1
|
Gu S, Shao Z, Qu Z, Zhu S, Shao Y, Zhang D, Allen R, He R, Shao J, Xiong G, Jousset A, Friman VP, Wei Z, Kümmerli R, Li Z. Siderophore synthetase-receptor gene coevolution reveals habitat- and pathogen-specific bacterial iron interaction networks. SCIENCE ADVANCES 2025; 11:eadq5038. [PMID: 39813347 PMCID: PMC11734721 DOI: 10.1126/sciadv.adq5038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 12/11/2024] [Indexed: 01/30/2025]
Abstract
Bacterial social interactions play crucial roles in various ecological, medical, and biotechnological contexts. However, predicting these interactions from genome sequences is notoriously difficult. Here, we developed bioinformatic tools to predict whether secreted iron-scavenging siderophores stimulate or inhibit the growth of community members. Siderophores are chemically diverse and can be stimulatory or inhibitory depending on whether bacteria have or lack corresponding uptake receptors. We focused on 1928 representative Pseudomonas genomes and developed an experimentally validated coevolution algorithm to match encoded siderophore synthetases to corresponding receptor groups. We derived community-level iron interaction networks to show that siderophore-mediated interactions differ across habitats and lifestyles. Specifically, dense networks of siderophore sharing and competition were observed among environmental and nonpathogenic species, while small, fragmented networks occurred among human-associated and pathogenic species. Together, our sequence-to-ecology approach empowers the analyses of social interactions among thousands of bacterial strains and offers opportunities for targeted intervention to microbial communities.
Collapse
Affiliation(s)
- Shaohua Gu
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Key Lab of Organic-based Fertilizers of China, Nanjing Agricultural University, Nanjing, P. R. China
| | - Zhengying Shao
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Key Lab of Organic-based Fertilizers of China, Nanjing Agricultural University, Nanjing, P. R. China
| | - Zeyang Qu
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Shenyue Zhu
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Key Lab of Organic-based Fertilizers of China, Nanjing Agricultural University, Nanjing, P. R. China
| | - Yuanzhe Shao
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Di Zhang
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Richard Allen
- Department of Quantitative Biomedicine, University of Zurich, Winterthurerstr. 190, 8057 Zurich, Switzerland
| | - Ruolin He
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Jiqi Shao
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Guanyue Xiong
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Alexandre Jousset
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Key Lab of Organic-based Fertilizers of China, Nanjing Agricultural University, Nanjing, P. R. China
| | - Ville-Petri Friman
- Department of Microbiology, University of Helsinki, 00014 Helsinki, Finland
| | - Zhong Wei
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Key Lab of Organic-based Fertilizers of China, Nanjing Agricultural University, Nanjing, P. R. China
| | - Rolf Kümmerli
- Department of Quantitative Biomedicine, University of Zurich, Winterthurerstr. 190, 8057 Zurich, Switzerland
| | - Zhiyuan Li
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| |
Collapse
|
2
|
Cai M, Zhang H, Zheng L, Tang X. A global microbiome analysis reveals the ecological feature of Tistrella and its production of the bioactive didemnins in the marine ecosystem. MARINE POLLUTION BULLETIN 2024; 207:116939. [PMID: 39243471 DOI: 10.1016/j.marpolbul.2024.116939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/01/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024]
Abstract
Marine microorganisms like Tistrella are essential for producing bioactive compounds, including didemnins with antitumor and antiviral properties. However, our understanding of Tistrella's ecological features and didemnin production in natural environments is limited. In this study, we used genomics and metagenomics to show that Tistrella is widely distributed across natural habitats, especially in marine environments from the surface to 5000 m deep, with distinct non-random distribution patterns revealed by co-occurrence analysis. Importantly, transcriptional profiling of didemnin biosynthetic gene clusters indicates active in situ production of this compound within marine ecosystems. These findings enhance our understanding of Tistrella's ecology and secondary metabolite production in natural environments. Further research is needed to explore the ecological dynamics and functional impacts of Tistrella in these ecosystems.
Collapse
Affiliation(s)
- Mingwei Cai
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, China.
| | - Haili Zhang
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, China
| | | | - Xiaoyu Tang
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, China
| |
Collapse
|
3
|
Gu S, Shao Y, Rehm K, Bigler L, Zhang D, He R, Xu R, Shao J, Jousset A, Friman VP, Bian X, Wei Z, Kümmerli R, Li Z. Feature sequence-based genome mining uncovers the hidden diversity of bacterial siderophore pathways. eLife 2024; 13:RP96719. [PMID: 39352117 PMCID: PMC11444679 DOI: 10.7554/elife.96719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024] Open
Abstract
Microbial secondary metabolites are a rich source for pharmaceutical discoveries and play crucial ecological functions. While tools exist to identify secondary metabolite clusters in genomes, precise sequence-to-function mapping remains challenging because neither function nor substrate specificity of biosynthesis enzymes can accurately be predicted. Here, we developed a knowledge-guided bioinformatic pipeline to solve these issues. We analyzed 1928 genomes of Pseudomonas bacteria and focused on iron-scavenging pyoverdines as model metabolites. Our pipeline predicted 188 chemically different pyoverdines with nearly 100% structural accuracy and the presence of 94 distinct receptor groups required for the uptake of iron-loaded pyoverdines. Our pipeline unveils an enormous yet overlooked diversity of siderophores (151 new structures) and receptors (91 new groups). Our approach, combining feature sequence with phylogenetic approaches, is extendable to other metabolites and microbial genera, and thus emerges as powerful tool to reconstruct bacterial secondary metabolism pathways based on sequence data.
Collapse
Affiliation(s)
- Shaohua Gu
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Yuanzhe Shao
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Karoline Rehm
- University of Zurich, Department of Chemistry, Zurich, Switzerland
| | - Laurent Bigler
- University of Zurich, Department of Chemistry, Zurich, Switzerland
| | - Di Zhang
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Ruolin He
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Ruichen Xu
- School of Life Science, Shandong University, Qingdao, China
| | - Jiqi Shao
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Alexandre Jousset
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Key Lab of Organic-based Fertilizers of China, Nanjing Agricultural University, Nanjing, China
| | | | - Xiaoying Bian
- Helmholtz International Lab for Anti-infectives, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Zhong Wei
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Key Lab of Organic-based Fertilizers of China, Nanjing Agricultural University, Nanjing, China
| | - Rolf Kümmerli
- University of Zurich, Department of Quantitative Biomedicine, Zurich, Switzerland
| | - Zhiyuan Li
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| |
Collapse
|
4
|
Kirk A, Stavrinides J. Distribution and comparative genomic analysis of antimicrobial gene clusters found in Pantoea. Front Microbiol 2024; 15:1416674. [PMID: 39206372 PMCID: PMC11350110 DOI: 10.3389/fmicb.2024.1416674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
Members of the bacterial genus Pantoea produce a variety of antimicrobial products that are effective against plant, animal, and human pathogens. To date, little is known about the distribution and evolutionary history of these clusters. We surveyed the public databases for the 12 currently known antibiotic biosynthetic gene clusters found across Pantoea strains to determine their distribution. We show that some clusters, namely pantocin B, PNP-3, and PNP-4 are found strictly in Pantoea, while agglomerin, andrimid, AGA, dapdiamide, herbicolin, PNP-1, PNP-2, PNP-5, and pantocin A, are more broadly distributed in distantly related genera within Vibrionaceae, Pectobacteriaceae, Yersiniaceae, Morganellaceae, and Hafniaceae. We evaluated the evolutionary history of these gene clusters relative to a cpn60-based species tree, considering the flanking regions of each cluster, %GC, and presence of mobile genetic elements, and identified potential occurrences of horizontal gene transfer. Lastly, we also describe the biosynthetic gene cluster of pantocin B in the strain Pantoea agglomerans Eh318 more than 20 years after this antibiotic was first described.
Collapse
|
5
|
Barcia-Cruz R, Balboa S, Lema A, Romalde JL. Comparative genomics of Vibrio toranzoniae strains. Int Microbiol 2024:10.1007/s10123-024-00557-z. [PMID: 38995500 DOI: 10.1007/s10123-024-00557-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/25/2024] [Accepted: 07/02/2024] [Indexed: 07/13/2024]
Abstract
Vibrio toranzoniae is a marine bacterium belonging to the Splendidus clade that was originally isolated from healthy clams in Galicia (NW Spain). Its isolation from different hosts and seawater indicated two lifestyles and wide geographical distribution. The aim of the present study was to determine the differences at the genomic level among six strains (4 isolated from clam and 2 from seawater) and to determine their phylogeny. For this purpose, whole genomes of the six strains were sequenced by different technologies including Illumina and PacBio, and the resulting sequences were corrected. Genomes were annotated and compared using different online tools. Furthermore, the study of core- and pan-genomes were examined, and the phylogeny was inferred. The content of the core genome ranged from 2953 to 2766 genes and that of the pangenome ranged from 6278 to 6132, depending on the tool used. Although the strains shared certain homology, with DDH values ranging from 77.10 to 82.30 and values of OrthoANI values higher than 97%, some differences were found related to motility, capsule synthesis, iron acquisition systems or mobile genetic elements. Phylogenetic analysis of the core genome did not reveal a differentiation of the strains according to their lifestyle (commensal or free-living), but that of the pangenome indicated certain geographical isolation in the same growing area. This study led to the reclassification of some isolates formerly described as V. toranzoniae and demonstrated the importance of cured deposited sequences to proper phylogenetic assignment.
Collapse
Affiliation(s)
- Rubén Barcia-Cruz
- Departamento de Microbiología y Parasitología, CIBUS-Facultad de Biología, Universidade de Santiago de Compostela, Campus Vida S/N, 15782, Santiago de Compostela, Spain
- French Agency for Food, Environmental and Occupational Health and Safety (Anses), 94701, Maisons-Alfort Cedex, France
| | - Sabela Balboa
- Departamento de Microbiología y Parasitología, CIBUS-Facultad de Biología, Universidade de Santiago de Compostela, Campus Vida S/N, 15782, Santiago de Compostela, Spain
- Centro de Investigación Interdisciplinar en Tecnología Ambientales (CRETUS), Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Alberto Lema
- Departamento de Microbiología y Parasitología, CIBUS-Facultad de Biología, Universidade de Santiago de Compostela, Campus Vida S/N, 15782, Santiago de Compostela, Spain
- AllGenetics & Biology SL, Oleiros, 15172, Perillo, A Coruña, Spain
| | - Jesús L Romalde
- Departamento de Microbiología y Parasitología, CIBUS-Facultad de Biología, Universidade de Santiago de Compostela, Campus Vida S/N, 15782, Santiago de Compostela, Spain.
- Centro de Investigación Interdisciplinar en Tecnología Ambientales (CRETUS), Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain.
| |
Collapse
|
6
|
Haas D, Barba M, Vicente C, Nezbedová Š, Garénaux A, Bury-Moné S, Lorenzi JN, Hôtel L, Laureti L, Thibessard A, Le Goff G, Ouazzani J, Leblond P, Aigle B, Pernodet JL, Lespinet O, Lautru S. Synteruptor: mining genomic islands for non-classical specialized metabolite gene clusters. NAR Genom Bioinform 2024; 6:lqae069. [PMID: 38915823 PMCID: PMC11195616 DOI: 10.1093/nargab/lqae069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 05/06/2024] [Accepted: 05/29/2024] [Indexed: 06/26/2024] Open
Abstract
Microbial specialized metabolite biosynthetic gene clusters (SMBGCs) are a formidable source of natural products of pharmaceutical interest. With the multiplication of genomic data available, very efficient bioinformatic tools for automatic SMBGC detection have been developed. Nevertheless, most of these tools identify SMBGCs based on sequence similarity with enzymes typically involved in specialised metabolism and thus may miss SMBGCs coding for undercharacterised enzymes. Here we present Synteruptor (https://bioi2.i2bc.paris-saclay.fr/synteruptor), a program that identifies genomic islands, known to be enriched in SMBGCs, in the genomes of closely related species. With this tool, we identified a SMBGC in the genome of Streptomyces ambofaciens ATCC23877, undetected by antiSMASH versions prior to antiSMASH 5, and experimentally demonstrated that it directs the biosynthesis of two metabolites, one of which was identified as sphydrofuran. Synteruptor is also a valuable resource for the delineation of individual SMBGCs within antiSMASH regions that may encompass multiple clusters, and for refining the boundaries of these SMBGCs.
Collapse
Affiliation(s)
- Drago Haas
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Matthieu Barba
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | | | - Šarká Nezbedová
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Amélie Garénaux
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Stéphanie Bury-Moné
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Jean-Noël Lorenzi
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Laurence Hôtel
- Université de Lorraine, INRAE, DynAMic, Nancy 54000, France
| | - Luisa Laureti
- Université de Lorraine, INRAE, DynAMic, Nancy 54000, France
| | | | - Géraldine Le Goff
- Institut de Chimie des Substances Naturelles ICSN, CNRS, Gif-sur-Yvette 91198, France
| | - Jamal Ouazzani
- Institut de Chimie des Substances Naturelles ICSN, CNRS, Gif-sur-Yvette 91198, France
| | - Pierre Leblond
- Université de Lorraine, INRAE, DynAMic, Nancy 54000, France
| | - Bertrand Aigle
- Université de Lorraine, INRAE, DynAMic, Nancy 54000, France
| | - Jean-Luc Pernodet
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Olivier Lespinet
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Sylvie Lautru
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| |
Collapse
|
7
|
Gao Y, Zhong Z, Zhang D, Zhang J, Li YX. Exploring the roles of ribosomal peptides in prokaryote-phage interactions through deep learning-enabled metagenome mining. MICROBIOME 2024; 12:94. [PMID: 38790030 PMCID: PMC11118758 DOI: 10.1186/s40168-024-01807-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 04/04/2024] [Indexed: 05/26/2024]
Abstract
BACKGROUND Microbial secondary metabolites play a crucial role in the intricate interactions within the natural environment. Among these metabolites, ribosomally synthesized and post-translationally modified peptides (RiPPs) are becoming a promising source of therapeutic agents due to their structural diversity and functional versatility. However, their biosynthetic capacity and ecological functions remain largely underexplored. RESULTS Here, we aim to explore the biosynthetic profile of RiPPs and their potential roles in the interactions between microbes and viruses in the ocean, which encompasses a vast diversity of unique biomes that are rich in interactions and remains chemically underexplored. We first developed TrRiPP to identify RiPPs from ocean metagenomes, a deep learning method that detects RiPP precursors in a hallmark gene-independent manner to overcome the limitations of classic methods in processing highly fragmented metagenomic data. Applying this method to metagenomes from the global ocean microbiome, we uncover a diverse array of previously uncharacterized putative RiPP families with great novelty and diversity. Through correlation analysis based on metatranscriptomic data, we observed a high prevalence of antiphage defense-related and phage-related protein families that were co-expressed with RiPP families. Based on this putative association between RiPPs and phage infection, we constructed an Ocean Virus Database (OVD) and established a RiPP-involving host-phage interaction network through host prediction and co-expression analysis, revealing complex connectivities linking RiPP-encoding prokaryotes, RiPP families, viral protein families, and phages. These findings highlight the potential of RiPP families involved in prokaryote-phage interactions and coevolution, providing insights into their ecological functions in the ocean microbiome. CONCLUSIONS This study provides a systematic investigation of the biosynthetic potential of RiPPs from the ocean microbiome at a global scale, shedding light on the essential insights into the ecological functions of RiPPs in prokaryote-phage interactions through the integration of deep learning approaches, metatranscriptomic data, and host-phage connectivity. This study serves as a valuable example of exploring the ecological functions of bacterial secondary metabolites, particularly their associations with unexplored microbial interactions. Video Abstract.
