body’s energy intake is constantly greater than its energy consumption and the pharmacological enhancing the activity of brown adipose tissue (BAT) and (or) browning of white adipose tissue (WAT) has been considered promising strategies to treat obesity. Methods In this study, we took a multi-pronged approach to screen UCP1 activators, including in silico predictions, in vitro assays, as well as in vivo experiments. Results Base on Connectivity MAP (CMAP) screening, we obtained multiple drugs that possess a remarkably correlating gene expression pattern to that of enhancing activity in BAT and (or) sWAT signature. Particularly, we focused on a previously unreported drug-indirubin, a compound obtained from the Indigo plant, which is now mainly used for the treatment of chronic myelogenous leukemia (CML). In the current study, our results shown that indirubin could enhance the BAT activity, as evidenced by up-regulated Ucp1 expression and enhanced mitochondrial respiratory function in vitro cellular model. Furthermore, indirubin treatment restrained high-fat diet (HFD)-induced body weight gain, improved glucose homeostasis and ameliorated hepatic steatosis which were associated with the increase of energy expenditure in the mice model. Moreover, we revealed that indirubin treatment increased BAT activity by promoting thermogenesis and mitochondrial biogenesis in BAT and induced browning of subcutaneous inguinal white adipose tissue (sWAT) of mice under HFD. Besides, our results indicated that indirubin induced UCP1 expression in brown adipocytes, at least in part, via activation of PKA and p38MAPK signaling pathways. Conclusions Our results clearly show that as an effective BAT (as well as beige cells) activator, indirubin may have a protective effect on the prevention and treatment of obesity and its complications.
Collapse
Affiliation(s)
- Gang Wei
- Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032 People's Republic of China
| | - Honglin Sun
- Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032 People's Republic of China
| | - Jun-Li Liu
- 2Henan Key Laboratory of Neurorestoratology, Henan International Joint Laboratory of Neurorestoratology for Senile Dementia, The First Affiliated Hospital of Xinxiang Medical University, Weihui, 453100 Henan Province People's Republic of China
| | - Kai Dong
- 3Department of Urology, Changzheng Hospital, Second Military Medical University, Shanghai, 200003 People's Republic of China
| | - Junli Liu
- Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032 People's Republic of China
| | - Min Zhang
- 4Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai, 200030 People's Republic of China
| |
Collapse
|
10
|
Nobushi Y, Saito H, Miyairi S, Uchiyama T, Kishikawa Y. Inhibitory Effects of Indirubin-3'-oxime Derivatives on Lipid Accumulation in 3T3-L1 Cells. Biol Pharm Bull 2020; 43:503-508. [PMID: 32115509 DOI: 10.1248/bpb.b19-00910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Obesity elevates the risk of cardiovascular disease and has been strongly associated with increases in the incidence of many metabolic diseases. Therefore, prevention of obesity leads to the prevention of metabolic diseases. In light of this, substances that exert anti-obesity effects are crucial for the prevention of obesity. Indirubin, a 3,2' bisindole isomer of indigo, is the active component of the traditional Chinese medicine used for the treatment of chronic myelocytic leukemia. In particular, indirubin-3'-oxime (1) was shown to inhibit the differentiation of adipocytes. In this study, we investigated the inhibitory effects of nine indirubin-3'-oxime derivatives against lipid accumulation during differentiation in 3T3-L1 cells. Among the compounds tested, 5-methoxyindirubin-3'-oxime (2) and 6-bromoindirubin-3'-oxime (7) at 5 µM exhibited significantly stronger inhibitory activity than indirubin-3'-oxime (1). Furthermore, 5-methoxyindirubin-3'-oxime (2) and 6-bromoindirubin-3'-oxime (7) markedly suppressed the expression of CCAAT/enhancer-binding protein α, peroxisome proliferator activator γ2, and adipocyte protein 2, both of which are key adipogenic regulators at the intermediate stage of adipocyte differentiation. Our results demonstrate that 5-methoxyindirubin-3'-oxime (2) and 6-bromoindirubin-3'-oxime (7) significantly down-regulated lipid accumulation during differentiation of 3T3-L1 cells, suggesting their potential as novel therapeutic drugs against the development of obesity.
