1
|
Cho A, Finke JF, Zhong KX, Chan AM, Saunders R, Schulze A, Warne S, Miller KM, Suttle CA. The core microbiome of cultured Pacific oyster spat is affected by age but not mortality. Microbiol Spectr 2024; 12:e0003124. [PMID: 39162495 PMCID: PMC11448229 DOI: 10.1128/spectrum.00031-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 07/16/2024] [Indexed: 08/21/2024] Open
Abstract
The Pacific oyster is the most widely cultured shellfish worldwide, but production has been affected by mortality events, including in hatcheries that supply the seed for growers. Several pathogens cause disease in oysters, but in many cases, mortality events cannot be attributed to a single agent and appear to be multifactorial, involving environmental variables and microbial interactions. As an organism's microbiome can provide resilience against pathogens and environmental stressors, we investigated the microbiomes in cohorts of freshly settled oyster spat, some of which experienced notable mortality. Deep sequencing of 16S rRNA gene fragments did not show a significant difference among the microbiomes of cohorts experiencing different mortality levels, but revealed a characteristic core microbiome comprising 74 taxa. Irrespective of mortality, the relative abundance of taxa in the core microbiomes changed significantly as the spat aged, yet remained distinct from the microbial community in the surrounding water. The core microbiome was dominated by bacteria in the families Rhodobacteraceae, Nitrosomonadaceae, Flavobacteriaceae, Pirellulaeceae, and Saprospiraceae. Within these families, 14 taxa designated as the "Hard-Core Microbiome" were indicative of changes in the core microbiome as the spat aged. The variability in diversity and richness of the core taxa decreased with age, implying niche occupation. As well, there was exchange of microbes with surrounding water during development of the core microbiome. The shift in the core microbiome demonstrates the dynamic nature of the microbiome as oyster spat age.IMPORTANCEThe Pacific oyster (Magallana gigas, also known as Crassostrea gigas) is the most widely cultivated shellfish and is important to the economy of many coastal communities. However, high mortality of spat during the first few days following metamorphosis can affect the seed supply to oyster growers. Here, we show that the microbiome composition of recently settled oyster spat experiencing low or high mortality was not significantly different. Instead, development of the core microbiome was associated with spat aging and was partially driven by dispersal through the water. These findings imply the importance of early-stage rearing conditions for spat microbiome development in aquaculture facilities. Furthermore, shellfish growers could gain information about the developmental state of the oyster spat microbiome by assessing key taxa. Additionally, the study provides a baseline microbiome for future hypothesis testing and potential probiotic applications on developing spat.
Collapse
Affiliation(s)
- Anna Cho
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, British Columbia, Canada
- Department of Botany, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Jan F Finke
- Hakai Institute, Heriot Bay, British Columbia, Canada
- Department of Earth, Ocean and Atmospheric Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Kevin X Zhong
- Department of Earth, Ocean and Atmospheric Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Amy M Chan
- Department of Earth, Ocean and Atmospheric Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Angela Schulze
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, Canada
| | | | - Kristina M Miller
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, Canada
| | - Curtis A Suttle
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, British Columbia, Canada
- Department of Botany, The University of British Columbia, Vancouver, British Columbia, Canada
- Department of Earth, Ocean and Atmospheric Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
- Institute for the Oceans and Fisheries, The University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
2
|
Valente W, da Cruz CKF, Zuanon JAS, de Avelar GF, Godoy L. Ultrastructural evaluation of the oocytes and spermatozoa of the scleractinian coral Mussismilia harttii. Tissue Cell 2024; 90:102469. [PMID: 39032463 DOI: 10.1016/j.tice.2024.102469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 07/07/2024] [Accepted: 07/08/2024] [Indexed: 07/23/2024]
Abstract
Global coverage of living coral has declined by half since 1950s. Reef-building species have been severely impacted in this climate crisis scenario, compromising the future of coral reefs. Despite their importance, there is a lack of knowledge regarding the reproductive biology of scleractinian corals. In the present study, we evaluated through electron microscopy approaches, the gametes of the endemic Southwestern Atlantic coral Mussismilia harttii. We observed spherical oocytes with microvilli throughout the outer membrane. Fine granular material dispersed in cytoplasm, lipid granules, numerous yolk bodies, and mitochondria were identified in the oocytes. In addition, small Symbiodinium-like cells were observed, suggesting a vertical transmission from parental coral to oocytes. The spherical-head sperm presents a 9.3 ± 2.1 μm flagellum. The nucleus is located centrally in the head, and the centrioles are positioned between the nuclear base and the flagellar insertion, which is connected to the axoneme. This axoneme has a microtubular arrangement (9+2). Vesicles, underlining the inner plasma membrane, presented the same electron-dense pattern as the Golgi complex, and mitochondria positioned surrounding the axoneme. The vesicles present in the sperm may have a role as an acrosome since the oocytes do not develop any cell specialization for fertilization.
Collapse
Affiliation(s)
- Wanderson Valente
- Graduate Program in Animal Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratory of Cell Biology, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Jener Alexandre Sampaio Zuanon
- Laboratory of Physiology Applied to Fish Farming, Department of Animal Biology, Federal University of Viçosa, Viçosa, MG, Brazil
| | - Gleide Fernandes de Avelar
- Laboratory of Cell Biology, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Leandro Godoy
- Graduate Program in Animal Biology, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
3
|
Pozas-Schacre C, Bischoff H, Clerissi C, Nugues MM. Negative parental and offspring environmental effects of macroalgae on coral recruitment are linked with alterations in the coral larval microbiome. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240187. [PMID: 39050726 PMCID: PMC11267239 DOI: 10.1098/rsos.240187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 07/27/2024]
Abstract
The persistence of reef-building corals is threatened by macroalgal competitors leading to a major demographic bottleneck in coral recruitment. Whether parental effects exist under coral-algal competition and whether they influence offspring performance via microbiome alterations represent major gaps in our understanding of the mechanisms by which macroalgae may hinder coral recovery. We investigated the diversity, variability and composition of the microbiome of adults and larvae of the coral Pocillopora acuta and surrounding benthic substrate on algal-removed and algal-dominated bommies. We then assessed the relative influence of parental and offspring environmental effects on coral recruitment processes by reciprocally exposing coral larvae from two parental origins (algal-removed and algal-dominated bommies) to algal-removed and algal-dominated environmental conditions. Dense macroalgal assemblages impacted the microbiome composition of coral larvae. Larvae produced by parents from algal-dominated bommies were depleted in putative beneficial bacteria and enriched in opportunistic taxa. These larvae had a significantly lower survival compared to larvae from algal-removed bommies regardless of environmental conditions. In contrast, algal-induced parental and offspring environmental effects interacted to reduce the survival of coral recruits. Together our results demonstrate negative algal-induced parental and offspring environmental effects on coral recruitment that could be mediated by alterations in the offspring microbiome.
Collapse
Affiliation(s)
- Chloé Pozas-Schacre
- PSL Université Paris: EPHE-UPVD-CNRS, UAR 3278 CRIOBE, Université de Perpignan, 66860 Perpignan, France
| | - Hugo Bischoff
- PSL Université Paris: EPHE-UPVD-CNRS, UAR 3278 CRIOBE BP 1013, 98729 Papetoai, Mo'orea, French Polynesia
| | - Camille Clerissi
- PSL Université Paris: EPHE-UPVD-CNRS, UAR 3278 CRIOBE, Université de Perpignan, 66860 Perpignan, France
- Laboratoire d'Excellence CORAIL, Perpignan, France
| | - Maggy M. Nugues
- PSL Université Paris: EPHE-UPVD-CNRS, UAR 3278 CRIOBE, Université de Perpignan, 66860 Perpignan, France
- Laboratoire d'Excellence CORAIL, Perpignan, France
| |
Collapse
|
4
|
Buschi E, Dell’Anno A, Tangherlini M, Candela M, Rampelli S, Turroni S, Palladino G, Esposito E, Martire ML, Musco L, Stefanni S, Munari C, Fiori J, Danovaro R, Corinaldesi C. Resistance to freezing conditions of endemic Antarctic polychaetes is enhanced by cryoprotective proteins produced by their microbiome. SCIENCE ADVANCES 2024; 10:eadk9117. [PMID: 38905343 PMCID: PMC11192080 DOI: 10.1126/sciadv.adk9117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 05/14/2024] [Indexed: 06/23/2024]
Abstract
The microbiome plays a key role in the health of all metazoans. Whether and how the microbiome favors the adaptation processes of organisms to extreme conditions, such as those of Antarctica, which are incompatible with most metazoans, is still unknown. We investigated the microbiome of three endemic and widespread species of Antarctic polychaetes: Leitoscoloplos geminus, Aphelochaeta palmeri, and Aglaophamus trissophyllus. We report here that these invertebrates contain a stable bacterial core dominated by Meiothermus and Anoxybacillus, equipped with a versatile genetic makeup and a unique portfolio of proteins useful for coping with extremely cold conditions as revealed by pangenomic and metaproteomic analyses. The close phylosymbiosis between Meiothermus and Anoxybacillus and these Antarctic polychaetes indicates a connection with their hosts that started in the past to support holobiont adaptation to the Antarctic Ocean. The wide suite of bacterial cryoprotective proteins found in Antarctic polychaetes may be useful for the development of nature-based biotechnological applications.
Collapse
Affiliation(s)
- Emanuela Buschi
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica “Anton Dohrn,” Fano Marine Centre, Fano, Italy
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Antonio Dell’Anno
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Michael Tangherlini
- Department of Research Infrastructures for Marine Biological Resources, Stazione Zoologica “Anton Dohrn,” Fano Marine Centre, Fano, Italy
| | - Marco Candela
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
- Fano Marine Center, the Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, Fano, Italy
| | - Simone Rampelli
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
- Fano Marine Center, the Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, Fano, Italy
| | - Silvia Turroni
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Giorgia Palladino
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
- Fano Marine Center, the Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, Fano, Italy
| | - Erika Esposito
- Department of Chemistry “G. Ciamician” Alma Mater Studiorum, University of Bologna, Bologna, Italy
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italia
| | - Marco Lo Martire
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Luigi Musco
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Sergio Stefanni
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica “Anton Dohrn,” Villa Comunale, Napoli, Italy
| | - Cristina Munari
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Ferrara, Italy
| | - Jessica Fiori
- Department of Chemistry “G. Ciamician” Alma Mater Studiorum, University of Bologna, Bologna, Italy
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italia
| | - Roberto Danovaro
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Cinzia Corinaldesi
- Department of Materials, Environmental Sciences and Urban Planning, Polytechnic University of Marche, Ancona, Italy
| |
Collapse
|
5
|
Ju H, Zhang J, Zou Y, Xie F, Tang X, Zhang S, Li J. Bacteria undergo significant shifts while archaea maintain stability in Pocillopora damicornis under sustained heat stress. ENVIRONMENTAL RESEARCH 2024; 250:118469. [PMID: 38354884 DOI: 10.1016/j.envres.2024.118469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 02/05/2024] [Accepted: 02/10/2024] [Indexed: 02/16/2024]
Abstract
Global warming reportedly poses a critical risk to coral reef ecosystems. Bacteria and archaea are crucial components of the coral holobiont. The response of archaea associated with warming is less well understood than that of the bacterial community in corals. Also, there have been few studies on the dynamics of the microbial community in the coral holobiont under long-term heat stress. In order to track the dynamic alternations in the microbial communities within the heat-stressed coral holobiont, three-week heat-stress monitoring was carried out on the coral Pocillopora damicornis. The findings demonstrate that the corals were stressed at 32 °C, and showed a gradual decrease in Symbiodiniaceae density with increasing duration of heat stress. The archaeal community in the coral holobiont remained relatively unaltered by the increasing temperature, whereas the bacterial community was considerably altered. Sustained heat stress exacerbated the dissimilarities among parallel samples of the bacterial community, confirming the Anna Karenina Principle in animal microbiomes. Heat stress leads to more complex and unstable microbial networks, characterized by an increased average degree and decreased modularity, respectively. With the extension of heat stress duration, the relative abundances of the gene (nifH) and genus (Tistlia) associated with nitrogen fixation increased in coral samples, as well as the potential pathogenic bacteria (Flavobacteriales) and opportunistic bacteria (Bacteroides). Hence, our findings suggest that coral hosts might recruit nitrogen-fixing bacteria during the initial stages of suffering heat stress. An environment that is conducive to the colonization and development of opportunistic and pathogenic bacteria when the coral host becomes more susceptible as heat stress duration increases.
