1
|
Nyúl-Tóth Á, Patai R, Csiszar A, Ungvari A, Gulej R, Mukli P, Yabluchanskiy A, Benyo Z, Sotonyi P, Prodan CI, Liotta EM, Toth P, Elahi F, Barsi P, Maurovich-Horvat P, Sorond FA, Tarantini S, Ungvari Z. Linking peripheral atherosclerosis to blood-brain barrier disruption: elucidating its role as a manifestation of cerebral small vessel disease in vascular cognitive impairment. GeroScience 2024; 46:6511-6536. [PMID: 38831182 PMCID: PMC11494622 DOI: 10.1007/s11357-024-01194-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 05/06/2024] [Indexed: 06/05/2024] Open
Abstract
Aging plays a pivotal role in the pathogenesis of cerebral small vessel disease (CSVD), contributing to the onset and progression of vascular cognitive impairment and dementia (VCID). In older adults, CSVD often leads to significant pathological outcomes, including blood-brain barrier (BBB) disruption, which in turn triggers neuroinflammation and white matter damage. This damage is frequently observed as white matter hyperintensities (WMHs) in neuroimaging studies. There is mounting evidence that older adults with atherosclerotic vascular diseases, such as peripheral artery disease, ischemic heart disease, and carotid artery stenosis, face a heightened risk of developing CSVD and VCID. This review explores the complex relationship between peripheral atherosclerosis, the pathogenesis of CSVD, and BBB disruption. It explores the continuum of vascular aging, emphasizing the shared pathomechanisms that underlie atherosclerosis in large arteries and BBB disruption in the cerebral microcirculation, exacerbating both CSVD and VCID. By reviewing current evidence, this paper discusses the impact of endothelial dysfunction, cellular senescence, inflammation, and oxidative stress on vascular and neurovascular health. This review aims to enhance understanding of these complex interactions and advocate for integrated approaches to manage vascular health, thereby mitigating the risk and progression of CSVD and VCID.
Collapse
Affiliation(s)
- Ádám Nyúl-Tóth
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Public Health, Semmelweis University, Semmelweis University, Budapest, Hungary
| | - Roland Patai
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Anna Csiszar
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
| | - Anna Ungvari
- Department of Public Health, Semmelweis University, Semmelweis University, Budapest, Hungary.
| | - Rafal Gulej
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Peter Mukli
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Public Health, Semmelweis University, Semmelweis University, Budapest, Hungary
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Doctoral College/Department of Public Health, International Training Program in Geroscience, Semmelweis University, Budapest, Hungary
| | - Zoltan Benyo
- Institute of Translational Medicine, Semmelweis University, 1094, Budapest, Hungary
- Cerebrovascular and Neurocognitive Disorders Research Group, HUN-REN, Semmelweis University, 1094, Budapest, Hungary
| | - Peter Sotonyi
- Department of Vascular and Endovascular Surgery, Heart and Vascular Centre, Semmelweis University, 1122, Budapest, Hungary
| | - Calin I Prodan
- Veterans Affairs Medical Center, Oklahoma City, OK, USA
- Department of Neurology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Eric M Liotta
- Doctoral College/Department of Public Health, International Training Program in Geroscience, Semmelweis University, Budapest, Hungary
- Department of Neurology, Division of Stroke and Neurocritical Care, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Peter Toth
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Public Health, Semmelweis University, Semmelweis University, Budapest, Hungary
- Department of Neurosurgery, Medical School, University of Pecs, Pecs, Hungary
- Neurotrauma Research Group, Szentagothai Research Centre, University of Pecs, Pecs, Hungary
- ELKH-PTE Clinical Neuroscience MR Research Group, University of Pecs, Pecs, Hungary
| | - Fanny Elahi
- Departments of Neurology and Neuroscience Ronald M. Loeb Center for Alzheimer's Disease Friedman Brain Institute Icahn School of Medicine at Mount Sinai, New York, NY, USA
- James J. Peters VA Medical Center, Bronx, NY, USA
| | - Péter Barsi
- ELKH-SE Cardiovascular Imaging Research Group, Department of Radiology, Medical Imaging Centre, Semmelweis University, Budapest, Hungary
| | - Pál Maurovich-Horvat
- ELKH-SE Cardiovascular Imaging Research Group, Department of Radiology, Medical Imaging Centre, Semmelweis University, Budapest, Hungary
| | - Farzaneh A Sorond
- Department of Neurology, Division of Stroke and Neurocritical Care, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Stefano Tarantini
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Doctoral College/Department of Public Health, International Training Program in Geroscience, Semmelweis University, Budapest, Hungary
| | - Zoltan Ungvari
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Doctoral College/Department of Public Health, International Training Program in Geroscience, Semmelweis University, Budapest, Hungary
| |
Collapse
|
2
|
Low-dose nano-gel incorporated with bile acids enhanced pharmacology of surgical implants. Ther Deliv 2023; 14:17-29. [PMID: 36919692 DOI: 10.4155/tde-2022-0037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Aim: Major challenges to islet transplantation in Type 1 diabetes include host-inflammation, which results in failure to maintain survival and functions of transplanted islets. Therefore, this study investigated the applications of encapsulating the bile acid ursodeoxycholic acid (UDCA) with transplanted islets within improved nano-gel systems for Type 1 diabetes treatment. Materials & methods: Islets were harvested from healthy mice, encapsulated using UDCA-nano gel and transplanted into the diabetic mice, while the control group was transplanted encapsulated islets without UDCA. The two groups' survival plot, blood glucose, and inflammation and bile acid profiles were analyzed. Results & conclusion: UDCA-nano gel enhanced survival, glycemia and normalized bile acids' profile, which suggests improved islets functions and potential adjunct treatment for insulin therapy.
Collapse
|
3
|
Reduced Cytokine Tumour Necrosis Factor by Pharmacological Intervention in a Preclinical Study. Biomolecules 2022; 12:biom12070877. [PMID: 35883432 PMCID: PMC9313251 DOI: 10.3390/biom12070877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/15/2022] [Accepted: 06/22/2022] [Indexed: 02/04/2023] Open
Abstract
Recent preclinical studies in our laboratory have shown that the bile acid profile is altered during diabetes development and such alteration has been linked to the diabetes-associated inflammatory profile. Hence, this study aimed to investigate if the first-line antidiabetic drug metformin will alter the bile acid profile and diabetes-associated inflammation in a murine model of pre-type 2 diabetes. C57 mice were randomly allocated into three equal groups of eight. Group One was given a low-fat diet (LFD), Group Two was given a high-fat diet (HFD), and Group Three was given an HFD and, upon prediabetes confirmation, daily oral metformin for one month. Blood glucose, glycated haemoglobin, drug concentrations in tissues and faeces, and the inflammatory and bile acid profiles were measured. Metformin showed wide tissue distribution and was also present in faeces. The bile acid profile showed significant alteration due to prediabetes, and although metformin did not completely normalize it, it did exert significant effects on both the bile acid and the inflammatory profiles, suggesting a direct and, to some extent, positive impact, particularly on the diabetes-associated inflammatory profile.
