1
|
Liu X, Pan B, Liu X, Han X, Zhu P, Li G, Li D. Trophic level plays an enhanced role in shaping microbiota structure and assembly in lakes with decreased salinity on the Qinghai-Tibet and Inner Mongolia Plateaus. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171316. [PMID: 38423321 DOI: 10.1016/j.scitotenv.2024.171316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/25/2024] [Accepted: 02/25/2024] [Indexed: 03/02/2024]
Abstract
Plateau lakes characterized by salinization and eutrophication are essential aquatic ecosystems. A myriad of microorganisms serve as crucial biological resources in plateau lakes and drive the elemental cycles of these ecosystems. Currently, there is a paucity of knowledge regarding the impacts of salinization and eutrophication dynamics on the microbiota in plateau lakes. Here, high-throughput sequencing of the 16S ribosomal RNA genes (V4 region) was used to characterize microbial community structure and assembly in plateau lakes with different salinities and trophic levels. Water samples were collected at 191 sites across 24 lakes on the Qinghai-Tibet and Inner Mongolia Plateaus in northern China. The results showed that high salinity considerably reduced microbial alpha-diversity and niche breadth while increasing within-group similarity among various lake types. High salinity additionally decreased the complexity of microbial networks and enhanced network robustness. The assembly of microbial communities was primarily governed by deterministic processes in high-salinity and eutrophic low-salinity lakes. At decreased salinity, trophic level played a leading role in shaping microbial community structure, and the ecological processes shifted from deterministic processes driven by high salinity to eutrophication-driven deterministic processes. The biomarkers also varied from taxa adapted to high-salinity environments (e.g., Nanoarchaeaeota, Rhodothermia) to those suited for living in freshwater and low-salinity habitats (e.g., Alphaproteobacteria, Actinobacteria). In the case of eutrophication, Actinobacteria, Chloroflexi, and Cyanobacteria became the dominant taxa. Our findings indicate that decreased salinity enables trophic level to play an enhanced role in shaping microbial community structure and assembly in plateau lakes. This study enriches our knowledge about the ecological impacts of salinization and eutrophication in plateau lakes.
Collapse
Affiliation(s)
- Xing Liu
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an 710048, Shaanxi Province, China
| | - Baozhu Pan
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an 710048, Shaanxi Province, China.
| | - Xinyuan Liu
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an 710048, Shaanxi Province, China
| | - Xu Han
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an 710048, Shaanxi Province, China
| | - Penghui Zhu
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an 710048, Shaanxi Province, China
| | - Gang Li
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an 710048, Shaanxi Province, China
| | - Dianbao Li
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an 710048, Shaanxi Province, China
| |
Collapse
|
2
|
Zepernick BN, Chase EE, Denison ER, Gilbert NE, Truchon AR, Frenken T, Cody WR, Martin RM, Chaffin JD, Bullerjahn GS, McKay RML, Wilhelm SW. Declines in ice cover are accompanied by light limitation responses and community change in freshwater diatoms. THE ISME JOURNAL 2024; 18:wrad015. [PMID: 38366077 PMCID: PMC10939406 DOI: 10.1093/ismejo/wrad015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 02/18/2024]
Abstract
The rediscovery of diatom blooms embedded within and beneath the Lake Erie ice cover (2007-2012) ignited interest in psychrophilic adaptations and winter limnology. Subsequent studies determined the vital role ice plays in winter diatom ecophysiology as diatoms partition to the underside of ice, thereby fixing their location within the photic zone. Yet, climate change has led to widespread ice decline across the Great Lakes, with Lake Erie presenting a nearly "ice-free" state in several recent winters. It has been hypothesized that the resultant turbid, isothermal water column induces light limitation amongst winter diatoms and thus serves as a competitive disadvantage. To investigate this hypothesis, we conducted a physiochemical and metatranscriptomic survey that spanned spatial, temporal, and climatic gradients of the winter Lake Erie water column (2019-2020). Our results suggest that ice-free conditions decreased planktonic diatom bloom magnitude and altered diatom community composition. Diatoms increased their expression of various photosynthetic genes and iron transporters, which suggests that the diatoms are attempting to increase their quantity of photosystems and light-harvesting components (a well-defined indicator of light limitation). We identified two gene families which serve to increase diatom fitness in the turbid ice-free water column: proton-pumping rhodopsins (a potential second means of light-driven energy acquisition) and fasciclins (a means to "raft" together to increase buoyancy and co-locate to the surface to optimize light acquisition). With large-scale climatic changes already underway, our observations provide insight into how diatoms respond to the dynamic ice conditions of today and shed light on how they will fare in a climatically altered tomorrow.
Collapse
Affiliation(s)
- Brittany N Zepernick
- Department of Microbiology, The University of Tennessee, Knoxville, TN 37996, United States
| | - Emily E Chase
- Department of Microbiology, The University of Tennessee, Knoxville, TN 37996, United States
| | - Elizabeth R Denison
- Department of Microbiology, The University of Tennessee, Knoxville, TN 37996, United States
| | - Naomi E Gilbert
- Department of Microbiology, The University of Tennessee, Knoxville, TN 37996, United States
- Lawrence Livermore National Laboratory, Livermore, CA 94550, United States
| | - Alexander R Truchon
- Department of Microbiology, The University of Tennessee, Knoxville, TN 37996, United States
| | - Thijs Frenken
- HAS University of Applied Sciences, 5223 DE ‘s-Hertogenbosch, The Netherlands
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, Ontario, N9C 1A2, Canada
| | - William R Cody
- Aquatic Taxonomy Specialists, Malinta, OH 43535, United States
| | - Robbie M Martin
- Department of Microbiology, The University of Tennessee, Knoxville, TN 37996, United States
| | - Justin D Chaffin
- Stone Laboratory and Ohio Sea Grant, The Ohio State University, Put-In-Bay, OH 43456, United States
| | - George S Bullerjahn
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH 43403, United States
| | - R Michael L McKay
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, Ontario, N9C 1A2, Canada
| | - Steven W Wilhelm
- Department of Microbiology, The University of Tennessee, Knoxville, TN 37996, United States
| |
Collapse
|
3
|
Chiriac MC, Haber M, Salcher MM. Adaptive genetic traits in pelagic freshwater microbes. Environ Microbiol 2023; 25:606-641. [PMID: 36513610 DOI: 10.1111/1462-2920.16313] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022]
Abstract
Pelagic microbes have adopted distinct strategies to inhabit the pelagial of lakes and oceans and can be broadly categorized in two groups: free-living, specialized oligotrophs and patch-associated generalists or copiotrophs. In this review, we aim to identify genomic traits that enable pelagic freshwater microbes to thrive in their habitat. To do so, we discuss the main genetic differences of pelagic marine and freshwater microbes that are both dominated by specialized oligotrophs and the difference to freshwater sediment microbes, where copiotrophs are more prevalent. We phylogenomically analysed a collection of >7700 metagenome-assembled genomes, classified habitat preferences on different taxonomic levels, and compared the metabolic traits of pelagic freshwater, marine, and freshwater sediment microbes. Metabolic differences are mainly associated with transport functions, environmental information processing, components of the electron transport chain, osmoregulation and the isoelectric point of proteins. Several lineages with known habitat transitions (Nitrososphaeria, SAR11, Methylophilaceae, Synechococcales, Flavobacteriaceae, Planctomycetota) and the underlying mechanisms in this process are discussed in this review. Additionally, the distribution, ecology and genomic make-up of the most abundant freshwater prokaryotes are described in details in separate chapters for Actinobacteriota, Bacteroidota, Burkholderiales, Verrucomicrobiota, Chloroflexota, and 'Ca. Patescibacteria'.
Collapse
Affiliation(s)
| | - Markus Haber
- Institute of Hydrobiology, Biology Centre CAS, Ceske Budejovice, Czechia
| | - Michaela M Salcher
- Institute of Hydrobiology, Biology Centre CAS, Ceske Budejovice, Czechia
| |
Collapse
|
4
|
He S, Linz AM, Stevens SLR, Tran PQ, Moya-Flores F, Oyserman BO, Dwulit-Smith JR, Forest KT, McMahon KD. Diversity, distribution, and expression of opsin genes in freshwater lakes. Mol Ecol 2023; 32:2798-2817. [PMID: 36799010 DOI: 10.1111/mec.16891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 01/28/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023]
Abstract
Microbial rhodopsins are widely distributed in aquatic environments and may significantly contribute to phototrophy and energy budgets in global oceans. However, the study of freshwater rhodopsins has been largely limited. Here, we explored the diversity, ecological distribution, and expression of opsin genes that encode the apoproteins of type I rhodopsins in humic and clearwater lakes with contrasting physicochemical and optical characteristics. Using metagenomes and metagenome-assembled genomes, we recovered opsin genes from a wide range of taxa, mostly predicted to encode green light-absorbing proton pumps. Viral opsin and novel bacterial opsin clades were recovered. Opsin genes occurred more frequently in taxa from clearwater than from humic water, and opsins in some taxa have nontypical ion-pumping motifs that might be associated with physicochemical conditions of these two freshwater types. Analyses of the surface layer of 33 freshwater systems revealed an inverse correlation between opsin gene abundance and lake dissolved organic carbon (DOC). In humic water with high terrestrial DOC and light-absorbing humic substances, opsin gene abundance was low and dramatically declined within the first few meters, whereas the abundance remained relatively high along the bulk water column in clearwater lakes with low DOC, suggesting opsin gene distribution is influenced by lake optical properties and DOC. Gene expression analysis confirmed the significance of rhodopsin-based phototrophy in clearwater lakes and revealed different diel expressional patterns among major phyla. Overall, our analyses revealed freshwater opsin diversity, distribution and expression patterns, and suggested the significance of rhodopsin-based phototrophy in freshwater energy budgets, especially in clearwater lakes.
Collapse
Affiliation(s)
- Shaomei He
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Geoscience, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Alexandra M Linz
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Sarah L R Stevens
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Patricia Q Tran
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Francisco Moya-Flores
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Ben O Oyserman
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jeffrey R Dwulit-Smith
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Program in Biophysics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Katrina T Forest
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Program in Biophysics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Katherine D McMahon
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
5
|
Lang-Yona N, Alster A, Cummings D, Freiman Z, Kaplan-Levy R, Lupu A, Malinsky-Rushansky N, Ninio S, Sukenik A, Viner-Mozzini Y, Zohary T. Gloeotrichia pisum in Lake Kinneret: A successful epiphytic cyanobacterium. JOURNAL OF PHYCOLOGY 2023; 59:97-110. [PMID: 36371652 DOI: 10.1111/jpy.13301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
With climate change and re-oligotrophication of lakes due to restoration efforts, the relative importance of benthic cyanobacteria is increasing, but they are much less studied than their planktonic counterparts. Following a major water level rise event that inundated massive reed stands in Lake Kinneret, Israel, we discovered the appearance of a vast abundance of Gloeotrichia pisum (cyanobacteria). This provided an opportunity to investigate the biology and ecology of a benthic epiphytic colonial cyanobacterium, proliferating under altered environmental conditions, with possible toxin production potential and as a model for an invasive epiphyte. The species was identified by its typical morphology, and by sequencing its 16S rRNA gene and the intragenic space. We report on the abundance and spatial distribution of the detected colonies, their morphological characteristics, and pigment composition. High phycoerythrin content provides a brownish color and supports growth at low light levels. Genomic community composition analysis revealed that G. pisum colonies host a diverse microbial community of microalgae, cyanobacteria, bacteria, and archaea with a conserved and characteristic taxonomic composition. The Synechococcales order showed high relative abundance in the colony, as well as other prokaryotes producing secondary metabolites, such as the rhodopsin producer Pseudorhodobacter. The microbial consortium in the colonies performed nitrogen fixation. The diazotroph's phylogenetic relations were demonstrated. Tests for the presence of cyanotoxins (microcystin and cylindrospermopsin) proved negative. This study is the first documentation of this genus in Israel, providing insights into the invasive nature of G. pisum and the ecological implications of its appearance in a lake ecosystem.
Collapse
Affiliation(s)
- Naama Lang-Yona
- Kinneret Limnological Laboratory, Israel Oceanographic and Limnological Research, Migdal, 14950, Israel
| | - Alla Alster
- Kinneret Limnological Laboratory, Israel Oceanographic and Limnological Research, Migdal, 14950, Israel
| | - David Cummings
- Kinneret Limnological Laboratory, Israel Oceanographic and Limnological Research, Migdal, 14950, Israel
| | - Zohar Freiman
- Kinneret Limnological Laboratory, Israel Oceanographic and Limnological Research, Migdal, 14950, Israel
| | - Ruth Kaplan-Levy
- Kinneret Limnological Laboratory, Israel Oceanographic and Limnological Research, Migdal, 14950, Israel
| | - Achsa Lupu
- Kinneret Limnological Laboratory, Israel Oceanographic and Limnological Research, Migdal, 14950, Israel
| | | | - Shira Ninio
- Kinneret Limnological Laboratory, Israel Oceanographic and Limnological Research, Migdal, 14950, Israel
| | - Assaf Sukenik
- Kinneret Limnological Laboratory, Israel Oceanographic and Limnological Research, Migdal, 14950, Israel
| | - Yehudith Viner-Mozzini
- Kinneret Limnological Laboratory, Israel Oceanographic and Limnological Research, Migdal, 14950, Israel
| | - Tamar Zohary
- Kinneret Limnological Laboratory, Israel Oceanographic and Limnological Research, Migdal, 14950, Israel
| |
Collapse
|
6
|
Selvaraj MK, Thakur A, Kumar M, Pinnaka AK, Suri CR, Siddhardha B, Elumalai SP. Ion-pumping microbial rhodopsin protein classification by machine learning approach. BMC Bioinformatics 2023; 24:29. [PMID: 36707759 PMCID: PMC9881276 DOI: 10.1186/s12859-023-05138-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 01/04/2023] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Rhodopsin is a seven-transmembrane protein covalently linked with retinal chromophore that absorbs photons for energy conversion and intracellular signaling in eukaryotes, bacteria, and archaea. Haloarchaeal rhodopsins are Type-I microbial rhodopsin that elicits various light-driven functions like proton pumping, chloride pumping and Phototaxis behaviour. The industrial application of Ion-pumping Haloarchaeal rhodopsins is limited by the lack of full-length rhodopsin sequence-based classifications, which play an important role in Ion-pumping activity. The well-studied Haloarchaeal rhodopsin is a proton-pumping bacteriorhodopsin that shows promising applications in optogenetics, biosensitized solar cells, security ink, data storage, artificial retinal implant and biohydrogen generation. As a result, a low-cost computational approach is required to identify Ion-pumping Haloarchaeal rhodopsin sequences and its subtype. RESULTS This study uses a support vector machine (SVM) technique to identify these ion-pumping Haloarchaeal rhodopsin proteins. The haloarchaeal ion pumping rhodopsins viz., bacteriorhodopsin, halorhodopsin, xanthorhodopsin, sensoryrhodopsin and marine prokaryotic Ion-pumping rhodopsins like actinorhodopsin, proteorhodopsin have been utilized to develop the methods that accurately identified the ion pumping haloarchaeal and other type I microbial rhodopsins. We achieved overall maximum accuracy of 97.78%, 97.84% and 97.60%, respectively, for amino acid composition, dipeptide composition and hybrid approach on tenfold cross validation using SVM. Predictive models for each class of rhodopsin performed equally well on an independent data set. In addition to this, similar results were achieved using another machine learning technique namely random forest. Simultaneously predictive models performed equally well during five-fold cross validation. Apart from this study, we also tested the own, blank, BLAST dataset and annotated whole-genome rhodopsin sequences of PWS haloarchaeal isolates in the developed methods. The developed web server ( https://bioinfo.imtech.res.in/servers/rhodopred ) can identify the Ion Pumping Haloarchaeal rhodopsin proteins and their subtypes. We expect this web tool would be useful for rhodopsin researchers. CONCLUSION The overall performance of the developed method results show that it accurately identifies the Ionpumping Haloarchaeal rhodopsin and their subtypes using known and unknown microbial rhodopsin sequences. We expect that this study would be useful for optogenetics, molecular biologists and rhodopsin researchers.