Collapse
Affiliation(s)
- Huimin Ju
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Sanya National Marine Ecosystem Research Station, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Yiyang Zou
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Feiyang Xie
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Xiaoyu Tang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Si Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Sanya National Marine Ecosystem Research Station, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Jie Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Sanya National Marine Ecosystem Research Station, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China.
| |
Collapse
|
6
|
Maire J, Tsang Min Ching SJ, Damjanovic K, Epstein HE, Judd LM, Blackall LL, van Oppen MJH. Tissue-associated and vertically transmitted bacterial symbiont in the coral Pocillopora acuta. THE ISME JOURNAL 2024; 18:wrad027. [PMID: 38365239 PMCID: PMC10833068 DOI: 10.1093/ismejo/wrad027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/07/2023] [Accepted: 12/09/2023] [Indexed: 02/18/2024]
Abstract
Coral microhabitats are colonized by a myriad of microorganisms, including diverse bacteria which are essential for host functioning and survival. However, the location, transmission, and functions of individual bacterial species living inside the coral tissues remain poorly studied. Here, we show that a previously undescribed bacterial symbiont of the coral Pocillopora acuta forms cell-associated microbial aggregates (CAMAs) within the mesenterial filaments. CAMAs were found in both adults and larval offspring, suggesting vertical transmission. In situ laser capture microdissection of CAMAs followed by 16S rRNA gene amplicon sequencing and shotgun metagenomics produced a near complete metagenome-assembled genome. We subsequently cultured the CAMA bacteria from Pocillopora acuta colonies, and sequenced and assembled their genomes. Phylogenetic analyses showed that the CAMA bacteria belong to an undescribed Endozoicomonadaceae genus and species, which we propose to name Candidatus Sororendozoicomonas aggregata gen. nov sp. nov. Metabolic pathway reconstruction from its genome sequence suggests this species can synthesize most amino acids, several B vitamins, and antioxidants, and participate in carbon cycling and prey digestion, which may be beneficial to its coral hosts. This study provides detailed insights into a new member of the widespread Endozoicomonadaceae family, thereby improving our understanding of coral holobiont functioning. Vertically transmitted, tissue-associated bacteria, such as Sororendozoicomonas aggregata may be key candidates for the development of microbiome manipulation approaches with long-term positive effects on the coral host.
Collapse
Affiliation(s)
- Justin Maire
- School of BioSciences, The University of Melbourne, Parkville, 3010 VIC, Australia
| | | | - Katarina Damjanovic
- School of BioSciences, The University of Melbourne, Parkville, 3010 VIC, Australia
- Australian Institute of Marine Science, PMB No 3, Townsville, 4810 QLD, Australia
| | - Hannah E Epstein
- Australian Institute of Marine Science, PMB No 3, Townsville, 4810 QLD, Australia
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, 4811 QLD, Australia
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, Essex CO4 3SQ, United Kingdom
| | - Louise M Judd
- Doherty Applied Microbial Genomics, Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Parkville, 3010 VIC, Australia
| | - Linda L Blackall
- School of BioSciences, The University of Melbourne, Parkville, 3010 VIC, Australia
| | - Madeleine J H van Oppen
- School of BioSciences, The University of Melbourne, Parkville, 3010 VIC, Australia
- Australian Institute of Marine Science, PMB No 3, Townsville, 4810 QLD, Australia
| |
Collapse
|
7
|
Syukur S, Richmond J, Majzoub ME, Nappi J, Egan S, Thomas T. Not all parents are the same: Diverse strategies of symbiont transmission in seaweeds. Environ Microbiol 2024; 26:e16564. [PMID: 38151764 DOI: 10.1111/1462-2920.16564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/11/2023] [Indexed: 12/29/2023]
Abstract
Different marine seaweed species have been shown to harbour specific bacterial communities, however, the extent to which vertical symbiont transmission from parents to offspring contributes to host-specificity is unclear. Here we use fluorescence and electron microscopy as well as 16S rRNA gene-based community analysis to investigate symbiont transmission in members of the three major seaweed groups (green Chlorophyta, red Rhodophyta and brown Phaeophyceae). We found seaweeds employ diverse strategies to transfer symbionts to their progeny. For instance, the green Ulva australis does not appear to have the capacity for vertical transmission. In contrast, the brown Phyllospora comosa adopts a non-selective vertical transmission. The red Delisea pulchra demonstrates weak selectivity in symbiont transmission, while the brown Hormosira banksii exhibits a strongly selective symbiont transfer. Mucilage on the gametes appears to facilitate vertical transmission and transferred bacteria have predicted properties that could support early development of the seaweeds. Previous meta-analysis has indicated that vertical transmission is rare in aquatic compared to terrestrial environments, however, our results contribute to the growing evidence that this might not be the case and that instead vertical transmission with various degrees of symbiont selection occurs in the ecologically important group of seaweeds.
Collapse
Affiliation(s)
- Syukur Syukur
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, UNSW Sydney, Kensington, Australia
| | - Joanna Richmond
- Electron Microscope Unit, Mark Wainwright Analytical Centre, UNSW Sydney, Kensington, Australia
| | - Marwan E Majzoub
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, UNSW Sydney, Kensington, Australia
| | - Jadranka Nappi
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, UNSW Sydney, Kensington, Australia
| | - Suhelen Egan
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, UNSW Sydney, Kensington, Australia
| | - Torsten Thomas
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, UNSW Sydney, Kensington, Australia
| |
Collapse
|
8
|
Mendoza Quiroz S, Tecalco Renteria R, Ramírez Tapia GG, Miller MW, Grosso-Becerra MV, Banaszak AT. Coral affected by stony coral tissue loss disease can produce viable offspring. PeerJ 2023; 11:e15519. [PMID: 37465157 PMCID: PMC10351504 DOI: 10.7717/peerj.15519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 05/16/2023] [Indexed: 07/20/2023] Open
Abstract
Stony coral tissue loss disease (SCTLD) has caused high mortality of at least 25 coral species across the Caribbean, with Pseudodiploria strigosa being the second most affected species in the Mexican Caribbean. The resulting decreased abundance and colony density reduces the fertilization potential of SCTLD-susceptible species. Therefore, larval-based restoration could be of great benefit, though precautionary concerns about disease transmission may foster reluctance to implement this approach with SCTLD-susceptible species. We evaluated the performance of offspring obtained by crossing gametes of a healthy P. strigosa colony (100% apparently healthy tissue) with that of a colony affected by SCTLD (>50% tissue loss) and compared these with prior crosses between healthy parents. Fertilization and settlement were as high as prior crosses among healthy parents, and post-settlement survivorship over a year in outdoor tanks was 7.8%. After thirteen months, the diseased-parent recruits were outplanted to a degraded reef. Their survivorship was ∼44% and their growth rate was 0.365 mm ± 1.29 SD per month. This study shows that even diseased parent colonies can be effective in assisted sexual reproduction for the restoration of species affected by SCTLD.
Collapse
Affiliation(s)
- Sandra Mendoza Quiroz
- SECORE International, Miami, FL, United States of America
- Unidad Académica de Sistemas Arrecifales, Universidad Nacional Autónoma de México, Puerto Morelos, Quintana Roo, México
| | - Raúl Tecalco Renteria
- SECORE International, Miami, FL, United States of America
- Unidad Académica de Sistemas Arrecifales, Universidad Nacional Autónoma de México, Puerto Morelos, Quintana Roo, México
| | - Gandhi Germán Ramírez Tapia
- SECORE International, Miami, FL, United States of America
- Unidad Académica de Sistemas Arrecifales, Universidad Nacional Autónoma de México, Puerto Morelos, Quintana Roo, México
| | | | - Maria Victoria Grosso-Becerra
- Unidad Académica de Sistemas Arrecifales, Universidad Nacional Autónoma de México, Puerto Morelos, Quintana Roo, México
| | - Anastazia T. Banaszak
- Unidad Académica de Sistemas Arrecifales, Universidad Nacional Autónoma de México, Puerto Morelos, Quintana Roo, México
| |
Collapse
|
9
|
Bove CB, Ingersoll MV, Davies SW. Help Me, Symbionts, You're My Only Hope: Approaches to Accelerate our Understanding of Coral Holobiont Interactions. Integr Comp Biol 2022; 62:1756-1769. [PMID: 36099871 DOI: 10.1093/icb/icac141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/24/2022] [Accepted: 09/05/2022] [Indexed: 01/05/2023] Open
Abstract
Tropical corals construct the three-dimensional framework for one of the most diverse ecosystems on the planet, providing habitat to a plethora of species across taxa. However, these ecosystem engineers are facing unprecedented challenges, such as increasing disease prevalence and marine heatwaves associated with anthropogenic global change. As a result, major declines in coral cover and health are being observed across the world's oceans, often due to the breakdown of coral-associated symbioses. Here, we review the interactions between the major symbiotic partners of the coral holobiont-the cnidarian host, algae in the family Symbiodiniaceae, and the microbiome-that influence trait variation, including the molecular mechanisms that underlie symbiosis and the resulting physiological benefits of different microbial partnerships. In doing so, we highlight the current framework for the formation and maintenance of cnidarian-Symbiodiniaceae symbiosis, and the role that immunity pathways play in this relationship. We emphasize that understanding these complex interactions is challenging when you consider the vast genetic variation of the cnidarian host and algal symbiont, as well as their highly diverse microbiome, which is also an important player in coral holobiont health. Given the complex interactions between and among symbiotic partners, we propose several research directions and approaches focused on symbiosis model systems and emerging technologies that will broaden our understanding of how these partner interactions may facilitate the prediction of coral holobiont phenotype, especially under rapid environmental change.
Collapse
Affiliation(s)
- Colleen B Bove
- Department of Biology, Boston University, Boston, MA 02215, USA
| | | | - Sarah W Davies
- Department of Biology, Boston University, Boston, MA 02215, USA
| |
Collapse
|
10
|
Puntin G, Sweet M, Fraune S, Medina M, Sharp K, Weis VM, Ziegler M. Harnessing the Power of Model Organisms To Unravel Microbial Functions in the Coral Holobiont. Microbiol Mol Biol Rev 2022; 86:e0005322. [PMID: 36287022 PMCID: PMC9769930 DOI: 10.1128/mmbr.00053-22] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Stony corals build the framework of coral reefs, ecosystems of immense ecological and economic importance. The existence of these ecosystems is threatened by climate change and other anthropogenic stressors that manifest in microbial dysbiosis such as coral bleaching and disease, often leading to coral mortality. Despite a significant amount of research, the mechanisms ultimately underlying these destructive phenomena, and what could prevent or mitigate them, remain to be resolved. This is mostly due to practical challenges in experimentation on corals and the highly complex nature of the coral holobiont that also includes bacteria, archaea, protists, and viruses. While the overall importance of these partners is well recognized, their specific contributions to holobiont functioning and their interspecific dynamics remain largely unexplored. Here, we review the potential of adopting model organisms as more tractable systems to address these knowledge gaps. We draw on parallels from the broader biological and biomedical fields to guide the establishment, implementation, and integration of new and emerging model organisms with the aim of addressing the specific needs of coral research. We evaluate the cnidarian models Hydra, Aiptasia, Cassiopea, and Astrangia poculata; review the fast-evolving field of coral tissue and cell cultures; and propose a framework for the establishment of "true" tropical reef-building coral models. Based on this assessment, we also suggest future research to address key aspects limiting our ability to understand and hence improve the response of reef-building corals to future ocean conditions.