Collapse
|
11
|
Cho W, Kim S, Jeong M, Park YM. Shockwaves Suppress Adipocyte Differentiation via Decrease in PPARγ. Cells 2020; 9:cells9010166. [PMID: 31936603 PMCID: PMC7017360 DOI: 10.3390/cells9010166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 01/03/2020] [Accepted: 01/07/2020] [Indexed: 12/18/2022] Open
Abstract
Adipogenesis is a crucial cellular process that contributes to the expansion of adipose tissue in obesity. Shockwaves are mechanical stimuli that transmit signals to cause biological responses. The purpose of this study is to evaluate the effects of shockwaves on adipogenesis. We treated 3T3L-1 cells and human primary preadipocytes for differentiation with or without shockwaves. Western blots and quantitative real-time reverse transcriptase PCR (qRT-PCR) for adipocyte markers including peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT-enhancer-binding proteins (C/EBPα) were performed. Extracellular adenosine triphosphate (ATP) and intracellular cyclic adenosine monophosphate (cAMP) levels, which are known to affect adipocyte differentiation, were measured. Shockwave treatment decreased intracellular lipid droplet accumulation in primary human preadipocytes and 3T3-L1 cells after 11–12 days of differentiation. Levels of key adipogenic transcriptional factors PPARγ and/or C/EBPα were lower in shockwave-treated human primary preadipocytes and 3T3L-1 cells after 12–13 days of differentiation than in shockwave-untreated cells. Shockwave treatment induced release of extracellular ATP from preadipocytes and decreased intracellular cAMP levels. Shockwave-treated preadipocytes showed a higher level of β-catenin and less PPARγ expression than shockwave-untreated cells. Supplementation with 8-bromo-cAMP analog after shockwave treatment rescued adipocyte differentiation by preventing the effect of shockwaves on β-catenin, Wnt10b mRNA, and PPARγ expression. Low-energy shockwaves suppressed adipocyte differentiation by decreasing PPARγ. Our study suggests an insight into potential uses of shockwave-treatment for obesity.
Collapse
|
12
|
WDR76 mediates obesity and hepatic steatosis via HRas destabilization. Sci Rep 2019; 9:19676. [PMID: 31873167 PMCID: PMC6927951 DOI: 10.1038/s41598-019-56211-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 12/03/2019] [Indexed: 12/22/2022] Open
Abstract
Ras/MAPK (mitogen active protein kinase) signaling plays contradictory roles in adipocyte differentiation and is tightly regulated during adipogenesis. However, mechanisms regulating adipocyte differentiation involving Ras protein stability regulation are unknown. Here, we show that WD40 repeat protein 76 (WDR76), a novel Ras regulating E3 linker protein, controls 3T3-L1 adipocyte differentiation through HRas stability regulation. The roles of WDR76 in obesity and metabolic regulation were characterized using a high-fat diet (HFD)-induced obesity model using Wdr76-/- mice and liver-specific Wdr76 transgenic mice (Wdr76Li-TG). Wdr76-/- mice are resistant to HFD-induced obesity, insulin resistance and hyperlipidemia with an increment of HRas levels. In contrast, Wdr76Li-TG mice showed increased HFD-induced obesity, insulin resistance with reduced HRas levels. Our findings suggest that WDR76 controls HFD-induced obesity and hepatic steatosis via HRas destabilization. These data provide insights into the links between WDR76, HRas, and obesity.
Collapse
|
13
|
Wnt signaling mediates TLR pathway and promote unrestrained adipogenesis and metaflammation: Therapeutic targets for obesity and type 2 diabetes. Pharmacol Res 2019; 152:104602. [PMID: 31846761 DOI: 10.1016/j.phrs.2019.104602] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 11/17/2019] [Accepted: 12/13/2019] [Indexed: 12/11/2022]
Abstract
Diabesity is the combination of type 2 diabetes and obesity characterized by chronic low-grade inflammation. The Wnt signaling act as an evolutionary pathway playing crucial role in regulating cellular homeostasis and energy balance from hypothalamus to metabolic organs. Aberrant activity of certain appendages in the canonical and non-canonical Wnt system deregulates metabolism and leads to adipose tissue expansion, this key event initiates metabolic stress causing metaflammation and obesity. Metaflammation induced obesity initiates abnormal development of adipocytes mediating through the non-canonical Wnt signaling inhibition of canonical Wnt pathway to fan the flames of adipogenesis. Moreover, activation of toll like receptor (TLR)-4 signaling in metabolic stress invites immune cells to release pro-inflammatory cytokines for recruitment of macrophages in adipose tissues, further causes polarization of macrophages into M1(classically activated) and M2 (alternatively activated) subtypes. These events end with chronic low-grade inflammation which interferes with insulin signaling in metabolic tissues to develop type 2 diabetes. However, there is a dearth in understanding the exact mechanism of Wnt-TLR axis during diabesity. This review dissects the molecular facets of Wnt and TLRs that modulates cellular components during diabesity and provides current progress, challenges and alternative therapeutic strategies at preclinical and clinical level.