Collapse
Affiliation(s)
- Muthu Krishnan Selvaraj
- grid.418099.dMTCC-Microbial Type Culture Collection and Gene Bank, Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR-IMTECH), Chandigarh, 160036 India
| | - Anamika Thakur
- grid.418099.dVirology Unit and Bioinformatics Centre, Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR-IMTECH), Chandigarh, 160036 India
| | - Manoj Kumar
- grid.418099.dVirology Unit and Bioinformatics Centre, Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR-IMTECH), Chandigarh, 160036 India
| | - Anil Kumar Pinnaka
- grid.418099.dMTCC-Microbial Type Culture Collection and Gene Bank, Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR-IMTECH), Chandigarh, 160036 India
| | - Chander Raman Suri
- grid.418099.dBiosensor Department, Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR-IMTECH), Chandigarh, 160036 India
| | - Busi Siddhardha
- grid.412517.40000 0001 2152 9956Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, 605014 India
| | - Senthil Prasad Elumalai
- grid.418099.dBiochemical Engineering Research and Process Development Centre, Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR-IMTECH), Chandigarh, 160036 India
| |
Collapse
|
7
|
Iniesto M, Moreira D, Benzerara K, Reboul G, Bertolino P, Tavera R, López‐García P. Planktonic microbial communities from microbialite-bearing lakes sampled along a salinity-alkalinity gradient. LIMNOLOGY AND OCEANOGRAPHY 2022; 67:2718-2733. [PMID: 37064594 PMCID: PMC10087431 DOI: 10.1002/lno.12233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 07/12/2022] [Accepted: 09/04/2022] [Indexed: 06/19/2023]
Abstract
Continental freshwater systems are particularly vulnerable to environmental variation. Climate change-induced desertification and the anthropogenic exploitation of hydric resources result in the progressive evaporation and salinization of inland water bodies in many areas of the globe. However, how this process impacts microbial communities and their activities in biogeochemical cycles is poorly known. Here, we take a space-for-time substitution approach and characterize the prokaryotic and eukaryotic microbial communities of two planktonic cell-size fractions (0.2-5 μm and 5-30 μm) from lakes of diverse trophic levels sampled along a salinity-alkalinity gradient located in the Trans-Mexican Volcanic Belt (TMVB). We applied a 16S/18S rRNA gene metabarcoding strategy to determine the microbial community composition of 54 samples from 12 different lakes, from the low-salinity lake Zirahuén to the hypersaline residual ponds of Rincón de Parangueo. Except for systems at both extremes of the salinity gradient, most lakes along the evaporation trend bear actively forming microbialites, which harbor microbial communities clearly distinct from those of plankton. Several lakes were sampled in winter and late spring and the crater lakes Alchichica and Atexcac were sampled across the water column. Physicochemical parameters related to salinity-alkalinity were the most influential drivers of microbial community structure whereas trophic status, depth, or season were less important. Our results suggest that climate change and anthropogenic-induced hydric deficit could significantly affect microbial communities, potentially altering ecosystem functioning.
Collapse
Affiliation(s)
- Miguel Iniesto
- Ecologie Systématique Evolution, CNRSUniversité Paris‐Saclay, AgroParisTechOrsayFrance
| | - David Moreira
- Ecologie Systématique Evolution, CNRSUniversité Paris‐Saclay, AgroParisTechOrsayFrance
| | - Karim Benzerara
- Institut de Minéralogie de Physique des Matériaux et de Cosmochimie, CNRSSorbonne Université, Muséum National d'Histoire NaturelleParisFrance
| | - Guillaume Reboul
- Ecologie Systématique Evolution, CNRSUniversité Paris‐Saclay, AgroParisTechOrsayFrance
| | - Paola Bertolino
- Ecologie Systématique Evolution, CNRSUniversité Paris‐Saclay, AgroParisTechOrsayFrance
| | - Rosaluz Tavera
- Departamento de Ecología y Recursos NaturalesUniversidad Nacional Autónoma de MéxicoMexico CityMexico
| | | |
Collapse
|
8
|
Zufiaurre A, Felip M, Camarero L, Sala-Faig M, Juhanson J, Bonilla-Rosso G, Hallin S, Catalan J. Bacterioplankton seasonality in deep high-mountain lakes. Front Microbiol 2022; 13:935378. [PMID: 36187988 PMCID: PMC9519062 DOI: 10.3389/fmicb.2022.935378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 08/08/2022] [Indexed: 12/04/2022] Open
Abstract
Due to global warming, shorter ice cover duration might drastically affect the ecology of lakes currently undergoing seasonal surface freezing. High-mountain lakes show snow-rich ice covers that determine contrasting conditions between ice-off and ice-on periods. We characterized the bacterioplankton seasonality in a deep high-mountain lake ice-covered for half a year. The lake shows a rich core bacterioplankton community consisting of three components: (i) an assemblage stable throughout the year, dominated by Actinobacteria, resistant to all environmental conditions; (ii) an ice-on-resilient assemblage dominating during the ice-covered period, which is more diverse than the other components and includes a high abundance of Verrucomicrobia; the deep hypolimnion constitutes a refuge for many of the typical under-ice taxa, many of which recover quickly during autumn mixing; and (iii) an ice-off-resilient assemblage, which members peak in summer in epilimnetic waters when the rest decline, characterized by a dominance of Flavobacterium, and Limnohabitans. The rich core community and low random elements compared to other relatively small cold lakes can be attributed to its simple hydrological network in a poorly-vegetated catchment, the long water-residence time (ca. 4 years), and the long ice-cover duration; features common to many headwater deep high-mountain lakes.
Collapse
Affiliation(s)
- Aitziber Zufiaurre
- CREAF, Cerdanyola del Vallès, Barcelona, Catalonia, Spain
- Área de Biodiversidad, Gestión ambiental de Navarra-Nafarroako Ingurumenkudeaketa (GAN-NIK), Pamplona-Iruñea, Navarra, Spain
| | - Marisol Felip
- CREAF, Cerdanyola del Vallès, Barcelona, Catalonia, Spain
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Lluís Camarero
- Centre d’Estudis Avançats de Blanes (CEAB), CSIC, Blanes, Catalonia, Spain
| | - Marc Sala-Faig
- CREAF, Cerdanyola del Vallès, Barcelona, Catalonia, Spain
| | - Jaanis Juhanson
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - German Bonilla-Rosso
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Sara Hallin
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Jordi Catalan
- CREAF, Cerdanyola del Vallès, Barcelona, Catalonia, Spain
- CSIC, Cerdanyola del Vallès, Barcelona, Catalonia, Spain
| |
Collapse
|
9
|
Shi P, Wang H, Feng M, Cheng H, Yang Q, Yan Y, Xu J, Zhang M. Bacterial Metabolic Potential in Response to Climate Warming Alters the Decomposition Process of Aquatic Plant Litter-In Shallow Lake Mesocosms. Microorganisms 2022; 10:1327. [PMID: 35889044 PMCID: PMC9316218 DOI: 10.3390/microorganisms10071327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/28/2022] [Accepted: 06/28/2022] [Indexed: 02/04/2023] Open
Abstract
Increased decomposition rates in shallow lakes with global warming might increase the release of atmospheric greenhouse gases, thereby producing positive feedback for global warming. However, how climate warming affects litter decomposition is still unclear in lake ecosystems. Here, we tested the effects of constant and variable warming on the bacterial metabolic potential of typically submerged macrophyte (Potamogeton crispus L.) litters during decomposition in 18 mesocosms (2500 L each). The results showed that warming reduced main chemoheterotrophic metabolic potential but promoted methylotrophy metabolism, which means that further warming may alter methane-cycling microbial metabolism. The nitrate reduction function was inhibited under warming treatments, and nitrogen fixation capability significantly increased under variable warming in summer. The changes in dissolved oxygen (DO), pH, conductivity and ammonium nitrogen driven by warming are the main environmental factors affecting the bacteria's metabolic potential. The effects of warming and environmental factors on fermentation, nitrate reduction and ammonification capabilities in stem and leaf litter were different, and the bacterial potential in the stem litter were more strongly responsive to environmental factors. These findings suggest that warming may considerably alter bacterial metabolic potential in macrophyte litter, contributing to long-term positive feedback between the C and N cycle and climate.
Collapse
Affiliation(s)
- Penglan Shi
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (P.S.); (M.F.); (H.C.); (Q.Y.); (Y.Y.)
| | - Huan Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China;
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China;
| | - Mingjun Feng
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (P.S.); (M.F.); (H.C.); (Q.Y.); (Y.Y.)
| | - Haowu Cheng
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (P.S.); (M.F.); (H.C.); (Q.Y.); (Y.Y.)
| | - Qian Yang
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (P.S.); (M.F.); (H.C.); (Q.Y.); (Y.Y.)
| | - Yifeng Yan
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (P.S.); (M.F.); (H.C.); (Q.Y.); (Y.Y.)
| | - Jun Xu
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China;
| | - Min Zhang
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (P.S.); (M.F.); (H.C.); (Q.Y.); (Y.Y.)
| |
Collapse
|
10
|
Biological Microbial Interactions from Cooccurrence Networks in a High Mountain Lacustrine District. mSphere 2022; 7:e0091821. [PMID: 35642514 PMCID: PMC9241510 DOI: 10.1128/msphere.00918-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A fundamental question in biology is why some species tend to occur together in the same locations, while others are never observed coexisting. This question becomes particularly relevant for microorganisms thriving in the highly diluted waters of high mountain lakes, where biotic interactions might be required to make the most of an extreme environment. We studied a high-throughput gene data set of alpine lakes (>220 Pyrenean lakes) with cooccurrence network analysis to infer potential biotic interactions, using the combination of a probabilistic method for determining significant cooccurrences and coexclusions between pairs of species and a conceptual framework for classifying the nature of the observed cooccurrences and coexclusions. This computational approach (i) determined and quantified the importance of environmental variables and spatial distribution and (ii) defined potential interacting microbial assemblages. We determined the properties and relationships between these assemblages by examining node properties at the taxonomic level, indicating associations with their potential habitat sources (i.e., aquatic versus terrestrial) and their functional strategies (i.e., parasitic versus mixotrophic). Environmental variables explained fewer pairs in bacteria than in microbial eukaryotes for the alpine data set, with pH alone explaining the highest proportion of bacterial pairs. Nutrient composition was also relevant for explaining association pairs, particularly in microeukaryotes. We identified a reduced subset of pairs with the highest probability of species interactions (“interacting guilds”) that significantly reached higher occupancies and lower mean relative abundances in agreement with the carrying capacity hypothesis. The interacting bacterial guilds could be more related to habitat and microdispersal processes (i.e., aquatic versus soil microbes), whereas for microeukaryotes trophic roles (osmotrophs, mixotrophs, and parasitics) could potentially play a major role. Overall, our approach may add helpful information to guide further efforts for a mechanistic understanding of microbial interactions in situ. IMPORTANCE A fundamental question in biology is why some species tend to occur together in the same locations, while others are never observed to coexist. This question becomes particularly relevant for microorganisms thriving in the highly diluted waters of high mountain lakes, in which biotic interactions might be required to make the most of an extreme environment. Microbial metacommunities are too often only studied in terms of their environmental niches and geographic barriers since they show inherent difficulties to quantify biological interactions and their role as drivers of ecosystem functioning. Our study highlights that telling apart potential interactions from both environmental and geographic niches may help for the initial characterization of organisms with similar ecologies in a large scope of ecosystems, even when information about actual interactions is partial and limited. The multilayered statistical approach carried out here offers the possibility of going beyond taxonomy to understand microbiological behavior in situ.
Collapse
|
11
|
Piwosz K, Villena-Alemany C, Mujakić I. Photoheterotrophy by aerobic anoxygenic bacteria modulates carbon fluxes in a freshwater lake. THE ISME JOURNAL 2022; 16:1046-1054. [PMID: 34802055 PMCID: PMC8941148 DOI: 10.1038/s41396-021-01142-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 01/04/2023]
Abstract
Lakes are a significant component of the global carbon cycle. Respiration exceeds net primary production in most freshwater lakes, making them a source of CO2 to the atmosphere. Driven by heterotrophic microorganisms, respiration is assumed to be unaffected by light, thus it is measured in the dark. However, photoheterotrophs, such as aerobic anoxygenic photoheterotrophic (AAP) bacteria that produce ATP via photochemical reactions, substantially reduce respiration in the light. They are an abundant and active component of bacterioplankton, but their photoheterotrophic contribution to microbial community metabolism remains unquantified. We showed that the community respiration rate in a freshwater lake was reduced by 15.2% (95% confidence interval (CI): 6.6-23.8%) in infrared light that is usable by AAP bacteria but not by primary producers. Moreover, significantly higher assimilation rates of glucose (18.1%; 7.8-28.4%), pyruvate (9.5%; 4.2-14.8%), and leucine (5.9%; 0.1-11.6%) were measured in infrared light. At the ecosystem scale, the amount of CO2 from respiration unbalanced by net primary production was by 3.69 × 109 g CO2 lower over these two sampling seasons when measured in the infrared light. Our results demonstrate that dark measurements of microbial activity significantly bias the carbon fluxes, providing a new paradigm for their quantification in aquatic environments.