Collapse
Affiliation(s)
- Giulia Puntin
- Department of Animal Ecology and Systematics, Marine Holobiomics Lab, Justus Liebig University Giessen, Giessen, Germany
| | - Michael Sweet
- Aquatic Research Facility, Environmental Sustainability Research Centre, University of Derby, Derby, United Kingdom
| | - Sebastian Fraune
- Institute for Zoology and Organismic Interactions, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Mónica Medina
- Department of Biology, Pennsylvania State University, State College, Pennsylvania, USA
| | - Koty Sharp
- Department of Biology, Marine Biology, and Environmental Science, Roger Williams University, Bristol, Rhode Island, USA
| | - Virginia M. Weis
- Department of Integrative Biology, Oregon State University, Corvallis, Oregon, USA
| | - Maren Ziegler
- Department of Animal Ecology and Systematics, Marine Holobiomics Lab, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
11
|
Krueger QA, Shore MH, Reitzel AM. Comparative transmission of bacteria from Artemia salina and Brachionus plicatilis to the cnidarian Nematostella vectensis. FEMS Microbiol Ecol 2022; 98:fiac096. [PMID: 36036952 PMCID: PMC9521339 DOI: 10.1093/femsec/fiac096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 08/08/2022] [Accepted: 08/19/2022] [Indexed: 12/14/2022] Open
Abstract
The microbial community associated with animals (microbiome) is essential for development, physiology, and health of host organisms. A critical step to understand the assembly of microbiomes is to determine how effectively bacteria colonize and establish within the host. Bacteria commonly colonize hosts through vertical transmission, passively from the environment, or through food consumption. Using the prey feeding method (PFM), we test transmittance of Bacillus velezensis, Pseudoalteromonas spiralis, and Vibrio alginolyticus to Nematostella vectensis using two prey, Artemia salina and Brachionus plicatilis. We compare PFM to a solution uptake method (SUM) to quantify the concentration of bacteria in these host organisms, with plate counts. Larvae had a similar uptake with SUM at 6 h but had greater concentrations at 48 h versus PFM. Juveniles acquired similar concentrations at 6 h for SUM and PFM using B. plicatilis and A. salina. At 2 days, the quantity of bacteria vectored from PFM increased. After 7 days the CFUs decreased 2-fold with B. plicatilis and A. salina relative to the 2-day concentrations, and further decreased after 14 days. Therefore, prey-mediated methods provide greater microbe transplantation than SUM after 24 h, supporting this approach as a more successful inoculation method of individual bacterial species.
Collapse
Affiliation(s)
- Quinton A Krueger
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Boulevard, Woodward Hall, Charlotte, NC 28223, United States
| | - Madisun H Shore
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Boulevard, Woodward Hall, Charlotte, NC 28223, United States
| | - Adam M Reitzel
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Boulevard, Woodward Hall, Charlotte, NC 28223, United States
| |
Collapse
|
12
|
Morrow KM, Pankey MS, Lesser MP. Community structure of coral microbiomes is dependent on host morphology. MICROBIOME 2022; 10:113. [PMID: 35902906 PMCID: PMC9331152 DOI: 10.1186/s40168-022-01308-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The importance of symbiosis has long been recognized on coral reefs, where the photosynthetic dinoflagellates of corals (Symbiodiniaceae) are the primary symbiont. Numerous studies have now shown that a diverse assemblage of prokaryotes also make-up part of the microbiome of corals. A subset of these prokaryotes is capable of fixing nitrogen, known as diazotrophs, and is also present in the microbiome of scleractinian corals where they have been shown to supplement the holobiont nitrogen budget. Here, an analysis of the microbiomes of 16 coral species collected from Australia, Curaçao, and Hawai'i using three different marker genes (16S rRNA, nifH, and ITS2) is presented. These data were used to examine the effects of biogeography, coral traits, and ecological life history characteristics on the composition and diversity of the microbiome in corals and their diazotrophic communities. RESULTS The prokaryotic microbiome community composition (i.e., beta diversity) based on the 16S rRNA gene varied between sites and ecological life history characteristics, but coral morphology was the most significant factor affecting the microbiome of the corals studied. For 15 of the corals studied, only two species Pocillopora acuta and Seriotopora hystrix, both brooders, showed a weak relationship between the 16S rRNA gene community structure and the diazotrophic members of the microbiome using the nifH marker gene, suggesting that many corals support a microbiome with diazotrophic capabilities. The order Rhizobiales, a taxon that contains primarily diazotrophs, are common members of the coral microbiome and were eight times greater in relative abundances in Hawai'i compared to corals from either Curacao or Australia. However, for the diazotrophic component of the coral microbiome, only host species significantly influenced the composition and diversity of the community. CONCLUSIONS The roles and interactions between members of the coral holobiont are still not well understood, especially critical functions provided by the coral microbiome (e.g., nitrogen fixation), and the variation of these functions across species. The findings presented here show the significant effect of morphology, a coral "super trait," on the overall community structure of the microbiome in corals and that there is a strong association of the diazotrophic community within the microbiome of corals. However, the underlying coral traits linking the effects of host species on diazotrophic communities remain unknown. Video Abstract.
Collapse
Affiliation(s)
- Kathleen M Morrow
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH, 03824, USA
- Present address: Thomas Jefferson High School for Science and Technology, 6560 Braddock Rd, Alexandria, VA, 22312, USA
| | - M Sabrina Pankey
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH, 03824, USA
| | - Michael P Lesser
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH, 03824, USA.
| |
Collapse
|
13
|
Microbiota mediated plasticity promotes thermal adaptation in the sea anemone Nematostella vectensis. Nat Commun 2022; 13:3804. [PMID: 35778405 PMCID: PMC9249911 DOI: 10.1038/s41467-022-31350-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 05/31/2022] [Indexed: 12/13/2022] Open
Abstract
At the current rate of climate change, it is unlikely that multicellular organisms will be able to adapt to changing environmental conditions through genetic recombination and natural selection alone. Thus, it is critical to understand alternative mechanisms that allow organisms to cope with rapid environmental changes. Here, we use the sea anemone Nematostella vectensis, which has evolved the capability of surviving in a wide range of temperatures and salinities, as a model to investigate the microbiota as a source of rapid adaptation. We long-term acclimate polyps of Nematostella to low, medium, and high temperatures, to test the impact of microbiota-mediated plasticity on animal acclimation. Using the same animal clonal line, propagated from a single polyp, allows us to eliminate the effects of the host genotype. The higher thermal tolerance of animals acclimated to high temperature can be transferred to non-acclimated animals through microbiota transplantation. The offspring fitness is highest from F0 females acclimated to high temperature and specific members of the acclimated microbiota are transmitted to the next generation. These results indicate that microbiota plasticity can contribute to animal thermal acclimation and its transmission to the next generation may represent a rapid mechanism for thermal adaptation. This study shows that sea anemones acclimated to high temperatures exhibit increased resistance to thermal stress and that this improved fitness can be transferred by microbiome transplantation. These results indicate that plasticity mediated by the microbiota might be an important factor facilitating thermal adaptations in animals.
Collapse
|
14
|
Williams SD, Klinges JG, Zinman S, Clark AS, Bartels E, Villoch Diaz Maurino M, Muller EM. Geographically driven differences in microbiomes of Acropora cervicornis originating from different regions of Florida's Coral Reef. PeerJ 2022; 10:e13574. [PMID: 35729906 PMCID: PMC9206844 DOI: 10.7717/peerj.13574] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 05/22/2022] [Indexed: 01/17/2023] Open
Abstract
Effective coral restoration must include comprehensive investigations of the targeted coral community that consider all aspects of the coral holobiont-the coral host, symbiotic algae, and microbiome. For example, the richness and composition of microorganisms associated with corals may be indicative of the corals' health status and thus help guide restoration activities. Potential differences in microbiomes of restoration corals due to differences in host genetics, environmental condition, or geographic location, may then influence outplant success. The objective of the present study was to characterize and compare the microbiomes of apparently healthy Acropora cervicornis genotypes that were originally collected from environmentally distinct regions of Florida's Coral Reef and sampled after residing within Mote Marine Laboratory's in situ nursery near Looe Key, FL (USA) for multiple years. By using 16S rRNA high-throughput sequencing, we described the microbial communities of 74 A. cervicornis genotypes originating from the Lower Florida Keys (n = 40 genotypes), the Middle Florida Keys (n = 15 genotypes), and the Upper Florida Keys (n = 19 genotypes). Our findings demonstrated that the bacterial communities of A. cervicornis originating from the Lower Keys were significantly different from the bacterial communities of those originating from the Upper and Middle Keys even after these corals were held within the same common garden nursery for an average of 3.4 years. However, the bacterial communities of corals originating in the Upper Keys were not significantly different from those in the Middle Keys. The majority of the genotypes, regardless of collection region, were dominated by Alphaproteobacteria, namely an obligate intracellular parasite of the genus Ca. Aquarickettsia. Genotypes from the Upper and Middle Keys also had high relative abundances of Spirochaeta bacteria. Several genotypes originating from both the Lower and Upper Keys had lower abundances of Aquarickettsia, resulting in significantly higher species richness and diversity. Low abundance of Aquarickettsia has been previously identified as a signature of disease resistance. While the low-Aquarickettsia corals from both the Upper and Lower Keys had high abundances of an unclassified Proteobacteria, the genotypes in the Upper Keys were also dominated by Spirochaeta. The results of this study suggest that the abundance of Aquarickettsia and Spirochaeta may play an important role in distinguishing bacterial communities among A. cervicornis populations and compositional differences of these bacterial communities may be driven by regional processes that are influenced by both the environmental history and genetic relatedness of the host. Additionally, the high microbial diversity of low-Aquarickettsia genotypes may provide resilience to their hosts, and these genotypes may be a potential resource for restoration practices and management.
Collapse
Affiliation(s)
| | - J. Grace Klinges
- Mote Marine Laboratory, Elizabeth Moore International Center for Coral Reef Research & Restoration, Summerland Key, FL, United States of America
| | - Samara Zinman
- Nova Southeastern University, Dania Beach, FL, United States of America
| | - Abigail S. Clark
- Mote Marine Laboratory, Elizabeth Moore International Center for Coral Reef Research & Restoration, Summerland Key, FL, United States of America,The College of the Florida Keys, Key West, FL, United States of America
| | - Erich Bartels
- Mote Marine Laboratory, Elizabeth Moore International Center for Coral Reef Research & Restoration, Summerland Key, FL, United States of America
| | - Marina Villoch Diaz Maurino
- Mote Marine Laboratory, Elizabeth Moore International Center for Coral Reef Research & Restoration, Summerland Key, FL, United States of America
| | - Erinn M. Muller
- Mote Marine Laboratory, Sarasota, FL, United States of America
| |
Collapse
|
15
|
Carrier TJ, Maldonado M, Schmittmann L, Pita L, Bosch TCG, Hentschel U. Symbiont transmission in marine sponges: reproduction, development, and metamorphosis. BMC Biol 2022; 20:100. [PMID: 35524305 PMCID: PMC9077847 DOI: 10.1186/s12915-022-01291-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 04/07/2022] [Indexed: 11/10/2022] Open
Abstract
Marine sponges (phylum Porifera) form symbioses with diverse microbial communities that can be transmitted between generations through their developmental stages. Here, we integrate embryology and microbiology to review how symbiotic microorganisms are transmitted in this early-diverging lineage. We describe that vertical transmission is widespread but not universal, that microbes are vertically transmitted during a select developmental window, and that properties of the developmental microbiome depends on whether a species is a high or low microbial abundance sponge. Reproduction, development, and symbiosis are thus deeply rooted, but why these partnerships form remains the central and elusive tenet of these developmental symbioses.