Collapse
Affiliation(s)
- Ying Gao
- CYM305, Department of Chemistry and The Swire Institute of Marine Science, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region, 999077, China
| | - Zheng Zhong
- CYM305, Department of Chemistry and The Swire Institute of Marine Science, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region, 999077, China
| | - Dengwei Zhang
- CYM305, Department of Chemistry and The Swire Institute of Marine Science, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region, 999077, China
| | - Jian Zhang
- CYM305, Department of Chemistry and The Swire Institute of Marine Science, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region, 999077, China
| | - Yong-Xin Li
- CYM305, Department of Chemistry and The Swire Institute of Marine Science, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region, 999077, China.
| |
Collapse
|
8
|
Barcia-Cruz R, Balboa S, Lema A, Romalde JL. Comparative genomics of Vibrio toranzoniae strains. RESEARCH SQUARE 2024:rs.3.rs-4360386. [PMID: 38826277 PMCID: PMC11142368 DOI: 10.21203/rs.3.rs-4360386/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Vibrio toranzoniae is a marine bacterium belonging to the Splendidus clade, originally isolated from healthy clams in Galicia (NW Spain). Its isolation from different hosts and seawater indicated two lifestyles and wide geographical distribution. The aim of the present study was to determine the differences at genome level among strains, as well as to determine their phylogeny. For this purpose, whole genomes were sequenced by different technologies and the resulting sequences corrected. Genomes were annotated and compared with different online tools. Furthermore, the study of core and pan genome was examined, and the phylogeny was inferred. The content of the core genome ranged from 2,953 to 2,766 genes and that of the pangenome from 6,278 to 6,132, depending on the tool used. The comparison revealed that although the strains shared certain homology, with DDH values ranging from 77.10 to 82.30 and values of OrthoANI higher than 97%,notable differences were found related to motility, capsule synthesis, iron acquisition system or mobile genetic elements. The phylogenetic analysis of the core genome did not reveal a differentiation of the strains according to their lifestyle, but that of the pangenome pointed out certain geographical isolation in the same growing area. The study led to a reclassification of some isolates formerly described as V. toranzoniae and manifested the importance of cured deposited sequences to proper phylogenetic assignment.
Collapse
|
9
|
Mara P, Geller-McGrath D, Suter E, Taylor GT, Pachiadaki MG, Edgcomb VP. Plasmid-Borne Biosynthetic Gene Clusters within a Permanently Stratified Marine Water Column. Microorganisms 2024; 12:929. [PMID: 38792759 PMCID: PMC11123730 DOI: 10.3390/microorganisms12050929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/22/2024] [Accepted: 04/29/2024] [Indexed: 05/26/2024] Open
Abstract
Plasmids are mobile genetic elements known to carry secondary metabolic genes that affect the fitness and survival of microbes in the environment. Well-studied cases of plasmid-encoded secondary metabolic genes in marine habitats include toxin/antitoxin and antibiotic biosynthesis/resistance genes. Here, we examine metagenome-assembled genomes (MAGs) from the permanently-stratified water column of the Cariaco Basin for integrated plasmids that encode biosynthetic gene clusters of secondary metabolites (smBGCs). We identify 16 plasmid-borne smBGCs in MAGs associated primarily with Planctomycetota and Pseudomonadota that encode terpene-synthesizing genes, and genes for production of ribosomal and non-ribosomal peptides. These identified genes encode for secondary metabolites that are mainly antimicrobial agents, and hence, their uptake via plasmids may increase the competitive advantage of those host taxa that acquire them. The ecological and evolutionary significance of smBGCs carried by prokaryotes in oxygen-depleted water columns is yet to be fully elucidated.
Collapse
Affiliation(s)
- Paraskevi Mara
- Geology & Geophysics Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA;
| | - David Geller-McGrath
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA; (D.G.-M.); (M.G.P.)
| | - Elizabeth Suter
- Biology, Chemistry and Environmental Science Department, Molloy University, New York, NY 11570, USA;
| | - Gordon T. Taylor
- School of Marine, Atmospheric and Sustainability Sciences, Stony Brook University, New York, NY 11794, USA;
| | - Maria G. Pachiadaki
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA; (D.G.-M.); (M.G.P.)
| | - Virginia P. Edgcomb
- Geology & Geophysics Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA;
| |
Collapse
|
10
|
Kaur T, Khanna K, Sharma S, Manhas RK. Mechanistic insights into the role of actinobacteria as potential biocontrol candidates against fungal phytopathogens. J Basic Microbiol 2023; 63:1196-1218. [PMID: 37208796 DOI: 10.1002/jobm.202300027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/26/2023] [Accepted: 04/29/2023] [Indexed: 05/21/2023]
Abstract
Worldwide mounting demand for better food production to nurture exasperating population emphasizes on reduced crop losses. The incidence of pathogens into the agricultural fields has tend to dwindle plethora of cereal, vegetable, and other fodder crops. This, in turn, has seriously impacted the economic losses on global scale. Apart from this, it is quite challenging to feed the posterity in the coming decades. To counteract this problem, various agrochemicals have been commercialized in the market that no doubt shows positive results but along with adversely affecting the ecosystem. Therefore, the excessive ill-fated use of agrochemicals to combat the plant pests and diseases highlights that alternatives to chemical pesticides are need of the hour. In recent days, management of plant diseases using plant-beneficial microbes is gaining interest as safer and potent alternatives to replace chemically based pesticides. Among these beneficial microbes, actinobacteria especially streptomycetes play considerable role in combating plant diseases along with promoting the plant growth and development along with their productivity and yield. The mechanisms exhibited by actinobacteria include antibiosis (antimicrobial compounds and hydrolytic enzymes), mycoparasitism, nutrient competition, and induction of resistance in plants. Thus, in cognizance with potential of actinobacteria as potent biocontrol agents, this review summarizes role of actinobacteria and the multifarious mechanisms exhibited by actinobacteria for commercial applications.
Collapse
Affiliation(s)
- Talwinder Kaur
- Department of Microbiology, DAV University, Jalandhar, Punjab, India
- Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Kanika Khanna
- Department of Microbiology, DAV University, Jalandhar, Punjab, India
| | - Sonika Sharma
- Faculty of Agricultural Sciences, Jalandhar, Punjab, India
| | - Rajesh K Manhas
- Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab, India
| |
Collapse
|
11
|
Roda-Garcia JJ, Haro-Moreno JM, López-Pérez M. Evolutionary pathways for deep-sea adaptation in marine planktonic Actinobacteriota. Front Microbiol 2023; 14:1159270. [PMID: 37234526 PMCID: PMC10205998 DOI: 10.3389/fmicb.2023.1159270] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
The deep ocean, one of the largest ecosystems on earth, is dominated by microorganisms that are keystones in the regulation of biogeochemical cycles. However, the evolutionary pathways underlying the specific adaptations required (e.g., high pressure and low temperature) by this unique niche remain understudied. Here, we analyzed the first representatives belonging to the order Acidimicrobiales, a group of marine planktonic Actinobacteriota, that specifically inhabits the aphotic zone of the oceanic water column (>200 m). Compared with their epipelagic counterparts, deep-sea representatives showed the same evolution in genome architecture with higher GC content, longer intergenic spaces as well as higher nitrogen (N-ARSC) and lower carbon (C-ARSC) content in encoded amino acid residue side chains consistent with the higher nitrogen concentration and lower carbon concentration in deep waters compared to the photic zone. Metagenomic recruitment showed distribution patterns that allowed the description of different ecogenomic units within the three deep water-associated genera defined by our phylogenomic analyses (UBA3125, S20-B6 and UBA9410). The entire genus UBA3125 was found exclusively associated with oxygen minimum zones linked to the acquisition of genes involved in denitrification. Genomospecies of genus S20-B6 recruited in samples from both mesopelagic (200-1,000 m) and bathypelagic (1000-4,000 m) zones, including polar regions. Diversity in the genus UBA9410 was higher, with genomospecies widely distributed in temperate zones, others in polar regions, and the only genomospecies associated with abyssal zones (>4,000 m). At the functional level, groups beyond the epipelagic zone have a more complex transcriptional regulation including in their genomes a unique WhiB paralog. In addition, they showed higher metabolic potential for organic carbon and carbohydrate degradation as well as the ability to accumulate glycogen as a source of carbon and energy. This could compensate for energy metabolism in the absence of rhodopsins, which is only present in genomes associated with the photic zone. The abundance in deep samples of cytochrome P450 monooxygenases associated with the genomes of this order suggests an important role in remineralization of recalcitrant compounds throughout the water column.
Collapse
|
12
|
Tenebro CP, Trono DJVL, Balida LAP, Bayog LKA, Bruna JR, Sabido EM, Caspe DPC, de Los Santos ELC, Saludes JP, Dalisay DS. Synergy between Genome Mining, Metabolomics, and Bioinformatics Uncovers Antibacterial Chlorinated Carbazole Alkaloids and Their Biosynthetic Gene Cluster from Streptomyces tubbatahanensis sp. nov., a Novel Actinomycete Isolated from Sulu Sea, Philippines. Microbiol Spectr 2023; 11:e0366122. [PMID: 36809153 PMCID: PMC10100901 DOI: 10.1128/spectrum.03661-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 01/30/2023] [Indexed: 02/23/2023] Open
Abstract
In this study, a novel actinomycete strain, DSD3025T, isolated from the underexplored marine sediments in Tubbataha Reefs Natural Park, Sulu Sea, Philippines, with the proposed name Streptomyces tubbatahanensis sp. nov., was described using polyphasic approaches and characterized using whole-genome sequencing. Its specialized metabolites were profiled using mass spectrometry and nuclear magnetic resonance analyses, followed by antibacterial, anticancer, and toxicity screening. The S. tubbatahanensis DSD3025T genome was comprised of 7.76 Mbp with a 72.3% G+C content. The average nucleotide identity and digital DNA-DNA hybridization values were 96.5% and 64.1%, respectively, compared with its closest related species, thus delineating the novelty of Streptomyces species. The genome encoded 29 putative biosynthetic gene clusters (BGCs), including a BGC region containing tryptophan halogenase and its associated flavin reductase, which were not found in its close Streptomyces relatives. The metabolite profiling unfolded six rare halogenated carbazole alkaloids, with chlocarbazomycin A as the major compound. A biosynthetic pathway for chlocarbazomycin A was proposed using genome mining, metabolomics, and bioinformatics platforms. Chlocarbazomycin A produced by S. tubbatahanensis DSD3025T has antibacterial activities against Staphylococcus aureus ATCC BAA-44 and Streptococcus pyogenes and showed antiproliferative activity against colon (HCT-116) and ovarian (A2780) human cancer cell lines. Chlocarbazomycin A exhibited no toxicity to liver cells but moderate and high toxicity to kidney and cardiac cell lines, respectively. IMPORTANCE Streptomyces tubbatahanensis DSD3025T is a novel actinomycete with antibiotic and anticancer activities from Tubbataha Reefs Natural Park, a United Nations Educational, Scientific and Cultural Organization World Heritage Site in Sulu Sea and considered one of the Philippines' oldest and most-well-protected marine ecosystems. In silico genome mining tools were used to identify putative BGCs that led to the discovery of genes involved in the production of halogenated carbazole alkaloids and new natural products. By integrating bioinformatics-driven genome mining and metabolomics, we unearthed the hidden biosynthetic richness and mined the associated chemical entities from the novel Streptomyces species. The bioprospecting of novel Streptomyces species from marine sediments of underexplored ecological niches serves as an important source of antibiotic and anticancer drug leads with unique chemical scaffolds.
Collapse
Affiliation(s)
- Chuckcris P. Tenebro
- Center for Chemical Biology and Biotechnology, University of San Agustin, Iloilo City, Philippines
| | - Dana Joanne V. L. Trono
- Center for Chemical Biology and Biotechnology, University of San Agustin, Iloilo City, Philippines
| | - Lex Aliko P. Balida
- Center for Chemical Biology and Biotechnology, University of San Agustin, Iloilo City, Philippines
| | - Leah Katrine A. Bayog
- Center for Chemical Biology and Biotechnology, University of San Agustin, Iloilo City, Philippines
| | - Julyanna R. Bruna
- Center for Chemical Biology and Biotechnology, University of San Agustin, Iloilo City, Philippines
| | - Edna M. Sabido
- Center for Chemical Biology and Biotechnology, University of San Agustin, Iloilo City, Philippines
| | - Dion Paul C. Caspe
- Center for Natural Drug Discovery and Development, University of San Agustin, Iloilo City, Philippines
| | - Emmanuel Lorenzo C. de Los Santos
- Research Analytics, Early Solutions Data & Translational Services, UCB Celltech, Slough, Berkshire, United Kingdom
- Balik Scientist Program, Department of Science and Technology, Philippine Council for Health Research and Development, Bicutan, Taguig City, Philippines
| | - Jonel P. Saludes
- Center for Natural Drug Discovery and Development, University of San Agustin, Iloilo City, Philippines
- Balik Scientist Program, Department of Science and Technology, Philippine Council for Health Research and Development, Bicutan, Taguig City, Philippines
- Department of Chemistry, College of Liberal Arts, Sciences, and Education, University of San Agustin, Iloilo City, Philippines
| | - Doralyn S. Dalisay
- Center for Chemical Biology and Biotechnology, University of San Agustin, Iloilo City, Philippines
- Balik Scientist Program, Department of Science and Technology, Philippine Council for Health Research and Development, Bicutan, Taguig City, Philippines
- Department of Biology, College of Liberal Arts, Sciences, and Education, University of San Agustin, Iloilo City, Philippines
| |
Collapse
|
13
|
Geller-McGrath D, Mara P, Taylor GT, Suter E, Edgcomb V, Pachiadaki M. Diverse secondary metabolites are expressed in particle-associated and free-living microorganisms of the permanently anoxic Cariaco Basin. Nat Commun 2023; 14:656. [PMID: 36746960 PMCID: PMC9902471 DOI: 10.1038/s41467-023-36026-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 01/12/2023] [Indexed: 02/08/2023] Open
Abstract
Secondary metabolites play essential roles in ecological interactions and nutrient acquisition, and are of interest for their potential uses in medicine and biotechnology. Genome mining for biosynthetic gene clusters (BGCs) can be used for the discovery of new compounds. Here, we use metagenomics and metatranscriptomics to analyze BGCs in free-living and particle-associated microbial communities through the stratified water column of the Cariaco Basin, Venezuela. We recovered 565 bacterial and archaeal metagenome-assembled genomes (MAGs) and identified 1154 diverse BGCs. We show that differences in water redox potential and microbial lifestyle (particle-associated vs. free-living) are associated with variations in the predicted composition and production of secondary metabolites. Our results indicate that microbes, including understudied clades such as Planctomycetota, potentially produce a wide range of secondary metabolites in these anoxic/euxinic waters.