Collapse
|
14
|
Indirubin-3'-oxime stimulates chondrocyte maturation and longitudinal bone growth via activation of the Wnt/β-catenin pathway. Exp Mol Med 2019; 51:1-10. [PMID: 31515471 PMCID: PMC6802626 DOI: 10.1038/s12276-019-0306-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/07/2019] [Accepted: 05/15/2019] [Indexed: 12/02/2022] Open
Abstract
Researchers have shown increased interest in determining what stimulates height. Currently, many children undergo precocious puberty, resulting in short stature due to premature closure of the growth plate. However, the current approach for height enhancement is limited to growth hormone treatment, which often results in side effects and clinical failure and is costly. Although recent studies have indicated the importance of paracrine signals in the growth plate for longitudinal bone growth, height-stimulating agents targeting the signaling pathways involved in growth plate maturation remain unavailable in the clinic. The Wnt/β-catenin pathway plays a major role in the maturation of growth plate chondrocytes. In this study, by using an ex vivo tibial culture system, we identified indirubin-3′-oxime (I3O) as a compound capable of enhancing longitudinal bone growth. I3O promoted chondrocyte proliferation and differentiation via activation of the Wnt/β-catenin pathway in vitro. Intraperitoneal injection of I3O in adolescent mice increased growth plate height along with incremental chondrocyte maturation. I3O promoted tibial growth without significant adverse effects on bone thickness and articular cartilage. Therefore, I3O could be a potential therapeutic agent for increasing height in children with growth retardation. A compound that stimulates longitudinal bone growth could lead to safer treatments for children with short stature. Growth hormone treatments can normalize development in some children with growth hormone deficiency, but the side effects can be severe. Researchers led by Kang-Yell Choi at Yonsei University, Seoul, South Korea, have determined that chemical stimulation of a critical cell signaling pathway involving bone growth may offer a better approach for growing taller. Longitudinal growth of bones is driven by the proliferation and differentiation of cartilage cells in the growth plate. Choi and colleagues screened a chemical library and identified a compound derived from traditional Chinese herbs, which efficiently promotes this bone growth process in cultured cartilage cells and in the tibias of three-week-old mice. This compound appears safe, suggesting a potentially better avenue for promoting height growth.
Collapse
|
15
|
Deciphering the Role of WNT Signaling in Metabolic Syndrome–Linked Alzheimer’s Disease. Mol Neurobiol 2019; 57:302-314. [DOI: 10.1007/s12035-019-01700-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 07/09/2019] [Indexed: 12/22/2022]
|
16
|
Motaleb MA, Selim AA. Dioximes: Synthesis and biomedical applications. Bioorg Chem 2019; 82:145-155. [DOI: 10.1016/j.bioorg.2018.10.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 10/04/2018] [Accepted: 10/05/2018] [Indexed: 12/31/2022]
|
17
|
Synthesis of new indirubin derivatives and their in vitro anticancer activity. CHEMICAL PAPERS 2018. [DOI: 10.1007/s11696-018-0659-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
18
|
Abstract
Wnt/β-catenin signaling pathway is essential for embryo development and adult tissue homeostasis and regeneration, abnormal regulation of the pathway is tightly associated with many disease types, suggesting that Wnt/β-catenin signaling pathway is an attractive target for disease therapy. While the Wnt inhibitors have been extensively reviewed, small molecules activating Wnt/β-catenin signaling were rarely addressed. In this article, we firstly reviewed the diseases that were associated with disruption of Wnt/β-catenin signaling pathway, including hair loss, pigmentary disorders, wound healing, bone diseases, neurodegenerative diseases and chronic obstructive pulmonary diseases, etc. We also comprehensively summarized small molecules that activated Wnt/β-catenin signaling pathway in various models in vitro and in vivo. To evaluate the therapeutic potential of Wnt activation, we focused on the discovery strategies, phenotypic characterization, and target identification of the Wnt activators. Finally, we proposed the challenges and opportunities in development of Wnt activators for pharmacological agents in term of targeting safety and selectivity.
Collapse
|
19
|
Lee MY, Li YZ, Huang KJ, Huang HC, Lin CY, Lee YR. Indirubin-3'-oxime suppresses human cholangiocarcinoma through cell-cycle arrest and apoptosis. Eur J Pharmacol 2018; 839:57-65. [PMID: 30267650 DOI: 10.1016/j.ejphar.2018.09.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 09/10/2018] [Accepted: 09/25/2018] [Indexed: 12/19/2022]
Abstract
Cholangiocarcinoma (CCA) is one of the most serious of all cancers and a major public health problem. CCA is an extremely invasive cancer, and the survival rate for CCA patients is only 24 months after diagnosis. Although surgery and chemotherapy can extend the survival rate to 5 years, < 20-40% of CCA patients will survive this long; therefore, it is crucial to discover an effective chemotherapeutic agent for CCA. Indirubin-3'-oxime (I3O), a derivative of indirubin, has been shown to suppress cell proliferation and induce cell-cycle arrest and cell apoptosis in various human cancers. In this study, four human CCA cell lines-NOZ, HuCCT1, OCUG-1, and OZ-were used to evaluate the anticancer properties of I3O. Cell viability, cell-cycle arrest, and apoptosis were assessed using Western blotting, immunofluorescence, and flow cytometry analysis. The data show that I3O treatment can inhibit cell proliferation and induce cell-cycle arrest, and caspase-dependent apoptosis in CCA cells. These findings suggest that I3O could suppress tumor growth by regulating the cell cycle and inducing apoptosis, and is a potential therapeutic agent for treating human CCA.