Collapse
Affiliation(s)
- Tyler J Carrier
- GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany.
- Zoological Institute, University of Kiel, Kiel, Germany.
| | - Manuel Maldonado
- Department of Marine Ecology, Center for Advanced Studies of Blanes (CEAB-CSIC), Girona, Spain
| | | | - Lucía Pita
- GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany
- Institute of Marine Sciences (ICM-CSIC), Barcelona, Spain
| | | | - Ute Hentschel
- GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany
- Zoological Institute, University of Kiel, Kiel, Germany
| |
Collapse
|
16
|
Long-Term Heat Selection of the Coral Endosymbiont Cladocopium C1 acro (Symbiodiniaceae) Stabilizes Associated Bacterial Communities. Int J Mol Sci 2022; 23:ijms23094913. [PMID: 35563303 PMCID: PMC9101544 DOI: 10.3390/ijms23094913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 02/04/2023] Open
Abstract
Heat-tolerant strains of the coral endosymbiont, Cladocopium C1acro (Symbiodiniaceae), have previously been developed via experimental evolution. Here, we examine physiological responses and bacterial community composition (using 16S rRNA gene metabarcoding) in cultures of 10 heat-evolved (SS) and 9 wild-type (WT) strains, which had been exposed for 6 years to 31 °C and 27 °C, respectively. We also examine whether the associated bacterial communities were affected by a three-week reciprocal transplantation to both temperatures. The SS strains had bacterial communities with lower diversities that showed more stability and lower variability when exposed to elevated temperatures compared with the WT strains. Amplicon sequence variants (ASVs) of the bacterial genera Labrenzia, Algiphilus, Hyphobacterium and Roseitalea were significantly more associated with the SS strains compared with the WT strains. WT strains showed higher abundance of ASVs assigned to the genera Fabibacter and Tropicimonas. We hypothesize that these compositional differences in associated bacterial communities between SS and WT strains also contribute to the thermal tolerance of the microalgae. Future research should explore functional potential between bacterial communities using metagenomics to unravel specific genomic adaptations.
Collapse
|
17
|
Ricci F, Tandon K, Black JR, Lê Cao KA, Blackall LL, Verbruggen H. Host Traits and Phylogeny Contribute to Shaping Coral-Bacterial Symbioses. mSystems 2022; 7:e0004422. [PMID: 35253476 PMCID: PMC9045482 DOI: 10.1128/msystems.00044-22] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/14/2022] [Indexed: 12/23/2022] Open
Abstract
The success of tropical scleractinian corals depends on their ability to establish symbioses with microbial partners. Host phylogeny and traits are known to shape the coral microbiome, but to what extent they affect its composition remains unclear. Here, by using 12 coral species representing the complex and robust clades, we explored the influence of host phylogeny, skeletal architecture, and reproductive mode on the microbiome composition, and further investigated the structure of the tissue and skeleton bacterial communities. Our results show that host phylogeny and traits explained 14% of the tissue and 13% of the skeletal microbiome composition, providing evidence that these predictors contributed to shaping the holobiont in terms of presence and relative abundance of bacterial symbionts. Based on our data, we conclude that host phylogeny affects the presence of specific microbial lineages, reproductive mode predictably influences the microbiome composition, and skeletal architecture works like a filter that affects bacterial relative abundance. We show that the β-diversity of coral tissue and skeleton microbiomes differed, but we found that a large overlapping fraction of bacterial sequences were recovered from both anatomical compartments, supporting the hypothesis that the skeleton can function as a microbial reservoir. Additionally, our analysis of the microbiome structure shows that 99.6% of tissue and 99.7% of skeletal amplicon sequence variants (ASVs) were not consistently present in at least 30% of the samples, suggesting that the coral tissue and skeleton are dominated by rare bacteria. Together, these results provide novel insights into the processes driving coral-bacterial symbioses, along with an improved understanding of the scleractinian microbiome.
Collapse
Affiliation(s)
- Francesco Ricci
- School of BioSciences, University of Melbourne, Victoria, Australia
| | - Kshitij Tandon
- School of BioSciences, University of Melbourne, Victoria, Australia
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Jay R. Black
- School of Geography, Earth and Atmospheric Sciences, University of Melbourne, Victoria, Australia
| | - Kim-Anh Lê Cao
- Melbourne Integrative Genomics, School of Mathematics and Statistics, University of Melbourne, Victoria, Australia
| | | | | |
Collapse
|
18
|
Baldassarre L, Levy S, Bar-Shalom R, Steindler L, Lotan T, Fraune S. Contribution of Maternal and Paternal Transmission to Bacterial Colonization in Nematostella vectensis. Front Microbiol 2021; 12:726795. [PMID: 34707584 PMCID: PMC8544946 DOI: 10.3389/fmicb.2021.726795] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 09/08/2021] [Indexed: 12/15/2022] Open
Abstract
Microbial communities confer multiple beneficial effects to their multicellular hosts. To evaluate the evolutionary and ecological implications of the animal-microbe interactions, it is essential to understand how bacterial colonization is secured and maintained during the transition from one generation to the next. However, the mechanisms of symbiont transmission are poorly studied for many species, especially in marine environments, where the surrounding water constitutes an additional source of microbes. Nematostella vectensis, an estuarine cnidarian, has recently emerged as model organism for studies on host-microbes interactions. Here, we use this model organism to study the transmission of bacterial colonizers, evaluating the contribution of parental and environmental transmission to the establishment of bacterial communities of the offspring. We induced spawning in adult male and female polyps of N. vectensis and used their gametes for five individual fertilization experiments. While embryos developed into primary polyps, we sampled each developmental stage and its corresponding medium samples. By analyzing the microbial community compositions of all samples through 16S rRNA gene amplicon sequencing, we showed that all host tissues harbor microbiota significantly different from the surrounding medium. Interestingly, oocytes and sperms are associated with distinct bacterial communities, indicating the specific vertical transmission of bacterial colonizers by the gametes. These differences were consistent among all the five families analyzed. By overlapping the identified bacterial ASVs associated with gametes, offspring and parents, we identified specific bacterial ASVs that are well supported candidates for vertical transmission via mothers and fathers. This is the first study investigating bacteria transmission in N. vectensis, and among few on marine spawners that do not brood larvae. Our results shed light on the consistent yet distinct maternal and paternal transfer of bacterial symbionts along the different life stages and generations of an aquatic invertebrate.
Collapse
Affiliation(s)
- Laura Baldassarre
- Institute for Zoology and Organismic Interactions, Heinrich-Heine Universität Düsseldorf, Düsseldorf, Germany.,Istituto Nazionale di Oceanografia e di Geofisica Sperimentale - OGS, Sezione di Oceanografia, Trieste, Italy
| | - Shani Levy
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Rinat Bar-Shalom
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Laura Steindler
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Tamar Lotan
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Sebastian Fraune
- Institute for Zoology and Organismic Interactions, Heinrich-Heine Universität Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
19
|
Zhou G, Tong H, Cai L, Huang H. Transgenerational Effects on the Coral Pocillopora damicornis Microbiome Under Ocean Acidification. MICROBIAL ECOLOGY 2021; 82:572-580. [PMID: 33576852 DOI: 10.1007/s00248-021-01690-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 01/11/2021] [Indexed: 06/12/2023]
Abstract
Reef-building corals are inhabited by functionally diverse microorganisms which play important roles in coral health and persistence in the Anthropocene. However, our understanding of the complex associations within coral holobionts is largely limited, particularly transgenerational exposure to environmental stress, like ocean acidification. Here we investigated the microbiome development of an ecologically important coral Pocillopora damicornis following transgenerational exposure to moderate and high pCO2 (partial pressure of CO2) levels, using amplicon sequencing and analysis. Our results showed that the Symbiodiniaceae community structures in adult and juvenile had similar patterns, all of which were dominated by Durusdinium spp., previously known as clade D. Conversely, prokaryotic communities varied between adults and juveniles, possibly driven by the effect of host development. Surprisingly, there were no significant changes in both Symbiodiniaceae and prokaryotic communities with different pCO2 treatments, which was independent of the life history stage. This study shows that ocean acidification has no significant effect on P. damicornis microbiome, and warrants further research to test whether transgenerational acclimation exists in coral holobiont to projected future climate change.
Collapse
Affiliation(s)
- Guowei Zhou
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, ISEE, CAS, Guangzhou, China.
- CAS-HKUST Sanya Joint Laboratory of Marine Science Research and Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Oceanology, SCSIO, Sanya, China.
- Sanya National Marine Ecosystem Research Station and Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, China.
| | - Haoya Tong
- CAS-HKUST Sanya Joint Laboratory of Marine Science Research and Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Oceanology, SCSIO, Sanya, China
- Department of Ocean Science, Division of Life Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, SAR, China
| | - Lin Cai
- Department of Ocean Science, Division of Life Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, SAR, China
| | - Hui Huang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, ISEE, CAS, Guangzhou, China.
- CAS-HKUST Sanya Joint Laboratory of Marine Science Research and Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Oceanology, SCSIO, Sanya, China.
- Sanya National Marine Ecosystem Research Station and Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, China.
| |
Collapse
|
20
|
Carrier TJ, Beaulieu SE, Mills SW, Mullineaux LS, Reitzel AM. Larvae of Deep-Sea Invertebrates Harbor Low-Diversity Bacterial Communities. THE BIOLOGICAL BULLETIN 2021; 241:65-76. [PMID: 34436969 DOI: 10.1086/715669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
AbstractMicrobial symbionts are a common life-history character of marine invertebrates and their developmental stages. Communities of bacteria that associate with the eggs, embryos, and larvae of coastal marine invertebrates tend to be species specific and correlate with aspects of host biology and ecology. The richness of bacteria associated with the developmental stages of coastal marine invertebrates spans four orders of magnitude, from single mutualists to thousands of unique taxa. This understanding stems predominately from the developmental stages of coastal species. If they are broadly representative of marine invertebrates, then we may expect deep-sea species to associate with bacterial communities that are similar in diversity. To test this, we used amplicon sequencing to profile the bacterial communities of invertebrate larvae from multiple taxonomic groups (annelids, molluscs, crustaceans) collected from 2500 to 3670 m in depth in near-bottom waters near hydrothermal vents in 3 different regions of the Pacific Ocean (the East Pacific Rise, the Mariana Back-Arc, and the Pescadero Basin). We find that larvae of deep-sea invertebrates associate with low-diversity bacterial communities (~30 bacterial taxa) that lack specificity between taxonomic groups. The diversity of these communities is estimated to be ~7.9 times lower than that of coastal invertebrate larvae, but this result depends on the taxonomic group. Associating with a low-diversity community may imply that deep-sea invertebrate larvae do not have a strong reliance on a microbiome and that the hypothesized lack of symbiotic contributions would differ from expectations for larvae of coastal marine invertebrates.
Collapse
|
21
|
Dungan AM, Bulach D, Lin H, van Oppen MJH, Blackall LL. Development of a free radical scavenging bacterial consortium to mitigate oxidative stress in cnidarians. Microb Biotechnol 2021; 14:2025-2040. [PMID: 34259383 PMCID: PMC8449677 DOI: 10.1111/1751-7915.13877] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 06/13/2021] [Indexed: 12/19/2022] Open
Abstract
Corals are colonized by symbiotic microorganisms that profoundly influence the animal’s health. One noted symbiont is a single‐celled alga (in the dinoflagellate family Symbiodiniaceae), which provides the coral with most of its fixed carbon. Thermal stress increases the production of reactive oxygen species (ROS) by Symbiodiniaceae during photosynthesis. ROS can both damage the algal symbiont’s photosynthetic machinery and inhibit its repair, causing a positive feedback loop for the toxic accumulation of ROS. If not scavenged by the antioxidant network, excess ROS may trigger a signaling cascade ending with the coral host and algal symbiont disassociating in a process known as bleaching. We use Exaiptasia diaphana as a model for corals and constructed a consortium comprised of E. diaphana–associated bacteria capable of neutralizing ROS. We identified six strains with high free radical scavenging (FRS) ability belonging to the families Alteromonadaceae, Rhodobacteraceae, Flavobacteriaceae and Micrococcaceae. In parallel, we established a consortium of low FRS isolates consisting of genetically related strains. Bacterial whole genome sequences were used to identify key pathways that are known to influence ROS.