Collapse
Affiliation(s)
| | - Paraskevi Mara
- Geology & Geophysics Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Gordon T Taylor
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, USA
| | - Elizabeth Suter
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, USA
- Biology, Chemistry and Environmental Studies Department, Molloy College, Rockville Centre, NY, USA
| | - Virginia Edgcomb
- Geology & Geophysics Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA.
| | - Maria Pachiadaki
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA.
| |
Collapse
|
14
|
Seshadri R, Roux S, Huber KJ, Wu D, Yu S, Udwary D, Call L, Nayfach S, Hahnke RL, Pukall R, White JR, Varghese NJ, Webb C, Palaniappan K, Reimer LC, Sardà J, Bertsch J, Mukherjee S, Reddy T, Hajek PP, Huntemann M, Chen IMA, Spunde A, Clum A, Shapiro N, Wu ZY, Zhao Z, Zhou Y, Evtushenko L, Thijs S, Stevens V, Eloe-Fadrosh EA, Mouncey NJ, Yoshikuni Y, Whitman WB, Klenk HP, Woyke T, Göker M, Kyrpides NC, Ivanova NN. Expanding the genomic encyclopedia of Actinobacteria with 824 isolate reference genomes. CELL GENOMICS 2022; 2:100213. [PMID: 36778052 PMCID: PMC9903846 DOI: 10.1016/j.xgen.2022.100213] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 07/19/2022] [Accepted: 10/16/2022] [Indexed: 11/13/2022]
Abstract
The phylum Actinobacteria includes important human pathogens like Mycobacterium tuberculosis and Corynebacterium diphtheriae and renowned producers of secondary metabolites of commercial interest, yet only a small part of its diversity is represented by sequenced genomes. Here, we present 824 actinobacterial isolate genomes in the context of a phylum-wide analysis of 6,700 genomes including public isolates and metagenome-assembled genomes (MAGs). We estimate that only 30%-50% of projected actinobacterial phylogenetic diversity possesses genomic representation via isolates and MAGs. A comparison of gene functions reveals novel determinants of host-microbe interaction as well as environment-specific adaptations such as potential antimicrobial peptides. We identify plasmids and prophages across isolates and uncover extensive prophage diversity structured mainly by host taxonomy. Analysis of >80,000 biosynthetic gene clusters reveals that horizontal gene transfer and gene loss shape secondary metabolite repertoire across taxa. Our observations illustrate the essential role of and need for high-quality isolate genome sequences.
Collapse
Affiliation(s)
- Rekha Seshadri
- US Department of Energy Joint Genome Institute, Berkeley, CA, USA,Corresponding author
| | - Simon Roux
- US Department of Energy Joint Genome Institute, Berkeley, CA, USA
| | - Katharina J. Huber
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Dongying Wu
- US Department of Energy Joint Genome Institute, Berkeley, CA, USA
| | - Sora Yu
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Dan Udwary
- US Department of Energy Joint Genome Institute, Berkeley, CA, USA,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Lee Call
- US Department of Energy Joint Genome Institute, Berkeley, CA, USA
| | - Stephen Nayfach
- US Department of Energy Joint Genome Institute, Berkeley, CA, USA
| | - Richard L. Hahnke
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Rüdiger Pukall
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | | | - Neha J. Varghese
- US Department of Energy Joint Genome Institute, Berkeley, CA, USA
| | - Cody Webb
- US Department of Energy Joint Genome Institute, Berkeley, CA, USA
| | | | - Lorenz C. Reimer
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Joaquim Sardà
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Jonathon Bertsch
- US Department of Energy Joint Genome Institute, Berkeley, CA, USA
| | | | - T.B.K. Reddy
- US Department of Energy Joint Genome Institute, Berkeley, CA, USA
| | - Patrick P. Hajek
- US Department of Energy Joint Genome Institute, Berkeley, CA, USA
| | - Marcel Huntemann
- US Department of Energy Joint Genome Institute, Berkeley, CA, USA
| | - I-Min A. Chen
- US Department of Energy Joint Genome Institute, Berkeley, CA, USA
| | - Alex Spunde
- US Department of Energy Joint Genome Institute, Berkeley, CA, USA
| | - Alicia Clum
- US Department of Energy Joint Genome Institute, Berkeley, CA, USA
| | - Nicole Shapiro
- US Department of Energy Joint Genome Institute, Berkeley, CA, USA
| | - Zong-Yen Wu
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Zhiying Zhao
- US Department of Energy Joint Genome Institute, Berkeley, CA, USA
| | - Yuguang Zhou
- China General Microbiological Culture Collection Center, Beijing, China
| | - Lyudmila Evtushenko
- Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, All-Russian Collection of Microorganisms (VKM), Pushchino, Russia
| | - Sofie Thijs
- Center for Environmental Sciences, Environmental Biology, Hasselt University, Diepenbeek, Belgium
| | - Vincent Stevens
- Center for Environmental Sciences, Environmental Biology, Hasselt University, Diepenbeek, Belgium
| | - Emiley A. Eloe-Fadrosh
- US Department of Energy Joint Genome Institute, Berkeley, CA, USA,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Nigel J. Mouncey
- US Department of Energy Joint Genome Institute, Berkeley, CA, USA,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Yasuo Yoshikuni
- US Department of Energy Joint Genome Institute, Berkeley, CA, USA,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA,Center for Advanced Bioenergy and Bioproducts Innovation, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA,Global Institution for Collaborative Research and Education, Hokkaido University, Hokkaido 060-8589, Japan
| | | | - Hans-Peter Klenk
- School of Biology, Newcastle University, Newcastle upon Tyne, UK
| | - Tanja Woyke
- US Department of Energy Joint Genome Institute, Berkeley, CA, USA,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Markus Göker
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany,Corresponding author
| | - Nikos C. Kyrpides
- US Department of Energy Joint Genome Institute, Berkeley, CA, USA,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Natalia N. Ivanova
- US Department of Energy Joint Genome Institute, Berkeley, CA, USA,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA,Corresponding author
| |
Collapse
|
15
|
Entfellner E, Li R, Jiang Y, Ru J, Blom J, Deng L, Kurmayer R. Toxic/Bioactive Peptide Synthesis Genes Rearranged by Insertion Sequence Elements Among the Bloom-Forming Cyanobacteria Planktothrix. Front Microbiol 2022; 13:901762. [PMID: 35966708 PMCID: PMC9366434 DOI: 10.3389/fmicb.2022.901762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/23/2022] [Indexed: 11/28/2022] Open
Abstract
It has been generally hypothesized that mobile elements can induce genomic rearrangements and influence the distribution and functionality of toxic/bioactive peptide synthesis pathways in microbes. In this study, we performed in depth genomic analysis by completing the genomes of 13 phylogenetically diverse strains of the bloom-forming freshwater cyanobacteria Planktothrix spp. to investigate the role of insertion sequence (IS) elements in seven pathways. Chromosome size varied from 4.7-4.8 Mbp (phylogenetic Lineage 1 of P. agardhii/P. rubescens thriving in shallow waterbodies) to 5.4-5.6 Mbp (Lineage 2 of P. agardhii/P. rubescens thriving in deeper physically stratified lakes and reservoirs) and 6.3-6.6 Mbp (Lineage 3, P. pseudagardhii/P. tepida including planktic and benthic ecotypes). Although the variation in chromosome size was positively related to the proportion of IS elements (1.1-3.7% on chromosome), quantitatively, IS elements and other paralogs only had a minor share in chromosome size variation. Thus, the major part of genomic variation must have resulted from gene loss processes (ancestor of Lineages 1 and 2) and horizontal gene transfer (HGT). Six of seven peptide synthesis gene clusters were found located on the chromosome and occurred already in the ancestor of P. agardhii/P. rubescens, and became partly lost during evolution of Lineage 1. In general, no increased IS element frequency in the vicinity of peptide synthesis gene clusters was observed. We found a higher proportion of IS elements in ten breaking regions related to chromosomal rearrangements and a tendency for colocalization of toxic/bioactive peptide synthesis gene clusters on the chromosome.
Collapse
Affiliation(s)
| | - Ruibao Li
- Research Department for Limnology, University of Innsbruck, Mondsee, Austria
- Institute of Virology, Helmholtz Zentrum München, Munich, Germany
- Department of Ecology and Institute of Hydrobiology, Jinan University, Guangzhou, China
| | - Yiming Jiang
- Institute of Virology, Helmholtz Zentrum München, Munich, Germany
| | - Jinlong Ru
- Institute of Virology, Helmholtz Zentrum München, Munich, Germany
| | - Jochen Blom
- Bioinformatics and Systems Biology, Justus-Liebig-University, Giessen, Germany
| | - Li Deng
- Institute of Virology, Helmholtz Zentrum München, Munich, Germany
| | - Rainer Kurmayer
- Research Department for Limnology, University of Innsbruck, Mondsee, Austria
| |
Collapse
|
16
|
Shi S, Cui L, Zhang K, Zeng Q, Li Q, Ma L, Long L, Tian X. Streptomyces marincola sp. nov., a Novel Marine Actinomycete, and Its Biosynthetic Potential of Bioactive Natural Products. Front Microbiol 2022; 13:860308. [PMID: 35572650 PMCID: PMC9096227 DOI: 10.3389/fmicb.2022.860308] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 02/24/2022] [Indexed: 12/28/2022] Open
Abstract
Marine actinomycetes are an important source of antibiotics, but many of them are yet to be explored in terms of taxonomy, ecology, and functional activity. In this study, two marine actinobacterial strains, designated SCSIO 64649T and SCSIO 03032, were isolated, and the potential for bioactive natural product discovery was evaluated based on genome mining, compound detection, and antimicrobial activity. Phylogenetic analysis of the 16S rRNA gene sequences showed that strain SCSIO 64649T formed a single clade with SCSIO 03032 (similarity 99.5%) and sister clades with the species Streptomyces specialis DSM 41924T (97.1%) and Streptomyces manganisoli MK44T (96.8%). The whole genome size of strain SCSIO 64649T was 6.63 Mbp with a 73.6% G + C content. The average nucleotide identity and digital DNA–DNA hybridization between strain SCSIO 64649T and its closest related species were well below the thresholds recommended for species delineation. Therefore, according to the results of polyphasic taxonomy analysis, the strains SCSIO 64649T and SCSIO 03032 are proposed to represent a novel species named Streptomyces marincola sp. nov. Furthermore, strains SCSIO 64649T and 03032 encode 37 putative biosynthetic gene clusters, and in silico analysis revealed that this new species has a high potential to produce unique natural products, such as a novel polyene polyketide compounds, two mayamycin analogs, and a series of post-translationally modified peptides. In addition, other important bioactive natural products, such as heronamide F, piericidin A1, and spiroindimicin A, were also detected in strain SCSIO 64649T. Finally, this new species’ metabolic crude extract showed a strong antimicrobial activity. Thanks to the integration of all these analyses, this study demonstrates that the novel species Streptomyces marincola has a unique and novel secondary metabolite biosynthetic potential that not only is beneficial to possible marine hosts but that could also be exploited for industrial applications.
Collapse
Affiliation(s)
- Songbiao Shi
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Chinese Academy of Sciences, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, Sanya Institute of Oceanology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Linqing Cui
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Chinese Academy of Sciences, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, Sanya Institute of Oceanology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Kun Zhang
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Chinese Academy of Sciences, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, Sanya Institute of Oceanology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Qi Zeng
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Chinese Academy of Sciences, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, Sanya Institute of Oceanology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Qinglian Li
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Chinese Academy of Sciences, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, Sanya Institute of Oceanology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
| | - Liang Ma
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Chinese Academy of Sciences, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, Sanya Institute of Oceanology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
| | - Lijuan Long
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Chinese Academy of Sciences, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, Sanya Institute of Oceanology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
| | - Xinpeng Tian
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Chinese Academy of Sciences, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, Sanya Institute of Oceanology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
| |
Collapse
|
17
|
Malinga NA, Nzuza N, Padayachee T, Syed PR, Karpoormath R, Gront D, Nelson DR, Syed K. An Unprecedented Number of Cytochrome P450s Are Involved in Secondary Metabolism in Salinispora Species. Microorganisms 2022; 10:microorganisms10050871. [PMID: 35630316 PMCID: PMC9143469 DOI: 10.3390/microorganisms10050871] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/15/2022] [Accepted: 04/19/2022] [Indexed: 01/04/2023] Open
Abstract
Cytochrome P450 monooxygenases (CYPs/P450s) are heme thiolate proteins present in species across the biological kingdoms. By virtue of their broad substrate promiscuity and regio- and stereo-selectivity, these enzymes enhance or attribute diversity to secondary metabolites. Actinomycetes species are well-known producers of secondary metabolites, especially Salinispora species. Despite the importance of P450s, a comprehensive comparative analysis of P450s and their role in secondary metabolism in Salinispora species is not reported. We therefore analyzed P450s in 126 strains from three different species Salinispora arenicola, S. pacifica, and S. tropica. The study revealed the presence of 2643 P450s that can be grouped into 45 families and 103 subfamilies. CYP107 and CYP125 families are conserved, and CYP105 and CYP107 families are bloomed (a P450 family with many members) across Salinispora species. Analysis of P450s that are part of secondary metabolite biosynthetic gene clusters (smBGCs) revealed Salinispora species have an unprecedented number of P450s (1236 P450s-47%) part of smBGCs compared to other bacterial species belonging to the genera Streptomyces (23%) and Mycobacterium (11%), phyla Cyanobacteria (8%) and Firmicutes (18%) and the classes Alphaproteobacteria (2%) and Gammaproteobacteria (18%). A peculiar characteristic of up to six P450s in smBGCs was observed in Salinispora species. Future characterization Salinispora species P450s and their smBGCs have the potential for discovering novel secondary metabolites.
Collapse
Affiliation(s)
- Nsikelelo Allison Malinga
- Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, KwaDlangezwa 3886, South Africa; (N.A.M.); (N.N.); (T.P.)
| | - Nomfundo Nzuza
- Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, KwaDlangezwa 3886, South Africa; (N.A.M.); (N.N.); (T.P.)
| | - Tiara Padayachee
- Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, KwaDlangezwa 3886, South Africa; (N.A.M.); (N.N.); (T.P.)
| | - Puleng Rosinah Syed
- Department of Pharmaceutical Chemistry, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa; (P.R.S.); (R.K.)
| | - Rajshekhar Karpoormath
- Department of Pharmaceutical Chemistry, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa; (P.R.S.); (R.K.)
| | - Dominik Gront
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland;
| | - David R. Nelson
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Correspondence: (D.R.N.); (K.S.); Tel.: +19-014-488-303 (D.R.N.); +27-035-902-6857 (K.S.)
| | - Khajamohiddin Syed
- Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, KwaDlangezwa 3886, South Africa; (N.A.M.); (N.N.); (T.P.)