Collapse
Affiliation(s)
- Kasia Piwosz
- Centre Algatech, Institute of Microbiology, Czech Academy of Sciences, 37981, Třeboň, Czechia. .,National Marine Fisheries Research Institute, 81-332, Gdynia, Poland.
| | - Cristian Villena-Alemany
- grid.418095.10000 0001 1015 3316Centre Algatech, Institute of Microbiology, Czech Academy of Sciences, 37981 Třeboň, Czechia ,grid.14509.390000 0001 2166 4904Faculty of Science, University of South Bohemia, 370 05 České Budějovice, Czechia
| | - Izabela Mujakić
- grid.418095.10000 0001 1015 3316Centre Algatech, Institute of Microbiology, Czech Academy of Sciences, 37981 Třeboň, Czechia ,grid.14509.390000 0001 2166 4904Faculty of Science, University of South Bohemia, 370 05 České Budějovice, Czechia
| |
Collapse
|
12
|
Hahn MW, Pitt A, Koll U, Schmidt J, Maresca JA, Neumann-Schaal M. Aurantimicrobium photophilum sp. nov., a non-photosynthetic bacterium adjusting its metabolism to the diurnal light cycle and reclassification of Cryobacterium mesophilum as Terrimesophilobacter mesophilus gen. nov., comb. nov. Int J Syst Evol Microbiol 2021; 71. [PMID: 34431766 DOI: 10.1099/ijsem.0.004975] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The aerobic primarily chemoorganotrophic actinobacterial strain MWH-Mo1T was isolated from a freshwater lake and is characterized by small cell lengths of less than 1 µm, small cell volumes of 0.05-0.06 µm3 (ultramicrobacterium), a small genome size of 1.75 Mbp and, at least for an actinobacterium, a low DNA G+C content of 54.6 mol%. Phylogenetic analyses based on concatenated amino acid sequences of 116 housekeeping genes suggested the type strain of Aurantimicrobium minutum affiliated with the family Microbacteriaceae as its closest described relative. Strain MWH-Mo1T shares with the type strain of that species a 16S rRNA gene sequence similarity of 99.6 % but the genomes of the two strains share an average nucleotide identity of only 79.3 %. Strain MWH-Mo1T is in many genomic, phenotypic and chemotaxonomic characteristics quite similar to the type strain of A. minutum. Previous intensive investigations revealed two unusual traits of strain MWH-Mo1T. Although the strain is not known to be phototrophic, the metabolism is adjusted to the diurnal light cycle by up- and down-regulation of genes in light and darkness. This results in faster growth in the presence of light. Additionally, a cell size-independent protection against predation by bacterivorous flagellates, most likely mediated by a proteinaceous cell surface structure, was demonstrated. For the previously intensively investigated aerobic chemoorganotrophic actinobacterial strain MWH-Mo1T (=CCUG 56426T=DSM 107758T), the establishment of the new species Aurantimicrobium photophilum sp. nov. is proposed.
Collapse
Affiliation(s)
- Martin W Hahn
- Research Department for Limnology, University of Innsbruck, Salzburg, Mondseestrasse 9, A-5310 Mondsee, Austria
| | - Alexandra Pitt
- Research Department for Limnology, University of Innsbruck, Salzburg, Mondseestrasse 9, A-5310 Mondsee, Austria
| | - Ulrike Koll
- Research Department for Limnology, University of Innsbruck, Salzburg, Mondseestrasse 9, A-5310 Mondsee, Austria
| | - Johanna Schmidt
- Research Department for Limnology, University of Innsbruck, Salzburg, Mondseestrasse 9, A-5310 Mondsee, Austria
| | - Julia A Maresca
- Department of Civil and Environmental Engineering, University of Delaware, Newark, Delaware, USA
| | - Meina Neumann-Schaal
- Junior Research Group Bacterial Metabolomics, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| |
Collapse
|
13
|
Pitt A, Schmidt J, Koll U, Hahn MW. Aquiluna borgnonia gen. nov., sp. nov., a member of a Microbacteriaceae lineage of freshwater bacteria with small genome sizes. Int J Syst Evol Microbiol 2021; 71. [PMID: 33999796 DOI: 10.1099/ijsem.0.004825] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The actinobacterial strain 15G-AUS-rotT was isolated from an artificial pond located near Salzburg, Austria. The strain showed 16S rRNA gene sequence similarities of 98.7 % to Candidatus Aquiluna rubra and of 96.6 and 96.7 % to the two validly described species of the genus Rhodoluna. Phylogenetic reconstructions based on 16S rRNA gene sequences and genome-based on amino acid sequences of 118 single copy genes referred strain 15G-AUS-rotT to the family Microbacteriaceae and therein to the so-called subcluster Luna-1. The genome-based phylogenetic tree showed that the new strain represents a putative new genus. Cultures of strain 15G-AUS-rotT were light red pigmented and comprised very small, rod-shaped cells. They metabolized a broad variety of substrates. Major fatty acids (>10 %) of cells were iso-C16 : 0, antiso-C15 : 0 and iso-C14 : 0. The major respiratory quinone was MK-11 and a minor component was MK-10. The peptidoglycan structure belonged to an unusual B type. The closed genome sequence of the strain was very small (1.4 Mbp) and had a DNA G+C content of 54.8 mol%. An interesting feature was the presence of genes putatively encoding the complete light-driven proton pumping actinorhodopsin/retinal system, which were located at three different positions of the genome. Based on the characteristics of the strain, a new genus and a new species termed Aquiluna borgnonia is proposed for strain 15G-AUS-rotT (=DSM 107803T=JCM 32974T).
Collapse
Affiliation(s)
- Alexandra Pitt
- Research Department for Limnology, University of Innsbruck, Mondseestrasse 9, A-5310 Mondsee, Austria
| | - Johanna Schmidt
- Research Department for Limnology, University of Innsbruck, Mondseestrasse 9, A-5310 Mondsee, Austria
| | - Ulrike Koll
- Research Department for Limnology, University of Innsbruck, Mondseestrasse 9, A-5310 Mondsee, Austria
| | - Martin W Hahn
- Research Department for Limnology, University of Innsbruck, Mondseestrasse 9, A-5310 Mondsee, Austria
| |
Collapse
|
14
|
Lipko IA, Belykh OI. Environmental Features of Freshwater Planktonic Actinobacteria. CONTEMP PROBL ECOL+ 2021. [DOI: 10.1134/s1995425521020074] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Chuon K, Kim SY, Meas S, Shim JG, Cho SG, Kang KW, Kim JH, Cho HS, Jung KH. Assembly of Natively Synthesized Dual Chromophores Into Functional Actinorhodopsin. Front Microbiol 2021; 12:652328. [PMID: 33995310 PMCID: PMC8113403 DOI: 10.3389/fmicb.2021.652328] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/06/2021] [Indexed: 12/18/2022] Open
Abstract
Microbial rhodopsin is a simple solar energy-capturing molecule compared to the complex photosynthesis apparatus. Light-driven proton pumping across the cell membrane is a crucial mechanism underlying microbial energy production. Actinobacteria is one of the highly abundant bacterial phyla in freshwater habitats, and members of this lineage are considered to boost heterotrophic growth via phototrophy, as indicated by the presence of actino-opsin (ActR) genes in their genome. However, it is difficult to validate their function under laboratory settings because Actinobacteria are not consistently cultivable. Based on the published genome sequence of Candidatus aquiluna sp. strain IMCC13023, actinorhodopsin from the strain (ActR-13023) was isolated and characterized in this study. Notably, ActR-13023 assembled with natively synthesized carotenoid/retinal (used as a dual chromophore) and functioned as a light-driven outward proton pump. The ActR-13023 gene and putative genes involved in the chromophore (retinal/carotenoid) biosynthetic pathway were detected in the genome, indicating the functional expression ActR-13023 under natural conditions for the utilization of solar energy for proton translocation. Heterologous expressed ActR-13023 exhibited maximum absorption at 565 nm with practical proton pumping ability. Purified ActR-13023 could be reconstituted with actinobacterial carotenoids for additional light-harvesting. The existence of actinorhodopsin and its chromophore synthesis machinery in Actinobacteria indicates the inherent photo-energy conversion function of this microorganism. The assembly of ActR-13023 to its synthesized chromophores validated the microbial community's importance in the energy cycle.
Collapse
Affiliation(s)
- Kimleng Chuon
- Department of Life Science and Institute of Biological Interfaces, Sogang University, Seoul, South Korea
| | - So Young Kim
- Research Institute of Basic Sciences, Seoul National University, Seoul, South Korea
| | - Seanghun Meas
- Department of Life Science and Institute of Biological Interfaces, Sogang University, Seoul, South Korea
| | - Jin-Gon Shim
- Department of Life Science and Institute of Biological Interfaces, Sogang University, Seoul, South Korea
| | - Shin-Gyu Cho
- Department of Life Science and Institute of Biological Interfaces, Sogang University, Seoul, South Korea
| | - Kun-Wook Kang
- Department of Life Science and Institute of Biological Interfaces, Sogang University, Seoul, South Korea
| | - Ji-Hyun Kim
- Department of Life Science and Institute of Biological Interfaces, Sogang University, Seoul, South Korea
| | - Hyun-Suk Cho
- Department of Life Science and Institute of Biological Interfaces, Sogang University, Seoul, South Korea
| | - Kwang-Hwan Jung
- Department of Life Science and Institute of Biological Interfaces, Sogang University, Seoul, South Korea
| |
Collapse
|
16
|
Galachyants AD, Krasnopeev AY, Podlesnaya GV, Potapov SA, Sukhanova EV, Tikhonova IV, Zimens EA, Kabilov MR, Zhuchenko NA, Gorshkova AS, Suslova MY, Belykh OI. Diversity of Aerobic Anoxygenic Phototrophs and Rhodopsin-Containing Bacteria in the Surface Microlayer, Water Column and Epilithic Biofilms of Lake Baikal. Microorganisms 2021; 9:842. [PMID: 33920057 PMCID: PMC8071047 DOI: 10.3390/microorganisms9040842] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/10/2021] [Accepted: 04/12/2021] [Indexed: 12/31/2022] Open
Abstract
The diversity of aerobic anoxygenic phototrophs (AAPs) and rhodopsin-containing bacteria in the surface microlayer, water column, and epilithic biofilms of Lake Baikal was studied for the first time, employing pufM and rhodopsin genes, and compared to 16S rRNA diversity. We detected pufM-containing Alphaproteobacteria (orders Rhodobacterales, Rhizobiales, Rhodospirillales, and Sphingomonadales), Betaproteobacteria (order Burkholderiales), Gemmatimonadetes, and Planctomycetes. Rhodobacterales dominated all the studied biotopes. The diversity of rhodopsin-containing bacteria in neuston and plankton of Lake Baikal was comparable to other studied water bodies. Bacteroidetes along with Proteobacteria were the prevailing phyla, and Verrucomicrobia and Planctomycetes were also detected. The number of rhodopsin sequences unclassified to the phylum level was rather high: 29% in the water microbiomes and 22% in the epilithon. Diversity of rhodopsin-containing bacteria in epilithic biofilms was comparable with that in neuston and plankton at the phyla level. Unweighted pair group method with arithmetic mean (UPGMA) and non-metric multidimensional scaling (NMDS) analysis indicated a distinct discrepancy between epilithon and microbial communities of water (including neuston and plankton) in the 16S rRNA, pufM and rhodopsin genes.
Collapse
Affiliation(s)
- Agnia Dmitrievna Galachyants
- Limnological Institute Siberian Branch of the Russian Academy of Sciences, Ulan-Batorskaya 3, 664033 Irkutsk, Russia; (A.Y.K.); (G.V.P.); (S.A.P.); (E.V.S.); (I.V.T.); (E.A.Z.); (N.A.Z.); (A.S.G.); (M.Y.S.)
| | - Andrey Yurjevich Krasnopeev
- Limnological Institute Siberian Branch of the Russian Academy of Sciences, Ulan-Batorskaya 3, 664033 Irkutsk, Russia; (A.Y.K.); (G.V.P.); (S.A.P.); (E.V.S.); (I.V.T.); (E.A.Z.); (N.A.Z.); (A.S.G.); (M.Y.S.)
| | - Galina Vladimirovna Podlesnaya
- Limnological Institute Siberian Branch of the Russian Academy of Sciences, Ulan-Batorskaya 3, 664033 Irkutsk, Russia; (A.Y.K.); (G.V.P.); (S.A.P.); (E.V.S.); (I.V.T.); (E.A.Z.); (N.A.Z.); (A.S.G.); (M.Y.S.)
| | - Sergey Anatoljevich Potapov
- Limnological Institute Siberian Branch of the Russian Academy of Sciences, Ulan-Batorskaya 3, 664033 Irkutsk, Russia; (A.Y.K.); (G.V.P.); (S.A.P.); (E.V.S.); (I.V.T.); (E.A.Z.); (N.A.Z.); (A.S.G.); (M.Y.S.)
| | - Elena Viktorovna Sukhanova
- Limnological Institute Siberian Branch of the Russian Academy of Sciences, Ulan-Batorskaya 3, 664033 Irkutsk, Russia; (A.Y.K.); (G.V.P.); (S.A.P.); (E.V.S.); (I.V.T.); (E.A.Z.); (N.A.Z.); (A.S.G.); (M.Y.S.)
| | - Irina Vasiljevna Tikhonova
- Limnological Institute Siberian Branch of the Russian Academy of Sciences, Ulan-Batorskaya 3, 664033 Irkutsk, Russia; (A.Y.K.); (G.V.P.); (S.A.P.); (E.V.S.); (I.V.T.); (E.A.Z.); (N.A.Z.); (A.S.G.); (M.Y.S.)
| | - Ekaterina Andreevna Zimens
- Limnological Institute Siberian Branch of the Russian Academy of Sciences, Ulan-Batorskaya 3, 664033 Irkutsk, Russia; (A.Y.K.); (G.V.P.); (S.A.P.); (E.V.S.); (I.V.T.); (E.A.Z.); (N.A.Z.); (A.S.G.); (M.Y.S.)
| | - Marsel Rasimovich Kabilov
- Chemical Biology and Fundamental Medicine Siberian Branch of the Russian Academy of Sciences, Lavrentiev Avenue 8, 630090 Novosibirsk, Russia;
| | - Natalia Albertovna Zhuchenko
- Limnological Institute Siberian Branch of the Russian Academy of Sciences, Ulan-Batorskaya 3, 664033 Irkutsk, Russia; (A.Y.K.); (G.V.P.); (S.A.P.); (E.V.S.); (I.V.T.); (E.A.Z.); (N.A.Z.); (A.S.G.); (M.Y.S.)
| | - Anna Sergeevna Gorshkova
- Limnological Institute Siberian Branch of the Russian Academy of Sciences, Ulan-Batorskaya 3, 664033 Irkutsk, Russia; (A.Y.K.); (G.V.P.); (S.A.P.); (E.V.S.); (I.V.T.); (E.A.Z.); (N.A.Z.); (A.S.G.); (M.Y.S.)
| | - Maria Yurjevna Suslova
- Limnological Institute Siberian Branch of the Russian Academy of Sciences, Ulan-Batorskaya 3, 664033 Irkutsk, Russia; (A.Y.K.); (G.V.P.); (S.A.P.); (E.V.S.); (I.V.T.); (E.A.Z.); (N.A.Z.); (A.S.G.); (M.Y.S.)
| | - Olga Ivanovna Belykh
- Limnological Institute Siberian Branch of the Russian Academy of Sciences, Ulan-Batorskaya 3, 664033 Irkutsk, Russia; (A.Y.K.); (G.V.P.); (S.A.P.); (E.V.S.); (I.V.T.); (E.A.Z.); (N.A.Z.); (A.S.G.); (M.Y.S.)
| |
Collapse
|
17
|
Gweon HS, Bowes MJ, Moorhouse HL, Oliver AE, Bailey MJ, Acreman MC, Read DS. Contrasting community assembly processes structure lotic bacteria metacommunities along the river continuum. Environ Microbiol 2021; 23:484-498. [PMID: 33258525 PMCID: PMC7898806 DOI: 10.1111/1462-2920.15337] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 11/03/2020] [Accepted: 11/24/2020] [Indexed: 01/26/2023]
Abstract
The heterogeneous nature of lotic habitats plays an important role in the complex ecological and evolutionary processes that structure the microbial communities within them. Due to such complexity, our understanding of lotic microbial ecology still lacks conceptual frameworks for the ecological processes that shape these communities. We explored how bacterial community composition and underlying ecological assembly processes differ between lotic habitats by examining community composition and inferring community assembly processes across four major habitat types (free-living, particle-associated, biofilm on benthic stones and rocks, and sediment). This was conducted at 12 river sites from headwater streams to the main river in the River Thames, UK. Our results indicate that there are distinct differences in the bacterial communities between four major habitat types, with contrasting ecological processes shaping their community assembly processes. While the mobile free-living and particle-associated communities were consistently less diverse than the fixed sediment and biofilm communities, the latter two communities displayed higher homogeneity across the sampling sites. This indicates that the relative influence of deterministic environmental filtering is elevated in sediment and biofilm communities compared with free-living and particle-associated communities, where stochastic processes play a larger role.