Collapse
Affiliation(s)
- Ashley M Dungan
- School of Biosciences, The University of Melbourne, Melbourne, Vic., Australia
| | - Dieter Bulach
- Melbourne Bioinformatics, The University of Melbourne, Melbourne, Vic., Australia
| | - Heyu Lin
- School of Earth Sciences, The University of Melbourne, Melbourne, Vic., Australia
| | - Madeleine J H van Oppen
- School of Biosciences, The University of Melbourne, Melbourne, Vic., Australia.,Australian Institute of Marine Science, Townsville, Qld, Australia
| | - Linda L Blackall
- School of Biosciences, The University of Melbourne, Melbourne, Vic., Australia
| |
Collapse
|
22
|
Thompson HF, Gutierrez T. Detection of hydrocarbon-degrading bacteria on deepwater corals of the northeast Atlantic using CARD-FISH. J Microbiol Methods 2021; 187:106277. [PMID: 34237402 DOI: 10.1016/j.mimet.2021.106277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/30/2021] [Accepted: 06/30/2021] [Indexed: 11/28/2022]
Abstract
Recently, studies have begun to identify oil-degrading bacteria and host-taxon specific bacterial assemblages associated with the coral holobiont, including deep-sea cold-water corals, which are thought to provide metabolic functions and additional carbon sources to their coral hosts. Here, we describe the identification of Marinobacter on the soft tissue of Lophelia pertusa coral polyps by Catalyzed Reporter Deposition Fluorescence in situ Hybridization (CARD-FISH). L. pertusa samples from three reef sites in the northeast Atlantic (Logachev, Mingulay and Pisces) were collected at depth by vacuum seal to eliminate contamination issues. After decalcification, histological processing and sagittal sectioning of the soft coral polyp tissues, the 16S rRNA-targeted oligonucleotide HRP-labelled probe Mrb-0625-a, and Cyanine 3 (Cy3)-labelled tyramides, were used to identify members of the hydrocarbon-degrading genus Marinobacter. Mrb-0625-a-hybridized bacterial cell signals were detected in different anatomical sites of all polyps collected from each of the three reef sites, suggesting a close, possibly intimate, association between them, but the purpose of which remains unknown. We posit that Marinobacter, and possibly other hydrocarbon-degrading bacteria associated with Lophelia, may confer the coral with the ability to cope with toxic levels of hydrocarbons in regions of natural oil seepage and where there is an active oil and gas industry presence.
Collapse
Affiliation(s)
- Haydn Frank Thompson
- Institute of Mechanical, Process and Energy Engineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - Tony Gutierrez
- Institute of Mechanical, Process and Energy Engineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom.
| |
Collapse
|
23
|
Kullapanich C, Jandang S, Palasuk M, Viyakarn V, Chavanich S, Somboonna N. First dynamics of bacterial community during development of Acropora humilis larvae in aquaculture. Sci Rep 2021; 11:11762. [PMID: 34083731 PMCID: PMC8175334 DOI: 10.1038/s41598-021-91379-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/19/2021] [Indexed: 11/20/2022] Open
Abstract
A symbiosis of bacterial community (sometimes called microbiota) play essential roles in developmental life cycle and health of coral, starting since a larva. For examples, coral bacterial holobionts function nitrogen fixation, carbon supply, sulfur cycling and antibiotic production. Yet, a study of the dynamic of bacteria associated coral larvae development is complicated owning to a vast diversity and culturable difficulty of bacteria; hence this type of study remains unexplored for Acropora humilis larvae in Thai sea. This study represented the first to utilize 16S rRNA gene sequencing to describe the timely bacterial compositions during successfully cultured and reared A. humilis larval transformation in aquaculture (gametes were collected from Sattahip Bay, Chonburi province, Thailand), from gamete spawning (0 h) and fertilization stage (1 h), to embryonic cleavage (8 h), round cell development (28, 39 and 41 h), and planula formation (48 h). The sequencing results as estimated by Good’s coverage at genus level covered 99.65 ± 0.24% of total bacteria. While core phyla of bacteria were observed (Proteobacteria, Actinobacteria, Firmicutes and Bacteroidetes), changes in bacterial population structures and differential predominant core bacterial orders were denoted for each larval developmental stage, from fertilization to embryonic cleavage and subsequently from the embryonic cleavage to round cell development (P = 0.007). For instances, Pseudoalteromonas and Oceanospirillales were found prevalent at 8 h, and Rhizobiales were at 48 h. The bacterial population structures from the round cell stage, particularly at 41 h, showed gradual drift towards those of the planula formation stage, suggesting microbial selection. Overall, this study provides preliminary insights into the dynamics of bacterial community and their potentially functional association (estimated from the bacterial compositions) during the developmental embryonic A. humilis in a cultivation system in Southeast Asia region.
Collapse
Affiliation(s)
- Chitrasak Kullapanich
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Phyathai Road, Pathumwan, Bangkok, 10330, Thailand.,Microbiome Research Unit for Probiotics in Food and Cosmetics, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
| | - Suppakarn Jandang
- Reef Biology Research Group, Department of Marine Science, Faculty of Science, Chulalongkorn University, Phyathai Road, Pathumwan, Bangkok, 10330, Thailand
| | - Matanee Palasuk
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Phyathai Road, Pathumwan, Bangkok, 10330, Thailand.,Microbiome Research Unit for Probiotics in Food and Cosmetics, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
| | - Voranop Viyakarn
- Reef Biology Research Group, Department of Marine Science, Faculty of Science, Chulalongkorn University, Phyathai Road, Pathumwan, Bangkok, 10330, Thailand
| | - Suchana Chavanich
- Reef Biology Research Group, Department of Marine Science, Faculty of Science, Chulalongkorn University, Phyathai Road, Pathumwan, Bangkok, 10330, Thailand. .,Center of Excellence for Marine Biotechnology, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand.
| | - Naraporn Somboonna
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Phyathai Road, Pathumwan, Bangkok, 10330, Thailand. .,Microbiome Research Unit for Probiotics in Food and Cosmetics, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand.
| |
Collapse
|
24
|
Keller AG, Apprill A, Lebaron P, Robbins J, Romano TA, Overton E, Rong Y, Yuan R, Pollara S, Whalen KE. Characterizing the culturable surface microbiomes of diverse marine animals. FEMS Microbiol Ecol 2021; 97:6157762. [PMID: 33681975 PMCID: PMC8012112 DOI: 10.1093/femsec/fiab040] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 03/01/2021] [Indexed: 11/14/2022] Open
Abstract
Biofilm-forming bacteria have the potential to contribute to the health, physiology, behavior and ecology of the host and serve as its first line of defense against adverse conditions in the environment. While metabarcoding and metagenomic information furthers our understanding of microbiome composition, fewer studies use cultured samples to study the diverse interactions among the host and its microbiome, as cultured representatives are often lacking. This study examines the surface microbiomes cultured from three shallow-water coral species and two whale species. These unique marine animals place strong selective pressures on their microbial symbionts and contain members under similar environmental and anthropogenic stress. We developed an intense cultivation procedure, utilizing a suite of culture conditions targeting a rich assortment of biofilm-forming microorganisms. We identified 592 microbial isolates contained within 15 bacterial orders representing 50 bacterial genera, and two fungal species. Culturable bacteria from coral and whale samples paralleled taxonomic groups identified in culture-independent surveys, including 29% of all bacterial genera identified in the Megaptera novaeangliae skin microbiome through culture-independent methods. This microbial repository provides raw material and biological input for more nuanced studies which can explore how members of the microbiome both shape their micro-niche and impact host fitness.
Collapse
Affiliation(s)
- Abigail G Keller
- Department of Biology, Haverford College, 370 Lancaster Ave., Haverford, PA, 19041-1392, USA
| | - Amy Apprill
- Marine Chemistry & Geochemistry Department, Woods Hole Oceanographic Institution, 266 Woods Hole Road, Woods Hole, MA, 02543, USA
| | - Philippe Lebaron
- Laboratoire de Biodiversité et Biotechnologies Microbiennes, USR 3579 Sorbonne Université (UPMC) Paris 6 et CNRS Observatoire Océanologique, Banyuls-sur-Mer, France
| | - Jooke Robbins
- Center for Coastal Studies, 5 Holway Ave., Provincetown, MA, 02657, USA
| | - Tracy A Romano
- Mystic Aquarium, a division of Sea Research Foundation Inc., 55 Coogan Blvd., Mystic, CT, 06355, USA
| | - Ellysia Overton
- Department of Biology, Haverford College, 370 Lancaster Ave., Haverford, PA, 19041-1392, USA
| | - Yuying Rong
- Department of Biology, Haverford College, 370 Lancaster Ave., Haverford, PA, 19041-1392, USA
| | - Ruiyi Yuan
- Department of Biology, Haverford College, 370 Lancaster Ave., Haverford, PA, 19041-1392, USA
| | - Scott Pollara
- Department of Biology, Haverford College, 370 Lancaster Ave., Haverford, PA, 19041-1392, USA
| | - Kristen E Whalen
- Department of Biology, Haverford College, 370 Lancaster Ave., Haverford, PA, 19041-1392, USA
| |
Collapse
|
25
|
Differential Patterns of Microbiota Recovery in Symbiotic and Aposymbiotic Corals following Antibiotic Disturbance. mSystems 2021; 6:6/2/e01086-20. [PMID: 33850041 PMCID: PMC8546993 DOI: 10.1128/msystems.01086-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Microbial relationships are critical to coral health, and changes in microbiomes are often exhibited following environmental disturbance. However, the dynamics of coral-microbial composition and external factors that govern coral microbiome assembly and response to disturbance remain largely uncharacterized. Here, we investigated how antibiotic-induced disturbance affects the coral mucus microbiota in the facultatively symbiotic temperate coral Astrangia poculata, which occurs naturally with high (symbiotic) or low (aposymbiotic) densities of the endosymbiotic dinoflagellate Breviolum psygmophilum. We also explored how differences in the mucus microbiome of natural and disturbed A. poculata colonies affected levels of extracellular superoxide, a reactive oxygen species thought to have both beneficial and detrimental effects on coral health. Using a bacterial and archaeal small-subunit (SSU) rRNA gene sequencing approach, we found that antibiotic exposure significantly altered the composition of the mucus microbiota but that it did not influence superoxide levels, suggesting that superoxide production in A. poculata is not influenced by the mucus microbiota. In antibiotic-treated A. poculata exposed to ambient seawater, mucus microbiota recovered to its initial state within 2 weeks following exposure, and six bacterial taxa played a prominent role in this reassembly. Microbial composition among symbiotic colonies was more similar throughout the 2-week recovery period than that among aposymbiotic colonies, whose microbiota exhibited significantly more interindividual variability after antibiotic treatment and during recovery. This work suggests that the A. poculata mucus microbiome can rapidly reestablish itself and that the presence of B. psygmophilum, perhaps by supplying nutrients, photosynthate, or other signaling molecules, exerts influence on this process. IMPORTANCE Corals are animals whose health is often maintained by symbiotic microalgae and other microorganisms, yet they are highly susceptible to environmental-related disturbances. Here, we used a known disruptor, antibiotics, to understand how the coral mucus microbial community reassembles itself following disturbance. We show that the Astrangia poculata microbiome can recover from this disturbance and that individuals with algal symbionts reestablish their microbiomes in a more consistent manner compared to corals lacking symbionts. This work is important because it suggests that this coral may be able to recover its mucus microbiome following disturbance, it identifies specific microbes that may be important to reassembly, and it demonstrates that algal symbionts may play a previously undocumented role in microbial recovery and resilience to environmental change.