Collapse
|
4
|
Daily blood pressure profile and blood-brain barrier permeability in patients with cerebral small vessel disease. Sci Rep 2022; 12:7723. [PMID: 35545641 PMCID: PMC9095696 DOI: 10.1038/s41598-022-11172-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 04/19/2022] [Indexed: 11/23/2022] Open
Abstract
Cerebral small vessel disease (CSVD) plays an important role in cognitive impairment, stroke, disability, and death. Hypertension is the main risk factor for CSVD. The use of antihypertensive therapy has not resulted in the expected decrease in CSVD complications, which may be related to the underestimation of significance of daily blood pressure profile for blood–brain barrier (BBB) permeability. 53 patients with CSVD of varying severity (mean age 60.08 ± 6.8 years, 69.8% women, subjects with treated long-standing hypertension vs. normotensive subjects − 84.8% vs. 15.2%) and 17 healthy volunteers underwent ambulatory blood pressure monitoring (ABPM) and MRI, including T1-weighted dynamic contrast-enhanced magnetic resonance imaging for assessing BBB permeability. Most of ABPM parameters in CSVD patients did not differ from controls, but were associated with the severity of white matter hyperintensity (WMH) and the total CSVD score. BBB permeability in normal-appearing white matter (NAWM) and grey matter (GM) was significantly higher in CSVD patients, and the severity of BBB permeability remained similar in patients with different stages of WMH. Among BBB permeability parameters, the area under the curve, corresponding to an increase in the contrast transit time in NAWM, had the greatest number of correlations with deviations of ABPM parameters. BBB permeability in CSVD is a universal mechanism of NAWM and GM damage associated with a slight increase in ABPM parameters. It is obvious that the treatment of hypertension in patients with not severe WMH should be more aggressive and carried out under the control of ABPM.
Collapse
|
5
|
Taurine Grafted Micro-Implants Improved Functions without Direct Dependency between Interleukin-6 and the Bile Acid Lithocholic Acid in Plasma. Biomedicines 2022; 10:biomedicines10010111. [PMID: 35052790 PMCID: PMC8772949 DOI: 10.3390/biomedicines10010111] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/14/2021] [Accepted: 12/21/2021] [Indexed: 01/27/2023] Open
Abstract
A recent study showed an association between diabetes development and the bile acid lithocholic acid (LCA), while another study demonstrated positive biological effects of the conjugated bile acid, taurocholic acid (TCA), on pancreatic cells. Thus, this study aimed to encapsulate TCA with primary islets (graft) and study the biological effects of the graft, post-transplantation, in diabetic mice, including effects on LCA concentrations. Sixteen mature adult mice were made diabetic and randomly divided into two equal groups, control and test (transplanted encapsulated islets without or with TCA). Graft pharmaceutical features pre-transplantation, and biological effects including on LCA concentrations post-transplantation, were measured. TCA-microcapsules had an oval shape and similar size compared with the control. The treatment group survived longer, showed improved glucose and interleukin-6 concentrations, and lower LCA concentrations in plasma, large intestine, faeces, liver and spleen, compared with control. Results suggest that TCA incorporation with islets encapsulated graft exerted beneficial effects, but there was no direct and significant dependency between concentrations of interleukin-6 and LCA.
Collapse
|
6
|
Mooranian A, Zamani N, Kovacevic B, Ionescu CM, Luna G, Mikov M, Goločorbin-Kon S, Stojanovic G, Kojic S, Al-Salami H. Pharmacological Effects of Secondary Bile Acid Microparticles in Diabetic Murine Model. Curr Diabetes Rev 2022; 18:e062620183199. [PMID: 32589561 DOI: 10.2174/1573399816666200626213735] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 06/03/2020] [Accepted: 06/05/2020] [Indexed: 11/22/2022]
Abstract
AIM Examine bile acids effects in Type 2 diabetes. BACKGROUND In recent studies, the bile acid ursodeoxycholic acid (UDCA) has shown potent antiinflammatory effects in obese patients while in type 2 diabetics (T2D) levels of the pro-inflammatory bile acid lithocholic acid were increased, and levels of the anti-inflammatory bile acid chenodeoxycholic acid were decreased, in plasma. OBJECTIVE Hence, this study aimed to examine applications of novel UDCA microparticles in diabetes. METHODS Diabetic balb/c adult mice were divided into three equal groups and gavaged daily with either empty microcapsules, free UDCA, or microencapsulated UDCA over two weeks. Their blood, tissues, urine, and faeces were collected for blood glucose, inflammation, and bile acid analyses. UDCA resulted in modulatory effects on bile acids profile without antidiabetic effects suggesting that bile acid modulation was not directly linked to diabetes treatment. RESULTS UDCA resulted in modulatory effects on bile acids profile without antidiabetic effects suggesting that bile acid modulation was not directly linked to diabetes treatment. CONCLUSION Bile acids modulated the bile profile without affecting blood glucose levels.
Collapse
Affiliation(s)
- Armin Mooranian
- Biotechnology and Drug Development Research Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia,Australia
| | - Nassim Zamani
- Biotechnology and Drug Development Research Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia,Australia
| | - Bozica Kovacevic
- Biotechnology and Drug Development Research Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia,Australia
| | - Corina Mihaela Ionescu
- Biotechnology and Drug Development Research Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia,Australia
| | - Giuseppe Luna
- Biotechnology and Drug Development Research Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia,Australia
| | - Momir Mikov
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Novi Sad,Serbia
| | | | - Goran Stojanovic
- Faculty of Technical Sciences, University of Novi Sad, Novi Sad, Trg Dositeja Obradovica 6, 21000 Novi Sad,Serbia
| | - Sanja Kojic
- Faculty of Technical Sciences, University of Novi Sad, Novi Sad, Trg Dositeja Obradovica 6, 21000 Novi Sad,Serbia
| | - Hani Al-Salami
- Biotechnology and Drug Development Research Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia,Australia
| |
Collapse
|
7
|
Dobrynina L, Shamtieva K, Kremneva E, Zabitova M, Gadzhieva Z, Krotenkova M. Controlled arterial hypertension and blood-brain barrier damage in patients with age-related cerebral small vessel disease and cognitive impairments. Zh Nevrol Psikhiatr Im S S Korsakova 2022; 122:74-79. [DOI: 10.17116/jnevro202212211174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Graneri L, Lam V, D'Alonzo Z, Nesbit M, Mamo JCL, Takechi R. The Consumption of Energy Drinks Induces Blood-Brain Barrier Dysfunction in Wild-Type Mice. Front Nutr 2021; 8:668514. [PMID: 34012975 PMCID: PMC8126614 DOI: 10.3389/fnut.2021.668514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 04/08/2021] [Indexed: 12/15/2022] Open
Abstract
Energy drinks containing significant quantities of caffeine and sugar are increasingly consumed, particularly by adolescents and young adults. Chronic ingestion of energy drinks may potentially regulate vascular risk factors. This study investigated the effects of chronic ingestion of energy drinks on blood-brain barrier (BBB) integrity and neuroinflammation. Male C57BL/6J mice were maintained on water (control), MotherTM (ED), sugar-free MotherTM (sfED), or Coca ColaTM soft drink (SD) for 13 weeks. The BBB integrity and neuroinflammation were analyzed with semi-quantitative immunofluorescent microscopy. Blood pressure, plasma inflammatory cytokine levels and blood glucose were also considered. Following 13 weeks of intervention, mice treated with ED, sfED, and SD showed significant disruption of BBB. However, marked neuroinflammation was observed only in sfED group mice. The consumption of ED and sfED significantly altered the blood pressure and plasma concentrations of inflammatory cytokines, TNF-a, IL-4, IL-6, and IL-10, and both increased plasma glucose. Correlation analyses showed significant associations between BBB dysfunction and hypotension, hyperglycaemia and cytokine dyshomeostasis. The intake of energy drink, particularly the sugar free formulation, may compromise the integrity of BBB and induce neuroinflammation via hypotension, hyperglycaemia and inflammatory pathways.