Collapse
Affiliation(s)
- Ming-Yang Lee
- Departments of Hematology and Oncology, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi 600, Taiwan; Departments of Nursing, Min-Hwei College of Health Care Management, Tainan 736, Taiwan.
| | - Yi-Zhen Li
- Departments of Medical Research, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi 600, Taiwan.
| | - Kao-Jean Huang
- Institute of Biologics, Development Center for Biotechnology, New Taipei City 22180, Taiwan.
| | - Hui-Chi Huang
- Development of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung 40402, Taiwan.
| | - Ching-Yen Lin
- Departments of Medical Research, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi 600, Taiwan.
| | - Ying-Ray Lee
- Departments of Medical Research, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi 600, Taiwan; Departments of Nursing, Min-Hwei College of Health Care Management, Tainan 736, Taiwan.
| |
Collapse
|
20
|
Ichimaru Y, Fujii T, Saito H, Sano M, Uchiyama T, Miyairi S. 5-Bromoindirubin 3′-(O-oxiran-2-ylmethyl)oxime: A long-acting anticancer agent and a suicide inhibitor for epoxide hydrolase. Bioorg Med Chem 2017; 25:4665-4676. [DOI: 10.1016/j.bmc.2017.07.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 06/20/2017] [Accepted: 07/06/2017] [Indexed: 10/19/2022]
|
21
|
Doğan A, Demirci S, Apdik H, Bayrak OF, Gulluoglu S, Tuysuz EC, Gusev O, Rizvanov AA, Nikerel E, Şahin F. A new hope for obesity management: Boron inhibits adipogenesis in progenitor cells through the Wnt/β-catenin pathway. Metabolism 2017; 69:130-142. [PMID: 28285642 DOI: 10.1016/j.metabol.2017.01.021] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 01/07/2017] [Accepted: 01/12/2017] [Indexed: 11/25/2022]
Abstract
Obesity is a worldwide medical problem resulting in serious morbidity and mortality involving differentiation of pre-adipocytes into mature adipocytes (adipogenesis). Boron treatment has been reported to be associated with weight reduction in experimental animals; however, its effects on pre-adipocyte differentiation and anti-adipogenic molecular mechanisms are unknown. In this study, we demonstrate the inhibitory activities of boric acid (BA) and sodium pentaborate pentahydrate (NaB) on adipogenesis using common cellular models. Boron treatment repressed the expression of adipogenesis-related genes and proteins, including CCAAT-enhancer-binding protein α and peroxisome proliferator-activated receptor γ, by regulating critical growth factors and the β-catenin, AKT, and extracellular signal-regulated kinase signaling pathways. In addition, although boron treatment did not induce apoptosis in pre-adipocytes, it depressed mitotic clonal expansion by regulation of cell cycle genes. Overall, these data offer promising insights into the prevention/treatment of obesity and associated diseases.
Collapse
Affiliation(s)
- Ayşegül Doğan
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Kayisdagi Cad. 26 Agustos Yerlesimi, 34755 Atasehir, Istanbul, Turkey; National Cancer Instıtute, CDBL, NIH, Frederıck, MD
| | - Selami Demirci
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Kayisdagi Cad. 26 Agustos Yerlesimi, 34755 Atasehir, Istanbul, Turkey; National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, MD.