Collapse
|
26
|
Putnam HM. Avenues of reef-building coral acclimatization in response to rapid environmental change. J Exp Biol 2021; 224:224/Suppl_1/jeb239319. [DOI: 10.1242/jeb.239319] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
ABSTRACT
The swiftly changing climate presents a challenge to organismal fitness by creating a mismatch between the current environment and phenotypes adapted to historic conditions. Acclimatory mechanisms may be especially crucial for sessile benthic marine taxa, such as reef-building corals, where climate change factors including ocean acidification and increasing temperature elicit strong negative physiological responses such as bleaching, disease and mortality. Here, within the context of multiple stressors threatening marine organisms, I describe the wealth of metaorganism response mechanisms to rapid ocean change and the ontogenetic shifts in organism interactions with the environment that can generate plasticity. I then highlight the need to consider the interactions of rapid and evolutionary responses in an adaptive (epi)genetic continuum. Building on the definitions of these mechanisms and continuum, I also present how the interplay of the microbiome, epigenetics and parental effects creates additional avenues for rapid acclimatization. To consider under what conditions epigenetic inheritance has a more substantial role, I propose investigation into the offset of timing of gametogenesis leading to different environmental integration times between eggs and sperm and the consequences of this for gamete epigenetic compatibility. Collectively, non-genetic, yet heritable phenotypic plasticity will have significant ecological and evolutionary implications for sessile marine organism persistence under rapid climate change. As such, reef-building corals present ideal and time-sensitive models for further development of our understanding of adaptive feedback loops in a multi-player (epi)genetic continuum.
Collapse
Affiliation(s)
- Hollie M. Putnam
- Department of Biological Sciences, University of Rhode Island, Kingston, RI 02881, USA
| |
Collapse
|
27
|
Mason B, Cooke I, Moya A, Augustin R, Lin MF, Satoh N, Bosch TCG, Bourne DG, Hayward DC, Andrade N, Forêt S, Ying H, Ball EE, Miller DJ. AmAMP1 from Acropora millepora and damicornin define a family of coral-specific antimicrobial peptides related to the Shk toxins of sea anemones. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 114:103866. [PMID: 32937163 DOI: 10.1016/j.dci.2020.103866] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 06/11/2023]
Abstract
A candidate antimicrobial peptide (AmAMP1) was identified by searching the whole genome sequence of Acropora millepora for short (<125AA) cysteine-rich predicted proteins with an N-terminal signal peptide but lacking clear homologs in the SwissProt database. It resembled but was not closely related to damicornin, the only other known AMP from a coral, and was shown to be active against both Gram-negative and Gram-positive bacteria. These proteins define a family of AMPs present in corals and their close relatives, the Corallimorpharia, and are synthesised as preproproteins in which the C-terminal mature peptide contains a conserved arrangement of six cysteine residues. Consistent with the idea of a common origin for AMPs and toxins, this Cys motif is shared between the coral AMPs and the Shk neurotoxins of sea anemones. AmAMP1 is expressed at late stages of coral development, in ectodermal cells that resemble the "ganglion neurons" of Hydra, in which it has recently been demonstrated that a distinct AMP known as NDA-1 is expressed.
Collapse
Affiliation(s)
- B Mason
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, 4811, Queensland, Australia; Molecular and Cell Biology, James Cook University, Townsville, 4811, Queensland, Australia
| | - I Cooke
- Molecular and Cell Biology, James Cook University, Townsville, 4811, Queensland, Australia; Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, Queensland, Australia
| | - A Moya
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, 4811, Queensland, Australia; Molecular and Cell Biology, James Cook University, Townsville, 4811, Queensland, Australia
| | - R Augustin
- Zoological Institute, Kiel University, Kiel, Germany
| | - M-F Lin
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, 4811, Queensland, Australia; Molecular and Cell Biology, James Cook University, Townsville, 4811, Queensland, Australia; Evolutionary Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, 904-0495, Onna, Okinawa, Japan
| | - N Satoh
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, 904-0495, Onna, Okinawa, Japan
| | - T C G Bosch
- Zoological Institute, Kiel University, Kiel, Germany
| | - D G Bourne
- Department of Marine Ecosystems and Impacts, James Cook University, Townsville, 4811, Queensland, Australia
| | - D C Hayward
- Division of Biomedical Science and Biochemistry, Research School of Biology, Australian National University, Acton, ACT 2601, Australia
| | - N Andrade
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, 4811, Queensland, Australia
| | - S Forêt
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, 4811, Queensland, Australia; Division of Biomedical Science and Biochemistry, Research School of Biology, Australian National University, Acton, ACT 2601, Australia
| | - H Ying
- Division of Biomedical Science and Biochemistry, Research School of Biology, Australian National University, Acton, ACT 2601, Australia
| | - E E Ball
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, 4811, Queensland, Australia; Division of Ecology and Evolution, Research School of Biology, Australian National University, Acton, ACT 2601, Australia.
| | - D J Miller
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, 4811, Queensland, Australia; Molecular and Cell Biology, James Cook University, Townsville, 4811, Queensland, Australia; Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, Queensland, Australia; Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, 904-0495, Onna, Okinawa, Japan.
| |
Collapse
|
28
|
Peixoto RS, Sweet M, Villela HDM, Cardoso P, Thomas T, Voolstra CR, Høj L, Bourne DG. Coral Probiotics: Premise, Promise, Prospects. Annu Rev Anim Biosci 2020; 9:265-288. [PMID: 33321044 DOI: 10.1146/annurev-animal-090120-115444] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The use of Beneficial Microorganisms for Corals (BMCs) has been proposed recently as a tool for the improvement of coral health, with knowledge in this research topic advancing rapidly. BMCs are defined as consortia of microorganisms that contribute to coral health through mechanisms that include (a) promoting coral nutrition and growth, (b) mitigating stress and impacts of toxic compounds, (c) deterring pathogens, and (d) benefiting early life-stage development. Here, we review the current proposed BMC approach and outline the studies that have proven its potential to increase coral resilience to stress. We revisit and expand the list of putative beneficial microorganisms associated with corals and their proposed mechanismsthat facilitate improved host performance. Further, we discuss the caveats and bottlenecks affecting the efficacy of BMCs and close by focusing on the next steps to facilitate application at larger scales that can improve outcomes for corals and reefs globally.
Collapse
Affiliation(s)
- Raquel S Peixoto
- Laboratory of Molecular Microbial Ecology, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro 21941-901, Brazil; .,IMAM-AquaRio, Rio de Janeiro Aquarium Research Center, Rio de Janeiro, 20220-360, Brazil.,Current affiliation: Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Michael Sweet
- Aquatic Research Facility, Environmental Sustainability Research Centre, University of Derby, Derby DE22 1GB, United Kingdom
| | - Helena D M Villela
- Laboratory of Molecular Microbial Ecology, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro 21941-901, Brazil;
| | - Pedro Cardoso
- Laboratory of Molecular Microbial Ecology, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro 21941-901, Brazil;
| | - Torsten Thomas
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Christian R Voolstra
- Department of Biology, University of Konstanz, Konstanz 78457, Germany.,Division of Biological and Environmental Science and Engineering, Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Lone Høj
- Australian Institute of Marine Science, Townsville, Queensland 4810, Australia
| | - David G Bourne
- Australian Institute of Marine Science, Townsville, Queensland 4810, Australia.,College of Science and Engineering, James Cook University, Townsville, Queensland 4811, Australia
| |
Collapse
|
29
|
Boilard A, Dubé CE, Gruet C, Mercière A, Hernandez-Agreda A, Derome N. Defining Coral Bleaching as a Microbial Dysbiosis within the Coral Holobiont. Microorganisms 2020; 8:microorganisms8111682. [PMID: 33138319 PMCID: PMC7692791 DOI: 10.3390/microorganisms8111682] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 10/26/2020] [Accepted: 10/28/2020] [Indexed: 12/11/2022] Open
Abstract
Coral microbiomes are critical to holobiont health and functioning, but the stability of host–microbial interactions is fragile, easily shifting from eubiosis to dysbiosis. The heat-induced breakdown of the symbiosis between the host and its dinoflagellate algae (that is, “bleaching”), is one of the most devastating outcomes for reef ecosystems. Yet, bleaching tolerance has been observed in some coral species. This review provides an overview of the holobiont’s diversity, explores coral thermal tolerance in relation to their associated microorganisms, discusses the hypothesis of adaptive dysbiosis as a mechanism of environmental adaptation, mentions potential solutions to mitigate bleaching, and suggests new research avenues. More specifically, we define coral bleaching as the succession of three holobiont stages, where the microbiota can (i) maintain essential functions for holobiont homeostasis during stress and/or (ii) act as a buffer to mitigate bleaching by favoring the recruitment of thermally tolerant Symbiodiniaceae species (adaptive dysbiosis), and where (iii) environmental stressors exceed the buffering capacity of both microbial and dinoflagellate partners leading to coral death.
Collapse
Affiliation(s)
- Aurélie Boilard
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, QC G1V 0A6, Canada; (A.B.); (C.G.)
| | - Caroline E. Dubé
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, QC G1V 0A6, Canada; (A.B.); (C.G.)
- California Academy of Sciences, 55 Music Concourse Drive, San Francisco, CA 94118, USA;
- Correspondence: (C.E.D.); (N.D.)
| | - Cécile Gruet
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, QC G1V 0A6, Canada; (A.B.); (C.G.)
| | - Alexandre Mercière
- PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, 66860 Perpignan CEDEX, France;
- Laboratoire d’Excellence “CORAIL”, 98729 Papetoai, Moorea, French Polynesia
| | | | - Nicolas Derome
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, QC G1V 0A6, Canada; (A.B.); (C.G.)
- Département de Biologie, Faculté des Sciences et de Génie, Université Laval, Québec City, QC G1V 0A6, Canada
- Correspondence: (C.E.D.); (N.D.)
| |
Collapse
|
30
|
Parisi MG, Parrinello D, Stabili L, Cammarata M. Cnidarian Immunity and the Repertoire of Defense Mechanisms in Anthozoans. BIOLOGY 2020; 9:E283. [PMID: 32932829 PMCID: PMC7563517 DOI: 10.3390/biology9090283] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/04/2020] [Accepted: 09/04/2020] [Indexed: 02/07/2023]
Abstract
Anthozoa is the most specious class of the phylum Cnidaria that is phylogenetically basal within the Metazoa. It is an interesting group for studying the evolution of mutualisms and immunity, for despite their morphological simplicity, Anthozoans are unexpectedly immunologically complex, with large genomes and gene families similar to those of the Bilateria. Evidence indicates that the Anthozoan innate immune system is not only involved in the disruption of harmful microorganisms, but is also crucial in structuring tissue-associated microbial communities that are essential components of the cnidarian holobiont and useful to the animal's health for several functions including metabolism, immune defense, development, and behavior. Here, we report on the current state of the art of Anthozoan immunity. Like other invertebrates, Anthozoans possess immune mechanisms based on self/non-self-recognition. Although lacking adaptive immunity, they use a diverse repertoire of immune receptor signaling pathways (PRRs) to recognize a broad array of conserved microorganism-associated molecular patterns (MAMP). The intracellular signaling cascades lead to gene transcription up to endpoints of release of molecules that kill the pathogens, defend the self by maintaining homeostasis, and modulate the wound repair process. The cells play a fundamental role in immunity, as they display phagocytic activities and secrete mucus, which acts as a physicochemical barrier preventing or slowing down the proliferation of potential invaders. Finally, we describe the current state of knowledge of some immune effectors in Anthozoan species, including the potential role of toxins and the inflammatory response in the Mediterranean Anthozoan Anemonia viridis following injection of various foreign particles differing in type and dimensions, including pathogenetic bacteria.