Collapse
Affiliation(s)
- Liam Graneri
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia.,Curtin Medical School, Faculty of Health Science, Curtin University, Bentley, WA, Australia
| | - Virginie Lam
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia.,School of Population Health, Faculty of Health Science, Curtin University, Bentley, WA, Australia
| | - Zachary D'Alonzo
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia.,Curtin Medical School, Faculty of Health Science, Curtin University, Bentley, WA, Australia
| | - Michael Nesbit
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia.,Curtin Medical School, Faculty of Health Science, Curtin University, Bentley, WA, Australia
| | - John C L Mamo
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia.,Curtin Medical School, Faculty of Health Science, Curtin University, Bentley, WA, Australia
| | - Ryusuke Takechi
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia.,Curtin Medical School, Faculty of Health Science, Curtin University, Bentley, WA, Australia
| |
Collapse
|
9
|
Hiles-Murison B, Lavender AP, Hackett MJ, Armstrong JJ, Nesbit M, Rawlings S, McGonigle T, Warnock A, Lam V, Mamo JCL, Fitzgerald M, Takechi R. Blood-brain barrier disruption and ventricular enlargement are the earliest neuropathological changes in rats with repeated sub-concussive impacts over 2 weeks. Sci Rep 2021; 11:9261. [PMID: 33927338 PMCID: PMC8084989 DOI: 10.1038/s41598-021-88854-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/19/2021] [Indexed: 01/27/2023] Open
Abstract
Repeated sub-concussive impact (e.g. soccer ball heading), a significantly lighter form of mild traumatic brain injury, is increasingly suggested to cumulatively alter brain structure and compromise neurobehavioural function in the long-term. However, the underlying mechanisms whereby repeated long-term sub-concussion induces cerebral structural and neurobehavioural changes are currently unknown. Here, we utilised an established rat model to investigate the effects of repeated sub-concussion on size of lateral ventricles, cerebrovascular blood-brain barrier (BBB) integrity, neuroinflammation, oxidative stress, and biochemical distribution. Following repeated sub-concussion 3 days per week for 2 weeks, the rats showed significantly enlarged lateral ventricles compared with the rats receiving sham-only procedure. The sub-concussive rats also presented significant BBB dysfunction in the cerebral cortex and hippocampal formation, whilst neuromotor function assessed by beamwalk and rotarod tests were comparable to the sham rats. Immunofluorescent and spectroscopic microscopy analyses revealed no significant changes in neuroinflammation, oxidative stress, lipid distribution or protein aggregation, within the hippocampus and cortex. These data collectively indicate that repeated sub-concussion for 2 weeks induce significant ventriculomegaly and BBB disruption, preceding neuromotor deficits.
Collapse
Affiliation(s)
- Bailey Hiles-Murison
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia
- Curtin Medical School, Faculty of Health Sciences, Curtin University, Bentley, WA, Australia
| | - Andrew P Lavender
- School of Science, Psychology and Sport, Federation University Australia, Mount Helen, VIC, Australia
- School of Allied Health, Faculty of Health Sciences, Curtin University, Bentley, WA, Australia
| | - Mark J Hackett
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia
- School of Molecular and Life Sciences, Faculty of Science and Engineering, Curtin University, Bentley, WA, Australia
| | - Joshua J Armstrong
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia
- School of Molecular and Life Sciences, Faculty of Science and Engineering, Curtin University, Bentley, WA, Australia
| | - Michael Nesbit
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia
- School of Population Health, Faculty of Health Sciences, Curtin University, Bentley, WA, Australia
| | - Samuel Rawlings
- School of Allied Health, Faculty of Health Sciences, Curtin University, Bentley, WA, Australia
| | - Terrence McGonigle
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia
- Perron Institute for Neurological and Translational Science, Ralph and Patricia Sarich Neuroscience Research Institute, Nedlands, WA, Australia
| | - Andrew Warnock
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia
- Perron Institute for Neurological and Translational Science, Ralph and Patricia Sarich Neuroscience Research Institute, Nedlands, WA, Australia
| | - Virginie Lam
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia
- School of Population Health, Faculty of Health Sciences, Curtin University, Bentley, WA, Australia
| | - John C L Mamo
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia
- School of Population Health, Faculty of Health Sciences, Curtin University, Bentley, WA, Australia
| | - Melinda Fitzgerald
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia
- Perron Institute for Neurological and Translational Science, Ralph and Patricia Sarich Neuroscience Research Institute, Nedlands, WA, Australia
| | - Ryu Takechi
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia.
- School of Population Health, Faculty of Health Sciences, Curtin University, Bentley, WA, Australia.
| |
Collapse
|
10
|
Pegueroles J, Pané A, Vilaplana E, Montal V, Bejanin A, Videla L, Carmona‐Iragui M, Barroeta I, Ibarzabal A, Casajoana A, Alcolea D, Valldeneu S, Altuna M, de Hollanda A, Vidal J, Ortega E, Osorio R, Convit A, Blesa R, Lleó A, Fortea J, Jiménez A. Obesity impacts brain metabolism and structure independently of amyloid and tau pathology in healthy elderly. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2020; 12:e12052. [PMID: 32743041 PMCID: PMC7385480 DOI: 10.1002/dad2.12052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/22/2020] [Accepted: 05/26/2020] [Indexed: 12/16/2022]
Abstract
AIMS/HYPOTHESIS Midlife obesity is a risk factor for dementia. We investigated the impact of obesity on brain structure, metabolism, and cerebrospinal fluid (CSF) core Alzheimer's disease (AD) biomarkers in healthy elderly. METHODS We selected controls from ADNI2 with CSF AD biomarkers and/or fluorodeoxyglucose positron emission tomography (FDG-PET) and 3T-MRI. We measured cortical thickness, FDG uptake, and CSF amyloid beta (Aβ)1-42, p-tau, and t-tau levels. We performed regression analyses between these biomarkers and body mass index (BMI). RESULTS We included 201 individuals (mean age 73.5 years, mean BMI 27.4 kg/m2). Higher BMI was related to less cortical thickness and higher metabolism in brain areas typically not involved in AD (family-wise error [FWE] <0.05), but not to AD CSF biomarkers. It is notable that the impact of obesity on brain metabolism and structure was also found in amyloid negative individuals. CONCLUSIONS/INTERPRETATION In the cognitively unimpaired elderly, obesity has differential effects on brain metabolism and structure independent of an underlying AD pathophysiology.