Collapse
Affiliation(s)
- Hyun S. Gweon
- UK Centre for Ecology & HydrologyWallingford, OxfordshireOX10 8BBUK
- School of Biological SciencesUniversity of ReadingReadingRG6 6EXUK
| | - Michael J. Bowes
- UK Centre for Ecology & HydrologyWallingford, OxfordshireOX10 8BBUK
| | - Heather L. Moorhouse
- UK Centre for Ecology & HydrologyWallingford, OxfordshireOX10 8BBUK
- Lancaster Environment CentreLancaster UniversityLibrary Avenue, LancasterLA1 4YQUK
| | - Anna E. Oliver
- UK Centre for Ecology & HydrologyWallingford, OxfordshireOX10 8BBUK
| | - Mark J. Bailey
- UK Centre for Ecology & HydrologyWallingford, OxfordshireOX10 8BBUK
| | | | - Daniel S. Read
- UK Centre for Ecology & HydrologyWallingford, OxfordshireOX10 8BBUK
| |
Collapse
|
18
|
Genomes of the " Candidatus Actinomarinales" Order: Highly Streamlined Marine Epipelagic Actinobacteria. mSystems 2020; 5:5/6/e01041-20. [PMID: 33323418 PMCID: PMC7771536 DOI: 10.1128/msystems.01041-20] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Microbiology is in a new age in which sequence databases are primary sources of information about many microbes. However, in-depth analysis of environmental genomes thus retrieved is essential to substantiate the new knowledge. “Candidatus Actinomarinales” was defined as a subclass of exclusively marine Actinobacteria with small cells and genomes. We have collected all the available genomes in databases to assess the diversity included in this group and analyzed it by comparative genomics. We have found the equivalent of five genera and 18 genomospecies. They have genome reduction parameters equal to those of freshwater actinobacterial “Candidatus Nanopelagicales” or marine alphaproteobacterial Pelagibacterales. Genome recruitment shows that they are found only in the photic zone and mainly in surface waters, with only one genus that is found preferentially at or below the deep chlorophyll maximum. “Ca. Actinomarinales” show a highly conserved core genome (80% of the gene families conserved for the whole order) with a saturation of genomic diversity of the flexible genome at the genomospecies level. We found only a flexible genomic island preserved throughout the order; it is related to the sugar decoration of the envelope and uses several tRNAs as hot spots to increase its genomic diversity. Populations had a discrete level of sequence diversity similar to other marine microbes but drastically different from the much higher levels found for Pelagibacterales. Genomic analysis suggests that they are all aerobic photoheterotrophs with one type 1 rhodopsin and a heliorhodopsin. Like other actinobacteria, they possess the F420 coenzyme biosynthesis pathway, and its lower reduction potential could provide access to an increased range of redox chemical transformations. Last, sequence analysis revealed the first “Ca. Actinomarinales” phages, including a prophage, with metaviromic islands related to sialic acid cleavage. IMPORTANCE Microbiology is in a new age in which sequence databases are primary sources of information about many microbes. However, in-depth analysis of environmental genomes thus retrieved is essential to substantiate the new knowledge. Here, we study 182 genomes belonging to the only known exclusively marine pelagic group of the phylum Actinobacteria. The aquatic branch of this phylum is largely known from environmental sequencing studies (single-amplified genomes [SAGs] and metagenome-assembled genomes [MAGs]), and we have collected and analyzed the available information present in databases about the “Ca. Actinomarinales.” They are among the most streamlined microbes to live in the epipelagic zone of the ocean, and their study is critical to obtain a proper view of the diversity of Actinobacteria and their role in aquatic ecosystems.
Collapse
|
19
|
Metabarcoding Analysis of Bacterial Communities Associated with Media Grow Bed Zones in an Aquaponic System. Int J Microbiol 2020; 2020:8884070. [PMID: 33061984 PMCID: PMC7547338 DOI: 10.1155/2020/8884070] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/21/2020] [Indexed: 12/14/2022] Open
Abstract
The development of environmentally sustainable plant and fish production in aquaponic systems requires a complete understanding of the systems' biological components. In order to better understand the role of microorganisms in this association, we studied the bacterial communities in the dry, root, and mineralized zones of a flood-and-drain media bed aquaponic system. Bacterial communities were characterized using metabarcoding of the V3-V4 16S rRNA regions obtained from paired-end Illumina MiSeq reads. Proteobacteria, Actinobacteria, and Bacteroidetes accounted for more than 90% of the total community in the dry zone and the effluent water. These phyla also accounted for more than 68% of the total community in the root and mineralized zones. The genera Massilia, Mucilaginibacter, Mizugakiibacter, and Rhodoluna were most dominant in the dry, root, and mineralized zones and in the effluent water, respectively. The number of shared operational taxonomic units (OTUs) for the three zones was 241, representing 7.15% of the total observed OTUs. The number of unique OTUs in samples from dry zone, root zone, mineralized zone, and effluent water was 485, 638, 445, and 383, respectively. The samples from the root zone harbored more diverse communities than either the dry or mineralized zones. This study is the first to report on the bacterial community within the zones of a flood-and-drain media bed. Thus, this information will potentially accelerate studies on other microbial communities involved in the bioconversion of nitrogen compounds and mineralization within these types of aquaponic systems.
Collapse
|
20
|
Jankowiak JG, Gobler CJ. The Composition and Function of Microbiomes Within Microcystis Colonies Are Significantly Different Than Native Bacterial Assemblages in Two North American Lakes. Front Microbiol 2020; 11:1016. [PMID: 32547511 PMCID: PMC7270213 DOI: 10.3389/fmicb.2020.01016] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 04/24/2020] [Indexed: 11/21/2022] Open
Abstract
The toxic cyanobacterium Microcystis is one of the most pervasive harmful algal bloom (HAB) genera and naturally occurs in large colonies known to harbor diverse heterotrophic bacterial assemblages. While colony-associated microbiomes may influence Microcystis blooms, there remains a limited understanding of the structure and functional potential of these communities and how they may be shaped by changing environmental conditions. To address this gap, we compared the dynamics of Microcystis-attached (MCA), free-living (FL), and whole water (W) microbiomes during Microcystis blooms using next-generation amplicon sequencing (16S rRNA), a predictive metagenome software, and other bioinformatic approaches. Microbiomes were monitored through high resolution spatial-temporal surveys across two North American lakes, Lake Erie (LE) and Lake Agawam (LA; Long Island, NY, United States) in 2017, providing the largest dataset of these fractions to date. Sequencing of 126 samples generated 7,922,628 sequences that clustered into 7,447 amplicon sequence variants (ASVs) with 100% sequence identity. Across lakes, the MCA microbiomes were significantly different than the FL and W fractions being significantly enriched in Gemmatimonadetes, Burkholderiaceae, Rhizobiales, and Cytophagales and depleted of Actinobacteria. Further, although MCA communities harbored > 900 unique ASVs, they were significantly less diverse than the other fractions with diversity inversely related to bloom intensity, suggesting increased selection pressure on microbial communities as blooms intensified. Despite taxonomic differences between lakes, predicted metagenomes revealed conserved functional potential among MCA microbiomes. MCA communities were significantly enriched in pathways involved in N and P cycling and microcystin-degradation. Taxa potentially capable of N2-fixation were significantly enriched (p < 0.05) and up to four-fold more abundant within the MCA faction relative to other fractions, potentially aiding in the proliferation of Microcystis blooms during low N conditions. The MCA predicted metagenomes were conserved over 8 months of seasonal changes in temperature and N availability despite strong temporal succession in microbiome composition. Collectively, these findings indicate that Microcystis colonies harbor a statistically distinct microbiome with a conserved functional potential that may help facilitate bloom persistence under environmentally unfavorable conditions.
Collapse
Affiliation(s)
- Jennifer G. Jankowiak
- School of Marine and Atmospheric Sciences, Stony Brook University, Southampton, NY, United States
| | - Christopher J. Gobler
- School of Marine and Atmospheric Sciences, Stony Brook University, Southampton, NY, United States
| |
Collapse
|
21
|
Kwon SK, Jun SH, Kim JF. Omega Rhodopsins: A Versatile Class of Microbial Rhodopsins. J Microbiol Biotechnol 2020; 30:633-641. [PMID: 32482928 PMCID: PMC9728251 DOI: 10.4014/jmb.1912.12010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 03/27/2020] [Indexed: 12/15/2022]
Abstract
Microbial rhodopsins are a superfamily of photoactive membrane proteins with covalently bound retinal cofactor. Isomerization of the retinal chromophore upon absorption of a photon triggers conformational changes of the protein to function as ion pumps or sensors. After the discovery of proteorhodopsin in an uncultivated γ-proteobacterium, light-activated proton pumps have been widely detected among marine bacteria and, together with chlorophyll-based photosynthesis, are considered as an important axis responsible for primary production in the biosphere. Rhodopsins and related proteins show a high level of phylogenetic diversity; we focus on a specific class of bacterial rhodopsins containing the 3 omega motif. This motif forms a stack of three nonconsecutive aromatic amino acids that correlates with the B-C loop orientation, and is shared among the phylogenetically close ion pumps such as the NDQ motif-containing sodium-pumping rhodopsin, the NTQ motif-containing chloride-pumping rhodopsin, and some proton-pumping rhodopsins including xanthorhodopsin. Here, we reviewed the recent research progress on these omega rhodopsins, and speculated on their evolutionary origin of functional diversity..
Collapse
Affiliation(s)
- Soon-Kyeong Kwon
- Division of Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Sung-Hoon Jun
- Electron Microscopy Research Center, Korea Basic Science Institute, Cheongju 8119, Republic of Korea
| | - Jihyun F. Kim
- Department of Systems Biology, Division of Life Sciences, and Institute for Life Science and Biotechnology, Yonsei University, Seoul 0722, Republic of Korea
| |
Collapse
|
22
|
Maresca JA, Keffer JL, Hempel PP, Polson SW, Shevchenko O, Bhavsar J, Powell D, Miller KJ, Singh A, Hahn MW. Light Modulates the Physiology of Nonphototrophic Actinobacteria. J Bacteriol 2019; 201:e00740-18. [PMID: 30692175 PMCID: PMC6482932 DOI: 10.1128/jb.00740-18] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 01/09/2019] [Indexed: 11/20/2022] Open
Abstract
Light is a source of energy and an environmental cue that is available in excess in most surface environments. In prokaryotic systems, conversion of light to energy by photoautotrophs and photoheterotrophs is well understood, but the conversion of light to information and the cellular response to that information have been characterized in only a few species. Our goal was to explore the response of freshwater Actinobacteria, which are ubiquitous in illuminated aquatic environments, to light. We found that Actinobacteria without functional photosystems grow faster in the light, likely because sugar transport and metabolism are upregulated in the light. Based on the action spectrum of the growth effect and comparisons of the genomes of three Actinobacteria with this growth rate phenotype, we propose that the photosensor in these strains is a putative CryB-type cryptochrome. The ability to sense light and upregulate carbohydrate transport during the day could allow these cells to coordinate their time of maximum organic carbon uptake with the time of maximum organic carbon release by primary producers.IMPORTANCE Sunlight provides information about both place and time. In sunlit aquatic environments, primary producers release organic carbon and nitrogen along with other growth factors during the day. The ability of Actinobacteria to coordinate organic carbon uptake and utilization with production of photosynthate enables them to grow more efficiently in the daytime, and it potentially gives them a competitive advantage over heterotrophs that constitutively produce carbohydrate transporters, which is energetically costly, or produce transporters only after detection of the substrate(s), which delays their response. Understanding how light cues the transport of organic carbon and its conversion to biomass is key to understanding biochemical mechanisms within the carbon cycle, the fluxes through it, and the variety of mechanisms by which light enhances growth.
Collapse
Affiliation(s)
- Julia A Maresca
- Department of Civil and Environmental Engineering, University of Delaware, Newark, Delaware, USA
| | - Jessica L Keffer
- Department of Civil and Environmental Engineering, University of Delaware, Newark, Delaware, USA
| | - Priscilla P Hempel
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, Delaware, USA
| | - Shawn W Polson
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, Delaware, USA
- Delaware Biotechnology Institute, University of Delaware, Newark, Delaware, USA
| | - Olga Shevchenko
- Sequencing and Genotyping Center, University of Delaware, Newark, Delaware, USA
- Delaware Biotechnology Institute, University of Delaware, Newark, Delaware, USA
| | - Jaysheel Bhavsar
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, Delaware, USA
- Delaware Biotechnology Institute, University of Delaware, Newark, Delaware, USA
| | - Deborah Powell
- Delaware Biotechnology Institute, University of Delaware, Newark, Delaware, USA
| | - Kelsey J Miller
- Department of Biology, University of Delaware, Newark, Delaware, USA
| | - Archana Singh
- Department of Biology, University of Delaware, Newark, Delaware, USA
| | - Martin W Hahn
- Research Department for Limnology, University of Innsbruck, Mondsee, Austria
| |
Collapse
|
23
|
Culturing the ubiquitous freshwater actinobacterial acI lineage by supplying a biochemical 'helper' catalase. ISME JOURNAL 2019; 13:2252-2263. [PMID: 31073214 DOI: 10.1038/s41396-019-0432-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 03/18/2019] [Accepted: 04/24/2019] [Indexed: 01/21/2023]
Abstract
The actinobacterial acI lineage is among the most successful and ubiquitous freshwater bacterioplankton found on all continents, often representing more than half of all microbial cells in the lacustrine environment and constituting multiple ecotypes. However, stably growing pure cultures of the acI lineage have not been established despite various cultivation efforts based on ecological and genomic studies on the lineage, which is in contrast to the ocean from which abundant microorganisms such as Prochlorococcus, Pelagibacter, and Nitrosopumilus have been isolated. Here, we report the first two pure cultures of the acI lineage successfully maintained by supplementing the growth media with catalase. Catalase was critical for stabilizing the growth of acI strains irrespective of the genomic presence of the catalase-peroxidase (katG) gene. The two strains, representing two novel species, displayed differential phenotypes and distinct preferences for reduced sulfurs and carbohydrates, some of which were difficult to predict based on genomic information. Our results suggest that culture of previously uncultured freshwater bacteria can be facilitated by a simple catalase-supplement method and indicate that genome-based metabolic prediction can be complemented by physiological analyses.