- Correspondence: (D.R.N.); (K.S.); Tel.: +19-014-488-303 (D.R.N.); +27-035-902-6857 (K.S.)
| |
Collapse
|
18
|
Gushgari-Doyle S, Lui LM, Nielsen TN, Wu X, Malana RG, Hendrickson AJ, Carion H, Poole FL, Adams MWW, Arkin AP, Chakraborty R. Genotype to ecotype in niche environments: adaptation of Arthrobacter to carbon availability and environmental conditions. ISME COMMUNICATIONS 2022; 2:32. [PMID: 37938300 PMCID: PMC9723602 DOI: 10.1038/s43705-022-00113-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 02/23/2022] [Accepted: 03/07/2022] [Indexed: 07/04/2023]
Abstract
Niche environmental conditions influence both the structure and function of microbial communities and the cellular function of individual strains. The terrestrial subsurface is a dynamic and diverse environment that exhibits specific biogeochemical conditions associated with depth, resulting in distinct environmental niches. Here, we present the characterization of seven distinct strains belonging to the genus Arthrobacter isolated from varying depths of a single sediment core and associated groundwater from an adjacent well. We characterized genotype and phenotype of each isolate to connect specific cellular functions and metabolisms to ecotype. Arthrobacter isolates from each ecotype demonstrated functional and genomic capacities specific to their biogeochemical conditions of origin, including laboratory-demonstrated characterization of salinity tolerance and optimal pH, and genes for utilization of carbohydrates and other carbon substrates. Analysis of the Arthrobacter pangenome revealed that it is notably open with a volatile accessory genome compared to previous pangenome studies on other genera, suggesting a high potential for adaptability to environmental niches.
Collapse
Affiliation(s)
| | - Lauren M Lui
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | | | - Xiaoqin Wu
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Ria G Malana
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | | | - Heloise Carion
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Farris L Poole
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| | - Michael W W Adams
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| | - Adam P Arkin
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- University of California, Berkeley, CA, USA
| | | |
Collapse
|
19
|
Wang S, Li X, Zhang M, Jiang H, Wang R, Qian Y, Li M. Ammonia stress disrupts intestinal microbial community and amino acid metabolism of juvenile yellow catfish (Pelteobagrus fulvidraco). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 227:112932. [PMID: 34700169 DOI: 10.1016/j.ecoenv.2021.112932] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/01/2021] [Accepted: 10/20/2021] [Indexed: 06/13/2023]
Abstract
Ammonia has adverse effects on aquatic animals, which is also widely distributed in natural aquatic environments and intensive aquaculture systems. The intestine is a primary defensive line for aquatic animals, the accumulation of ammonia in the aquatic environment can cause irreversible damage to intestinal function. In this study, we investigated the effects of acute ammonia stress on the reaction characteristics of digestive function, amino acid metabolism, and the variation in the intestinal microbiota of juvenile yellow catfish (Pelteobagrus fulvidraco). Thus, the yellow catfish was placed in water with the addition of ammonia at 0 (control), 14.6, and 146 mg/L total ammonia nitrogen for 96-h. The present study observed that ammonia accumulated in the intestine and muscle (ammonia contents in the intestine and muscle increased) and induced the activities of protein digestive enzymes dysfunction (pepsin increased while trypsin decreased). Ammonia stress changed various amino acids composition (proline, arginine, lysine, histidine, phenylalanine, tyrosine, leucine, isoleucine, valine, alanine, glutamic acid, tyrosine, and aspartic acid contents were increased in muscle) and increased the activities of alanine aminotransferase and aspartate aminotransferase in muscle. Furthermore, through 16 S rRNA gene analysis, ammonia stress-induced reduction in diversity, richness, and evenness and structure of microbiota alteration in the intestine. At the phylum level, the abundance of Fusobacteria increased while Firmicutes and Actinobacteria decreased significantly. At the genus level, the abundance of beneficial microbiota Cetobacterium significantly increased after ammonia stress. In conclusion, activation of amino acid synthesis in muscle may be involved in ammonia detoxification after severe ammonia stress. The accumulation of ammonia can disrupt the intestinal digestive function and intestinal microbiota community. The Cetobacterium may be a new potential positive factor in the resistance of ammonia toxicity.
Collapse
Affiliation(s)
- Shidong Wang
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Xue Li
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Muzi Zhang
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Haibo Jiang
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Rixin Wang
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Yunxia Qian
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Ming Li
- School of Marine Sciences, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
20
|
Elfeki M, Mantri S, Clark CM, Green SJ, Ziemert N, Murphy BT. Evaluating the Distribution of Bacterial Natural Product Biosynthetic Genes across Lake Huron Sediment. ACS Chem Biol 2021; 16:2623-2631. [PMID: 34605624 DOI: 10.1021/acschembio.1c00653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Environmental microorganisms continue to serve as a major source of bioactive natural products (NPs) and as an inspiration for many other scaffolds in the toolbox of modern medicine. Nearly all microbial NP-inspired therapies can be traced to field expeditions to collect samples from the environment. Despite the importance of these expeditions in the search for new drugs, few studies have attempted to document the extent to which NPs or their corresponding production genes are distributed within a given environment. To gain insights into this, the geographic occurrence of NP ketosynthase (KS) and adenylation (A) domains was documented across 53 and 58 surface sediment samples, respectively, covering 59,590 square kilometers of Lake Huron. Overall, no discernible NP geographic distribution patterns were observed for 90,528 NP classes of nonribosomal peptides and polyketides detected in the survey. While each sampling location harbored a similar number of A domain operational biosynthetic units (OBUs), a limited overlap of OBU type was observed, suggesting that at the sequencing depth used in this study, no single location served as a NP "hotspot". These data support the hypothesis that there is ample variation in NP occurrence between sampling sites and suggest that extensive sample collection efforts are required to fully capture the functional chemical diversity of sediment microbial communities on a regional scale.
Collapse
Affiliation(s)
- Maryam Elfeki
- Department of Pharmaceutical Sciences, Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Shrikant Mantri
- German Centre for Infection Research (DZIF), Interfaculty Institute of Microbiology and Infection Medicine Tübingen, University of Tübingen, Auf der Morgenstelle 28, Tübingen 72076, Germany
| | - Chase M. Clark
- Department of Pharmaceutical Sciences, Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Stefan J. Green
- Genomics and Microbiome Core Facility, Rush University Medical Center, Chicago, Illinois 60612, United States
| | - Nadine Ziemert
- German Centre for Infection Research (DZIF), Interfaculty Institute of Microbiology and Infection Medicine Tübingen, University of Tübingen, Auf der Morgenstelle 28, Tübingen 72076, Germany
| | - Brian T. Murphy
- Department of Pharmaceutical Sciences, Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| |
Collapse
|
21
|
Chevrette MG, Handelsman J. Needles in haystacks: reevaluating old paradigms for the discovery of bacterial secondary metabolites. Nat Prod Rep 2021; 38:2083-2099. [PMID: 34693961 DOI: 10.1039/d1np00044f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Covering: up to 2021Natural products research is in the midst of a renaissance ushered in by a modern understanding of microbiology and the technological explosions of genomics and metabolomics. As the exploration of uncharted chemical space expands into high-throughput discovery campaigns, it has become increasingly clear how design elements influence success: (bio)geography, habitat, community dynamics, culturing/induction methods, screening methods, dereplication, and more. We explore critical considerations and assumptions in natural products discovery. We revisit previous estimates of chemical rediscovery and discuss their relatedness to study design and producer taxonomy. Through frequency analyses of biosynthetic gene clusters in publicly available genomic data, we highlight phylogenetic biases that influence rediscovery rates. Through selected examples of how study design at each level determines discovery outcomes, we discuss the challenges and opportunities for the future of high-throughput natural product discovery.
Collapse
Affiliation(s)
- Marc G Chevrette
- Wisconsin Institute for Discovery and Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, USA.
| | - Jo Handelsman
- Wisconsin Institute for Discovery and Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
22
|
Non-Specific Immunity Associated Gut Microbiome in Aristichthys nobilis under Different Rearing Strategies. Genes (Basel) 2021; 12:genes12060916. [PMID: 34198687 PMCID: PMC8232146 DOI: 10.3390/genes12060916] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 05/31/2021] [Accepted: 06/07/2021] [Indexed: 01/20/2023] Open
Abstract
To understand the intestinal microbial diversity and community structure of bighead carp (Aristichthys nobilis) under different feeding strategies, 39 fish from three groups (A: 9 fish, natural live food only; B: 15 fish, natural live food + fish formulated feeds; C: 15 fish, natural live food + fish formulated feed + lactic acid bacteria) were obtained for the high throughput 16S rRNA gene sequencing. We first examined five non-specific immunity indications of the carp—lysozyme (LZM), catalase (CAT), glutathione reductase (GR), glutathione peroxidase (GSH-PX), and superoxide dismutase (SOD). Interestingly, the composition of gut microbiota and related non-specific immune indices were affected by the feeding treatment of the bighead carp. Notably, all enzyme activity indexes were significantly different (p < 0.01) in the spleen and three enzyme activity indexes (LZM, GSH-PX, and SOD) had significant differences in the hepatopancreas (p < 0.001) of the carp from the three groups. The 16S rRNA gene sequencing showed higher diversity in groups B and C. Compared to group A, the relative abundance of Actinobacteria increased significantly and the relative abundance of Proteobacteria and Firmicutes decreased significantly in groups B and C at the phylum level. Functional analysis revealed the association between non-specific immune indicators and import genera in the hepatopancreas and spleen of bighead carp. This study provides new insights into the gut microbiomes and non-specific immune of bighead carp.
Collapse
|
23
|
Kumar S, Kumari N, Talukdar D, Kothidar A, Sarkar M, Mehta O, Kshetrapal P, Wadhwa N, Thiruvengadam R, Desiraju BK, Nair GB, Bhatnagar S, Mukherjee S, Das B. The Vaginal Microbial Signatures of Preterm Birth Delivery in Indian Women. Front Cell Infect Microbiol 2021; 11:622474. [PMID: 34094994 PMCID: PMC8169982 DOI: 10.3389/fcimb.2021.622474] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 04/23/2021] [Indexed: 01/03/2023] Open
Abstract
Background The incidence of preterm birth (PTB) in India is around 13%. Specific bacterial communities or individual taxon living in the vaginal milieu of pregnant women is a potential risk factor for PTB and may play an important role in its pathophysiology. Besides, bacterial taxa associated with PTB vary across populations. Objective Conduct a comparative analysis of vaginal microbiome composition and microbial genomic repertoires of women who enrolled in the Interdisciplinary Group for Advanced Research on Birth Outcomes – A DBT India Initiative (GARBH-Ini) pregnancy cohort to identify bacterial taxa associated with term birth (TB) and PTB in Indian women. Methods Vaginal swabs were collected during all three trimesters from 38 pregnant Indian women who delivered spontaneous term (n=20) and preterm (n=18) neonates. Paired-end sequencing of V3-V4 region of 16S rRNA gene was performed using the metagenomic DNA isolated from vaginal swabs (n=115). Whole genome sequencing of bacterial species associated with birth outcomes was carried out by shotgun method. Lactobacillus species were grown anaerobically in the De Man, Rogosa and Sharpe (MRS) agar culture medium for isolation of genomic DNA and whole genome sequencing. Results Vaginal microbiome of both term and preterm samples reveals similar alpha diversity indices. However, significantly higher abundance of Lactobacillus iners (p-value All_Trimesters<0.02), Megasphaera sp (p-value1st_Trimester <0.05), Gardnerella vaginalis (p-value2nd_Trimester= 0.01) and Sneathia sanguinegens (p-value2nd_Trimester <0.0001) were identified in preterm samples whereas higher abundance of L. gasseri (p-value3rd_Trimester =0.010) was observed in term samples by Wilcoxon rank-sum test. The relative abundance of L. iners, and Megasphaera sp. were found to be significantly different over time between term and preterm mothers. Analyses of the representative genomes of L. crispatus and L. gasseri indicate presence of secretory transcriptional regulator and several ribosomally synthesized antimicrobial peptides correlated with anti-inflammatory condition in the vagina. These findings indicate protective role of L. crispatus and L. gasseri in reducing the risk of PTB. Conclusion Our findings indicate that the dominance of specific Lactobacillus species and few other facultative anaerobes are associated with birth outcomes.
Collapse
Affiliation(s)
- Shakti Kumar
- Molecular Genetics Laboratory, Translational Health Science and Technology Institute, National Capital Region (NCR) Biotech Science Cluster, Faridabad, India
| | - Naina Kumari
- National Institute of Biomedical Genomics, Kalyani, India
| | - Daizee Talukdar
- Molecular Genetics Laboratory, Translational Health Science and Technology Institute, National Capital Region (NCR) Biotech Science Cluster, Faridabad, India
| | - Akansha Kothidar
- Molecular Genetics Laboratory, Translational Health Science and Technology Institute, National Capital Region (NCR) Biotech Science Cluster, Faridabad, India
| | - Mousumi Sarkar
- National Institute of Biomedical Genomics, Kalyani, India
| | - Ojasvi Mehta
- Molecular Genetics Laboratory, Translational Health Science and Technology Institute, National Capital Region (NCR) Biotech Science Cluster, Faridabad, India
| | - Pallavi Kshetrapal
- Pediatric Biology Center, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
| | - Nitya Wadhwa
- Pediatric Biology Center, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
| | - Ramachandran Thiruvengadam
- Pediatric Biology Center, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
| | - Bapu Koundinya Desiraju
- Pediatric Biology Center, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
| | - G Balakrish Nair
- Molecular Genetics Laboratory, Translational Health Science and Technology Institute, National Capital Region (NCR) Biotech Science Cluster, Faridabad, India
| | - Shinjini Bhatnagar
- Pediatric Biology Center, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
| | | | - Bhabatosh Das
- Molecular Genetics Laboratory, Translational Health Science and Technology Institute, National Capital Region (NCR) Biotech Science Cluster, Faridabad, India
| | | |
Collapse
|
24
|
Liu Z, Liang Z, Zhou Z, Li L, Meng D, Li X, Tao J, Jiang Z, Gu Y, Huang Y, Liu X, Yang Z, Drewniak L, Liu T, Liu Y, Liu S, Wang J, Jiang C, Yin H. Mobile genetic elements mediate the mixotrophic evolution of novel Alicyclobacillus species for acid mine drainage adaptation. Environ Microbiol 2021; 23:3896-3912. [PMID: 33913568 DOI: 10.1111/1462-2920.15543] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 04/12/2021] [Accepted: 04/24/2021] [Indexed: 12/25/2022]
Abstract
Alicyclobacillus species inhabit diverse environments and have adapted to broad ranges of pH and temperature. However, their adaptive evolutions remain elusive, especially regarding the role of mobile genetic elements (MGEs). Here, we characterized the distributions and functions of MGEs in Alicyclobacillus species across five environments, including acid mine drainage (AMD), beverages, hot springs, sediments, and soils. Nine Alicyclobacillus strains were isolated from AMD and possessed larger genome sizes and more genes than those from other environments. Four AMD strains evolved to be mixotrophic and fell into distinctive clusters in phylogenetic tree. Four types of MGEs including genomic island (GI), insertion sequence (IS), prophage, and integrative and conjugative element (ICE) were widely distributed in Alicyclobacillus species. Further, AMD strains did not possess CRISPR-Cas systems, but had more GI, IS, and ICE, as well as more MGE-associated genes involved in the oxidation of iron and sulfide and the resistance of heavy metal and low temperature. These findings highlight the differences in phenotypes and genotypes between strains isolated from AMD and other environments and the important role of MGEs in rapid environment niche expansions.