| | - Hüseyin Apdik
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Kayisdagi Cad. 26 Agustos Yerlesimi, 34755 Atasehir, Istanbul, Turkey
| | - Omer Faruk Bayrak
- Department of Medical Genetics, Yeditepe University Medical School Inonu Mah, Kayisdagi Cad. 26 Agustos Yerlesimi, 34755 Atasehir, Istanbul, Turkey
| | - Sukru Gulluoglu
- Department of Medical Genetics, Yeditepe University Medical School Inonu Mah, Kayisdagi Cad. 26 Agustos Yerlesimi, 34755 Atasehir, Istanbul, Turkey
| | - Emre Can Tuysuz
- Department of Medical Genetics, Yeditepe University Medical School Inonu Mah, Kayisdagi Cad. 26 Agustos Yerlesimi, 34755 Atasehir, Istanbul, Turkey
| | - Oleg Gusev
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia; Riken Innovation Center, Riken, Yokohama, Japan
| | - Albert A Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Emrah Nikerel
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Kayisdagi Cad. 26 Agustos Yerlesimi, 34755 Atasehir, Istanbul, Turkey
| | - Fikrettin Şahin
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Kayisdagi Cad. 26 Agustos Yerlesimi, 34755 Atasehir, Istanbul, Turkey
| |
Collapse
|
22
|
Takahashi C, Kurano M, Nishikawa M, Kano K, Dohi T, Miyauchi K, Daida H, Shimizu T, Aoki J, Yatomi Y. Vehicle-dependent Effects of Sphingosine 1-phosphate on Plasminogen Activator Inhibitor-1 Expression. J Atheroscler Thromb 2017; 24:954-969. [PMID: 28321011 PMCID: PMC5587522 DOI: 10.5551/jat.37663] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Aim: Sphingosine 1-phosphate (S1P) has been suggested to be a positive regulator of plasminogen activator inhibitor 1 (PAI-1) in adipocytes, while some studies are not consistent with this prothrombotic property of S1P. Since S1P is bound to apolipoprotein M (apoM) on HDL or to albumin in plasma, we compared the properties of these two forms on the PAI-1 induction. Methods: We investigated the associations of S1P, apoM, and PAI-1 concentrations in the plasma of normal coronary artery (NCA), stable angina pectoris (SAP), and acute coronary syndrome (ACS) subjects (n = 32, 71, and 38, respectively). Then, we compared the effects of S1P with various vehicles on the PAI-1 expression in 3T3L1 adipocytes. We also investigated the modulation of the PAI-1 levels in mice infected with adenovirus coding apoM. Results: Among ACS subjects, the PAI-1 level was positively correlated with the S1P level, but not the apoM level. In adipocytes, S1P bound to an apoM-rich vehicle induced PAI-1 expression to a lesser extent than the control vehicle, while S1P bound to an apoM-depleted vehicle induced PAI-1 expression to a greater extent than the control vehicle in 3T3L1 adipocytes. Additionally, apoM overexpression in mice failed to modulate the plasma PAI-1 level and the adipose PAI-1 expression level. S1P bound to albumin increased PAI-1 expression through the S1P receptor 2-Rho/ROCK-NFκB pathway. Conclusion: S1P bound to albumin, but not to apoM, induces PAI-1 expression in adipocytes, indicating that S1P can exert different properties on the pathogenesis of vascular diseases, depending on its vehicle.
Collapse
Affiliation(s)
- Chiharu Takahashi
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo.,CREST, Japan Science and Technology Corporation (JST)
| | - Makoto Kurano
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo.,CREST, Japan Science and Technology Corporation (JST)
| | - Masako Nishikawa
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo.,CREST, Japan Science and Technology Corporation (JST)
| | - Kuniyuki Kano
- CREST, Japan Science and Technology Corporation (JST).,Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University
| | - Tomotaka Dohi
- Department of Cardiovascular Medicine, Juntendo University School of Medicine
| | - Katsumi Miyauchi
- Department of Cardiovascular Medicine, Juntendo University School of Medicine
| | - Hiroyuki Daida
- Department of Cardiovascular Medicine, Juntendo University School of Medicine
| | - Tomo Shimizu
- Tsukuba Research Institute, Research & Development Division, Sekisui Medical Co., Ltd
| | - Junken Aoki
- CREST, Japan Science and Technology Corporation (JST).,Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University
| | - Yutaka Yatomi
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo.,CREST, Japan Science and Technology Corporation (JST)
| |
Collapse
|
23
|
Shon MS, Kim SK, Song JH, Kamegai M, Cha BY, Ishida Y, Lee SC, Kim GN. Anti-oxidant and anti-adipogenic effects of acorn ( Quercus acutissima CARR.) shell extracts via regulation of wnt signaling in 3T3-L1 cells. Food Sci Biotechnol 2016; 25:875-882. [PMID: 30263348 DOI: 10.1007/s10068-016-0144-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Revised: 01/22/2016] [Accepted: 01/29/2016] [Indexed: 01/01/2023] Open
Abstract
Acorn (Quercus acutissima CARR.) is a nut from the Fagaceae family that has been used in traditional medicine for many years. However, shells from acorns are regarded as a by-product and are mostly discarded. Anti-adipogenic activities of acorn shells were investigated using 3T3-L1 cells and methanol shell extracts (AE-M). AE-M demonstrated Cu2+-chelation activities and anti-oxidant activities via reduction of oxidative stress levels induced using AAPH. Six days after adipocyte differentiation, 50 and 100 μg/mL AE-M completely suppressed 3T3-L1 adipogenesis and the anti-adipogenic effect was stronger than for the positive control 50 μM quercetin. Treatment with AE-M in 3T3-L1 cells reduced mRNA expression levels of adipogenic genes. AE-M-inhibition was found in pre-adipogenic, early, and intermediate stages of adipogenesis in 3T3-L1 cells. The Wnt/β-catenin signaling pathway is required for AE-M-inhibition of 3T3-L1 adipogenesis.