Collapse
|
24
|
Dwulit-Smith JR, Hamilton JJ, Stevenson DM, He S, Oyserman BO, Moya-Flores F, Garcia SL, Amador-Noguez D, McMahon KD, Forest KT. acI Actinobacteria Assemble a Functional Actinorhodopsin with Natively Synthesized Retinal. Appl Environ Microbiol 2018; 84:e01678-18. [PMID: 30315080 PMCID: PMC6275354 DOI: 10.1128/aem.01678-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 10/08/2018] [Indexed: 01/08/2023] Open
Abstract
Freshwater lakes harbor complex microbial communities, but these ecosystems are often dominated by acI Actinobacteria Members of this cosmopolitan lineage are proposed to bolster heterotrophic growth using phototrophy because their genomes encode actino-opsins (actR). This model has been difficult to validate experimentally because acI Actinobacteria are not consistently culturable. Based primarily on genomes from single cells and metagenomes, we provide a detailed biosynthetic route for members of acI clades A and B to synthesize retinal and its carotenoid precursors. Consequently, acI cells should be able to natively assemble light-driven actinorhodopsins (holo-ActR) to pump protons, unlike many bacteria that encode opsins but may need to exogenously obtain retinal because they lack retinal machinery. Moreover, we show that all acI clades contain genes for a secondary branch of the carotenoid pathway, implying synthesis of a complex carotenoid. Transcription analysis of acI Actinobacteria in a eutrophic lake shows that all retinal and carotenoid pathway operons are transcribed and that actR is among the most highly transcribed of all acI genes. Furthermore, heterologous expression of acI retinal pathway genes showed that lycopene, retinal, and ActR can be made using the genes encoded in these organisms. Model cells producing ActR and the key acI retinal-producing β-carotene oxygenase formed holo-ActR and acidified solution during illumination. Taken together, our results prove that acI Actinobacteria containing both ActR and acI retinal production machinery have the capacity to natively synthesize a green light-dependent outward proton-pumping rhodopsin.IMPORTANCE Microbes play critical roles in determining the quality of freshwater ecosystems, which are vital to human civilization. Because acI Actinobacteria are ubiquitous and abundant in freshwater lakes, clarifying their ecophysiology is a major step in determining the contributions that they make to nitrogen and carbon cycling. Without accurate knowledge of these cycles, freshwater systems cannot be incorporated into climate change models, ecosystem imbalances cannot be predicted, and policy for service disruption cannot be planned. Our work fills major gaps in microbial light utilization, secondary metabolite production, and energy cycling in freshwater habitats.
Collapse
Affiliation(s)
- Jeffrey R Dwulit-Smith
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Program in Biophysics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Joshua J Hamilton
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - David M Stevenson
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Shaomei He
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Geoscience, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Ben O Oyserman
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Francisco Moya-Flores
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Sarahi L Garcia
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Daniel Amador-Noguez
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Katherine D McMahon
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Katrina T Forest
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Program in Biophysics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
25
|
Maresca JA, Miller KJ, Keffer JL, Sabanayagam CR, Campbell BJ. Distribution and Diversity of Rhodopsin-Producing Microbes in the Chesapeake Bay. Appl Environ Microbiol 2018; 84:e00137-18. [PMID: 29703736 PMCID: PMC6007120 DOI: 10.1128/aem.00137-18] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 04/23/2018] [Indexed: 01/09/2023] Open
Abstract
Although sunlight is an abundant source of energy in surface environments, less than 0.5% of the available photons are captured by (bacterio)chlorophyll-dependent photosynthesis in plants and bacteria. Metagenomic data indicate that 30 to 60% of the bacterial genomes in some environments encode rhodopsins, retinal-based photosystems found in heterotrophs, suggesting that sunlight may provide energy for more life than previously suspected. However, quantitative data on the number of cells that produce rhodopsins in environmental systems are limited. Here, we use total internal reflection fluorescence microscopy to show that the number of free-living microbes that produce rhodopsins increases along the salinity gradient in the Chesapeake Bay. We correlate this functional data with environmental data to show that rhodopsin abundance is positively correlated with salinity and with indicators of active heterotrophy during the day. Metagenomic and metatranscriptomic data suggest that the microbial rhodopsins in the low-salinity samples are primarily found in Actinobacteria and Bacteroidetes, while those in the high-salinity samples are associated with SAR-11 type AlphaproteobacteriaIMPORTANCE Microbial rhodopsins are common light-activated ion pumps in heterotrophs, and previous work has proposed that heterotrophic microbes use them to conserve energy when organic carbon is limiting. If this hypothesis is correct, rhodopsin-producing cells should be most abundant where nutrients are most limited. Our results indicate that in the Chesapeake Bay, rhodopsin gene abundance is correlated with salinity, and functional rhodopsin production is correlated with nitrate, bacterial production, and chlorophyll a We propose that in this environment, where carbon and nitrogen are likely not limiting, heterotrophs do not need to use rhodopsins to supplement ATP synthesis. Rather, the light-generated proton motive force in nutrient-rich environments could be used to power energy-dependent membrane-associated processes, such as active transport of organic carbon and cofactors, enabling these organisms to more efficiently utilize exudates from primary producers.
Collapse
Affiliation(s)
- Julia A Maresca
- Department of Civil and Environmental Engineering, University of Delaware, Newark, Delaware, USA
| | - Kelsey J Miller
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
| | - Jessica L Keffer
- Department of Civil and Environmental Engineering, University of Delaware, Newark, Delaware, USA
| | | | - Barbara J Campbell
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, USA
| |
Collapse
|
26
|
Pushkarev A, Inoue K, Larom S, Flores-Uribe J, Singh M, Konno M, Tomida S, Ito S, Nakamura R, Tsunoda SP, Philosof A, Sharon I, Yutin N, Koonin EV, Kandori H, Béjà O. A distinct abundant group of microbial rhodopsins discovered using functional metagenomics. Nature 2018; 558:595-599. [PMID: 29925949 PMCID: PMC11128463 DOI: 10.1038/s41586-018-0225-9] [Citation(s) in RCA: 149] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 05/04/2018] [Indexed: 11/09/2022]
Abstract
Many organisms capture or sense sunlight using rhodopsin pigments1,2, which are integral membrane proteins that bind retinal chromophores. Rhodopsins comprise two distinct protein families 1 , type-1 (microbial rhodopsins) and type-2 (animal rhodopsins). The two families share similar topologies and contain seven transmembrane helices that form a pocket in which retinal is linked covalently as a protonated Schiff base to a lysine at the seventh transmembrane helix2,3. Type-1 and type-2 rhodopsins show little or no sequence similarity to each other, as a consequence of extensive divergence from a common ancestor or convergent evolution of similar structures 1 . Here we report a previously unknown and diverse family of rhodopsins-which we term the heliorhodopsins-that we identified using functional metagenomics and that are distantly related to type-1 rhodopsins. Heliorhodopsins are embedded in the membrane with their N termini facing the cell cytoplasm, an orientation that is opposite to that of type-1 or type-2 rhodopsins. Heliorhodopsins show photocycles that are longer than one second, which is suggestive of light-sensory activity. Heliorhodopsin photocycles accompany retinal isomerization and proton transfer, as in type-1 and type-2 rhodopsins, but protons are never released from the protein, even transiently. Heliorhodopsins are abundant and distributed globally; we detected them in Archaea, Bacteria, Eukarya and their viruses. Our findings reveal a previously unknown family of light-sensing rhodopsins that are widespread in the microbial world.
Collapse
Affiliation(s)
- Alina Pushkarev
- Faculty of Biology, Technion Israel Institute of Technology, Haifa, Israel
| | - Keiichi Inoue
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, Japan
- OptoBioTechnology Research Center, Nagoya Institute of Technology, Nagoya, Japan
- Frontier Research Institute for Material Science, Nagoya Institute of Technology, Nagoya, Japan
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Japan
| | - Shirley Larom
- Faculty of Biology, Technion Israel Institute of Technology, Haifa, Israel
| | - José Flores-Uribe
- Faculty of Biology, Technion Israel Institute of Technology, Haifa, Israel
| | - Manish Singh
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, Japan
| | - Masae Konno
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, Japan
| | - Sahoko Tomida
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, Japan
| | - Shota Ito
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, Japan
| | - Ryoko Nakamura
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, Japan
| | - Satoshi P Tsunoda
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, Japan
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Japan
| | - Alon Philosof
- Faculty of Biology, Technion Israel Institute of Technology, Haifa, Israel
| | - Itai Sharon
- Migal Galilee Research Institute, Kiryat Shmona, Israel
- Tel-Hai College, Upper Galilee, Israel
| | - Natalya Yutin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Hideki Kandori
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, Japan.
- OptoBioTechnology Research Center, Nagoya Institute of Technology, Nagoya, Japan.
| | - Oded Béjà
- Faculty of Biology, Technion Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
27
|
Pushkarev A, Hevroni G, Roitman S, Shim JG, Choi A, Jung KH, Béjà O. The Use of a Chimeric Rhodopsin Vector for the Detection of New Proteorhodopsins Based on Color. Front Microbiol 2018; 9:439. [PMID: 29593685 PMCID: PMC5859045 DOI: 10.3389/fmicb.2018.00439] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 02/26/2018] [Indexed: 11/20/2022] Open
Abstract
Student microbial ecology laboratory courses are often conducted as condensed courses in which theory and wet lab work are combined in a very intensive short time period. In last decades, the study of marine microbial ecology is increasingly reliant on molecular-based methods, and as a result many of the research projects conducted in such courses require sequencing that is often not available on site and may take more time than a typical course allows. In this work, we describe a protocol combining molecular and functional methods for analyzing proteorhodopsins (PRs), with visible results in only 4–5 days that do not rely on sequencing. PRs were discovered in oceanic surface waters two decades ago, and have since been observed in different marine environments and diverse taxa, including the abundant alphaproteobacterial SAR11 group. PR subgroups are currently known to absorb green and blue light, and their distribution was previously explained by prevailing light conditions – green pigments at the surface and blue pigments in deeper waters, as blue light travels deeper in the water column. To detect PR in environmental samples, we created a chimeric plasmid suitable for direct expression of PRs using PCR amplification and functional analysis in Escherichia coli cells. Using this assay, we discovered several exceptional cases of PRs whose phenotypes differed from those predicted based on sequence only, including a previously undescribed yellow-light absorbing PRs. We applied this assay in two 10-days marine microbiology courses and found it to greatly enhance students’ laboratory experience, enabling them to gain rapid visual feedback and colorful reward for their work. Furthermore we expect this assay to promote the use of functional assays for the discovery of new rhodopsin variants.
Collapse
Affiliation(s)
- Alina Pushkarev
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| | - Gur Hevroni
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| | - Sheila Roitman
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| | - Jin-Gon Shim
- Department of Life Science and Institute of Biological Interfaces, Sogang University, Seoul, South Korea
| | - Ahreum Choi
- Department of Life Science and Institute of Biological Interfaces, Sogang University, Seoul, South Korea
| | - Kwang-Hwan Jung
- Department of Life Science and Institute of Biological Interfaces, Sogang University, Seoul, South Korea
| | - Oded Béjà
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
28
|
Zheng Q, Wang Y, Xie R, Lang AS, Liu Y, Lu J, Zhang X, Sun J, Suttle CA, Jiao N. Dynamics of Heterotrophic Bacterial Assemblages within Synechococcus Cultures. Appl Environ Microbiol 2018; 84:e01517-17. [PMID: 29150500 PMCID: PMC5772231 DOI: 10.1128/aem.01517-17] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 11/02/2017] [Indexed: 02/01/2023] Open
Abstract
Interactions between photoautotrophic and heterotrophic microorganisms are central to the marine microbial ecosystem. Lab cultures of one of the dominant marine photoautotrophs, Synechococcus, have historically been difficult to render axenic, presumably because these bacteria depend upon other organisms to grow under these conditions. These tight associations between Synechococcus and heterotrophic bacteria represent a good relevant system to study interspecies interactions. Ten individual Synechococcus strains, isolated from eutrophic and oligotrophic waters, were chosen for investigation. Four to six dominant associated heterotrophic bacteria were detected in the liquid cultures of each Synechococcus isolate, comprising members of the Cytophaga-Flavobacteria-Bacteroides (CFB) group (mainly from Flavobacteriales and Cytophagales), Alphaproteobacteria (mainly from the Roseobacter clade), Gammaproteobacteria (mainly from the Alteromonadales and Pseudomonadales), and Actinobacteria The presence of the CFB group, Gammaproteobacteria, and Actinobacteria showed clear geographic patterns related to the isolation environments of the Synechococcus bacteria. An investigation of the population dynamics within a growing culture (XM-24) of one of the isolates, including an evaluation of the proportions of cells that were free-living versus aggregated/attached, revealed interesting patterns for different bacterial groups. In Synechococcus sp. strain XM-24 culture, flavobacteria, which was the most abundant group throughout the culture period, tended to be aggregated or attached to the Synechococcus cells, whereas the actinobacteria demonstrated a free-living lifestyle, and roseobacters displayed different patterns depending on the culture growth phase. Factors contributing to these succession patterns for the heterotrophs likely include interactions among the culture community members, their relative abilities to utilize different compounds produced by Synechococcus cells and changes in the compounds released as culture growth proceeds, and their responses to other changes in the environmental conditions throughout the culture period.IMPORTANCE Marine microbes exist within an interactive ecological network, and studying their interactions is an important part of understanding their roles in global biogeochemical cycling and the determinants of microbial diversity. In this study, the dynamic relationships between Synechococcus spp. and their associated heterotrophic bacteria were investigated. Synechococcus-associated heterotrophic bacteria had similar geographic distribution patterns as their "host" and displayed different lifestyles (free-living versus attached/aggregated) according to the Synechococcus culture growth phases. Combined organic carbon composition and bacterial lifestyle data indicated a potential for succession in carbon utilization patterns by the dominant associated heterotrophic bacteria. Comprehending the interactions between photoautotrophs and heterotrophs and the patterns of organic carbon excretion and utilization is critical to understanding their roles in oceanic biogeochemical cycling.