Collapse
Affiliation(s)
- Zhenghua Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410006, China.,Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, 410006, China.,State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Zonglin Liang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhicheng Zhou
- College of Plant Protection, Hunan Agricultural University, Changsha, 410010, China
| | - Liangzhi Li
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410006, China.,Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, 410006, China
| | - Delong Meng
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410006, China.,Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, 410006, China
| | - Xiutong Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiemeng Tao
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410006, China.,Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, 410006, China
| | - Zhen Jiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yabing Gu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410006, China.,Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, 410006, China
| | - Ye Huang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xueduan Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410006, China.,Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, 410006, China
| | - Zhendong Yang
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, 02-096, Poland
| | - Lukasz Drewniak
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, 02-096, Poland
| | - Tianbo Liu
- Hunan Tobacco Science Institute, Changsha, 410010, China
| | - Yongjun Liu
- Hunan Tobacco Science Institute, Changsha, 410010, China
| | - Shuangjiang Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jianjun Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Chengying Jiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing, 100101, China
| | - Huaqun Yin
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410006, China.,Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, 410006, China
| |
Collapse
|
25
|
Creamer KE, Kudo Y, Moore BS, Jensen PR. Phylogenetic analysis of the salinipostin γ-butyrolactone gene cluster uncovers new potential for bacterial signalling-molecule diversity. Microb Genom 2021; 7:000568. [PMID: 33979276 PMCID: PMC8209734 DOI: 10.1099/mgen.0.000568] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/24/2021] [Indexed: 12/19/2022] Open
Abstract
Bacteria communicate by small-molecule chemicals that facilitate intra- and inter-species interactions. These extracellular signalling molecules mediate diverse processes including virulence, bioluminescence, biofilm formation, motility and specialized metabolism. The signalling molecules produced by members of the phylum Actinobacteria generally comprise γ-butyrolactones, γ-butenolides and furans. The best-known actinomycete γ-butyrolactone is A-factor, which triggers specialized metabolism and morphological differentiation in the genus Streptomyces . Salinipostins A–K are unique γ-butyrolactone molecules with rare phosphotriester moieties that were recently characterized from the marine actinomycete genus Salinispora . The production of these compounds has been linked to the nine-gene biosynthetic gene cluster (BGC) spt . Critical to salinipostin assembly is the γ-butyrolactone synthase encoded by spt9 . Here, we report the surprising distribution of spt9 homologues across 12 bacterial phyla, the majority of which are not known to produce γ-butyrolactones. Further analyses uncovered a large group of spt -like gene clusters outside of the genus Salinispora , suggesting the production of new salinipostin-like diversity. These gene clusters show evidence of horizontal transfer and location-specific recombination among Salinispora strains. The results suggest that γ-butyrolactone production may be more widespread than previously recognized. The identification of new γ-butyrolactone BGCs is the first step towards understanding the regulatory roles of the encoded small molecules in Actinobacteria.
Collapse
Affiliation(s)
- Kaitlin E. Creamer
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Yuta Kudo
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
- Present address: Frontier Research Institute for Interdisciplinary Sciences, Japan Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Bradley S. Moore
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Paul R. Jensen
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
26
|
Gluck-Thaler E, Haridas S, Binder M, Grigoriev IV, Crous PW, Spatafora JW, Bushley K, Slot JC. The Architecture of Metabolism Maximizes Biosynthetic Diversity in the Largest Class of Fungi. Mol Biol Evol 2021; 37:2838-2856. [PMID: 32421770 PMCID: PMC7530617 DOI: 10.1093/molbev/msaa122] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Ecological diversity in fungi is largely defined by metabolic traits, including the ability to produce secondary or “specialized” metabolites (SMs) that mediate interactions with other organisms. Fungal SM pathways are frequently encoded in biosynthetic gene clusters (BGCs), which facilitate the identification and characterization of metabolic pathways. Variation in BGC composition reflects the diversity of their SM products. Recent studies have documented surprising diversity of BGC repertoires among isolates of the same fungal species, yet little is known about how this population-level variation is inherited across macroevolutionary timescales. Here, we applied a novel linkage-based algorithm to reveal previously unexplored dimensions of diversity in BGC composition, distribution, and repertoire across 101 species of Dothideomycetes, which are considered the most phylogenetically diverse class of fungi and known to produce many SMs. We predicted both complementary and overlapping sets of clustered genes compared with existing methods and identified novel gene pairs that associate with known secondary metabolite genes. We found that variation among sets of BGCs in individual genomes is due to nonoverlapping BGC combinations and that several BGCs have biased ecological distributions, consistent with niche-specific selection. We observed that total BGC diversity scales linearly with increasing repertoire size, suggesting that secondary metabolites have little structural redundancy in individual fungi. We project that there is substantial unsampled BGC diversity across specific families of Dothideomycetes, which will provide a roadmap for future sampling efforts. Our approach and findings lend new insight into how BGC diversity is generated and maintained across an entire fungal taxonomic class.
Collapse
Affiliation(s)
- Emile Gluck-Thaler
- Department of Plant Pathology, The Ohio State University, Columbus, OH.,Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA
| | - Sajeet Haridas
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA
| | | | - Igor V Grigoriev
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA.,Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA
| | - Pedro W Crous
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - Joseph W Spatafora
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR
| | - Kathryn Bushley
- Department of Plant and Microbial Biology, University of Minnesota, Minneapolis, MN
| | - Jason C Slot
- Department of Plant Pathology, The Ohio State University, Columbus, OH
| |
Collapse
|
27
|
A Pseudoalteromonas Clade with Remarkable Biosynthetic Potential. Appl Environ Microbiol 2021; 87:AEM.02604-20. [PMID: 33397702 DOI: 10.1128/aem.02604-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/19/2020] [Indexed: 02/02/2023] Open
Abstract
Pseudoalteromonas species produce a diverse range of biologically active compounds, including those biosynthesized by nonribosomal peptide synthetases (NRPSs) and polyketide synthases (PKSs). Here, we report the biochemical and genomic analysis of Pseudoalteromonas sp. strain HM-SA03, isolated from the blue-ringed octopus, Hapalochlaena sp. Genome mining for secondary metabolite pathways revealed seven putative NRPS/PKS biosynthesis gene clusters, including those for the biosynthesis of alterochromides, pseudoalterobactins, alteramides, and four novel compounds. Among these was a novel siderophore biosynthesis gene cluster with unprecedented architecture (NRPS-PKS-NRPS-PKS-NRPS-PKS-NRPS). Alterochromide production in HM-SA03 was also confirmed by liquid chromatography-mass spectrometry. An investigation of the biosynthetic potential of 42 publicly available Pseudoalteromonas genomes indicated that some of these gene clusters are distributed throughout the genus. Through the phylogenetic analysis, a particular subset of strains formed a clade with extraordinary biosynthetic potential, with an average density of 10 biosynthesis gene clusters per genome. In contrast, the majority of Pseudoalteromonas strains outside this clade contained an average of three clusters encoding complex biosynthesis. These results highlight the underexplored potential of Pseudoalteromonas as a source of new natural products.IMPORTANCE This study demonstrates that the Pseudoalteromonas strain HM-SA03, isolated from the venomous blue-ringed octopus, Hapalochalaena sp., is a biosynthetically talented organism, capable of producing alterochromides and potentially six other specialized metabolites. We identified a pseudoalterobactin biosynthesis gene cluster and proposed a pathway for the production of the associated siderophore. A novel siderophore biosynthesis gene cluster with unprecedented architecture was also identified in the HM-SA03 genome. Finally, we demonstrated that HM-SA03 belongs to a phylogenetic clade of strains with extraordinary biosynthetic potential. While our results do not support a role of HM-SA03 in Hapalochalaena sp. venom (tetrodotoxin) production, they emphasize the untapped potential of Pseudoalteromonas as a source of novel natural products.
Collapse
|
28
|
Chhun A, Sousoni D, Aguiló‐Ferretjans MDM, Song L, Corre C, Christie‐Oleza JA. Phytoplankton trigger the production of cryptic metabolites in the marine actinobacterium Salinispora tropica. Microb Biotechnol 2021; 14:291-306. [PMID: 33280260 PMCID: PMC7888443 DOI: 10.1111/1751-7915.13722] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 11/14/2020] [Indexed: 12/19/2022] Open
Abstract
Filamentous members of the phylum Actinobacteria are a remarkable source of natural products with pharmaceutical potential. The discovery of novel molecules from these organisms is, however, hindered because most of the biosynthetic gene clusters (BGCs) encoding these secondary metabolites are cryptic or silent and are referred to as orphan BGCs. While co-culture has proven to be a promising approach to unlock the biosynthetic potential of many microorganisms by activating the expression of these orphan BGCs, it still remains an underexplored technique. The marine actinobacterium Salinispora tropica, for instance, produces valuable compounds such as the anti-cancer molecule salinosporamide but half of its putative BGCs are still orphan. Although previous studies have used marine heterotrophs to induce orphan BGCs in Salinispora, its co-culture with marine phototrophs has yet to be investigated. Following the observation of an antimicrobial activity against a range of phytoplankton by S. tropica, we here report that the photosynthate released by photosynthetic primary producers influences its biosynthetic capacities with production of cryptic molecules and the activation of orphan BGCs. Our work, using an approach combining metabolomics and proteomics, pioneers the use of phototrophs as a promising strategy to accelerate the discovery of novel natural products from marine actinobacteria.
Collapse
Affiliation(s)
- Audam Chhun
- School of Life SciencesUniversity of WarwickCoventryUK
| | | | | | - Lijiang Song
- Department of ChemistryUniversity of WarwickCoventryUK
| | - Christophe Corre
- School of Life SciencesUniversity of WarwickCoventryUK
- Department of ChemistryUniversity of WarwickCoventryUK
| | - Joseph A. Christie‐Oleza
- School of Life SciencesUniversity of WarwickCoventryUK
- University of the Balearic IslandsPalmaSpain
- IMEDEA (CSIC‐UIB)EsporlesSpain
| |
Collapse
|
29
|
Xu C, Zhong XQ, Li XF, Shi HJ, Liu WB. Regulation of growth, intestinal microflora composition and expression of immune-related genes by dietary supplementation of Streptococcus faecalis in blunt snout bream (Megalobrama amblycephala). FISH & SHELLFISH IMMUNOLOGY 2020; 105:195-202. [PMID: 32652298 DOI: 10.1016/j.fsi.2020.07.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/05/2020] [Accepted: 07/06/2020] [Indexed: 06/11/2023]
Abstract
A 10-week feeding trial was performed to investigate the effects of Streptococcus faecalis on the growth, intestinal microflora composition and expression of immune-related genes of blunt snout bream (Megalobrama amblycephala). Fish (46.32 ± 0.09 g) were fed four experimental diets containing 0 cfu/g (SF0, control), 1 × 105 cfu/g (SF1), 1 × 106 cfu/g (SF2) and 1 × 107 cfu/g (SF3) of S. faecalis, respectively. Results showed that daily growth index (DGI), feed efficiency ratio (FER), plasma glucose level, plasma contents of total protein and albumin as well as intestinal serous layer (SL), muscular layer (ML), submucous layer (SML), villi thickness (VT) and lamina propria (LP) were all no significant difference among all the treatments, whereas their (except plasma albumin content and intestinal ML) relatively high values were found in the SF2 group. Meanwhile, the intake of the SF2 diets significantly increased plasma globulin content and intestinal digestive enzymes activities, the opposite was true for the activities of plasma aspartate aminotransferase (AST) and alanine transaminase (ALT). In addition, the analysis of the intestinal microbiota showed that fish fed the SF2 diet have the highest values of intestinal alpha diversity and intestinal abundances of Actinobacteria, Chlamydiae, Firmicutes, Planctomycetes, Verrucomicrobia, Clostridium and Synechococcus, while the opposite was true for intestinal abundances of Acinetobacter, Anoxybacillus, Flavobacterium, Planctomyces, Plesiomonas, Pseudomonas, Staphylococcus and Clostridium perfringens. At the molecular level, the expression levels of tumour necrosis factor α (TNF α), interleukin 1β (IL 1β) and heat shock proteins 7 (HSP 70) in head kidney and spleen were all decreased significantly with the increasing S. faecalis levels up to 1 × 106 cfu/g, and then they were increased with further increasing S. faecalis levels. Overall, dietary supplementation of S. faecalis at 1 × 106 cfu/g could improve the intestinal health and innate immunity of blunt snout bream.
Collapse
Affiliation(s)
- Chao Xu
- College of Marine Sciences of South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing, 210095, People's Republic of China
| | - Xiao-Qun Zhong
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing, 210095, People's Republic of China
| | - Xiang-Fei Li
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing, 210095, People's Republic of China.
| | - Hua-Juan Shi
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing, 210095, People's Republic of China
| | - Wen-Bin Liu
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing, 210095, People's Republic of China
| |
Collapse
|
30
|
Ocampo-Alvarez H, Meza-Canales ID, Mateos-Salmón C, Rios-Jara E, Rodríguez-Zaragoza FA, Robles-Murguía C, Muñoz-Urias A, Hernández-Herrera RM, Choix-Ley FJ, Becerril-Espinosa A. Diving Into Reef Ecosystems for Land-Agriculture Solutions: Coral Microbiota Can Alleviate Salt Stress During Germination and Photosynthesis in Terrestrial Plants. FRONTIERS IN PLANT SCIENCE 2020; 11:648. [PMID: 32523601 PMCID: PMC7261865 DOI: 10.3389/fpls.2020.00648] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/27/2020] [Indexed: 06/11/2023]
Abstract
From their chemical nature to their ecological interactions, coral reef ecosystems have a lot in common with highly productive terrestrial ecosystems. While plants are responsible for primary production in the terrestrial sphere, the photosynthetic endosymbionts of corals are the key producers in reef communities. As in plants, coral microbiota have been suggested to stimulate the growth and physiological performance of the photosynthetic endosymbionts that provide energy sources to the coral. Among them, actinobacteria are some of the most probable candidates. To explore the potential of coral actinobacteria as plant biostimulants, we have analyzed the activity of Salinispora strains isolated from the corals Porites lobata and Porites panamensis, which were identified as Salinispora arenicola by 16S rRNA sequencing. We evaluated the effects of this microorganism on the germination, plant growth, and photosynthetic response of wild tobacco (Nicotiana attenuata) under a saline regime. We identified protective activity of this actinobacteria on seed germination and photosynthetic performance under natural light conditions. Further insights into the possible mechanism showed an endophytic-like symbiosis between N. attenuata roots and S. arenicola and 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity by S. arenicola. We discuss these findings in the context of relevant ecological and physiological responses and biotechnological potential. Overall, our results will contribute to the development of novel biotechnologies to cope with plant growth under saline stress. Our study highlights the importance of understanding marine ecological interactions for the development of novel, strategic, and sustainable agricultural solutions.