Collapse
Affiliation(s)
- Jordi Pegueroles
- Memory Unit, Department of NeurologyHospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de BarcelonaBarcelonaSpain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
| | - Adriana Pané
- Obesity Unit, Endocrinology and Diabetes DepartmentHospital Clinic Universitari de BarcelonaBarcelonaSpain
| | - Eduard Vilaplana
- Memory Unit, Department of NeurologyHospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de BarcelonaBarcelonaSpain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
| | - Víctor Montal
- Memory Unit, Department of NeurologyHospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de BarcelonaBarcelonaSpain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
| | - Alexandre Bejanin
- Memory Unit, Department of NeurologyHospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de BarcelonaBarcelonaSpain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
| | - Laura Videla
- Memory Unit, Department of NeurologyHospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de BarcelonaBarcelonaSpain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
| | - María Carmona‐Iragui
- Memory Unit, Department of NeurologyHospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de BarcelonaBarcelonaSpain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
| | - Isabel Barroeta
- Memory Unit, Department of NeurologyHospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de BarcelonaBarcelonaSpain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
| | - Ainitze Ibarzabal
- Obesity Unit, Gastrointestinal Surgery DepartmentHospital Clínic de BarcelonaBarcelonaSpain
| | - Anna Casajoana
- Department of Bariatric SurgeryBellvitge University HospitalBarcelonaSpain
| | - Daniel Alcolea
- Memory Unit, Department of NeurologyHospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de BarcelonaBarcelonaSpain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
| | - Silvia Valldeneu
- Memory Unit, Department of NeurologyHospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de BarcelonaBarcelonaSpain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
| | - Miren Altuna
- Memory Unit, Department of NeurologyHospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de BarcelonaBarcelonaSpain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
| | - Ana de Hollanda
- Obesity Unit, Endocrinology and Diabetes DepartmentHospital Clinic Universitari de BarcelonaBarcelonaSpain
- Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS)BarcelonaSpain
- Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición (CIBEROBN)MadridSpain
| | - Josep Vidal
- Obesity Unit, Endocrinology and Diabetes DepartmentHospital Clinic Universitari de BarcelonaBarcelonaSpain
- Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS)BarcelonaSpain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)MadridSpain
| | - Emilio Ortega
- Obesity Unit, Endocrinology and Diabetes DepartmentHospital Clinic Universitari de BarcelonaBarcelonaSpain
- Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS)BarcelonaSpain
- Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición (CIBEROBN)MadridSpain
| | - Ricardo Osorio
- Brain, Obesity, and Diabetes Laboratory (BODyLab)New York University School of MedicineNew YorkUSA
| | - Antonio Convit
- Brain, Obesity, and Diabetes Laboratory (BODyLab)New York University School of MedicineNew YorkUSA
| | - Rafael Blesa
- Memory Unit, Department of NeurologyHospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de BarcelonaBarcelonaSpain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
| | - Alberto Lleó
- Memory Unit, Department of NeurologyHospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de BarcelonaBarcelonaSpain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
| | - Juan Fortea
- Memory Unit, Department of NeurologyHospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de BarcelonaBarcelonaSpain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
| | - Amanda Jiménez
- Obesity Unit, Endocrinology and Diabetes DepartmentHospital Clinic Universitari de BarcelonaBarcelonaSpain
- Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS)BarcelonaSpain
- Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición (CIBEROBN)MadridSpain
| | | |
Collapse
|
11
|
Mooranian A, Zamani N, Mikov M, Goločorbin-Kon S, Stojanovic G, Arfuso F, Kovacevic B, Al-Salami H. A second-generation micro/nano capsules of an endogenous primary un-metabolised bile acid, stabilized by Eudragit-alginate complex with antioxidant compounds. Saudi Pharm J 2019; 28:165-171. [PMID: 32042255 PMCID: PMC7000308 DOI: 10.1016/j.jsps.2019.11.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 11/29/2019] [Indexed: 12/19/2022] Open
Abstract
Bile acids (BAs) are amphiphilic compounds and of recently have demonstrated wide range of formulation stabilizing effects. A recent study showed that primary un-metabolised bile acids (PUBAs) have β-cell protective effects, and synergistic antidiabetic effects when combined with antioxidant and anti-inflammatory drugs, such as probucol (PB). Thus, this study aimed to design and test microcapsules containing a PUBA incorporated with PB and an alginate-Eudragit matrix. Six types of microcapsules were developed without (control) or with (test) PUBA, and tested for internal and external features and β-cell protective effects. The incorporation of PB-alginate-Eudragit with PUBA produced stable microcapsules but did not exert consistent positive effects on cell viability in the hyperglycaemic state, which suggests that PUBA in alginate-Eudragit matrices did not exhibit synergistic effects with PB nor exerted antidiabetic effects.
Collapse
Affiliation(s)
- Armin Mooranian
- Biotechnology and Drug Development Research Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia, Australia
| | - Nassim Zamani
- Biotechnology and Drug Development Research Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia, Australia
| | - Momir Mikov
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | | | - Goran Stojanovic
- Faculty of Technical Sciences, University of Novi Sad, Novi Sad, Serbia
| | - Frank Arfuso
- Stem Cell and Cancer Biology Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia, Australia
| | - Bozica Kovacevic
- Biotechnology and Drug Development Research Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia, Australia
| | - Hani Al-Salami
- Biotechnology and Drug Development Research Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia, Australia
| |
Collapse
|
12
|
Probucol-poly(meth)acrylate-bile acid nanoparticles increase IL-10, and primary bile acids in prediabetic mice. Ther Deliv 2019; 10:563-571. [PMID: 31646943 DOI: 10.4155/tde-2019-0052] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Aim: Common features in insulin-resistance diabetes include inflammation and liver damage due to bile acid accumulation. Results & methodology: This study aimed to test in vivo pharmacological effects of combining two drugs, ursodeoxycholic acid that has bile acid regulatory effects, and probucol (PB) that has potent anti-oxidative stress effects, using a new poly(meth)acrylate nano-targeting formulation on prediabetic mice. Mice were made diabetic and were fed daily with either PB, nanoencapsulated PB or nanoencapsulated PB-ursodeoxycholic acid before blood, tissues, urine and feces were collected for inflammation and bile acid measurements. The nanoencapsulated PB-ursodeoxycholic acid formulation increased plasma IL-10, and increased the concentration of primary bile acids in the liver and heart. Conclusion: Results suggest potential applications in regulating IL-10 in insulin-resistance prediabetes.
Collapse
|
13
|
Jiao YQ, Huang P, Yan L, Sun K, Pan CS, Li Q, Fan JY, Ma ZZ, Han JY. YangXue QingNao Wan, a Compound Chinese Medicine, Attenuates Cerebrovascular Hyperpermeability and Neuron Injury in Spontaneously Hypertensive Rat: Effect and Mechanism. Front Physiol 2019; 10:1246. [PMID: 31632292 PMCID: PMC6779832 DOI: 10.3389/fphys.2019.01246] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 09/12/2019] [Indexed: 02/06/2023] Open
Abstract
Objective The purpose of the study was to explore the effect of YangXue QingNao Wan (YXQNW), a compound Chinese medicine, on cerebrovascular hyperpermeability, neuronal injury, and related mechanisms in spontaneously hypertensive rat (SHR). Methods Fourteen-week-old male SHR were used, with Wistar Kyoto (WKY) rats as control. YXQNW (0.5 g/kg/day), enalapril (EN, 8 mg/kg/day), and nifedipine (NF, 7.1 mg/kg/day) were administrated orally for 4 weeks. To assess the effects of the YXQNW on blood pressure, the systolic blood pressure (SBP), diastolic blood pressure (DBP), and mean blood pressure (MBP) were measured. After administering the drugs for 4 weeks, the cerebral blood flow (CBF), albumin leakage from microvessels in middle cerebral artery (MCA)-dominated area, and the number and morphology of microvessels were assessed in the hippocampus area and cortex. Neuronal damage and apoptosis were assessed by Nissl staining and TUNEL staining. To assess the mechanisms of cerebrovascular hyperpermeability, we performed immunofluorescence and Western blot to assess the expression and integrity of cerebral microvascular tight junction (TJ) and caveolin-1 (Cav-1) in cortex. Energy metabolism and Src-MLC-MLCK pathway in cortex were assessed then for elucidating the underlying mechanism of the observed effect of YXQNW. Results Spontaneously hypertensive rat exhibited higher blood pressure, Evans blue (EB) extravasation, albumin leakage, increased brain water content, decreased CBF, perivascular edema, and neuronal apoptosis in the hippocampus and cortex, all of which were attenuated by YXQNW treatment. YXQNW inhibited the downregulation of TJ proteins, mitochondrial Complex I, Complex II, and Complex V, and upregulation of caveolin-1, inhibiting Src/MLCK/MLC signaling in SHR. YXQNW combined with EN + NF revealed a better effect for some outcomes compared with either YXQNW or EN + NF alone. Conclusion The overall result shows the potential of YXQNW to attenuate blood–brain barrier (BBB) breakdown in SHR, which involves regulation of energy metabolism and Src/MLCK/MLC signaling. This result provides evidence supporting the application of YXQNW as an adjuvant management for hypertensive patients to prevent hypertensive encephalopathy.