Collapse
Affiliation(s)
- Qiang Zheng
- State Key Laboratory for Marine Environmental Science, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen, People's Republic of China
| | - Yu Wang
- State Key Laboratory for Marine Environmental Science, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen, People's Republic of China
| | - Rui Xie
- State Key Laboratory for Marine Environmental Science, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen, People's Republic of China
| | - Andrew S Lang
- Department of Biology, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Yanting Liu
- State Key Laboratory for Marine Environmental Science, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen, People's Republic of China
| | - Jiayao Lu
- State Key Laboratory for Marine Environmental Science, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen, People's Republic of China
| | - Xiaodong Zhang
- College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin, People's Republic of China
| | - Jun Sun
- College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin, People's Republic of China
| | - Curtis A Suttle
- Departments of Earth, Ocean and Atmospheric Sciences, Microbiology and Immunology, and Botany and Institute for the Oceans and Fisheries, The University of British Columbia, Vancouver, British Columbia, Canada
- Canadian Institute for Advanced Research (CIFAR), Toronto, Ontario, Canada
| | - Nianzhi Jiao
- State Key Laboratory for Marine Environmental Science, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen, People's Republic of China
| |
Collapse
|
29
|
Cabello-Yeves PJ, Zemskaya TI, Rosselli R, Coutinho FH, Zakharenko AS, Blinov VV, Rodriguez-Valera F. Genomes of Novel Microbial Lineages Assembled from the Sub-Ice Waters of Lake Baikal. Appl Environ Microbiol 2018; 84:e02132-17. [PMID: 29079621 PMCID: PMC5734018 DOI: 10.1128/aem.02132-17] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 10/19/2017] [Indexed: 11/20/2022] Open
Abstract
We present a metagenomic study of Lake Baikal (East Siberia). Two samples obtained from the water column under the ice cover (5 and 20 m deep) in March 2016 have been deep sequenced and the reads assembled to generate metagenome-assembled genomes (MAGs) that are representative of the microbes living in this special environment. Compared with freshwater bodies studied around the world, Lake Baikal had an unusually high fraction of Verrucomicrobia Other groups, such as Actinobacteria and Proteobacteria, were in proportions similar to those found in other lakes. The genomes (and probably cells) tended to be small, presumably reflecting the extremely oligotrophic and cold prevalent conditions. Baikal microbes are novel lineages recruiting very little from other water bodies and are distantly related to other freshwater microbes. Despite their novelty, they showed the closest relationship to genomes discovered by similar approaches from other freshwater lakes and reservoirs. Some of them were particularly similar to MAGs from the Baltic Sea, which, although it is brackish, connected to the ocean, and much more eutrophic, has similar climatological conditions. Many of the microbes contained rhodopsin genes, indicating that, in spite of the decreased light penetration allowed by the thick ice/snow cover, photoheterotrophy could be widespread in the water column, either because enough light penetrates or because the microbes are already adapted to the summer ice-less conditions. We have found a freshwater SAR11 subtype I/II representative showing striking synteny with Pelagibacterubique strains, as well as a phage infecting the widespread freshwater bacterium PolynucleobacterIMPORTANCE Despite the increasing number of metagenomic studies on different freshwater bodies, there is still a missing component in oligotrophic cold lakes suffering from long seasonal frozen cycles. Here, we describe microbial genomes from metagenomic assemblies that appear in the upper water column of Lake Baikal, the largest and deepest freshwater body on Earth. This lake is frozen from January to May, which generates conditions that include an inverted temperature gradient (colder up), decrease in light penetration due to ice, and, especially, snow cover, and oligotrophic conditions more similar to the open-ocean and high-altitude lakes than to other freshwater or brackish systems. As could be expected, most reconstructed genomes are novel lineages distantly related to others in cold environments, like the Baltic Sea and other freshwater lakes. Among them, there was a broad set of streamlined microbes with small genomes/intergenic spacers, including a new nonmarine Pelagibacter-like (subtype I/II) genome.
Collapse
Affiliation(s)
- Pedro J Cabello-Yeves
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández, San Juan de Alicante, Alicante, Spain
| | - Tamara I Zemskaya
- Limnological Institute, Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russia
| | - Riccardo Rosselli
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández, San Juan de Alicante, Alicante, Spain
| | - Felipe H Coutinho
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández, San Juan de Alicante, Alicante, Spain
| | - Alexandra S Zakharenko
- Limnological Institute, Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russia
| | - Vadim V Blinov
- Limnological Institute, Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russia
| | - Francisco Rodriguez-Valera
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández, San Juan de Alicante, Alicante, Spain
| |
Collapse
|
30
|
Tahon G, Willems A. Isolation and characterization of aerobic anoxygenic phototrophs from exposed soils from the Sør Rondane Mountains, East Antarctica. Syst Appl Microbiol 2017; 40:357-369. [DOI: 10.1016/j.syapm.2017.05.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 05/15/2017] [Accepted: 05/16/2017] [Indexed: 12/24/2022]
|
31
|
Lin G, Sun F, Wang C, Zhang L, Zhang X. Assessment of the effect of Enteromorpha prolifera on bacterial community structures in aquaculture environment. PLoS One 2017; 12:e0179792. [PMID: 28742878 PMCID: PMC5526538 DOI: 10.1371/journal.pone.0179792] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 06/05/2017] [Indexed: 11/18/2022] Open
Abstract
In recent years, Enteromorpha prolifera blooms had serious impacts on costal environments and fisheries in China. Nevertheless, the effects of E. prolifera on microbial ecology remain unknown. In this study, for the first time, an Illumina sequencing analysis was used to investigate bacterial communities in source water, aquaculture ponds with E. prolifera, and an aquaculture pond in which E. prolifera -free. Principal coordinate and phylogenic analyses revealed obvious differences among the bacterial communities in the pond water with and without E. prolifera. Abundant bacterial taxa in the E. prolifera-containing pond were generally absent from the pond without E. prolifera. Interestingly, pond water with E. prolifera was dominated by Actinomycetales (> 50%), as well as by anaerobic bacteria in the underlying sediment (Desulfobacterales and Desulfuromonadales (> 20%). Pond water in which E. prolifera-free was dominated by Rhodobacterales (58.19%), as well as aerobic and facultative anaerobic bacteria in the sediment. In addition, the ecological functions of other dominant bacteria, such as Candidatus Aquiluna, Microcella spp., and Marivita spp., should be studied in depth. Overall, massive growth of E. prolifera will have serious effects on bacterial communities, and, thus, it will have an important impact on the environment. The novel findings in this study will be valuable for understanding green tides.
Collapse
Affiliation(s)
- Guorong Lin
- College of Environmental and Biological Engineering, Fujian Provincial Key Laboratory of Ecology-toxicological Effects & Control for Emerging Contaminants, Putian University, Putian, China
| | - Fulin Sun
- State Key Laboratory of Tropical Oceanography, Daya Bay Marine Biology Research Station, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- * E-mail:
| | - Chunzhong Wang
- Putian Institute of Aquaculture Science of Fujian Province, Putian, China
| | - Li Zhang
- Putian Oceanic and Fishery Enviormental Monitoring Station, Putian, China
| | - Xinzhong Zhang
- School of Life Sciences, Nantong University, Nantong, China
| |
Collapse
|
32
|
Pernthaler J. Competition and niche separation of pelagic bacteria in freshwater habitats. Environ Microbiol 2017; 19:2133-2150. [PMID: 28370850 DOI: 10.1111/1462-2920.13742] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 03/19/2017] [Accepted: 03/23/2017] [Indexed: 11/29/2022]
Abstract
Freshwater bacterioplankton assemblages are composed of sympatric populations that can be delineated, for example, by ribosomal RNA gene relatedness and that differ in key ecophysiological properties. They may be free-living or attached, specialized for particular concentrations or subsets of substrates, or invest a variable amount of their resources in defence traits against protistan predators and viruses. Some may be motile and tactic whereas others are not, with far-reaching implications for their respective life styles and niche partitioning. The co-occurrence of competitors with overlapping growth requirements has profound consequences for the stability of community functions; it can to some extent be explained by habitat factors such as the microscale complexity and spatiotemporal variability of the lacustrine environments. On the other hand, the composition and diversity of freshwater microbial assemblages also reflects non-equilibrium states, dispersal and the stochasticity of community assembly processes. This review synoptically discusses the competition and niche separation of heterotrophic bacterial populations (defined at various levels of phylogenetic resolution) in the pelagic zone of inland surface waters from a variety of angles, focusing on habitat heterogeneity and the resulting biogeographic distribution patterns, the ecophysiological adaptations to the substrate field and the interactions of prokaryotes with predators and viruses.
Collapse
Affiliation(s)
- Jakob Pernthaler
- Limnological Station Kilchberg, Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
33
|
Microbial communities of aquatic environments on Heard Island characterized by pyrotag sequencing and environmental data. Sci Rep 2017; 7:44480. [PMID: 28290555 PMCID: PMC5349573 DOI: 10.1038/srep44480] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 02/09/2017] [Indexed: 12/23/2022] Open
Abstract
Heard Island in the Southern Ocean is a biological hotspot that is suffering the effects of climate change. Significant glacier retreat has generated proglacial lagoons, some of which are open to the ocean. We used pyrotag sequencing of SSU rRNA genes and environmental data to characterize microorganisms from two pools adjacent to animal breeding areas, two glacial lagoons and Atlas Cove (marine site). The more abundant taxa included Actinobacteria, Bacteroidetes and Proteobacteria, ciliates and picoflagellates (e.g. Micromonas), and relatively few Archaea. Seal Pool, which is rich in organic matter, was characterized by a heterotrophic degradative community, while the less eutrophic Atlas Pool had more eucaryotic primary producers. Brown Lagoon, with the lowest nutrient levels, had Eucarya and Bacteria predicted to be oligotrophs, possess small cell sizes, and have the ability to metabolize organic matter. The marine influence on Winston Lagoon was evident by its salinity and the abundance of marine-like Gammaproteobacteria, while also lacking typical marine eucaryotes indicating the system was still functioning as a distinct niche. This is the first microbiology study of Heard Island and revealed that communities are distinct at each location and heavily influenced by local environmental factors.
Collapse
|
34
|
Li Z, Lu L, Guo J, Yang J, Zhang J, He B, Xu L. Responses of spatial-temporal dynamics of bacterioplankton community to large-scale reservoir operation: a case study in the Three Gorges Reservoir, China. Sci Rep 2017; 7:42469. [PMID: 28211884 PMCID: PMC5304162 DOI: 10.1038/srep42469] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 01/11/2017] [Indexed: 02/01/2023] Open
Abstract
Large rivers are commonly regulated by damming, yet the effects of such disruption on bacterioplankton community structures have not been adequately studied. The aim of this study was to explore the biogeographical patterns present under dam regulation and to uncover the major drivers structuring bacterioplankton communities. Bacterioplankton assemblages in the Three Gorges Reservoir (TGR) were analyzed using Illumina Miseq sequencing by comparing seven sites located within the TGR before and after impoundment. This approach revealed ecological and spatial-temporal variations in bacterioplankton community composition along the longitudinal axis. The community was dynamic and dominated by Proteobacteria and Actinobacteria phyla, encompassing 39.26% and 37.14% of all sequences, respectively, followed by Bacteroidetes (8.67%) and Cyanobacteria (3.90%). The Shannon-Wiener index of the bacterioplankton community in the flood season (August) was generally higher than that in the impoundment season (November). Principal Component Analysis of the bacterioplankton community compositions showed separation between different seasons and sampling sites. Results of the relationship between bacterioplankton community compositions and environmental variables highlighted that ecological processes of element cycling and large dam disturbances are of prime importance in driving the assemblages of riverine bacterioplankton communities.
Collapse
Affiliation(s)
- Zhe Li
- Key Laboratory of Reservoir Aquatic Environment of CAS, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Lunhui Lu
- Key Laboratory of Reservoir Aquatic Environment of CAS, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Jinsong Guo
- Key Laboratory of Reservoir Aquatic Environment of CAS, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China.,Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Jixiang Yang
- Key Laboratory of Reservoir Aquatic Environment of CAS, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Jiachao Zhang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Bin He
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Linlin Xu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| |
Collapse
|
35
|
Kang I, Kim S, Islam MR, Cho JC. The first complete genome sequences of the acI lineage, the most abundant freshwater Actinobacteria, obtained by whole-genome-amplification of dilution-to-extinction cultures. Sci Rep 2017; 7:42252. [PMID: 28186143 PMCID: PMC5301498 DOI: 10.1038/srep42252] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 01/06/2017] [Indexed: 02/07/2023] Open
Abstract
The acI lineage of the phylum Actinobacteria is the most abundant bacterial group in most freshwater lakes. However, due to difficulties in laboratory cultivation, only two mixed cultures and some incomplete single-amplified or metagenome-derived genomes have been reported for the lineage. Here, we report the initial cultivation and complete genome sequences of four novel strains of the acI lineage from the tribes acI-A1, -A4, -A7, and -C1. The acI strains, initially isolated by dilution-to-extinction culturing, eventually failed to be maintained as axenic cultures. However, the first complete genomes of the acI lineage were successfully obtained from these initial cultures through whole genome amplification applied to more than hundreds of cultured acI cells. The genome sequences exhibited features of genome streamlining and showed that the strains are aerobic chemoheterotrophs sharing central metabolic pathways, with some differences among tribes that may underlie niche diversification within the acI lineage. Actinorhodopsin was found in all strains, but retinal biosynthesis was complete in only A1 and A4 tribes.
Collapse
Affiliation(s)
- Ilnam Kang
- Department of Biological Sciences, Inha University, Incheon 22212, Republic of Korea
| | - Suhyun Kim
- Department of Biological Sciences, Inha University, Incheon 22212, Republic of Korea
| | - Md Rashedul Islam
- Department of Biological Sciences, Inha University, Incheon 22212, Republic of Korea
| | - Jang-Cheon Cho
- Department of Biological Sciences, Inha University, Incheon 22212, Republic of Korea
| |
Collapse
|
36
|
Tahon G, Tytgat B, Willems A. Diversity of Phototrophic Genes Suggests Multiple Bacteria May Be Able to Exploit Sunlight in Exposed Soils from the Sør Rondane Mountains, East Antarctica. Front Microbiol 2016; 7:2026. [PMID: 28066352 PMCID: PMC5165242 DOI: 10.3389/fmicb.2016.02026] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 12/02/2016] [Indexed: 01/10/2023] Open
Abstract
Microbial life in exposed terrestrial surface layers in continental Antarctica is faced with extreme environmental conditions, including scarcity of organic matter. Bacteria in these exposed settings can therefore be expected to use alternative energy sources such as solar energy, abundant during the austral summer. Using Illumina MiSeq sequencing, we assessed the diversity and abundance of four conserved protein encoding genes involved in different key steps of light-harvesting pathways dependent on (bacterio)chlorophyll (pufM, bchL/chlL, and bchX genes) and rhodopsins (actinorhodopsin genes), in exposed soils from the Sør Rondane Mountains, East Antarctica. Analysis of pufM genes, encoding a subunit of the type 2 photochemical reaction center found in anoxygenic phototrophic bacteria, revealed a broad diversity, dominated by Roseobacter- and Loktanella-like sequences. The bchL and chlL, involved in (bacterio)chlorophyll synthesis, on the other hand, showed a high relative abundance of either cyanobacterial or green algal trebouxiophyceael chlL reads, depending on the sample, while most bchX sequences belonged mostly to previously unidentified phylotypes. Rhodopsin-containing phototrophic bacteria could not be detected in the samples. Our results, while suggesting that Cyanobacteria and green algae are the main phototrophic groups, show that light-harvesting bacteria are nevertheless very diverse in microbial communities in Antarctic soils.