Collapse
Affiliation(s)
- Myung-Soo Shon
- 4Department of Food, Nutrition and Biotechnology, Kyungnam University, Changwon, Gyeongnam, 51767 Korea
| | - Si-Kyung Kim
- 4Department of Food, Nutrition and Biotechnology, Kyungnam University, Changwon, Gyeongnam, 51767 Korea
| | - Ji-Hye Song
- Traditional and Biomedical Research Center, Daejeon, 34520 Korea
| | - Masayuki Kamegai
- 2Department of Biological Chemistry, College of Bioscience and Biotechnology, Chubu University, Kasugai, 487-8501 Japan
| | - Byung-Yoon Cha
- 3Research Institute for Biological Functions, Chubu University, Kasugai, 487-8501 Japan
| | - Yasuyuki Ishida
- 2Department of Biological Chemistry, College of Bioscience and Biotechnology, Chubu University, Kasugai, 487-8501 Japan
| | - Seung-Cheol Lee
- 4Department of Food, Nutrition and Biotechnology, Kyungnam University, Changwon, Gyeongnam, 51767 Korea
| | - Gyo-Nam Kim
- 4Department of Food, Nutrition and Biotechnology, Kyungnam University, Changwon, Gyeongnam, 51767 Korea
| |
Collapse
|
24
|
Gautam J, Khedgikar V, Choudhary D, Kushwaha P, Dixit P, Singh D, Maurya R, Trivedi R. An isoflavone cladrin prevents high-fat diet-induced bone loss and inhibits the expression of adipogenic gene regulators in 3T3-L1 adipocyte. J Pharm Pharmacol 2016; 68:1051-63. [DOI: 10.1111/jphp.12562] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 03/29/2016] [Indexed: 01/05/2023]
Abstract
Abstract
Objective
This study evaluates the effect of isoflavone cladrin on high-fat diet (HFD)-induced bone loss and adipogenesis.
Methods
Thirty-two 4-week-old male C57BL/6J mice were divided into four groups: a standard diet group, a HFD group and HFD group with cladrin (5 and 10 mg/kg per day orally) for 12 weeks. The effect of cladrin on bone micro-architecture, bone marrow cell lineages and hyperlipidaemia were assessed. For assessing anti-adipogenic activity of cladrin, 3T3-L1 cells were used.
Key findings
Cladrin attenuated HFD-induced hyperlipidaemia and bone loss by preserving bone micro-architecture and strength. Effect of cladrin was found at the level of bone marrow progenitor cells. Gene expression profile of cladrin-treated mice bone showed upregulation of osteoblast and downregulation of adipogenic transcription factors and increased OPG/RANKL ratio. Cladrin inhibited cellular lipid accumulation through downregulation of transcription factors such as PPAR-γ and C/EBP-α and modulated the expression of major adipokines involved behind obesity stimulation without eliciting cell cytotoxicity in 3T3-L1 adipocytes.
Conclusion
We conclude that cladrin may improve obesity-induced bone loss and hyperlipidaemia in mice fed HFD and adipogenesis in 3T3-L1 cells by modifying adipokines and could offer clinical benefits as a supplement to treat obesity-induced disorders.
Collapse
Affiliation(s)
- Jyoti Gautam
- Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Vikram Khedgikar
- Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | | | - Priyanka Kushwaha
- Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Preeti Dixit
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Divya Singh
- Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Rakesh Maurya
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Ritu Trivedi
- Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow, India
| |
Collapse
|
25
|
Soldi R, Horrigan SK, Cholody MW, Padia J, Sorna V, Bearss J, Gilcrease G, Bhalla K, Verma A, Vankayalapati H, Sharma S. Design, Synthesis, and Biological Evaluation of a Series of Anthracene-9,10-dione Dioxime β-Catenin Pathway Inhibitors. J Med Chem 2015; 58:5854-62. [PMID: 26182238 DOI: 10.1021/acs.jmedchem.5b00460] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The Wnt/β-catenin signaling pathway plays a vital role in cell growth, the regulation, cell development, and the differentiation of normal stem cells. Constitutive activation of the Wnt/β-catenin signaling pathway is found in many human cancers, and thus, it is an attractive target for anticancer therapy. Specific inhibitors of this pathway have been keenly researched and developed. Cell based screening of compounds library, hit-to-lead optimization, computational and structure-based design strategies resulted in the design and synthesis of a series of anthracene-9,10-dione dioxime series of compounds demonstrated potent inhibition of β-catenin in vitro (IC50 < 10 nM, 14) and the growth of several cancer cell lines. This article discusses the potential of inhibiting the Wnt/β-catenin signaling pathway as a therapeutic approach for cancer along with an overview of the development of specific inhibitors.