Collapse
Affiliation(s)
- Ying-Qian Jiao
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China.,Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Academy of Integration of Chinese and Western Medicine, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing, China
| | - Ping Huang
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Academy of Integration of Chinese and Western Medicine, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing, China
| | - Li Yan
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Academy of Integration of Chinese and Western Medicine, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing, China
| | - Kai Sun
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Academy of Integration of Chinese and Western Medicine, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing, China
| | - Chun-Shui Pan
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Academy of Integration of Chinese and Western Medicine, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing, China
| | - Quan Li
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Academy of Integration of Chinese and Western Medicine, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing, China
| | - Jing-Yu Fan
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing, China
| | - Zhi-Zhong Ma
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Academy of Integration of Chinese and Western Medicine, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing, China
| | - Jing-Yan Han
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Academy of Integration of Chinese and Western Medicine, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing, China
| |
Collapse
|
14
|
Mooranian A, Zamani N, Luna G, Al-Sallami H, Mikov M, Goločorbin-Kon S, Stojanovic G, Arfuso F, Kovacevic B, Al-Salami H. Bile acid-polymer-probucol microparticles: protective effect on pancreatic β-cells and decrease in type 1 diabetes development in a murine model. Pharm Dev Technol 2019; 24:1272-1277. [PMID: 31557068 DOI: 10.1080/10837450.2019.1665069] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Studies in our laboratory have shown potential applications of the anti-atherosclerotic drug probucol (PB) in diabetes due to anti-inflammatory and β-cell protective effects. The anti-inflammatory effects were optimized by incorporation of the anti-inflammatory bile acid, ursodeoxycholic acid (UDCA). This study aimed to test PB absorption, tissue accumulation profiles, effects on inflammation and type 1 diabetes prevention when combined with UDCA. Balb/c mice were divided into three equal groups and gavaged daily PB powder, PB microcapsules or PB-UDCA microcapsules for one week, at a constant dose. Mice were injected with a single dose of intraperitoneal/subcutaneous alloxan to induce type-1 diabetes and once diabetes was confirmed, treatments were continued for 3 days. Mice were euthanized and blood and tissues collected for analysis of PB and cytokine levels. The PB-UDCA group showed the highest PB concentrations in blood, gut, liver, spleen, brain, and white adipose tissues, with no significant increase in pancreas, heart, skeletal muscles, kidneys, urine or feces. Interferon gamma in plasma was significantly reduced by PB-UDCA suggesting potent anti-inflammatory effects. Blood glucose levels remained similar after treatments, while survival was highest among the PB-UDCA group. Our findings suggest that PB-UDCA resulted in best PB blood and tissue absorption and reduced inflammation.
Collapse
Affiliation(s)
- Armin Mooranian
- Biotechnology and Drug Development Research Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University , Perth , Australia
| | - Nassim Zamani
- Biotechnology and Drug Development Research Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University , Perth , Australia
| | - Giuseppe Luna
- Biotechnology and Drug Development Research Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University , Perth , Australia
| | | | - Momir Mikov
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad , Novi Sad , Serbia
| | | | - Goran Stojanovic
- Faculty of Technical Sciences, University of Novi Sad , Novi Sad , Serbia
| | - Frank Arfuso
- Stem Cell and Cancer Biology Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University , Perth , Australia
| | - Bozica Kovacevic
- Biotechnology and Drug Development Research Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University , Perth , Australia
| | - Hani Al-Salami
- Biotechnology and Drug Development Research Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University , Perth , Australia
| |
Collapse
|
15
|
Graneri L, D'Alonzo Z, Lam V, Mamo J, Dhaliwal S, Takechi R. Chronic Consumption of a Commercial Energy Drink Reduces Blood Pressure in Normotensive Wild-Type Mice. Front Nutr 2019; 6:111. [PMID: 31396518 PMCID: PMC6663975 DOI: 10.3389/fnut.2019.00111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 07/08/2019] [Indexed: 12/24/2022] Open
Abstract
Objective: Studies report that acute consumption of energy drinks transiently increases blood pressure (BP). However, few studies report the effect of chronic energy drink consumption on BP. In this study, we investigated the effects of long-term energy drink ingestion on BP in C57BL/6J normotensive wild-type mice. Research Methods and Procedures: Groups of mice were randomized to no treatment (water) (Control group), or to Mother™ provided as a decarbonated 30% (v/v) drinking solution (Energy Drink group), sugar-free Mother™ at 30% (Sugar-free group), Coca Cola™ at 30% (Coke group) for a total intervention period of 13 weeks. Results: After 13 weeks of intervention, the control mice showed a modest increase in systolic blood pressure (SBP), diastolic blood pressure (DBP), and mean arterial pressure (MAP) by 7.1 ± 8.8, 5.8 ± 9.4, and 6.3 ± 9.1 mmHg, respectively. However, the Energy Drink significantly decreased the DBP and MAP by 18.8 ± 9.9 and 15.3 ± 9.8 mmHg, respectively. Similarly, Sugar-free group mice showed significant decrease of the SBP, DBP, and MAP by 10.85 ± 5.6, 18.7 ± 6.7, and 15.6 ± 6.1 mmHg, respectively. The SBP, DBP, and MAP in Coke mice showed no significant changes. The estimated cumulative intake of caffeine, taurine, and vitamin B3 and B5 was significantly higher in the mice of Energy Drink and Sugar-free groups compared to the Control and Coke mice. Conclusion: Collectively, the data suggest that the long-term chronic consumption of energy drinks may significantly lower the BP in normotensive mice through the actions of caffeine, taurine, and/or B-vitamins. The study findings do not support consideration of energy drinks for BP management, but rather demonstrate no long-term amplification of BP in normotensive preclinical models.