Collapse
Affiliation(s)
- Héctor Ocampo-Alvarez
- Laboratorio de Ecología Molecular, Microbiología y Taxonomía, Departamento de Ecología, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan, Mexico
| | - Iván D. Meza-Canales
- Laboratorio de Evolución de Sistemas Ecológicos, Departamento de Ecología, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan, Mexico
- Laboratorio de Biología Molecular, Genómica y Proteómica, Instituto Transdisciplinar de Investigación y Servicios, Universidad de Guadalajara, Zapopan, Mexico
| | - Carolina Mateos-Salmón
- Laboratorio de Ecología Molecular, Microbiología y Taxonomía, Departamento de Ecología, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan, Mexico
| | - Eduardo Rios-Jara
- Laboratorio de Ecología Molecular, Microbiología y Taxonomía, Departamento de Ecología, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan, Mexico
| | - Fabián A. Rodríguez-Zaragoza
- Laboratorio de Ecología Molecular, Microbiología y Taxonomía, Departamento de Ecología, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan, Mexico
| | - Celia Robles-Murguía
- Laboratorio de Evolución de Sistemas Ecológicos, Departamento de Ecología, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan, Mexico
| | - Alejandro Muñoz-Urias
- Laboratorio de Evolución de Sistemas Ecológicos, Departamento de Ecología, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan, Mexico
| | - Rosalba Mireya Hernández-Herrera
- Laboratorio de Investigación en Biotecnología, Departamento de Botánica y Zoología, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan, Mexico
| | | | - Amayaly Becerril-Espinosa
- CONACYT, Departamento de Ecología, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan, Mexico
| |
Collapse
|
31
|
Tang L, Huang J, She J, Zhao K, Zhou Y. Co-Occurrence of the bla KPC-2 and Mcr-3.3 Gene in Aeromonas caviae SCAc2001 Isolated from Patients with Diarrheal Disease. Infect Drug Resist 2020; 13:1527-1536. [PMID: 32547122 PMCID: PMC7259443 DOI: 10.2147/idr.s245553] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 04/23/2020] [Indexed: 01/24/2023] Open
Abstract
Purpose To characterize the genetic feature of a multi-drug-resistant Aeromonas caviae strain isolated from the diarrhea sample of a 45-year-old male patient with acute diarrhea. Materials and Methods Whole-genome of the A. caviae strain SCAc2001 was sequenced via the Illumina system, followed by a series of bioinformatic analyses to describe the genetic feature. Results The genome sequence of A. caviae SCAc2001 was assembled into 340 scaffolds (305 of them were > 1000 bp in length and 4,487,370 bp in total) with an average G+C content of 61.09%. Phylogenetic analysis showed that the A. caviae SCAc2001 strain was highly similar to the A. caviae strain R25-2 and T25-39. Resistome analysis identified that A. caviae SCAc2001 carried 13 antimicrobial resistance genes, including β-lactams (blaKPC, blaCTX-M-14, blaTEM-1, blaOXA-10, blaOXA-427, blaVEB-3 and blaMOX-6), aminoglycosides (aadA1), fluoroquinolones (aac(6ʹ)-Ib-cr), phenicol resistance (catB3), sulfonamide (sul1), trimethoprim (dfrA5) and colistin resistance (mcr-3.3).And also, A. caviae ScAc2001 carried 54 putative virulence genes including the type IV pilus, fimbria, flagellarthe, and hemolysin A encoding genes, and 12 pathogen–host interactions (PHI) genes. There were also four genomic islands and eight prophages in the genome of A. caviae ScAc2001. In addition, A. caviae SCAc2001 also carried three secondary metabolism products coding clusters including nonribosomal peptide synthetases (nrps), hserlactone and bacteriocin. Conclusion A. caviae ScAc2001 carries many resistance genes, a variety of virulence factors, PHI genes and four genomic islands and eight prophages, which poses a severe threat to infectious diseases control strategies, diagnosis methods and clinical treatment.
Collapse
Affiliation(s)
- Lingtong Tang
- Department of Pathogenic Biology, School of Basic Medicine, Southwest Medical University, Luzhou 646000, Sichuan, People's Republic of China.,Department of Clinical Laboratory, People's Hospital of Gao County, Yibing 644000, Sichuan, People's Republic of China
| | - Jianglian Huang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Xiamen Medical College, Xiaman 361600, People's Republic of China
| | - Junping She
- Department of Pathogenic Biology, School of Basic Medicine, Southwest Medical University, Luzhou 646000, Sichuan, People's Republic of China
| | - Kelei Zhao
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610052, Sichuan, People's Republic of China
| | - Yingshun Zhou
- Department of Pathogenic Biology, School of Basic Medicine, Southwest Medical University, Luzhou 646000, Sichuan, People's Republic of China
| |
Collapse
|
32
|
Iglesias A, Latorre-Pérez A, Stach JEM, Porcar M, Pascual J. Out of the Abyss: Genome and Metagenome Mining Reveals Unexpected Environmental Distribution of Abyssomicins. Front Microbiol 2020; 11:645. [PMID: 32351480 PMCID: PMC7176366 DOI: 10.3389/fmicb.2020.00645] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 03/20/2020] [Indexed: 12/27/2022] Open
Abstract
Natural products have traditionally been discovered through the screening of culturable microbial isolates from diverse environments. The sequencing revolution allowed the identification of dozens of biosynthetic gene clusters (BGCs) within single bacterial genomes, either from cultured or uncultured strains. However, we are still far from fully exploiting the microbial reservoir, as most of the species are non-model organisms with complex regulatory systems that can be recalcitrant to engineering approaches. Genomic and metagenomic data produced by laboratories worldwide covering the range of natural and artificial environments on Earth, are an invaluable source of raw information from which natural product biosynthesis can be accessed. In the present work, we describe the environmental distribution and evolution of the abyssomicin BGC through the analysis of publicly available genomic and metagenomic data. Our results demonstrate that the selection of a pathway-specific enzyme to direct genome mining is an excellent strategy; we identified 74 new Diels–Alderase homologs and unveiled a surprising prevalence of the abyssomicin BGC within terrestrial habitats, mainly soil and plant-associated. We also identified five complete and 12 partial new abyssomicin BGCs and 23 new potential abyssomicin BGCs. Our results strongly support the potential of genome and metagenome mining as a key preliminary tool to inform bioprospecting strategies aimed at the identification of new bioactive compounds such as -but not restricted to- abyssomicins.
Collapse
Affiliation(s)
- Alba Iglesias
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | | | - James E M Stach
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom.,Centre for Synthetic Biology and the Bioeconomy, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Manuel Porcar
- Darwin Bioprospecting Excellence S.L., Paterna, Spain.,Institute for Integrative Systems Biology (I2SysBio), University of Valencia-CSIC, Paterna, Spain
| | | |
Collapse
|
33
|
Guerrero-Garzón JF, Zehl M, Schneider O, Rückert C, Busche T, Kalinowski J, Bredholt H, Zotchev SB. Streptomyces spp. From the Marine Sponge Antho dichotoma: Analyses of Secondary Metabolite Biosynthesis Gene Clusters and Some of Their Products. Front Microbiol 2020; 11:437. [PMID: 32256483 PMCID: PMC7093587 DOI: 10.3389/fmicb.2020.00437] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 03/02/2020] [Indexed: 01/25/2023] Open
Abstract
Actinomycete bacteria from marine environments represent a potential source for new antibiotics and anti-tumor drugs. Ten strains belonging to the genus Streptomyces isolated from the marine sponge Antho dichotoma collected at the bottom of the Trondheim fjord (Norway) were screened for antibiotic activity. Since only few isolates proved to be bioactive in the conditions tested, we decided to gain an insight into their biosynthetic potential using genome sequencing and analysis. Draft genomes were analyzed for the presence of secondary metabolite biosynthesis gene clusters (BGCs) using antiSMASH software. BGCs specifying both known and potentially novel secondary metabolites were identified, suggesting that these isolates might be sources for new bioactive compounds. The results of this analysis also implied horizontal transfer of several gene clusters between the studied isolates, which was especially evident for the lantibiotic- and thiopeptide-encoding BGCs. The latter implies the significance of particular secondary metabolites for the adaptation of Streptomyces to the spatially enclosed marine environments such as marine sponges. Two bioactive isolates, one showing activity against both yeast and Bacillus subtilis, and one only against yeast were analyzed in details, leading to the identification of cycloheximide, linearmycins, and echinomycins that are presumably responsible for the observed bioactivities.
Collapse
Affiliation(s)
| | - Martin Zehl
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Olha Schneider
- Department of Pharmacognosy, University of Vienna, Vienna, Austria
| | | | - Tobias Busche
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Jörn Kalinowski
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | | | | |
Collapse
|
34
|
Nivina A, Yuet KP, Hsu J, Khosla C. Evolution and Diversity of Assembly-Line Polyketide Synthases. Chem Rev 2019; 119:12524-12547. [PMID: 31838842 PMCID: PMC6935866 DOI: 10.1021/acs.chemrev.9b00525] [Citation(s) in RCA: 177] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Indexed: 12/11/2022]
Abstract
Assembly-line polyketide synthases (PKSs) are among the most complex protein machineries known in nature, responsible for the biosynthesis of numerous compounds used in the clinic. Their present-day diversity is the result of an evolutionary path that has involved the emergence of a multimodular architecture and further diversification of assembly-line PKSs. In this review, we provide an overview of previous studies that investigated PKS evolution and propose a model that challenges the currently prevailing view that gene duplication has played a major role in the emergence of multimodularity. We also analyze the ensemble of orphan PKS clusters sequenced so far to evaluate how large the entire diversity of assembly-line PKS clusters and their chemical products could be. Finally, we examine the existing techniques to access the natural PKS diversity in natural and heterologous hosts and describe approaches to further expand this diversity through engineering.
Collapse
Affiliation(s)
- Aleksandra Nivina
- Department
of Chemistry, Stanford ChEM-H, Department of Chemical Engineering Stanford
University, Stanford, California 94305, United States
| | - Kai P. Yuet
- Department
of Chemistry, Stanford ChEM-H, Department of Chemical Engineering Stanford
University, Stanford, California 94305, United States
| | - Jake Hsu
- Department
of Chemistry, Stanford ChEM-H, Department of Chemical Engineering Stanford
University, Stanford, California 94305, United States
| | - Chaitan Khosla
- Department
of Chemistry, Stanford ChEM-H, Department of Chemical Engineering Stanford
University, Stanford, California 94305, United States
| |
Collapse
|
35
|
Othoum G, Prigent S, Derouiche A, Shi L, Bokhari A, Alamoudi S, Bougouffa S, Gao X, Hoehndorf R, Arold ST, Gojobori T, Hirt H, Lafi FF, Nielsen J, Bajic VB, Mijakovic I, Essack M. Comparative genomics study reveals Red Sea Bacillus with characteristics associated with potential microbial cell factories (MCFs). Sci Rep 2019; 9:19254. [PMID: 31848398 PMCID: PMC6917714 DOI: 10.1038/s41598-019-55726-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 11/27/2019] [Indexed: 02/07/2023] Open
Abstract
Recent advancements in the use of microbial cells for scalable production of industrial enzymes encourage exploring new environments for efficient microbial cell factories (MCFs). Here, through a comparison study, ten newly sequenced Bacillus species, isolated from the Rabigh Harbor Lagoon on the Red Sea shoreline, were evaluated for their potential use as MCFs. Phylogenetic analysis of 40 representative genomes with phylogenetic relevance, including the ten Red Sea species, showed that the Red Sea species come from several colonization events and are not the result of a single colonization followed by speciation. Moreover, clustering reactions in reconstruct metabolic networks of these Bacillus species revealed that three metabolic clades do not fit the phylogenetic tree, a sign of convergent evolution of the metabolism of these species in response to special environmental adaptation. We further showed Red Sea strains Bacillus paralicheniformis (Bac48) and B. halosaccharovorans (Bac94) had twice as much secreted proteins than the model strain B. subtilis 168. Also, Bac94 was enriched with genes associated with the Tat and Sec protein secretion system and Bac48 has a hybrid PKS/NRPS cluster that is part of a horizontally transferred genomic region. These properties collectively hint towards the potential use of Red Sea Bacillus as efficient protein secreting microbial hosts, and that this characteristic of these strains may be a consequence of the unique ecological features of the isolation environment.