Collapse
Affiliation(s)
- Raffaella Soldi
- †Division of Oncology of School of Medicine and Center for Investigational Therapeutics at Huntsman Cancer Institute, University of Utah, 2000 Circle of Hope, Salt Lake City, Utah 84112, United States
| | - Stephen K Horrigan
- ‡ Beta Cat Pharmaceuticals LLC, 22 Firstfield Road, Gaithersburg, Maryland 20878, United States
| | | | - Janak Padia
- ∥PrimeTime Life Sciences, 9700, Great Seneca Highway, Rockville, Maryland 20850, United States
| | - Venkataswamy Sorna
- †Division of Oncology of School of Medicine and Center for Investigational Therapeutics at Huntsman Cancer Institute, University of Utah, 2000 Circle of Hope, Salt Lake City, Utah 84112, United States
| | - Jared Bearss
- †Division of Oncology of School of Medicine and Center for Investigational Therapeutics at Huntsman Cancer Institute, University of Utah, 2000 Circle of Hope, Salt Lake City, Utah 84112, United States
| | - Glynn Gilcrease
- †Division of Oncology of School of Medicine and Center for Investigational Therapeutics at Huntsman Cancer Institute, University of Utah, 2000 Circle of Hope, Salt Lake City, Utah 84112, United States
| | - Kapil Bhalla
- ⊥Cockrell Center for Advanced Therapeutics, The Methodist Hospital Research Institute, 6670 Bertner Avenue, R9-113, Houston, Texas 77030, United States
| | - Anupam Verma
- #Department of Pediatric Hematology/Oncology, Primary Children's Hospital, University of Utah, 100 Mario Capecchi Drive, Salt Lake City, Utah 84113, United States
| | - Hariprasad Vankayalapati
- †Division of Oncology of School of Medicine and Center for Investigational Therapeutics at Huntsman Cancer Institute, University of Utah, 2000 Circle of Hope, Salt Lake City, Utah 84112, United States
| | - Sunil Sharma
- †Division of Oncology of School of Medicine and Center for Investigational Therapeutics at Huntsman Cancer Institute, University of Utah, 2000 Circle of Hope, Salt Lake City, Utah 84112, United States
| |
Collapse
|
26
|
Zhao S, Tian Y, Zhang W, Xing X, Li T, Liu H, Huang T, Ning Y, Zhao H, Chen ZJ. An association study between USP34 and polycystic ovary syndrome. J Ovarian Res 2015; 8:30. [PMID: 25975428 PMCID: PMC4435648 DOI: 10.1186/s13048-015-0158-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 05/08/2015] [Indexed: 11/10/2022] Open
Abstract
Background Polycystic ovary syndrome (PCOS) is a complex multifactor disorder and genetic factors have been implicated in its pathogenesis. Our previous genome-wide association study (GWAS) had identified allele frequencies in several single nucleotide polymorphisms (SNPs) in gene USP34 (Ubiquitin-Specific Protease 34) were significantly different between PCOS cases and controls. This study was aimed to replicate the previous results in another independent cohort. Methods One thousand two hundred eighteen PCOS cases and 1057 controls were recruited. Genotyping of two SNPs (rs17008097 and rs17008940) in USP34 gene were performed by TaqMan-MGB probe assay and genotype-phenotype analysis was conducted subsequently. Results The differences of allele or genotype frequencies were not significant statistically between PCOS and controls, even after age and BMI adjustment. For clinical and metabolic features (LH, T and HOMA-IR) analysis in PCOS cases, no statistical differences among three genotypes of rs17008097 and rs17008940 were found. However, rs17008940 was shown to be slightly associated with BMI in PCOS cases rather than in controls, even after age adjustment (TC vs CC P = 0.006, OR = 1.042, 95% CI 1.012–1.073; TT vs CC P = 0.037, OR = 1.050, 95% CI 1.003–1.100). Conclusions USP34 gene polymorphisms (rs17008097 and rs17008940) may not be associated with PCOS in the Han Chinese women. Electronic supplementary material The online version of this article (doi:10.1186/s13048-015-0158-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shigang Zhao
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200135, China. .,Center for Reproductive Medicine, Provincial Hospital Affiliated to Shandong University, Jinan, China. .,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, China. .,The Key laboratory for Reproductive Endocrinology of Ministry of Education, Jinan, China. .,Shandong Provincial Key Laboratory of Reproductive Medicine, Jinan, 250021, China.