Collapse
Affiliation(s)
- Liam Graneri
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia.,Faculty of Health Sciences, School of Pharmacy and Biomedical Sciences, Curtin University, Perth, WA, Australia
| | - Zachary D'Alonzo
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia.,Faculty of Health Sciences, School of Pharmacy and Biomedical Sciences, Curtin University, Perth, WA, Australia
| | - Virginie Lam
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia.,Faculty of Health Sciences, School of Public Health, Curtin University, Perth, WA, Australia
| | - John Mamo
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia.,Faculty of Health Sciences, School of Public Health, Curtin University, Perth, WA, Australia
| | - Satvinder Dhaliwal
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia.,Faculty of Health Sciences, School of Public Health, Curtin University, Perth, WA, Australia
| | - Ryusuke Takechi
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia.,Faculty of Health Sciences, School of Public Health, Curtin University, Perth, WA, Australia
| |
Collapse
|
16
|
Hackett MJ, Hollings A, Majimbi M, Brook E, Cochran B, Giles C, Lam V, Nesbit M, Rye KA, Mamo JCL, Takechi R. Multimodal Imaging Analyses of Brain Hippocampal Formation Reveal Reduced Cu and Lipid Content and Increased Lactate Content in Non-Insulin-Dependent Diabetic Mice. ACS Chem Neurosci 2019; 10:2533-2540. [PMID: 30855947 DOI: 10.1021/acschemneuro.9b00039] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Non-insulin-dependent diabetes mellitus (NIDDM) is reported to increase the risk of cognitive impairment and dementia. However, the underlying mechanisms are not fully understood. While the brain homeostasis of metals and lipids is pivotal to maintaining energy metabolism and redox homeostasis for healthy brain function, no studies have reported hippocampal metal and biochemical changes in NIDDM. Therefore, we here utilized direct spectroscopic imaging to reveal the elemental distribution within the hippocampal subregions of an established murine model of NIDDM, db/db mice. In 26-week-old insulin resistant db/db mice, X-ray fluorescence microscopy revealed that the Cu content within the dentate gyrus and CA3 was significantly greater than that of the age-matched nondiabetic control mice. In addition, Fourier transform infrared (FTIR) spectroscopy analysis indicated a significant increase in the abundance of lactate within the corpus callosum (CC), dentate gyrus, CA1, and CA3 regions of diabetic db/db mice compared to that of the control, indicating altered energy metabolism. FTIR analysis also showed a significant decrease in the level of lipid methylene and ester within the CC of db/db mice. Furthermore, immunomicroscopy analyses demonstrated the increase in the level of glial fibrillary acidic protein expression and peri-vascular extravasation of IgG, indicating astrogliosis and blood-brain barrier dysfunction, respectively. These data suggest that astrogliosis-induced alterations in the supply of Cu, lipids, and energy substrates may be involved in the mechanisms of NIDDM-associated cognitive decline.
Collapse
Affiliation(s)
- Mark J. Hackett
- Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Bentley, WA 6102, Australia
- Curtin Institute for Functional Molecules and Interfaces, School of Molecular and Life Science, Faculty of Science and Engineering, Curtin University, Bentley, WA 6102, Australia
| | - Ashley Hollings
- Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Bentley, WA 6102, Australia
- Curtin Institute for Functional Molecules and Interfaces, School of Molecular and Life Science, Faculty of Science and Engineering, Curtin University, Bentley, WA 6102, Australia
| | - Maimuna Majimbi
- Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Bentley, WA 6102, Australia
- School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin University, Bentley, WA 6102, Australia
| | - Emily Brook
- Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Bentley, WA 6102, Australia
- School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin University, Bentley, WA 6102, Australia
| | - Blake Cochran
- School of Medical Sciences, Faculty of Medicine, UNSW, Sydney, NSW 2052, Australia
| | - Corey Giles
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
| | - Virginie Lam
- Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Bentley, WA 6102, Australia
- School of Public Health, Faculty of Health Sciences, Curtin University, Bentley, WA 6102, Australia
| | - Michael Nesbit
- Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Bentley, WA 6102, Australia
- School of Public Health, Faculty of Health Sciences, Curtin University, Bentley, WA 6102, Australia
| | - Kerry-Anne Rye
- School of Medical Sciences, Faculty of Medicine, UNSW, Sydney, NSW 2052, Australia
| | - John C. L. Mamo
- Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Bentley, WA 6102, Australia
- School of Public Health, Faculty of Health Sciences, Curtin University, Bentley, WA 6102, Australia
| | - Ryusuke Takechi
- Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Bentley, WA 6102, Australia
- School of Public Health, Faculty of Health Sciences, Curtin University, Bentley, WA 6102, Australia
| |
Collapse
|
17
|
Mamo JC, Lam V, Brook E, Mooranian A, Al-Salami H, Fimognari N, Nesbit M, Takechi R. Probucol prevents blood-brain barrier dysfunction and cognitive decline in mice maintained on pro-diabetic diet. Diab Vasc Dis Res 2019; 16:87-97. [PMID: 30156119 DOI: 10.1177/1479164118795274] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
An emerging body of evidence consistently suggests that compromised blood-brain barrier integrity may be causally associated with cognitive decline induced by type-2 diabetes. Our previous studies demonstrated that selected anti-inflammatory/anti-oxidative agents can preserve the integrity of blood-brain barrier and prevent neuroinflammation in mouse models of dysfunctional blood-brain barrier. Therefore, we have tested whether the previously proven blood-brain barrier protective agent, probucol, can prevent blood-brain barrier breakdown and cognitive decline in a dietary-induced murine model of diabetic insulin resistance. After 6-month chronic ingestion of a diet high in fat and fructose, the mice became insulin resistant. The high-fat and high-fructose-fed mice showed significant cognitive decline assessed by Morris water maze, concomitant with significant elevations in cortical and hippocampal glial acidic fibrillary protein and Fluoro Jade-C staining, indicating heightened neuroinflammation and neurodegeneration, respectively. The integrity of blood-brain barrier in high-fat and high-fructose-fed mice was substantially compromised, and this showed a significant association with heightened neurodegeneration. Co-provision of probucol with high-fat and high-fructose diet completely prevented the cognitive decline and blood-brain barrier dysfunction. Similarly, metformin was able to restore the cognitive function in high-fat and high-fructose-fed mice, while its blood-brain barrier protective effects were modest. These data suggest that probucol may prevent cognitive decline induced by insulin resistance by preserving the integrity of blood-brain barrier, whereas metformin's neuroprotective effects may be mediated through a separate pathway.
Collapse
Affiliation(s)
- John Cl Mamo
- 1 Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
- 2 School of Public Health, Faculty of Health Sciences, Curtin University, Perth, WA, Australia
| | - Virginie Lam
- 1 Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
- 2 School of Public Health, Faculty of Health Sciences, Curtin University, Perth, WA, Australia
| | - Emily Brook
- 1 Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
- 3 School of Biomedical Sciences, Faculty of Health Sciences, Curtin University, Perth, WA, Australia
| | - Armin Mooranian
- 1 Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
- 4 School of Pharmacy, Faculty of Health Sciences, Curtin University, Perth, WA, Australia
| | - Hani Al-Salami
- 1 Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
- 4 School of Pharmacy, Faculty of Health Sciences, Curtin University, Perth, WA, Australia
| | - Nicholas Fimognari
- 1 Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
- 2 School of Public Health, Faculty of Health Sciences, Curtin University, Perth, WA, Australia
| | - Michael Nesbit
- 1 Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
- 2 School of Public Health, Faculty of Health Sciences, Curtin University, Perth, WA, Australia
| | - Ryusuke Takechi
- 1 Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
- 2 School of Public Health, Faculty of Health Sciences, Curtin University, Perth, WA, Australia
| |
Collapse
|
18
|
Lam V, Takechi R, Albrecht MA, D'Alonzo ZJ, Graneri L, Hackett MJ, Coulson S, Fimognari N, Nesbit M, Mamo JCL. Longitudinal Performance of Senescence Accelerated Mouse Prone-Strain 8 (SAMP8) Mice in an Olfactory-Visual Water Maze Challenge. Front Behav Neurosci 2018; 12:174. [PMID: 30210312 PMCID: PMC6121094 DOI: 10.3389/fnbeh.2018.00174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 07/27/2018] [Indexed: 11/13/2022] Open
Abstract
Morris water maze (MWM) is widely used to assess cognitive deficits in pre-clinical rodent models. Latency time to reach escape platform is frequently reported, but may be confounded by deficits in visual acuity, or differences in locomotor activity. This study compared performance of Senescence Accelerated Mouse Prone-Strain 8 (SAMP8) and control Senescence Accelerated Mouse Resistant-Strain 1 (SAMR1) mice in classical MWM, relative to performance in a newly developed olfactory-visual maze testing protocol. Performance indicated as the escape time to rescue platform for classical MWM testing showed that SAMP8 mice as young as 6 weeks of age did poorly relative to age-matched SAMR1 mice. The olfactory-visual maze challenge described better discriminated SAMP8 vs. SAMR1 mice than classical MWM testing, based on latency time measures. Consideration of the distance traveled rather than latency time in the classical MWM found no treatment effects between SAMP8 and SAMR1 at 40 weeks of age and the olfactory-visual measures of performance confirmed the classical MWM findings. Longitudinal (repeat) assessment of SAMP8 and SAMR1 performance at 6, 20, 30, and 40 weeks of age in the olfactory-visual testing protocol showed no age-associated deficits in SAMP8 mice to the last age end-point indicated. Collectively, the results from this study suggest the olfactory-visual testing protocol may be advantageous compared to classical MWM as it avoids potential confounders of visual impairment in some strains of mice and indeed, may offer insight into cognitive and behavioral deficits that develop with advanced age in the widely used SAMP8 murine model.