Collapse
Affiliation(s)
- Guillaume Tahon
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University Ghent, Belgium
| | - Bjorn Tytgat
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University Ghent, Belgium
| | - Anne Willems
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University Ghent, Belgium
| |
Collapse
|
37
|
Feldman TB, Smitienko OA, Shelaev IV, Gostev FE, Nekrasova OV, Dolgikh DA, Nadtochenko VA, Kirpichnikov MP, Ostrovsky MA. Femtosecond spectroscopic study of photochromic reactions of bacteriorhodopsin and visual rhodopsin. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2016; 164:296-305. [PMID: 27723489 DOI: 10.1016/j.jphotobiol.2016.09.041] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 09/29/2016] [Accepted: 09/30/2016] [Indexed: 11/16/2022]
Abstract
Photochromic ultrafast reactions of bacteriorhodopsin (H. salinarum) and bovine rhodopsin were conducted with a femtosecond two-pump probe pulse setup with the time resolution of 20-25fs. The dynamics of the forward and reverse photochemical reactions for both retinal-containing proteins was compared. It is demonstrated that when retinal-containing proteins are excited by femtosecond pulses, dynamics pattern of the vibrational coherent wave packets in the course of the reaction is different for bacteriorhodopsin and visual rhodopsin. As shown in these studies, the low-frequencies that form a wave packets experimentally observed in the dynamics of primary products formation as a result of retinal photoisomerization have different intensities and are clearer for bovine rhodopsin. Photo-reversible reactions for both retinal proteins were performed from the stage of the relatively stable photointermediates that appear within 3-5ps after the light pulse impact. It is demonstrated that the efficiency of the reverse phototransition K-form→bacteriorhodopsin is almost five-fold higher than that of the Batho-intermediate→visual rhodopsin phototransition. The results obtained indicate that in the course of evolution the intramolecular mechanism of the chromophore-protein interaction in visual rhodopsin becomes more perfect and specific. The decrease in the probability of the reverse chromophore photoisomerization (all-trans→11-cis retinal) in primary photo-induced rhodopsin products causes an increase in the efficiency of the photoreception process.
Collapse
Affiliation(s)
- Tatiana B Feldman
- Biological Faculty, Lomonosov Moscow State University, Leninskie Gory 1, Moscow 119991, Russia; Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygin st.4, Moscow 119334, Russia.
| | - Olga A Smitienko
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygin st.4, Moscow 119334, Russia
| | - Ivan V Shelaev
- Semenov Institute of Chemical Physics, Russian Academy of Sciences, Kosygin st.4, Moscow 119991, Russia
| | - Fedor E Gostev
- Semenov Institute of Chemical Physics, Russian Academy of Sciences, Kosygin st.4, Moscow 119991, Russia
| | - Oksana V Nekrasova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya st. 16/10, Moscow 117997, Russia
| | - Dmitriy A Dolgikh
- Biological Faculty, Lomonosov Moscow State University, Leninskie Gory 1, Moscow 119991, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya st. 16/10, Moscow 117997, Russia
| | - Victor A Nadtochenko
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygin st.4, Moscow 119334, Russia; Semenov Institute of Chemical Physics, Russian Academy of Sciences, Kosygin st.4, Moscow 119991, Russia; Institute of Problems of Chemical Physics, Russian Academy of Sciences, Academician Semenov avenue 1, Chernogolovka, Moscow region 142432, Russia
| | - Mikhail P Kirpichnikov
- Biological Faculty, Lomonosov Moscow State University, Leninskie Gory 1, Moscow 119991, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya st. 16/10, Moscow 117997, Russia
| | - Mikhail A Ostrovsky
- Biological Faculty, Lomonosov Moscow State University, Leninskie Gory 1, Moscow 119991, Russia; Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygin st.4, Moscow 119334, Russia
| |
Collapse
|
38
|
Okazaki Y, Nakano SI. Vertical partitioning of freshwater bacterioplankton community in a deep mesotrophic lake with a fully oxygenated hypolimnion (Lake Biwa, Japan). ENVIRONMENTAL MICROBIOLOGY REPORTS 2016; 8:780-788. [PMID: 27402328 DOI: 10.1111/1758-2229.12439] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 06/20/2016] [Indexed: 05/03/2023]
Abstract
In freshwater microbial ecology, extensive studies are attempting to characterize the vast majority of uncultivated bacterioplankton taxa. However, these studies mainly focus on the epilimnion and little is known regarding the bacterioplankton inhabiting the hypolimnion of deep holomictic lakes, despite its biogeochemical importance. In this study, we investigated the bacterioplankton community composition in a deep freshwater lake with a fully oxygenated hypolimnion (Lake Biwa, Japan) using high-throughput 16S rRNA gene amplicon sequencing. Sampling at a pelagic site over 15 months throughout the water column revealed that the community composition in the hypolimnion was significantly different from that in the epilimnion. The bacterial community in the hypolimnion was composed of groups dominating in the whole water layer (e.g., bacI-A1 and acI-B1) and groups that were hypolimnion habitat specialists. Among the hypolimnion specialists, members of Chloroflexi and Planctomycetes were highly represented (e.g., CL500-11, CL500-15 and CL500-37), followed by members of Acidobacteria, Chlorobi and nitrifiers (e.g., Ca. Nitrosoarchaeum, Nitrosospira and Nitrospira). This study identified the number of previously understudied taxa dominating the deep aerobic freshwater habitat, suggesting that the biogeochemical cycling there is driven by the microbial community that are different from that in the epilimnion.
Collapse
Affiliation(s)
- Yusuke Okazaki
- Center for Ecological Research, Kyoto University, 2-509-3 Hirano, Otsu, 520-2113, Japan
| | - Shin-Ichi Nakano
- Center for Ecological Research, Kyoto University, 2-509-3 Hirano, Otsu, 520-2113, Japan
| |
Collapse
|
39
|
Nakamura S, Kikukawa T, Tamogami J, Kamiya M, Aizawa T, Hahn MW, Ihara K, Kamo N, Demura M. Photochemical characterization of actinorhodopsin and its functional existence in the natural host. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:1900-1908. [PMID: 27659506 DOI: 10.1016/j.bbabio.2016.09.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 09/13/2016] [Accepted: 09/17/2016] [Indexed: 11/29/2022]
Abstract
Actinorhodopsin (ActR) is a light-driven outward H+ pump. Although the genes of ActRs are widely spread among freshwater bacterioplankton, there are no prior data on their functional expression in native cell membranes. Here, we demonstrate ActR phototrophy in the native actinobacterium. Genome analysis showed that Candidatus Rhodoluna planktonica, a freshwater actinobacterium, encodes one microbial rhodopsin (RpActR) belonging to the ActR family. Reflecting the functional expression of RpActR, illumination induced the acidification of the actinobacterial cell suspension and then elevated the ATP content inside the cells. The photochemistry of RpActR was also examined using heterologously expressed RpActR in Escherichia coli membranes. The purified RpActR showed λmax at 534nm and underwent a photocycle characterized by the very fast formation of M intermediate. The subsequent intermediate, named P620, could be assigned to the O intermediate in other H+ pumps. In contrast to conventional O, the accumulation of P620 remains prominent, even at high pH. Flash-induced absorbance changes suggested that there exists only one kind of photocycle at any pH. However, above pH7, RpActR shows heterogeneity in the H+ transfer sequences: one first captures H+ and then releases it during the formation and decay of P620, while the other first releases H+ prior to H+ uptake during P620 formation.
Collapse
Affiliation(s)
- Shintaro Nakamura
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Takashi Kikukawa
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan.
| | - Jun Tamogami
- College of Pharmaceutical Sciences, Matsuyama University, Matsuyama, Japan
| | - Masakatsu Kamiya
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Tomoyasu Aizawa
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Martin W Hahn
- Research Institute for Limnology, University of Innsbruck, Mondsee, Austria
| | - Kunio Ihara
- Center for Gene Research, Nagoya University, Nagoya, Japan
| | - Naoki Kamo
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Makoto Demura
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| |
Collapse
|
40
|
Marine Bacterial and Archaeal Ion-Pumping Rhodopsins: Genetic Diversity, Physiology, and Ecology. Microbiol Mol Biol Rev 2016; 80:929-54. [PMID: 27630250 DOI: 10.1128/mmbr.00003-16] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The recognition of a new family of rhodopsins in marine planktonic bacteria, proton-pumping proteorhodopsin, expanded the known phylogenetic range, environmental distribution, and sequence diversity of retinylidene photoproteins. At the time of this discovery, microbial ion-pumping rhodopsins were known solely in haloarchaea inhabiting extreme hypersaline environments. Shortly thereafter, proteorhodopsins and other light-activated energy-generating rhodopsins were recognized to be widespread among marine bacteria. The ubiquity of marine rhodopsin photosystems now challenges prior understanding of the nature and contributions of "heterotrophic" bacteria to biogeochemical carbon cycling and energy fluxes. Subsequent investigations have focused on the biophysics and biochemistry of these novel microbial rhodopsins, their distribution across the tree of life, evolutionary trajectories, and functional expression in nature. Later discoveries included the identification of proteorhodopsin genes in all three domains of life, the spectral tuning of rhodopsin variants to wavelengths prevailing in the sea, variable light-activated ion-pumping specificities among bacterial rhodopsin variants, and the widespread lateral gene transfer of biosynthetic genes for bacterial rhodopsins and their associated photopigments. Heterologous expression experiments with marine rhodopsin genes (and associated retinal chromophore genes) provided early evidence that light energy harvested by rhodopsins could be harnessed to provide biochemical energy. Importantly, some studies with native marine bacteria show that rhodopsin-containing bacteria use light to enhance growth or promote survival during starvation. We infer from the distribution of rhodopsin genes in diverse genomic contexts that different marine bacteria probably use rhodopsins to support light-dependent fitness strategies somewhere between these two extremes.
Collapse
|
41
|
Eronen-Rasimus E, Piiparinen J, Karkman A, Lyra C, Gerland S, Kaartokallio H. Bacterial communities in Arctic first-year drift ice during the winter/spring transition. ENVIRONMENTAL MICROBIOLOGY REPORTS 2016; 8:527-535. [PMID: 27264318 DOI: 10.1111/1758-2229.12428] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Horizontal and vertical variability of first-year drift-ice bacterial communities was investigated along a North-South transect in the Fram Strait during the winter/spring transition. Two different developmental stages were captured along the transect based on the prevailing environmental conditions and the differences in bacterial community composition. The differences in the bacterial communities were likely driven by the changes in sea-ice algal biomass (2.6-5.6 fold differences in chl-a concentrations). Copiotrophic genera common in late spring/summer sea ice, such as Polaribacter, Octadecabacter and Glaciecola, dominated the bacterial communities, supporting the conclusion that the increase in the sea-ice algal biomass was possibly reflected in the sea-ice bacterial communities. Of the dominating bacterial genera, Polaribacter seemed to benefit the most from the increase in algal biomass, since they covered approximately 39% of the total community at the southernmost stations with higher (>6 μg l(-1) ) chl-a concentrations and only 9% at the northernmost station with lower chl-a concentrations (<6 μg l(-1) ). The sea-ice bacterial communities also varied between the ice horizons at all three stations and thus we recommend that for future studies multiple ice horizons be sampled to cover the variability in sea-ice bacterial communities in spring.
Collapse
Affiliation(s)
- Eeva Eronen-Rasimus
- Marine Research Centre, Finnish Environment Institute, PO Box 140, Erik Palménin aukio 1, Helsinki, 00251, Finland
- Tvärminne Zoological Station, University of Helsinki, J.A. Palménin tie 260, Hanko, 10900, Finland
| | - Jonna Piiparinen
- Marine Research Centre, Finnish Environment Institute, PO Box 140, Erik Palménin aukio 1, Helsinki, 00251, Finland
- Tvärminne Zoological Station, University of Helsinki, J.A. Palménin tie 260, Hanko, 10900, Finland
| | - Antti Karkman
- Department of Food and Environmental Sciences, University of Helsinki, PO Box 56, Viikinkaari 9, 00014, Finland
| | - Christina Lyra
- Department of Food and Environmental Sciences, University of Helsinki, PO Box 56, Viikinkaari 9, 00014, Finland
| | - Sebastian Gerland
- Norwegian Polar Institute, Fram Centre, P.O. Box 6606 Langnes, Tromsø, 9296, Norway
| | - Hermanni Kaartokallio
- Marine Research Centre, Finnish Environment Institute, PO Box 140, Erik Palménin aukio 1, Helsinki, 00251, Finland
| |
Collapse
|
42
|
Brindefalk B, Ekman M, Ininbergs K, Dupont CL, Yooseph S, Pinhassi J, Bergman B. Distribution and expression of microbial rhodopsins in the Baltic Sea and adjacent waters. Environ Microbiol 2016; 18:4442-4455. [DOI: 10.1111/1462-2920.13407] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 06/06/2016] [Indexed: 12/27/2022]
Affiliation(s)
- Björn Brindefalk
- Department of Ecology, Environment and Plant Sciences; Stockholm University, Science for Life Laboratory; Solna SE-17121 Sweden
| | - Martin Ekman
- Department of Ecology, Environment and Plant Sciences; Stockholm University, Science for Life Laboratory; Solna SE-17121 Sweden
| | - Karolina Ininbergs
- Department of Ecology, Environment and Plant Sciences; Stockholm University, Science for Life Laboratory; Solna SE-17121 Sweden
| | - Christopher L. Dupont
- Microbial and Environmental Genomics; J. Craig Venter Institute; San Diego CA 92037 USA
| | - Shibu Yooseph
- Informatics Group, J. Craig Venter Institute; San Diego CA 92037 USA
| | - Jarone Pinhassi
- Centre for Ecology and Evolution in Microbial Model Systems; Linnaeus University; Kalmar SE-391 82 Sweden
| | - Birgitta Bergman
- Department of Ecology, Environment and Plant Sciences; Stockholm University, Science for Life Laboratory; Solna SE-17121 Sweden
| |
Collapse
|
43
|
Complete Genome Sequence of Aurantimicrobium minutum Type Strain KNCT, a Planktonic Ultramicrobacterium Isolated from River Water. GENOME ANNOUNCEMENTS 2016; 4:4/3/e00616-16. [PMID: 27365350 PMCID: PMC4929513 DOI: 10.1128/genomea.00616-16] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Aurantimicrobium minutum type strain KNCT is a planktonic ultramicrobacterium isolated from river water in western Japan. Strain KNCT has an extremely small, streamlined genome of 1,622,386 bp comprising 1,575 protein-coding sequences. The genome annotation suggests that strain KNCT has an actinorhodopsin-based photometabolism.