Collapse
Affiliation(s)
- G Othoum
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - S Prigent
- Department of Biology and Biological Engineering, Division of Systems & Synthetic Biology, Chalmers University of Technology, Kemivägen 10, 41296, Gothenburg, Sweden
| | - A Derouiche
- Department of Biology and Biological Engineering, Division of Systems & Synthetic Biology, Chalmers University of Technology, Kemivägen 10, 41296, Gothenburg, Sweden
| | - L Shi
- Department of Biology and Biological Engineering, Division of Systems & Synthetic Biology, Chalmers University of Technology, Kemivägen 10, 41296, Gothenburg, Sweden
| | - A Bokhari
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - S Alamoudi
- Department of Biology, Science and Arts College, King Abdulaziz University, Rabigh, 21589, Kingdom of Saudi Arabia
| | - S Bougouffa
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - X Gao
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - R Hoehndorf
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - S T Arold
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - T Gojobori
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia.,Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - H Hirt
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - F F Lafi
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia.,College of Natural and Health Sciences, Zayed University, 144534, Abu-Dhabi, United Arab Emirates
| | - J Nielsen
- Department of Biology and Biological Engineering, Division of Systems & Synthetic Biology, Chalmers University of Technology, Kemivägen 10, 41296, Gothenburg, Sweden.,Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Lyngby, Denmark.,Science for Life Laboratory, Royal Institute of Technology, Solna, Sweden
| | - V B Bajic
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - I Mijakovic
- Department of Biology and Biological Engineering, Division of Systems & Synthetic Biology, Chalmers University of Technology, Kemivägen 10, 41296, Gothenburg, Sweden. .,Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Lyngby, Denmark.
| | - M Essack
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia.
| |
Collapse
|
36
|
Mohapatra B, Kazy SK, Sar P. Comparative genome analysis of arsenic reducing, hydrocarbon metabolizing groundwater bacterium Achromobacter sp. KAs 3-5T explains its competitive edge for survival in aquifer environment. Genomics 2019; 111:1604-1619. [DOI: 10.1016/j.ygeno.2018.11.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 10/25/2018] [Accepted: 11/05/2018] [Indexed: 11/24/2022]
|
37
|
Comparison of the intestinal microbiota composition and function in healthy and diseased Yunlong Grouper. AMB Express 2019; 9:187. [PMID: 31754862 PMCID: PMC6872706 DOI: 10.1186/s13568-019-0913-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 11/09/2019] [Indexed: 11/10/2022] Open
Abstract
Maintaining stabilization of the intestinal microbiota is important in preventing bacterial diseases in cultured fish. At present, there have been no reports on the composition and functional analysis of intestinal microbiota in Yunlong Grouper (Epinephelus moara♀ × Epinephelus lanceolatus♂). In this study we analyzed and compared the intestinal microbiota composition of healthy and diseased pond-reared fish to discern the functional profile of a healthy status. The richness and diversity of the intestinal microbiota did not differ significantly between diseased and healthy fish, yet the abundance of predominant phyla like the Proteobacteria were upregulated in the diseased Yunlong Grouper. At the genus level, a significant reduction of Cetobacterium was observed in the intestinal tracts of diseased fish, as Pseudomonas became the most dominant bacterium. To compare the intestinal microorganism abundances between the two health groups of fish, we first screened the gut bacteria and discerned 4 phyla and 12 genera to designate a healthy status in Yunlong Grouper. The environmental bacterial community influenced composition of the intestinal microbiota in Yunlong Grouper, and the intestinal microbiota of diseased fish was more susceptible to the influence of the culture water. In addition, the prediction of functional genes by phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt) indicated that the intestinal microbiota of Yunlong Grouper is related mainly to the terms "metabolism, environmental information processing, genetic information processing, human diseases, and cellular processing; moreover, the functions of the intestinal microbiota differed between the different health states of this fish. The overall results indicate that the occurrence of disease can affect the composition and function of the intestinal microbiota in a cultured fish.
Collapse
|
38
|
Abstract
Infectious bacteria are developing and spreading resistance to conventional treatments at a rapid pace. To provide novel potent antimicrobials, we must develop new bioprospecting strategies. Here, we combined in silico and phenotypic approaches to explore the bioactive potential of the marine bacterial genus Pseudoalteromonas. We found that pigmented strains in particular represent an untapped resource of secondary metabolites and that they also harbor an elaborate chitinolytic machinery. Furthermore, our analysis showed that chitin is likely a preferred substrate for pigmented species, in contrast to nonpigmented species. Potentially, chitin could facilitate the production of new secondary metabolites in pigmented Pseudoalteromonas strains. Chitin is the most abundant polymer in the marine environment and a nutrient-rich surface for adhering marine bacteria. We have previously shown that chitin can induce the production of antibiotic compounds in Vibrionaceae, suggesting that the discovery of novel bioactive molecules from bacteria can be facilitated by mimicking their natural habitat. The purpose of this study was to determine the glycosyl hydrolase (GH) profiles of strains of the genus Pseudoalteromonas to enable selection of presumed growth substrates and explore possible links to secondary metabolism. Genomic analyses were conducted on 62 pigmented and 95 nonpigmented strains. Analysis of the total GH profiles and multidimensional scaling suggested that the degradation of chitin is a significant trait of pigmented strains, whereas nonpigmented strains seem to be driven toward the degradation of alga-derived carbohydrates. The genomes of all pigmented strains and 40 nonpigmented strains encoded at least one conserved chitin degradation cluster, and chitinolytic activity was phenotypically confirmed. Additionally, the genomes of all pigmented and a few nonpigmented strains encoded chitinases of the rare GH family 19. Pigmented strains devote up to 15% of their genome to secondary metabolism, while for nonpigmented species it was 3% at most. Thus, pigmented Pseudoalteromonas strains have a bioactive potential similar to that of well-known antibiotic producers of the Actinobacteria phylum. Growth on chitin did not measurably enhance the antibacterial activity of the strains; however, we demonstrated a remarkable co-occurrence of chitin degradation and the potential for secondary metabolite production in pigmented Pseudoalteromonas strains. This indicates that chitin and its colonizers of the Pseudoalteromonas genus represent a so far underexplored niche for novel enzymes and bioactive compounds. IMPORTANCE Infectious bacteria are developing and spreading resistance to conventional treatments at a rapid pace. To provide novel potent antimicrobials, we must develop new bioprospecting strategies. Here, we combined in silico and phenotypic approaches to explore the bioactive potential of the marine bacterial genus Pseudoalteromonas. We found that pigmented strains in particular represent an untapped resource of secondary metabolites and that they also harbor an elaborate chitinolytic machinery. Furthermore, our analysis showed that chitin is likely a preferred substrate for pigmented species, in contrast to nonpigmented species. Potentially, chitin could facilitate the production of new secondary metabolites in pigmented Pseudoalteromonas strains.
Collapse
|
39
|
Schorn MA, Jordan PA, Podell S, Blanton JM, Agarwal V, Biggs JS, Allen EE, Moore BS. Comparative Genomics of Cyanobacterial Symbionts Reveals Distinct, Specialized Metabolism in Tropical Dysideidae Sponges. mBio 2019; 10:e00821-19. [PMID: 31088928 PMCID: PMC6520454 DOI: 10.1128/mbio.00821-19] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 04/09/2019] [Indexed: 01/22/2023] Open
Abstract
Marine sponges are recognized as valuable sources of bioactive metabolites and renowned as petri dishes of the sea, providing specialized niches for many symbiotic microorganisms. Sponges of the family Dysideidae are well documented to be chemically talented, often containing high levels of polyhalogenated compounds, terpenoids, peptides, and other classes of bioactive small molecules. This group of tropical sponges hosts a high abundance of an uncultured filamentous cyanobacterium, Hormoscilla spongeliae Here, we report the comparative genomic analyses of two phylogenetically distinct Hormoscilla populations, which reveal shared deficiencies in essential pathways, hinting at possible reasons for their uncultivable status, as well as differing biosynthetic machinery for the production of specialized metabolites. One symbiont population contains clustered genes for expanded polybrominated diphenylether (PBDE) biosynthesis, while the other instead harbors a unique gene cluster for the biosynthesis of the dysinosin nonribosomal peptides. The hybrid sequencing and assembly approach utilized here allows, for the first time, a comprehensive look into the genomes of these elusive sponge symbionts.IMPORTANCE Natural products provide the inspiration for most clinical drugs. With the rise in antibiotic resistance, it is imperative to discover new sources of chemical diversity. Bacteria living in symbiosis with marine invertebrates have emerged as an untapped source of natural chemistry. While symbiotic bacteria are often recalcitrant to growth in the lab, advances in metagenomic sequencing and assembly now make it possible to access their genetic blueprint. A cell enrichment procedure, combined with a hybrid sequencing and assembly approach, enabled detailed genomic analysis of uncultivated cyanobacterial symbiont populations in two chemically rich tropical marine sponges. These population genomes reveal a wealth of secondary metabolism potential as well as possible reasons for historical difficulties in their cultivation.
Collapse
Affiliation(s)
- Michelle A Schorn
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, California, USA
| | - Peter A Jordan
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, California, USA
| | - Sheila Podell
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, California, USA
| | - Jessica M Blanton
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, California, USA
| | - Vinayak Agarwal
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, California, USA
- School of Chemistry and Biochemistry, School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Jason S Biggs
- University of Guam Marine Laboratory, UoG Station, Mangilao, Guam, USA
| | - Eric E Allen
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, California, USA
- Center for Microbiome Innovation, University of California, San Diego, California, USA
- Division of Biological Sciences, University of California, San Diego, California, USA
| | - Bradley S Moore
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, California, USA
- Center for Microbiome Innovation, University of California, San Diego, California, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, California, USA
| |
Collapse
|
40
|
Gosse JT, Ghosh S, Sproule A, Overy D, Cheeptham N, Boddy CN. Whole Genome Sequencing and Metabolomic Study of Cave Streptomyces Isolates ICC1 and ICC4. Front Microbiol 2019; 10:1020. [PMID: 31134037 PMCID: PMC6524458 DOI: 10.3389/fmicb.2019.01020] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 04/24/2019] [Indexed: 11/13/2022] Open
Abstract
The terrestrial subsurface microbiome has gained considerable amount of interests in the recent years because of its rich potential resource for biomining novel genes coding for metabolites possessing antimicrobial activities. In our previous study, we identified two Streptomyces isolates, designated as ICC1 and ICC4, from the Iron Curtain Cave, Chilliwack, Canada that exhibited antagonistic activities against the multidrug resistant strains of Escherichia coli. In this study, the genomes of these two isolates were sequenced by Illumina MiSeq, assembled and annotated. The genes associated with secondary metabolite production were identified and annotated using the bioinformatics platforms antiSMASH and BAGEL. ICC1 and ICC4 were then cultivated and ICC1 metabolome characterized by UHPLC-ESI-HRMS. The Global Natural Products Social Molecular Networking was used to identify metabolites based on the MS/MS spectral data. ICC1 and ICC4 showed a high level of sequence identity with the terrestrial bacteria Streptomyces lavendulae; however, they possess a greater secondary metabolite potential as estimated by the total number of identified biosynthetic gene clusters (BGCs). In particular, ICC1 and ICC4 had a greater number of polyketide and non-ribosomal peptide BGCs. The most frequently detected BGCs were those predicted to generate terpenes, small and low complexity dipeptides and lipids. Spectral analysis clearly identified a number of diketopiperazine products through matched reference spectra for cyclo (Leu-Pro), cyclo (Pro-Val) and cyclo [(4-hydroxyPro)-Leu]. One of the terpenes gene clusters predicted by antiSMASH possesses a seven-gene pathway consistent with diazepinomicin biosynthesis. This molecule contains a very rare core structure and its BGC, to date, has only been identified from a single bacterial genome. The tetrapeptide siderophore coelichelin BGC was unambiguously identified in the genome, however, the metabolite could not be identified from the culture extracts. Two type III polyketides, 2′, 5′ – dimethoxyflavone and nordentatin, were identified from the UHPLC-HRMS data of the aqueous and n-butanolic fractions of Streptomyces sp. ICC1, respectively. A BGC likely encoding these metabolites was predicted in both genomes. The predicted similarities in molecule production and genome shared by these two strains could be an indicative of a cooperative mode of living in extreme habitats instead of a competitive one. This secondary metabolite potential may contribute to the fitness of ICC1 and ICC4 in the Iron Curtain Cave.
Collapse
Affiliation(s)
- Jessica Thandara Gosse
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Soumya Ghosh
- Department of Biological Sciences, Faculty of Science, Thompson Rivers University, Kamloops, BC, Canada
| | - Amanda Sproule
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - David Overy
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - Naowarat Cheeptham
- Department of Biological Sciences, Faculty of Science, Thompson Rivers University, Kamloops, BC, Canada
| | - Christopher N Boddy
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
41
|
Perez CE, Crawford JM. Characterization of a Hybrid Nonribosomal Peptide–Carbohydrate Biosynthetic Pathway in Photorhabdus luminescens. Biochemistry 2019; 58:1131-1140. [DOI: 10.1021/acs.biochem.8b01120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Corey E. Perez
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Chemical Biology Institute, Yale University, West Haven, Connecticut 06516, United States
| | - Jason M. Crawford
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Chemical Biology Institute, Yale University, West Haven, Connecticut 06516, United States
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut 06536, United States
| |
Collapse
|
42
|
Contador CA, Rodríguez V, Andrews BA, Asenjo JA. Use of genome-scale models to get new insights into the marine actinomycete genus Salinispora. BMC SYSTEMS BIOLOGY 2019; 13:11. [PMID: 30665399 PMCID: PMC6341766 DOI: 10.1186/s12918-019-0683-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 01/11/2019] [Indexed: 11/10/2022]
Abstract
BACKGROUND There is little published regarding metabolism of Salinispora species. In continuation with efforts performed towards this goal, this study is focused on new insights into the metabolism of the three-identified species of Salinispora using constraints-based modeling. At present, only one manually curated genome-scale metabolic model (GSM) for Salinispora tropica strain CNB-440T has been built despite the role of Salinispora strains in drug discovery. RESULTS Here, we updated, and expanded the scope of the model of Salinispora tropica CNB-440T, and GSMs were constructed for two sequenced type strains covering the three-identified species. We also constructed a Salinispora core model that contains the genes shared by 93 sequenced strains and a few non-conserved genes associated with essential reactions. The models predicted no auxotrophies for essential amino acids, which was corroborated experimentally using a defined minimal medium (DMM). Experimental observations suggest possible sulfur accumulation. The Core metabolic content shows that the biosynthesis of specialised metabolites is the less conserved subsystem. Sets of reactions were analyzed to explore the differences between the reconstructions. Unique reactions associated to each GSM were mainly due to genome sequence data except for the ST-CNB440 reconstruction. In this case, additional reactions were added from experimental evidence. This reveals that by reaction content the ST-CNB440 model is different from the other species models. The differences identified in reaction content between models gave rise to different functional predictions of essential nutrient usage by each species in DMM. Furthermore, models were used to evaluate in silico single gene knockouts under DMM and complex medium. Cluster analysis of these results shows that ST-CNB440, and SP-CNR114 models are more similar when considering predicted essential genes. CONCLUSIONS Models were built for each of the three currently identified Salinispora species, and a core model representing the conserved metabolic capabilities of Salinispora was constructed. Models will allow in silico metabolism studies of Salinispora strains, and help researchers to guide and increase the production of specialised metabolites. Also, models can be used as templates to build GSMs models of closely related organisms with high biotechnology potential.
Collapse
Affiliation(s)
- Carolina A. Contador
- Centre for Biotechnology and Bioengineering (CeBiB), Department of Chemical Engineering, Biotechnology and Materials, University of Chile, Beauchef 851, Santiago, Chile
- Centre for Soybean Research, State Key Laboratory of Agrobiotechnology, Shatin, Hong Kong
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Vida Rodríguez
- Centre for Biotechnology and Bioengineering (CeBiB), Department of Chemical Engineering, Biotechnology and Materials, University of Chile, Beauchef 851, Santiago, Chile
| | - Barbara A. Andrews
- Centre for Biotechnology and Bioengineering (CeBiB), Department of Chemical Engineering, Biotechnology and Materials, University of Chile, Beauchef 851, Santiago, Chile
| | - Juan A. Asenjo
- Centre for Biotechnology and Bioengineering (CeBiB), Department of Chemical Engineering, Biotechnology and Materials, University of Chile, Beauchef 851, Santiago, Chile
| |
Collapse
|
43
|
Baldeweg F, Hoffmeister D, Nett M. A genomics perspective on natural product biosynthesis in plant pathogenic bacteria. Nat Prod Rep 2019; 36:307-325. [DOI: 10.1039/c8np00025e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This review summarizes findings from genomics-inspired natural product research in plant pathogenic bacteria and discusses emerging trends in this field.