Collapse
Affiliation(s)
- Virginie Lam
- Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Perth, WA, Australia.,School of Public Health, Faculty of Health Sciences, Curtin University, Perth, WA, Australia
| | - Ryusuke Takechi
- Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Perth, WA, Australia.,School of Public Health, Faculty of Health Sciences, Curtin University, Perth, WA, Australia
| | - Matthew A Albrecht
- Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Perth, WA, Australia.,School of Public Health, Faculty of Health Sciences, Curtin University, Perth, WA, Australia
| | - Zachary John D'Alonzo
- Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Perth, WA, Australia.,School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin University, Perth, WA, Australia
| | - Liam Graneri
- Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Perth, WA, Australia.,School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin University, Perth, WA, Australia
| | - Mark J Hackett
- Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Perth, WA, Australia.,School of Molecular and Life Sciences, Faculty of Science and Engineering, Curtin University, Perth, WA, Australia
| | - Stephanie Coulson
- Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Perth, WA, Australia.,School of Public Health, Faculty of Health Sciences, Curtin University, Perth, WA, Australia
| | - Nicholas Fimognari
- Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Perth, WA, Australia.,School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin University, Perth, WA, Australia
| | - Michael Nesbit
- Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Perth, WA, Australia.,School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin University, Perth, WA, Australia
| | - John C L Mamo
- Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Perth, WA, Australia.,School of Public Health, Faculty of Health Sciences, Curtin University, Perth, WA, Australia
| |
Collapse
|
19
|
Tang WH, Wang CP, Yu TH, Tai PY, Liang SS, Hung WC, Wu CC, Huang SH, Lee YJ, Chen SC. Protein-bounded uremic toxin p-cresylsulfate induces vascular permeability alternations. Histochem Cell Biol 2018; 149:607-617. [PMID: 29589110 DOI: 10.1007/s00418-018-1662-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2018] [Indexed: 12/16/2022]
Abstract
The goal of the present studies is to investigate that the impact of p-cresylsulfate (PCS) on the endothelial barrier integrity via in situ exposure and systemic exposure. Vascular permeability changes induced by local injection of PCS were evaluated by the techniques of both Evans blue (EB) and India ink tracer. Rats were intravenously injected with EB or India ink followed by intradermal injections of various doses of PCS (0, 0.4, 2, 10 and 50 µmol/site) on rat back skins. At different time points, skin EB was extracted and quantified. The administration of India ink was used to demonstrate leaky microvessels. Skin PCS levels were also determined by liquid chromatography-mass spectrometry. We also investigated whether the increased endothelial leakage occurred in the aortic endothelium in rats treated with 5/6 nephrectomy and intraperitoneal injection of PCS 50 mg/kg/day for 4 weeks. The aortic endothelial integrity was evaluated by increased immunoglobulin G (IgG) leakage. High doses of PCS, but not lower doses, significantly induced vascular leakage as compared to saline injection and EB leakage exhibited in time-dependent manner. A time-correlated increase in leaky microvessels was detected in the tissues examined. The injected PCS declined with time and displayed an inverse relationship with vascular leakage. Chronic kidney disease (CKD) rats administered with PCS, compared to control rats, had significantly higher serum levels of PCS and apparent IgG deposition in the aortic intima. Increased endothelial leakage induced by PCS in skin microvessels and the aorta of CKD rats suggests that the PCS-induced endothelial barrier dysfunction.
Collapse
Affiliation(s)
- Wei-Hua Tang
- Division of Cardiology, Department of Internal Medicine, National Yang-Ming University Hospital, Yilan, Taiwan
| | - Chao-Ping Wang
- Division of Cardiology, Department of Internal Medicine, E-Da Hospital, I-Shou University, Kaohsiung, 82445, Taiwan.,School of Medicine for International Students, I-Shou University, Kaohsiung, 82445, Taiwan
| | - Teng-Hung Yu
- Division of Cardiology, Department of Internal Medicine, E-Da Hospital, I-Shou University, Kaohsiung, 82445, Taiwan
| | - Pei-Yang Tai
- Division of Cardiology, Department of Internal Medicine, E-Da Hospital, I-Shou University, Kaohsiung, 82445, Taiwan
| | - Shih-Shin Liang
- Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wei-Chin Hung
- Division of Cardiology, Department of Internal Medicine, E-Da Hospital, I-Shou University, Kaohsiung, 82445, Taiwan
| | - Cheng-Ching Wu
- Division of Cardiology, Department of Internal Medicine, E-Da Hospital, I-Shou University, Kaohsiung, 82445, Taiwan
| | - Sung-Hao Huang
- Division of Cardiology, Department of Internal Medicine, National Yang-Ming University Hospital, Yilan, Taiwan
| | | | - Shih-Chieh Chen
- Department of Anatomy, Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung, 80708, Taiwan. .,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.