Collapse
Affiliation(s)
- Maria Giovanna Parisi
- Department of Earth and Marine Sciences, University of Palermo, 90128 Palermo, Italy;
| | - Daniela Parrinello
- Department of Earth and Marine Sciences, University of Palermo, 90128 Palermo, Italy;
| | - Loredana Stabili
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy;
| | - Matteo Cammarata
- Department of Earth and Marine Sciences, University of Palermo, 90128 Palermo, Italy;
| |
Collapse
|
31
|
O'Brien PA, Tan S, Yang C, Frade PR, Andreakis N, Smith HA, Miller DJ, Webster NS, Zhang G, Bourne DG. Diverse coral reef invertebrates exhibit patterns of phylosymbiosis. THE ISME JOURNAL 2020; 14:2211-2222. [PMID: 32444811 PMCID: PMC7608455 DOI: 10.1038/s41396-020-0671-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 01/01/2023]
Abstract
Microbiome assemblages of plants and animals often show a degree of correlation with host phylogeny; an eco-evolutionary pattern known as phylosymbiosis. Using 16S rRNA gene sequencing to profile the microbiome, paired with COI, 18S rRNA and ITS1 host phylogenies, phylosymbiosis was investigated in four groups of coral reef invertebrates (scleractinian corals, octocorals, sponges and ascidians). We tested three commonly used metrics to evaluate the extent of phylosymbiosis: (a) intraspecific versus interspecific microbiome variation, (b) topological comparisons between host phylogeny and hierarchical clustering (dendrogram) of host-associated microbial communities, and (c) correlation of host phylogenetic distance with microbial community dissimilarity. In all instances, intraspecific variation in microbiome composition was significantly lower than interspecific variation. Similarly, topological congruency between host phylogeny and the associated microbial dendrogram was more significant than would be expected by chance across all groups, except when using unweighted UniFrac distance (compared with weighted UniFrac and Bray-Curtis dissimilarity). Interestingly, all but the ascidians showed a significant positive correlation between host phylogenetic distance and associated microbial dissimilarity. Our findings provide new perspectives on the diverse nature of marine phylosymbioses and the complex roles of the microbiome in the evolution of marine invertebrates.
Collapse
Affiliation(s)
- Paul A O'Brien
- College of Science and Engineering, James Cook University, Townsville, QLD, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, QLD, Australia
- Australian Institute of Marine Science, Townsville, QLD, Australia
- AIMS@JCU, Townsville, QLD, Australia
| | - Shangjin Tan
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen, 518083, China
| | - Chentao Yang
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen, 518083, China
| | - Pedro R Frade
- Centre of Marine Sciences, University of Algarve, Faro, Portugal
| | - Nikos Andreakis
- College of Science and Engineering, James Cook University, Townsville, QLD, Australia
| | - Hillary A Smith
- College of Science and Engineering, James Cook University, Townsville, QLD, Australia
| | - David J Miller
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, QLD, Australia
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, Australia
| | - Nicole S Webster
- Australian Institute of Marine Science, Townsville, QLD, Australia
- AIMS@JCU, Townsville, QLD, Australia
- Australian Centre for Ecogenomics, University of Queensland, Brisbane, QLD, Australia
| | - Guojie Zhang
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen, 518083, China.
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, DK-2100, Copenhagen, Denmark.
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China.
| | - David G Bourne
- College of Science and Engineering, James Cook University, Townsville, QLD, Australia.
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, QLD, Australia.
- Australian Institute of Marine Science, Townsville, QLD, Australia.
- AIMS@JCU, Townsville, QLD, Australia.
| |
Collapse
|
32
|
Putnam HM, Ritson-Williams R, Cruz JA, Davidson JM, Gates RD. Environmentally-induced parental or developmental conditioning influences coral offspring ecological performance. Sci Rep 2020; 10:13664. [PMID: 32788607 PMCID: PMC7423898 DOI: 10.1038/s41598-020-70605-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 06/23/2020] [Indexed: 01/22/2023] Open
Abstract
The persistence of reef building corals is threatened by human-induced environmental change. Maintaining coral reefs into the future requires not only the survival of adults, but also the influx of recruits to promote genetic diversity and retain cover following adult mortality. Few studies examine the linkages among multiple life stages of corals, despite a growing knowledge of carryover effects in other systems. We provide a novel test of coral parental conditioning to ocean acidification (OA) and tracking of offspring for 6 months post-release to better understand parental or developmental priming impacts on the processes of offspring recruitment and growth. Coral planulation was tracked for 3 months following adult exposure to high pCO2 and offspring from the second month were reciprocally exposed to ambient and high pCO2 for an additional 6 months. Offspring of parents exposed to high pCO2 had greater settlement and survivorship immediately following release, retained survivorship benefits during 1 and 6 months of continued exposure, and further displayed growth benefits to at least 1 month post release. Enhanced performance of offspring from parents exposed to high conditions was maintained despite the survivorship in both treatments declining in continued exposure to OA. Conditioning of the adults while they brood their larvae, or developmental acclimation of the larvae inside the adult polyps, may provide a form of hormetic conditioning, or environmental priming that elicits stimulatory effects. Defining mechanisms of positive acclimatization, with potential implications for carry over effects, cross-generational plasticity, and multi-generational plasticity, is critical to better understanding ecological and evolutionary dynamics of corals under regimes of increasing environmental disturbance. Considering environmentally-induced parental or developmental legacies in ecological and evolutionary projections may better account for coral reef response to the chronic stress regimes characteristic of climate change.
Collapse
Affiliation(s)
- Hollie M Putnam
- Department of Biological Sciences, University of Rhode Island, Kingston, RI, USA.
| | | | - Jolly Ann Cruz
- Micronesia Islands Nature Alliance, Garapan, Saipan, CNMI, 96950, USA
| | - Jennifer M Davidson
- Hawai'i Institute of Marine Biology, University of Hawai'i, Mānoa, Honolulu, HI, USA
| | - Ruth D Gates
- Hawai'i Institute of Marine Biology, University of Hawai'i, Mānoa, Honolulu, HI, USA
| |
Collapse
|
33
|
Zanotti AA, Gregoracci GB, Capel KCC, Kitahara MV. Microbiome of the Southwestern Atlantic invasive scleractinian coral, Tubastraea tagusensis. Anim Microbiome 2020; 2:29. [PMID: 33499978 PMCID: PMC7807860 DOI: 10.1186/s42523-020-00047-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/31/2020] [Indexed: 11/29/2022] Open
Abstract
Background Commonly known as sun-coral, Tubastraea tagusensis is an azooxanthellate scleractinian coral that successfully invaded the Southwestern Atlantic causing significant seascape changes. Today it is reported to over 3500 km along the Brazilian coast, with several rocky shores displaying high substrate coverage. Apart from its singular invasiveness capacity, the documentation and, therefore, understanding of the role of symbiotic microorganisms in the sun-coral invasion is still scarce. However, in general, the broad and constant relationship between corals and microorganisms led to the development of co-evolution hypotheses. As such, it has been shown that the microbial community responds to environmental factors, adjustment of the holobiont, adapting its microbiome, and improving the hosts’ fitness in a short space of time. Here we describe the microbial community (i.e. Bacteria) associated with sun-coral larvae and adult colonies from a locality displaying a high invasion development. Results The usage of high throughput sequencing indicates a great diversity of Bacteria associated with T. tagusensis, with Cyanobacteria, Proteobacteria, Bacteroidetes, Actinobacteria, Planctomycetes, and Firmicutes corresponding to the majority of the microbiome in all samples. However, T. tagusensis’ microbial core consists of only eight genera for colonies, and, within them, three are also present in the sequenced larvae. Overall, the microbiome from colonies sampled at different depths did not show significant differences. The microbiome of the larvae suggests a partial vertical transfer of the microbial core in this species. Conclusion Although diverse, the microbiome core of adult Tubastraea tagusensis is composed of only eight genera, of which three are transferred from the mother colony to their larvae. The remaining bacteria genera are acquired from the seawater, indicating that they might play a role in the host fitness and, therefore, facilitate the sun-coral invasion in the Southwestern Atlantic.
Collapse
Affiliation(s)
- Aline Aparecida Zanotti
- Programa de Pós Graduação em Sistemas Costeiros e Oceânicos (PGSISCO), Universidade Federal do Paraná (UFPR), Pontal do Paraná, Brazil. .,Centro de Biologia Marinha (CEBIMar), Universidade de São Paulo (USP), São Sebastião, Brazil.
| | - Gustavo Bueno Gregoracci
- Departamento de Ciências do Mar (DCMar), Universidade Federal de São Paulo (UNIFESP), Santos, Brazil
| | | | - Marcelo Visentini Kitahara
- Programa de Pós Graduação em Sistemas Costeiros e Oceânicos (PGSISCO), Universidade Federal do Paraná (UFPR), Pontal do Paraná, Brazil.,Centro de Biologia Marinha (CEBIMar), Universidade de São Paulo (USP), São Sebastião, Brazil.,Departamento de Ciências do Mar (DCMar), Universidade Federal de São Paulo (UNIFESP), Santos, Brazil
| |
Collapse
|
34
|
Speare L, Davies SW, Balmonte JP, Baumann J, Castillo KD. Patterns of environmental variability influence coral-associated bacterial and algal communities on the Mesoamerican Barrier Reef. Mol Ecol 2020; 29:2334-2348. [PMID: 32497352 DOI: 10.1111/mec.15497] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 05/11/2020] [Accepted: 05/26/2020] [Indexed: 02/06/2023]
Abstract
A coral's capacity to alter its microbial symbionts may enhance its fitness in the face of climate change. Recent work predicts exposure to high environmental variability may increase coral resilience and adaptability to future climate conditions. However, how this heightened environmental variability impacts coral-associated microbial communities remains largely unexplored. Here, we examined the bacterial and algal symbionts associated with two coral species of the genus Siderastrea with distinct life history strategies from three reef sites on the Belize Mesoamerican Barrier Reef System with low or high environmental variability. Our results reveal bacterial community structure, as well as alpha- and beta-diversity patterns, vary by host species. Differences in bacterial communities between host species were partially explained by high abundance of Deltaproteobacteria and Rhodospirillales and high bacterial diversity in Siderastrea radians. Our findings also suggest Siderastrea spp. have dynamic core bacterial communities that likely drive differences observed in the entire bacterial community, which may play a critical role in rapid acclimatization to environmental change. Unlike the bacterial community, Symbiodiniaceae composition was only distinct between host species at high thermal variability sites, suggesting that different factors shape bacterial versus algal communities within the coral holobiont. Our findings shed light on how domain-specific shifts in dynamic microbiomes may allow for unique methods of enhanced host fitness.