Collapse
Affiliation(s)
- Florian Baldeweg
- Department of Pharmaceutical Microbiology at the Hans Knöll Institute
- Friedrich-Schiller-University Jena
- 07745 Jena
- Germany
| | - Dirk Hoffmeister
- Department of Pharmaceutical Microbiology at the Hans Knöll Institute
- Friedrich-Schiller-University Jena
- 07745 Jena
- Germany
| | - Markus Nett
- Department of Biochemical and Chemical Engineering
- TU Dortmund University
- 44227 Dortmund
- Germany
| |
Collapse
|
44
|
Comparative Genomics among Closely Related Streptomyces Strains Revealed Specialized Metabolite Biosynthetic Gene Cluster Diversity. Antibiotics (Basel) 2018; 7:antibiotics7040086. [PMID: 30279346 PMCID: PMC6315706 DOI: 10.3390/antibiotics7040086] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 09/27/2018] [Accepted: 09/28/2018] [Indexed: 02/06/2023] Open
Abstract
Specialized metabolites are of great interest due to their possible industrial and clinical applications. The increasing number of antimicrobial resistant infectious agents is a major health threat and therefore, the discovery of chemical diversity and new antimicrobials is crucial. Extensive genomic data from Streptomyces spp. confirm their production potential and great importance. Genome sequencing of the same species strains indicates that specialized metabolite biosynthetic gene cluster (SMBGC) diversity is not exhausted, and instead, a pool of novel specialized metabolites still exists. Here, we analyze the genome sequence data from six phylogenetically close Streptomyces strains. The results reveal that the closer strains are phylogenetically, the number of shared gene clusters is higher. Eight specialized metabolites comprise the core metabolome, although some strains have only six core gene clusters. The number of conserved gene clusters common between the isolated strains and their closest phylogenetic counterparts varies from nine to 23 SMBGCs. However, the analysis of these phylogenetic relationships is not affected by the acquisition of gene clusters, probably by horizontal gene transfer events, as each strain also harbors strain-specific SMBGCs. Between one and 15 strain-specific gene clusters were identified, of which up to six gene clusters in a single strain are unknown and have no identifiable orthologs in other species, attesting to the existing SMBGC novelty at the strain level.
Collapse
|
45
|
Chevrette MG, Currie CR. Emerging evolutionary paradigms in antibiotic discovery. J Ind Microbiol Biotechnol 2018; 46:257-271. [PMID: 30269177 DOI: 10.1007/s10295-018-2085-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 09/25/2018] [Indexed: 12/11/2022]
Abstract
Antibiotics revolutionized medicine and remain its cornerstone. Despite their global importance and the continuous threat of resistant pathogens, few antibiotics have been discovered in recent years. Natural products, especially the secondary metabolites of Actinobacteria, have been the traditional discovery source of antibiotics. In nature, the chemistry of antibiotic natural products is shaped by the unique evolution and ecology of their producing organisms, yet these influences remain largely unknown. Here, we highlight the ecology of antibiotics employed by microbes in defensive symbioses and review the evolutionary processes underlying the chemical diversity and activity of microbe-derived antibiotics, including the dynamics of vertical and lateral transmission of biosynthetic pathways and the evolution of efficacy, targeting specificity, and toxicity. We argue that a deeper understanding of the ecology and evolution of microbial interactions and the metabolites that mediate them will allow for an alternative, rational approach to discover new antibiotics.
Collapse
Affiliation(s)
- Marc G Chevrette
- Department of Genetics, University of Wisconsin-Madison, Madison, WI, USA.,Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Cameron R Currie
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
46
|
Adamek M, Alanjary M, Sales-Ortells H, Goodfellow M, Bull AT, Winkler A, Wibberg D, Kalinowski J, Ziemert N. Comparative genomics reveals phylogenetic distribution patterns of secondary metabolites in Amycolatopsis species. BMC Genomics 2018; 19:426. [PMID: 29859036 PMCID: PMC5984834 DOI: 10.1186/s12864-018-4809-4] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 05/21/2018] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Genome mining tools have enabled us to predict biosynthetic gene clusters that might encode compounds with valuable functions for industrial and medical applications. With the continuously increasing number of genomes sequenced, we are confronted with an overwhelming number of predicted clusters. In order to guide the effective prioritization of biosynthetic gene clusters towards finding the most promising compounds, knowledge about diversity, phylogenetic relationships and distribution patterns of biosynthetic gene clusters is necessary. RESULTS Here, we provide a comprehensive analysis of the model actinobacterial genus Amycolatopsis and its potential for the production of secondary metabolites. A phylogenetic characterization, together with a pan-genome analysis showed that within this highly diverse genus, four major lineages could be distinguished which differed in their potential to produce secondary metabolites. Furthermore, we were able to distinguish gene cluster families whose distribution correlated with phylogeny, indicating that vertical gene transfer plays a major role in the evolution of secondary metabolite gene clusters. Still, the vast majority of the diverse biosynthetic gene clusters were derived from clusters unique to the genus, and also unique in comparison to a database of known compounds. Our study on the locations of biosynthetic gene clusters in the genomes of Amycolatopsis' strains showed that clusters acquired by horizontal gene transfer tend to be incorporated into non-conserved regions of the genome thereby allowing us to distinguish core and hypervariable regions in Amycolatopsis genomes. CONCLUSIONS Using a comparative genomics approach, it was possible to determine the potential of the genus Amycolatopsis to produce a huge diversity of secondary metabolites. Furthermore, the analysis demonstrates that horizontal and vertical gene transfer play an important role in the acquisition and maintenance of valuable secondary metabolites. Our results cast light on the interconnections between secondary metabolite gene clusters and provide a way to prioritize biosynthetic pathways in the search and discovery of novel compounds.
Collapse
Affiliation(s)
- Martina Adamek
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Microbiology/Biotechnology, University of Tübingen, Tübingen, Germany
- German Centre for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany
| | - Mohammad Alanjary
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Microbiology/Biotechnology, University of Tübingen, Tübingen, Germany
- German Centre for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany
| | - Helena Sales-Ortells
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Microbiology/Biotechnology, University of Tübingen, Tübingen, Germany
- German Centre for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany
| | - Michael Goodfellow
- School of Biology, Newcastle University, Ridley Building 2, Newcastle upon Tyne, NE1 7RU UK
| | - Alan T. Bull
- School of Biosciences, University of Kent, Canterbury, CT2 7NJ UK
| | - Anika Winkler
- Universität Bielefeld, Center for Biotechnology (CeBiTec), Bielefeld, Germany
| | - Daniel Wibberg
- Universität Bielefeld, Center for Biotechnology (CeBiTec), Bielefeld, Germany
| | - Jörn Kalinowski
- Universität Bielefeld, Center for Biotechnology (CeBiTec), Bielefeld, Germany
| | - Nadine Ziemert
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Microbiology/Biotechnology, University of Tübingen, Tübingen, Germany
- German Centre for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany
| |
Collapse
|
47
|
Coupling MALDI-TOF mass spectrometry protein and specialized metabolite analyses to rapidly discriminate bacterial function. Proc Natl Acad Sci U S A 2018; 115:4981-4986. [PMID: 29686101 PMCID: PMC5949002 DOI: 10.1073/pnas.1801247115] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mass spectrometry is a powerful technique that has been used to identify bacteria by their protein content and to assess bacterial functional traits through analysis of their specialized metabolites. However, until now these analyses have operated independently, which has resulted in the inability to rapidly connect bacterial phylogenetic identity with potential environmental function. To bridge this gap, we designed a MALDI-TOF mass spectrometry data acquisition and bioinformatics pipeline (IDBac) to integrate data from both intact protein and specialized metabolite spectra directly from bacterial cells grown on agar. This technique organizes bacteria into highly similar phylogenetic groups and allows for comparison of metabolic differences of hundreds of isolates in just a few hours. For decades, researchers have lacked the ability to rapidly correlate microbial identity with bacterial metabolism. Since specialized metabolites are critical to bacterial function and survival in the environment, we designed a data acquisition and bioinformatics technique (IDBac) that utilizes in situ matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) to analyze protein and specialized metabolite spectra recorded from single bacterial colonies picked from agar plates. We demonstrated the power of our approach by discriminating between two Bacillus subtilis strains in <30 min solely on the basis of their differential ability to produce cyclic peptide antibiotics surfactin and plipastatin, caused by a single frameshift mutation. Next, we used IDBac to detect subtle intraspecies differences in the production of metal scavenging acyl-desferrioxamines in a group of eight freshwater Micromonospora isolates that share >99% sequence similarity in the 16S rRNA gene. Finally, we used IDBac to simultaneously extract protein and specialized metabolite MS profiles from unidentified Lake Michigan sponge-associated bacteria isolated from an agar plate. In just 3 h, we created hierarchical protein MS groupings of 11 environmental isolates (10 MS replicates each, for a total of 110 spectra) that accurately mirrored phylogenetic groupings. We further distinguished isolates within these groupings, which share nearly identical 16S rRNA gene sequence identity, based on interspecies and intraspecies differences in specialized metabolite production. IDBac is an attempt to couple in situ MS analyses of protein content and specialized metabolite production to allow for facile discrimination of closely related bacterial colonies.
Collapse
|
48
|
Choudoir MJ, Pepe-Ranney C, Buckley DH. Diversification of Secondary Metabolite Biosynthetic Gene Clusters Coincides with Lineage Divergence in Streptomyces. Antibiotics (Basel) 2018; 7:E12. [PMID: 29438308 PMCID: PMC5872123 DOI: 10.3390/antibiotics7010012] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 02/06/2018] [Accepted: 02/07/2018] [Indexed: 11/16/2022] Open
Abstract
We have identified Streptomyces sister-taxa which share a recent common ancestor and nearly identical small subunit (SSU) rRNA gene sequences, but inhabit distinct geographic ranges demarcated by latitude and have sufficient genomic divergence to represent distinct species. Here, we explore the evolutionary dynamics of secondary metabolite biosynthetic gene clusters (SMGCs) following lineage divergence of these sister-taxa. These sister-taxa strains contained 310 distinct SMGCs belonging to 22 different gene cluster classes. While there was broad conservation of these 22 gene cluster classes among the genomes analyzed, each individual genome harbored a different number of gene clusters within each class. A total of nine SMGCs were conserved across nearly all strains, but the majority (57%) of SMGCs were strain-specific. We show that while each individual genome has a unique combination of SMGCs, this diversity displays lineage-level modularity. Overall, the northern-derived (NDR) clade had more SMGCs than the southern-derived (SDR) clade (40.7 ± 3.9 and 33.8 ± 3.9, mean and S.D., respectively). This difference in SMGC content corresponded with differences in the number of predicted open reading frames (ORFs) per genome (7775 ± 196 and 7093 ± 205, mean and S.D., respectively) such that the ratio of SMGC:ORF did not differ between sister-taxa genomes. We show that changes in SMGC diversity between the sister-taxa were driven primarily by gene acquisition and deletion events, and these changes were associated with an overall change in genome size which accompanied lineage divergence.
Collapse
Affiliation(s)
- Mallory J Choudoir
- School of Integrative Plant Science, Bradfield Hall 705, Cornell University, Ithaca, NY 14853, USA.
| | - Charles Pepe-Ranney
- School of Integrative Plant Science, Bradfield Hall 705, Cornell University, Ithaca, NY 14853, USA.
| | - Daniel H Buckley
- School of Integrative Plant Science, Bradfield Hall 705, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
49
|
Abstract
The small molecules produced by environmental bacteria have been mainstays of both chemical and biological research for decades, and some have led to important therapeutic interventions. These small molecules have been shaped by natural selection as they evolved to fulfill changing functional roles in their native environments. This minireview describes some recent systematic studies providing illustrative examples that involve the acquisition and alteration of genetic information for molecular innovation by bacteria in well-defined environments. Two different bacterial genera are featured, Pseudonocardia and Salinispora, and, although the small-molecule repertoires of both have benefited from horizontal gene transfer, Pseudonocardia spp. have relied on plasmid-based tactics while Salinispora spp. have relied on chromosomally integrated genomic islands.
Collapse
Affiliation(s)
- Antonio C Ruzzini
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Jon Clardy
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
50
|
Umenhoffer K, Draskovits G, Nyerges Á, Karcagi I, Bogos B, Tímár E, Csörgő B, Herczeg R, Nagy I, Fehér T, Pál C, Pósfai G. Genome-Wide Abolishment of Mobile Genetic Elements Using Genome Shuffling and CRISPR/Cas-Assisted MAGE Allows the Efficient Stabilization of a Bacterial Chassis. ACS Synth Biol 2017; 6:1471-1483. [PMID: 28426191 DOI: 10.1021/acssynbio.6b00378] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The ideal bacterial chassis provides a simplified, stable and predictable host environment for synthetic biological circuits. Mutability and evolution can, however, compromise stability, leading to deterioration of artificial genetic constructs. By eliminating certain sources of instability, these undesired genetic changes can be mitigated. Specifically, deletion of prophages and insertion sequences, nonessential constituents of bacterial genomes, has been shown to be beneficial in cellular and genetic stabilization. Here, we sought to establish a rapid methodology to improve the stability of microbial hosts. The novel workflow involves genome shuffling between a mobile genetic element-free strain and the target cell, and subsequent rounds of CRISPR/Cas-assisted MAGE on multiplex targets. The power and speed of the procedure was demonstrated on E. coli BL21(DE3), a host routinely used for plasmid-based heterologous protein expression. All 9 prophages and 50 insertion elements were efficiently deleted or inactivated. Together with additional targeted manipulations (e.g., inactivation of error-prone DNA-polymerases), the changes resulted in an improved bacterial host with a hybrid (harboring segments of K-12 DNA), 9%-downsized and clean genome. The combined capacity of phage-mediated generalized transduction and CRISPR/Cas-selected MAGE offers a way for rapid, large scale editing of bacterial genomes.
Collapse
Affiliation(s)
- Kinga Umenhoffer
- Synthetic
and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, 6726 Szeged, Hungary
| | - Gábor Draskovits
- Synthetic
and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, 6726 Szeged, Hungary
| | - Ákos Nyerges
- Synthetic
and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, 6726 Szeged, Hungary
| | - Ildikó Karcagi
- Synthetic
and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, 6726 Szeged, Hungary
| | - Balázs Bogos
- Synthetic
and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, 6726 Szeged, Hungary
| | - Edit Tímár
- Synthetic
and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, 6726 Szeged, Hungary
| | - Bálint Csörgő
- Synthetic
and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, 6726 Szeged, Hungary
| | | | - István Nagy
- SeqOmics Biotechnology Ltd, 6782 Mórahalom, Hungary
- Institute
of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, 6726 Szeged, Hungary
| | - Tamás Fehér
- Synthetic
and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, 6726 Szeged, Hungary
| | - Csaba Pál
- Synthetic
and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, 6726 Szeged, Hungary
| | - György Pósfai
- Synthetic
and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, 6726 Szeged, Hungary
| |
Collapse
|