| |
Collapse
|
20
|
Buttler L, Jordão MT, Fragas MG, Ruggeri A, Ceroni A, Michelini LC. Maintenance of Blood-Brain Barrier Integrity in Hypertension: A Novel Benefit of Exercise Training for Autonomic Control. Front Physiol 2017; 8:1048. [PMID: 29311978 PMCID: PMC5733101 DOI: 10.3389/fphys.2017.01048] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 11/30/2017] [Indexed: 12/27/2022] Open
Abstract
The blood-brain barrier (BBB) is a complex multicellular structure acting as selective barrier controlling the transport of substances between these compartments. Accumulating evidence has shown that chronic hypertension is accompanied by BBB dysfunction, deficient local perfusion and plasma angiotensin II (Ang II) access into the parenchyma of brain areas related to autonomic circulatory control. Knowing that spontaneously hypertensive rats (SHR) exhibit deficient autonomic control and brain Ang II hyperactivity and that exercise training is highly effective in correcting both, we hypothesized that training, by reducing Ang II content, could improve BBB function within autonomic brain areas of the SHR. After confirming the absence of BBB lesion in the pre-hypertensive SHR, but marked fluorescein isothiocyanate dextran (FITC, 10 kD) leakage into the brain parenchyma of the hypothalamic paraventricular nucleus (PVN), nucleus of the solitary tract, and rostral ventrolateral medulla during the established phase of hypertension, adult SHR, and age-matched WKY were submitted to a treadmill training (T) or kept sedentary (S) for 8 weeks. The robust FITC leakage within autonomic areas of the SHR-S was largely reduced and almost normalized since the 2nd week of training (T2). BBB leakage reduction occurred simultaneously and showed strong correlations with both decreased LF/HF ratio to the heart and reduced vasomotor sympathetic activity (power spectral analysis), these effects preceding the appearance of resting bradycardia (T4) and partial pressure fall (T8). In other groups of SHR-T simultaneously infused with icv Ang II or saline (osmotic mini-pumps connected to a lateral ventricle cannula) we proved that decreased local availability of this peptide and reduced microglia activation (IBA1 staining) are crucial mechanisms conditioning the restoration of BBB integrity. Our data also revealed that Ang II-induced BBB lesion was faster within the PVN (T2), suggesting the prominent role of this nucleus in driven hypertension-induced deficits. These original set of data suggest that reduced local Ang II content (and decreased activation of its downstream pathways) is an essential and early-activated mechanism to maintain BBB integrity in trained SHR and uncovers a novel beneficial effect of exercise training to improve autonomic control even in the presence of hypertension.
Collapse
Affiliation(s)
- Leila Buttler
- Department Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Maria T Jordão
- Department Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Matheus G Fragas
- Department Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Adriana Ruggeri
- Department Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Alexandre Ceroni
- Department Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Lisete C Michelini
- Department Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
21
|
Takechi R, Lam V, Brook E, Giles C, Fimognari N, Mooranian A, Al-Salami H, Coulson SH, Nesbit M, Mamo JCL. Blood-Brain Barrier Dysfunction Precedes Cognitive Decline and Neurodegeneration in Diabetic Insulin Resistant Mouse Model: An Implication for Causal Link. Front Aging Neurosci 2017; 9:399. [PMID: 29249964 PMCID: PMC5717019 DOI: 10.3389/fnagi.2017.00399] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 11/17/2017] [Indexed: 12/24/2022] Open
Abstract
Diabetic insulin resistance and pro-diabetic diet are reported to increase dementia risk through unknown mechanisms. Emerging evidence suggests that the integrity of blood-brain barrier (BBB) is central to the onset and progression of neurodegeneration and cognitive impairment. Therefore, the current study investigated the effect of pro-diabetic diets on cognitive dysfunction in association to BBB integrity and its putative mechanisms. In C57BL/6J mice chronically ingested with a diet enriched in fat and fructose (HFF), Morris Water Maze (MWM) test indicated no significant cognitive decline after 4 weeks of HFF feeding compared to low-fat (LF) fed control. However, at this stage, BBB dysfunction accompanied by heightened neuroinflammation in cortex and hippocampal regions was already evident. After 24 weeks, HFF fed mice showed significantly deteriorated cognitive function concomitant with substantial neurodegeneration, which both showed significant associations with increased BBB permeability. In addition, the data indicated that the loss of BBB tight junctions was significantly associated with heightened inflammation and leukocyte infiltration. The data collectively suggest that in mice maintained on pro-diabetic diet, the dysfunctional BBB associated to inflammation and leukocyte recruitment precedes the neurodegeneration and cognitive decline, possibly indicating causal association.
Collapse
Affiliation(s)
- Ryusuke Takechi
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia.,School of Public Health, Faculty of Health Sciences, Curtin University, Perth, WA, Australia
| | - Virginie Lam
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia.,School of Public Health, Faculty of Health Sciences, Curtin University, Perth, WA, Australia
| | - Emily Brook
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia.,School of Biomedical Sciences, Faculty of Health Sciences, Curtin University, Perth, WA, Australia
| | - Corey Giles
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia.,School of Public Health, Faculty of Health Sciences, Curtin University, Perth, WA, Australia
| | - Nicholas Fimognari
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia.,School of Biomedical Sciences, Faculty of Health Sciences, Curtin University, Perth, WA, Australia
| | - Armin Mooranian
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia.,School of Pharmacy, Faculty of Health Sciences, Curtin University, Perth, WA, Australia
| | - Hani Al-Salami
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia.,School of Pharmacy, Faculty of Health Sciences, Curtin University, Perth, WA, Australia
| | - Stephanie H Coulson
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia.,School of Public Health, Faculty of Health Sciences, Curtin University, Perth, WA, Australia
| | - Michael Nesbit
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia.,School of Public Health, Faculty of Health Sciences, Curtin University, Perth, WA, Australia
| | - John C L Mamo
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia.,School of Public Health, Faculty of Health Sciences, Curtin University, Perth, WA, Australia
| |
Collapse
|
22
|
Snelson M, Mamo JCL, Lam V, Giles C, Takechi R. Differential Effects of High-Protein Diets Derived from Soy and Casein on Blood-Brain Barrier Integrity in Wild-type Mice. Front Nutr 2017; 4:35. [PMID: 28791293 PMCID: PMC5523157 DOI: 10.3389/fnut.2017.00035] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 07/07/2017] [Indexed: 12/13/2022] Open
Abstract
A number of studies report that a diet high in protein influences cognitive performance, but the results are inconsistent. Studies demonstrated that protein from different food sources has differential effects on cognition. It is increasingly recognized that the integrity of cerebrovascular blood–brain barrier (BBB) is pivotal for central nervous system function. However, to date, no studies have reported the effects of high-protein diets on BBB integrity. Therefore, in this study, the effects of diets enriched in casein or soy protein on BBB permeability were investigated. Immunomicroscopy analyses of cerebral parenchymal immunoglobulin G extravasation indicated significant BBB disruption in the cortex of young adult mice maintained on high-casein diet for 12 weeks, while no signs of BBB dysfunction were observed in mice fed with control or high-soy protein diet. Moreover, cortical expression of glial fibrillary acidic protein (GFAP) was significantly greater in mice fed the high-casein diet compared to control mice, indicating heightened astrocyte activation, whereas mice maintained on a soy-enriched diet showed no increase of GFAP abundance. Plasma concentrations of homocysteine were markedly greater in mice maintained on a high-casein diet in comparison to control mice. Collectively, these findings suggest that a diet enriched in casein but not soy protein may induce astrocyte activation through exaggerated BBB permeability by increased plasma homocysteine. The outcomes indicate the differential effects of protein sources on BBB and neuroinflammation, which may provide an important implication for dietary guidelines for protein supplementation.
Collapse
Affiliation(s)
- Matthew Snelson
- Faculty of Health Sciences, School of Public Health, Curtin University, Bentley, WA, Australia.,Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia
| | - John C L Mamo
- Faculty of Health Sciences, School of Public Health, Curtin University, Bentley, WA, Australia.,Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia
| | - Virginie Lam
- Faculty of Health Sciences, School of Public Health, Curtin University, Bentley, WA, Australia.,Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia
| | - Corey Giles
- Faculty of Health Sciences, School of Public Health, Curtin University, Bentley, WA, Australia.,Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia
| | - Ryusuke Takechi
- Faculty of Health Sciences, School of Public Health, Curtin University, Bentley, WA, Australia.,Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia
| |
Collapse
|