Collapse
|
44
|
Albarracín VH, Kraiselburd I, Bamann C, Wood PG, Bamberg E, Farias ME, Gärtner W. Functional Green-Tuned Proteorhodopsin from Modern Stromatolites. PLoS One 2016; 11:e0154962. [PMID: 27187791 PMCID: PMC4871484 DOI: 10.1371/journal.pone.0154962] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 04/21/2016] [Indexed: 11/18/2022] Open
Abstract
The sequenced genome of the poly-extremophile Exiguobacterium sp. S17, isolated from modern stromatolites at Laguna Socompa (3,570 m), a High-Altitude Andean Lake (HAAL) in Argentinean Puna revealed a putative proteorhodopsin-encoding gene. The HAAL area is exposed to the highest UV irradiation on Earth, making the microbial community living in the stromatolites test cases for survival strategies under extreme conditions. The heterologous expressed protein E17R from Exiguobacterium (248 amino acids, 85% sequence identity to its ortholog ESR from E. sibiricum) was assembled with retinal displaying an absorbance maximum at 524 nm, which makes it a member of the green-absorbing PR-subfamily. Titration down to low pH values (eventually causing partial protein denaturation) indicated a pK value between two and three. Global fitting of data from laser flash-induced absorption changes gave evidence for an early red-shifted intermediate (its formation being below the experimental resolution) that decayed (τ1 = 3.5 μs) into another red-shifted intermediate. This species decayed in a two-step process (τ2 = 84 μs, τ3 = 11 ms), to which the initial state of E17-PR was reformed with a kinetics of 2 ms. Proton transport capability of the HAAL protein was determined by BLM measurements. Additional blue light irradiation reduced the proton current, clearly identifying a blue light absorbing, M-like intermediate. The apparent absence of this intermediate is explained by closely matching formation and decay kinetics.
Collapse
Affiliation(s)
- Virginia Helena Albarracín
- Planta Piloto de Procesos Industriales y Microbiológicos (PROIMI), CCT, CONICET. Av. Belgrano y Pasaje Caseros. 4000- S. M. de Tucumán, Argentina
- Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán, 4000, S. M. de Tucumán, Argentina
- * E-mail: (VHA); (WG)
| | - Ivana Kraiselburd
- Instituto de Biología Molecular y Celular de Rosario (IBR - CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas (FBIOYF - UNR), Suipacha 590, 2000, Rosario, Santa Fe, Argentina
| | - Christian Bamann
- Max-Planck-Institute for Biophysics, Max-von-Laue-Straße 3, D-60438 Frankfurt am Main, Germany
| | - Phillip G. Wood
- Max-Planck-Institute for Biophysics, Max-von-Laue-Straße 3, D-60438 Frankfurt am Main, Germany
| | - Ernst Bamberg
- Max-Planck-Institute for Biophysics, Max-von-Laue-Straße 3, D-60438 Frankfurt am Main, Germany
| | - María Eugenia Farias
- Max-Planck-Institute for Biophysics, Max-von-Laue-Straße 3, D-60438 Frankfurt am Main, Germany
| | - Wolfgang Gärtner
- Max-Planck-Institute for Chemical Energy Conversion, Stiftstrasse 34–36, D-45470 Mülheim, Germany
- * E-mail: (VHA); (WG)
| |
Collapse
|
45
|
Maresca JA, Keffer JL, Miller KJ. Biochemical Analysis of Microbial Rhodopsins. ACTA ACUST UNITED AC 2016; 41:1F.4.1-1F.4.18. [PMID: 27153387 DOI: 10.1002/cpmc.5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Ion-pumping rhodopsins transfer ions across the microbial cell membrane in a light-dependent fashion. As the rate of biochemical characterization of microbial rhodopsins begins to catch up to the rate of microbial rhodopsin identification in environmental and genomic sequence data sets, in vitro analysis of their light-absorbing properties and in vivo analysis of ion pumping will remain critical to characterizing these proteins. As we learn more about the variety of physiological roles performed by microbial rhodopsins in different cell types and environments, observing the localization patterns of the rhodopsins and/or quantifying the number of rhodopsin-bearing cells in natural environments will become more important. Here, we provide protocols for purification of rhodopsin-containing membranes, detection of ion pumping, and observation of functional rhodopsins in laboratory and environmental samples using total internal reflection fluorescence microscopy. © 2016 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Julia A Maresca
- University of Delaware, Department of Civil and Environmental Engineering, Newark, Delaware
| | - Jessica L Keffer
- University of Delaware, Department of Civil and Environmental Engineering, Newark, Delaware
| | - Kelsey J Miller
- University of Delaware, Department of Biological Sciences, Newark, Delaware
| |
Collapse
|
46
|
Ye Q, Liu J, Du J, Zhang J. Bacterial Diversity in Submarine Groundwater along the Coasts of the Yellow Sea. Front Microbiol 2016; 6:1519. [PMID: 26779172 PMCID: PMC4705239 DOI: 10.3389/fmicb.2015.01519] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 12/17/2015] [Indexed: 01/17/2023] Open
Abstract
Submarine groundwater (SGD) is one of the most significant pathways for the exchange of groundwater and/or source of nutrients, metals and carbon to the ocean, subsequently cause deleterious impacts on the coastal ecosystems. Microorganisms have been recognized as the important participators in the biogeochemical processes in the SGD. In this study, by utilizing 16S rRNA-based Illumina Miseq sequencing technology, we investigated bacterial diversity and distribution in both fresh well water and brackish recirculated porewater along the coasts in the Yellow Sea. The results showed that Actinobacteria and Betaproteobacteria, especially Comamonas spp. and Limnohabitans spp. were dominated in fresh well samples. Distinct patterns of bacterial communities were found among the porewater samples due to different locations, for examples, Cyanbacteria was the most abundant in the porewater samples far from the algal bloomed areas. The analysis of correlation between representative bacterial taxonomic groups and the contexture environmental parameters showed that fresh well water and brackish porewater might provide different nutrients to the coastal waters. Potential key bacterial groups such as Comamonas spp. may be excellent candidates for the bioremediation of the natural pollutants in the SGD. Our comprehensive understanding of bacterial diversity in the SGD along the coasts of the Yellow Sea will create a basis for designing the effective clean-up approach in-situ, and provide valuable information for the coastal management.
Collapse
Affiliation(s)
- Qi Ye
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University Shanghai, China
| | - Jianan Liu
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University Shanghai, China
| | - Jinzhou Du
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University Shanghai, China
| | - Jing Zhang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University Shanghai, China
| |
Collapse
|
47
|
Ricão Canelhas M, Eiler A, Bertilsson S. Are freshwater bacterioplankton indifferent to variable types of amino acid substrates? FEMS Microbiol Ecol 2016; 92:fiw005. [PMID: 26738554 DOI: 10.1093/femsec/fiw005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2016] [Indexed: 11/13/2022] Open
Abstract
A wide range of carbon compounds sustain bacterial activity and growth in freshwater ecosystems and the amount and quality of these substrates influence bacterial diversity and metabolic function. Biologically labile low-molecular-weight compounds, such as dissolved free amino acids, are particularly important substrates and can fuel as much as 20% of the total heterotrophic production. In this study, we show that extensive laboratory incubations with variable amino acids as substrates caused only minimal differences in bacterial growth rate, growth yield, quantitative amino acid usage, community composition and diversity. This was in marked contrast to incubations under dark or light regimes, where significant responses were observed in bacterial community composition and with higher diversity in the dark incubations. While a few individual taxa still responded to amendment with specific amino acids, our results suggest that compositional shifts in the specific supply of amino acids and possibly also other labile organic substrates have a minor impact on heterotrophic bacterioplankton communities, at least in nutrient rich lakes and compared to other prevailing environmental factors.
Collapse
Affiliation(s)
- Monica Ricão Canelhas
- Department of Ecology and Genetics, Limnology and Science for Life Laboratory, Uppsala University, SE-75236, Uppsala, Sweden
| | - Alexander Eiler
- Department of Ecology and Genetics, Limnology and Science for Life Laboratory, Uppsala University, SE-75236, Uppsala, Sweden
| | - Stefan Bertilsson
- Department of Ecology and Genetics, Limnology and Science for Life Laboratory, Uppsala University, SE-75236, Uppsala, Sweden
| |
Collapse
|
48
|
Hsu MF, Fu HY, Cai CJ, Yi HP, Yang CS, Wang AHJ. Structural and Functional Studies of a Newly Grouped Haloquadratum walsbyi Bacteriorhodopsin Reveal the Acid-resistant Light-driven Proton Pumping Activity. J Biol Chem 2015; 290:29567-77. [PMID: 26483542 PMCID: PMC4705956 DOI: 10.1074/jbc.m115.685065] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Indexed: 11/23/2022] Open
Abstract
Retinal bound light-driven proton pumps are widespread in eukaryotic and prokaryotic organisms. Among these pumps, bacteriorhodopsin (BR) proteins cooperate with ATP synthase to convert captured solar energy into a biologically consumable form, ATP. In an acidic environment or when pumped-out protons accumulate in the extracellular region, the maximum absorbance of BR proteins shifts markedly to the longer wavelengths. These conditions affect the light-driven proton pumping functional exertion as well. In this study, wild-type crystal structure of a BR with optical stability under wide pH range from a square halophilic archaeon, Haloquadratum walsbyi (HwBR), was solved in two crystal forms. One crystal form, refined to 1.85 Å resolution, contains a trimer in the asymmetric unit, whereas another contains an antiparallel dimer was refined at 2.58 Å. HwBR could not be classified into any existing subgroup of archaeal BR proteins based on the protein sequence phylogenetic tree, and it showed unique absorption spectral stability when exposed to low pH values. All structures showed a unique hydrogen-bonding network between Arg82 and Thr201, linking the BC and FG loops to shield the retinal-binding pocket in the interior from the extracellular environment. This result was supported by R82E mutation that attenuated the optical stability. The negatively charged cytoplasmic side and the Arg82–Thr201 hydrogen bond may play an important role in the proton translocation trend in HwBR under acidic conditions. Our findings have unveiled a strategy adopted by BR proteins to solidify their defenses against unfavorable environments and maintain their optical properties associated with proton pumping.
Collapse
Affiliation(s)
- Min-Feng Hsu
- From the Institute of Biological Chemistry and Core Facilities for Protein Structural Analysis, Academia Sinica, Taipei 11529 and
| | - Hsu-Yuan Fu
- the Department of Biochemical Science and Technology, College of Life Science, Yen Tjing Ling Industrial Research Institute, and
| | - Chun-Jie Cai
- the Department of Biochemical Science and Technology, College of Life Science
| | - Hsiu-Pin Yi
- the Department of Biochemical Science and Technology, College of Life Science
| | - Chii-Shen Yang
- the Department of Biochemical Science and Technology, College of Life Science, Institute of Biotechnology, College of Bio-Resources and Agriculture, National Taiwan University, Taipei 10617, Taiwan
| | - Andrew H-J Wang
- From the Institute of Biological Chemistry and Core Facilities for Protein Structural Analysis, Academia Sinica, Taipei 11529 and
| |
Collapse
|
49
|
Boeuf D, Audic S, Brillet-Guéguen L, Caron C, Jeanthon C. MicRhoDE: a curated database for the analysis of microbial rhodopsin diversity and evolution. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2015; 2015:bav080. [PMID: 26286928 PMCID: PMC4539915 DOI: 10.1093/database/bav080] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 07/25/2015] [Indexed: 11/12/2022]
Abstract
Microbial rhodopsins are a diverse group of photoactive transmembrane proteins found in all three domains of life and in viruses. Today, microbial rhodopsin research is a flourishing research field in which new understandings of rhodopsin diversity, function and evolution are contributing to broader microbiological and molecular knowledge. Here, we describe MicRhoDE, a comprehensive, high-quality and freely accessible database that facilitates analysis of the diversity and evolution of microbial rhodopsins. Rhodopsin sequences isolated from a vast array of marine and terrestrial environments were manually collected and curated. To each rhodopsin sequence are associated related metadata, including predicted spectral tuning of the protein, putative activity and function, taxonomy for sequences that can be linked to a 16S rRNA gene, sampling date and location, and supporting literature. The database currently covers 7857 aligned sequences from more than 450 environmental samples or organisms. Based on a robust phylogenetic analysis, we introduce an operational classification system with multiple phylogenetic levels ranging from superclusters to species-level operational taxonomic units. An integrated pipeline for online sequence alignment and phylogenetic tree construction is also provided. With a user-friendly interface and integrated online bioinformatics tools, this unique resource should be highly valuable for upcoming studies of the biogeography, diversity, distribution and evolution of microbial rhodopsins. Database URL: http://micrhode.sb-roscoff.fr.
Collapse
Affiliation(s)
- Dominique Boeuf
- CNRS, UMR 7144, Marine Phototrophic Prokaryotes Team, Sorbonne Universités, UPMC Univ Paris 06, UMR 7144, Oceanic Plankton Group
| | - Stéphane Audic
- Sorbonne Universités, UPMC Univ Paris 06, UMR 7144, Oceanic Plankton Group, CNRS, UMR 7144, Team Evolution des Protistes et Ecosystèmes Pélagiques and
| | | | - Christophe Caron
- CNRS, UPMC, FR2424, ABiMS, Station Biologique de Roscoff, F-29680 Roscoff, France
| | - Christian Jeanthon
- CNRS, UMR 7144, Marine Phototrophic Prokaryotes Team, Sorbonne Universités, UPMC Univ Paris 06, UMR 7144, Oceanic Plankton Group,
| |
Collapse
|
50
|
Harris A, Ljumovic M, Bondar AN, Shibata Y, Ito S, Inoue K, Kandori H, Brown LS. A new group of eubacterial light-driven retinal-binding proton pumps with an unusual cytoplasmic proton donor. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:1518-29. [PMID: 26260121 DOI: 10.1016/j.bbabio.2015.08.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 08/05/2015] [Accepted: 08/05/2015] [Indexed: 10/23/2022]
Abstract
One of the main functions of microbial rhodopsins is outward-directed light-driven proton transport across the plasma membrane, which can provide sources of energy alternative to respiration and chlorophyll photosynthesis. Proton-pumping rhodopsins are found in Archaea (Halobacteria), multiple groups of Bacteria, numerous fungi, and some microscopic algae. An overwhelming majority of these proton pumps share the common transport mechanism, in which a proton from the retinal Schiff base is first transferred to the primary proton acceptor (normally an Asp) on the extracellular side of retinal. Next, reprotonation of the Schiff base from the cytoplasmic side is mediated by a carboxylic proton donor (Asp or Glu), which is located on helix C and is usually hydrogen-bonded to Thr or Ser on helix B. The only notable exception from this trend was recently found in Exiguobacterium, where the carboxylic proton donor is replaced by Lys. Here we describe a new group of efficient proteobacterial retinal-binding light-driven proton pumps which lack the carboxylic proton donor on helix C (most often replaced by Gly) but possess a unique His residue on helix B. We characterize the group spectroscopically and propose that this histidine forms a proton-donating complex compensating for the loss of the carboxylic proton donor.
Collapse
Affiliation(s)
- Andrew Harris
- Department of Physics, University of Guelph, ON, Canada
| | | | | | - Yohei Shibata
- Department of Frontier Materials, Nagoya Institute of Technology, Nagoya, Japan
| | - Shota Ito
- Department of Frontier Materials, Nagoya Institute of Technology, Nagoya, Japan
| | - Keiichi Inoue
- Department of Frontier Materials, Nagoya Institute of Technology, Nagoya, Japan; PRESTO, Japan Science and Technology Agency, Japan
| | - Hideki Kandori
- Department of Frontier Materials, Nagoya Institute of Technology, Nagoya, Japan.
| | - Leonid S Brown
- Department of Physics, University of Guelph, ON, Canada.
| |
Collapse
|