| | - Ye Tian
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200135, China.
| | - Wei Zhang
- Department of joint and bone oncology, Provincial Hospital Affiliated to Shandong University, Jinan, 250021, China.
| | - Xiuye Xing
- Center for Reproductive Medicine, Provincial Hospital Affiliated to Shandong University, Jinan, China. .,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, China. .,The Key laboratory for Reproductive Endocrinology of Ministry of Education, Jinan, China. .,Shandong Provincial Key Laboratory of Reproductive Medicine, Jinan, 250021, China.
| | - Tao Li
- Center for Reproductive Medicine, Provincial Hospital Affiliated to Shandong University, Jinan, China. .,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, China. .,The Key laboratory for Reproductive Endocrinology of Ministry of Education, Jinan, China. .,Shandong Provincial Key Laboratory of Reproductive Medicine, Jinan, 250021, China.
| | - Hongbin Liu
- Center for Reproductive Medicine, Provincial Hospital Affiliated to Shandong University, Jinan, China. .,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, China. .,The Key laboratory for Reproductive Endocrinology of Ministry of Education, Jinan, China. .,Shandong Provincial Key Laboratory of Reproductive Medicine, Jinan, 250021, China.
| | - Tao Huang
- Center for Reproductive Medicine, Provincial Hospital Affiliated to Shandong University, Jinan, China. .,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, China. .,The Key laboratory for Reproductive Endocrinology of Ministry of Education, Jinan, China. .,Shandong Provincial Key Laboratory of Reproductive Medicine, Jinan, 250021, China.
| | - Yunna Ning
- Center for Reproductive Medicine, Provincial Hospital Affiliated to Shandong University, Jinan, China. .,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, China. .,The Key laboratory for Reproductive Endocrinology of Ministry of Education, Jinan, China. .,Shandong Provincial Key Laboratory of Reproductive Medicine, Jinan, 250021, China.
| | - Han Zhao
- Center for Reproductive Medicine, Provincial Hospital Affiliated to Shandong University, Jinan, China. .,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, China. .,The Key laboratory for Reproductive Endocrinology of Ministry of Education, Jinan, China. .,Shandong Provincial Key Laboratory of Reproductive Medicine, Jinan, 250021, China.
| | - Zi-Jiang Chen
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200135, China. .,Center for Reproductive Medicine, Provincial Hospital Affiliated to Shandong University, Jinan, China. .,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, China. .,The Key laboratory for Reproductive Endocrinology of Ministry of Education, Jinan, China. .,Shandong Provincial Key Laboratory of Reproductive Medicine, Jinan, 250021, China.
| |
Collapse
|
27
|
Anti-adipogenic activity of blue mussel (Mytilus edulis) extract by regulation of 3T3-L1 adipogenesis through Wnt/β-catenin signaling pathway. Food Sci Biotechnol 2015. [DOI: 10.1007/s10068-015-0042-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
28
|
Schneider AJ, Branam AM, Peterson RE. Intersection of AHR and Wnt signaling in development, health, and disease. Int J Mol Sci 2014; 15:17852-85. [PMID: 25286307 PMCID: PMC4227194 DOI: 10.3390/ijms151017852] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 09/04/2014] [Accepted: 09/18/2014] [Indexed: 12/16/2022] Open
Abstract
The AHR (aryl hydrocarbon receptor) and Wnt (wingless-related MMTV integration site) signaling pathways have been conserved throughout evolution. Appropriately regulated signaling through each pathway is necessary for normal development and health, while dysregulation can lead to developmental defects and disease. Though both pathways have been vigorously studied, there is relatively little research exploring the possibility of crosstalk between these pathways. In this review, we provide a brief background on (1) the roles of both AHR and Wnt signaling in development and disease, and (2) the molecular mechanisms that characterize activation of each pathway. We also discuss the need for careful and complete experimental evaluation of each pathway and describe existing research that explores the intersection of AHR and Wnt signaling. Lastly, to illustrate in detail the intersection of AHR and Wnt signaling, we summarize our recent findings which show that 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced disruption of Wnt signaling impairs fetal prostate development.
Collapse
Affiliation(s)
- Andrew J Schneider
- School of Pharmacy and Molecular and Environmental Toxicology Center University of Wisconsin, Madison, WI 53705, USA.
| | - Amanda M Branam
- School of Pharmacy and Molecular and Environmental Toxicology Center University of Wisconsin, Madison, WI 53705, USA.
| | - Richard E Peterson
- School of Pharmacy and Molecular and Environmental Toxicology Center University of Wisconsin, Madison, WI 53705, USA.
| |
Collapse
|