Collapse
Affiliation(s)
- Lauren Speare
- Department of Marine Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sarah W Davies
- Department of Marine Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Department of Biology, Boston University, Boston, MA, USA
| | - John P Balmonte
- Department of Marine Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Department of Ecology and Genetics - Limnology, Uppsala University, Uppsala, Sweden
| | - Justin Baumann
- Department of Marine Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Karl D Castillo
- Department of Marine Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Environment, Ecology, and Energy Program, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
35
|
Hartman LM, van Oppen MJH, Blackall LL. Microbiota characterization of Exaiptasia diaphana from the Great Barrier Reef. Anim Microbiome 2020; 2:10. [PMID: 33499977 PMCID: PMC7807684 DOI: 10.1186/s42523-020-00029-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 03/17/2020] [Indexed: 02/04/2023] Open
Abstract
Background Coral reefs have sustained damage of increasing scale and frequency due to climate change, thereby intensifying the need to elucidate corals’ biological characteristics, including their thermal tolerance and microbial symbioses. The sea anemone, Exaiptasia diaphana, has proven an ideal coral model for many studies due to its close phylogenetic relationship and shared traits, such as symbiosis with algae of the family Symbiodiniaceae. However, established E. diaphana clonal lines are not available in Australia thus limiting the ability of Australian scientists to conduct research with this model. To help address this, the bacterial and Symbiodiniaceae associates of four Great Barrier Reef (GBR)-sourced E. diaphana genotypes established in laboratory aquaria and designated AIMS1–4, and from proxies of wild GBR E. diaphana were identified by metabarcoding of the bacterial 16S rRNA gene and eukaryotic rRNA gene ITS2 region. The relationship between AIMS1–4 and their bacterial associates was investigated, as was bacterial community phenotypic potential. Existing data from two existing anemone clonal lines, CC7 and H2, were included for comparison. Results Overall, 2238 bacterial amplicon sequence variants (ASVs) were observed in the AIMS1–4 bacterial communities, which were dominated by Proteobacteria and Bacteroidetes, together comprising > 90% relative abundance. Although many low abundance bacterial taxa varied between the anemone genotypes, the AIMS1–4 communities did not differ significantly. A significant tank effect was identified, indicating an environmental effect on the microbial communities. Bacterial community richness was lower in all lab-maintained E. diaphana compared to the wild proxies, suggesting a reduction in bacterial diversity and community phenotypic potential due to culturing. Seventeen ASVs were common to every GBR lab-cultured anemone, however five were associated with the Artemia feedstock, making their specific association to E. diaphana uncertain. The dominant Symbiodiniaceae symbiont in all GBR anemones was Breviolum minutum. Conclusion Despite differences in the presence and abundance of low abundance taxa, the bacterial communities of GBR-sourced lab-cultured E. diaphana are generally uniform and comparable to communities reported for other lab-cultured E. diaphana. The data presented here add to the global E. diaphana knowledge base and make an important contribution to the establishment of a GBR-sourced coral model organism.
Collapse
Affiliation(s)
- Leon Michael Hartman
- Swinburne University of Technology, Melbourne, Australia. .,The University of Melbourne, Melbourne, Australia.
| | | | | |
Collapse
|
36
|
Damjanovic K, Menéndez P, Blackall LL, van Oppen MJH. Early Life Stages of a Common Broadcast Spawning Coral Associate with Specific Bacterial Communities Despite Lack of Internalized Bacteria. MICROBIAL ECOLOGY 2020; 79:706-719. [PMID: 31435691 DOI: 10.1007/s00248-019-01428-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 08/13/2019] [Indexed: 06/10/2023]
Abstract
Coral-associated bacteria are critical for the well-being of their host and may play essential roles during ontogeny, as suggested by the vertical transmission of some bacteria in brooding corals. Bacterial acquisition patterns in broadcast spawners remain uncertain, as 16S rRNA gene metabarcoding of coral early life stages suggests the presence of bacterial communities, which have not been detected by microscopic examinations. Here, we combined 16S rRNA gene metabarcoding with fluorescence in situ hybridization (FISH) microscopy to analyze bacterial assemblages in Acropora tenuis egg-sperm bundles, embryos, and larvae following a spawning event. Metabarcoding results indicated that A. tenuis offspring ≤ 4-day-old were associated with diverse and dynamic bacterial microbiomes, dominated by Rhodobacteraceae, Alteromonadaceae, and Oceanospirillaceae. While FISH analyses confirmed the lack of internalized bacteria in A. tenuis offspring, metabarcoding showed that even the earliest life stages examined (egg-sperm bundles and two-cell stages) were associated with a diverse bacterial community, suggesting the bacteria were confined to the mucus layer. These results can be explained by vertical transmission of certain taxa (mainly Endozoicomonas) in the mucus surrounding the gametes within bundles, or by horizontal bacterial transmission through the release of bacteria by spawning adults into the water column.
Collapse
Affiliation(s)
- Katarina Damjanovic
- School of BioSciences, The University of Melbourne, Parkville, VIC, 3010, Australia.
- Australian Institute of Marine Science, PMB No 3, Townsville MC, QLD, 4810, Australia.
| | - Patricia Menéndez
- Australian Institute of Marine Science, PMB No 3, Townsville MC, QLD, 4810, Australia
- Department of Econometrics and Business Statistics, Monash University, Clayton, VIC, 3800, Australia
| | - Linda L Blackall
- School of BioSciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Madeleine J H van Oppen
- School of BioSciences, The University of Melbourne, Parkville, VIC, 3010, Australia
- Australian Institute of Marine Science, PMB No 3, Townsville MC, QLD, 4810, Australia
| |
Collapse
|
37
|
Hernandez-Agreda A, Leggat W, Ainsworth TD. A place for taxonomic profiling in the study of the coral prokaryotic microbiome. FEMS Microbiol Lett 2020; 366:5426210. [PMID: 30939203 DOI: 10.1093/femsle/fnz063] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 04/01/2019] [Indexed: 12/29/2022] Open
Abstract
The enormous variability in richness, abundance and diversity of unknown bacterial organisms inhabiting the coral microbiome have challenged our understanding of their functional contribution to coral health. Identifying the attributes of the healthy meta-organism is paramount for contemporary approaches aiming to manipulate dysbiotic stages of the coral microbiome. This review evaluates the current knowledge on the structure and mechanisms driving bacterial communities in the coral microbiome and discusses two topics requiring further research to define the healthy coral microbiome. (i) We examine the necessity to establish microbial baselines to understand the spatial and temporal dynamics of the healthy coral microbiome and summarise conceptual and logistic challenges to consider in the design of these baselines. (ii) We propose potential mechanical, physical and chemical mechanisms driving bacterial distribution within coral compartments and suggest experiments to test them. Finally, we highlight aspects of the use of 16S amplicon sequencing requiring standardization and discuss its contribution to other multi-omics approaches.
Collapse
Affiliation(s)
- Alejandra Hernandez-Agreda
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, 1 James Cook Dr, Townsville, Queensland, 4811, Australia.,The College of Public Health, Medical and Veterinary Sciences, James Cook University, 1 James Cook Dr, Townsville, Queensland, 4811, Australia.,Invertebrate Zoology and Geology, California Academy of Sciences, 55 Music Concourse Drive, San Francisco, California, 94118, USA
| | - William Leggat
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, 1 James Cook Dr, Townsville, Queensland, 4811, Australia.,The College of Public Health, Medical and Veterinary Sciences, James Cook University, 1 James Cook Dr, Townsville, Queensland, 4811, Australia.,School of Environmental and Life Sciences, The University of Newcastle, 10 Chittaway Road, Ourimbah, New South Wales, 2258, Australia
| | - Tracy D Ainsworth
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, 1 James Cook Dr, Townsville, Queensland, 4811, Australia.,School of Biological, Earth and Environmental Sciences, The University of New South Wales, Biological Sciences Building (D26), Randwick, New South Wales, 2052, Australia
| |
Collapse
|
38
|
Osman EO, Suggett DJ, Voolstra CR, Pettay DT, Clark DR, Pogoreutz C, Sampayo EM, Warner ME, Smith DJ. Coral microbiome composition along the northern Red Sea suggests high plasticity of bacterial and specificity of endosymbiotic dinoflagellate communities. MICROBIOME 2020; 8:8. [PMID: 32008576 PMCID: PMC6996193 DOI: 10.1186/s40168-019-0776-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 12/12/2019] [Indexed: 05/21/2023]
Abstract
BACKGROUND The capacity of reef-building corals to tolerate (or adapt to) heat stress is a key factor determining their resilience to future climate change. Changes in coral microbiome composition (particularly for microalgal endosymbionts and bacteria) is a potential mechanism that may assist corals to thrive in warm waters. The northern Red Sea experiences extreme temperatures anomalies, yet corals in this area rarely bleach suggesting possible refugia to climate change. However, the coral microbiome composition, and how it relates to the capacity to thrive in warm waters in this region, is entirely unknown. RESULTS We investigated microbiomes for six coral species (Porites nodifera, Favia favus, Pocillopora damicornis, Seriatopora hystrix, Xenia umbellata, and Sarcophyton trocheliophorum) from five sites in the northern Red Sea spanning 4° of latitude and summer mean temperature ranges from 26.6 °C to 29.3 °C. A total of 19 distinct dinoflagellate endosymbionts were identified as belonging to three genera in the family Symbiodiniaceae (Symbiodinium, Cladocopium, and Durusdinium). Of these, 86% belonged to the genus Cladocopium, with notably five novel types (19%). The endosymbiont community showed a high degree of host-specificity despite the latitudinal gradient. In contrast, the diversity and composition of bacterial communities of the surface mucus layer (SML)-a compartment particularly sensitive to environmental change-varied significantly between sites, however for any given coral was species-specific. CONCLUSION The conserved endosymbiotic community suggests high physiological plasticity to support holobiont productivity across the different latitudinal regimes. Further, the presence of five novel algal endosymbionts suggests selection of certain genotypes (or genetic adaptation) within the semi-isolated Red Sea. In contrast, the dynamic composition of bacteria associated with the SML across sites may contribute to holobiont function and broaden the ecological niche. In doing so, SML bacterial communities may aid holobiont local acclimatization (or adaptation) by readily responding to changes in the host environment. Our study provides novel insight about the selective and endemic nature of coral microbiomes along the northern Red Sea refugia.
Collapse
Affiliation(s)
- Eslam O Osman
- Coral Reef Research Unit, School of Life Sciences, University of Essex, Colchester, CO4 3SQ, UK.
- Marine Biology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11448, Egypt.
| | - David J Suggett
- Coral Reef Research Unit, School of Life Sciences, University of Essex, Colchester, CO4 3SQ, UK
- Climate Change Cluster, University of Technology Sydney, Sydney, New South Wales, 2007, Australia
| | - Christian R Voolstra
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Department of Biology, University of Konstanz, 78457, Konstanz, Germany
| | - D Tye Pettay
- School of Marine Science and Policy, College of Earth, Ocean, and Environment, University of Delaware, Lewes, DE, 19958, USA
| | - Dave R Clark
- Coral Reef Research Unit, School of Life Sciences, University of Essex, Colchester, CO4 3SQ, UK
| | - Claudia Pogoreutz
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Department of Biology, University of Konstanz, 78457, Konstanz, Germany
| | - Eugenia M Sampayo
- ARC Centre of Excellence for Coral Reef Studies, School of Biological Sciences, The University of Queensland, St. Lucia, 4072, QLD, Australia
| | - Mark E Warner
- School of Marine Science and Policy, College of Earth, Ocean, and Environment, University of Delaware, Lewes, DE, 19958, USA
| | - David J Smith
- Coral Reef Research Unit, School of Life Sciences, University of Essex, Colchester, CO4 3SQ, UK
| |
Collapse
|
39
|
Damjanovic K, Menéndez P, Blackall LL, Oppen MJH. Mixed‐mode bacterial transmission in the common brooding coral
Pocillopora acuta. Environ Microbiol 2019; 22:397-412. [DOI: 10.1111/1462-2920.14856] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 10/14/2019] [Accepted: 11/07/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Katarina Damjanovic
- School of BioSciences, The University of Melbourne Parkville Vic 3010 Australia
- Australian Institute of Marine Science PMB No 3, Townsville, MC 4810 Qld Australia
| | - Patricia Menéndez
- Australian Institute of Marine Science PMB No 3, Townsville, MC 4810 Qld Australia
- Department of Econometrics and Business Statistics Monash University Vic 3800 Australia
| | - Linda L. Blackall
- School of BioSciences, The University of Melbourne Parkville Vic 3010 Australia
| | - Madeleine J. H. Oppen
- School of BioSciences, The University of Melbourne Parkville Vic 3010 Australia
- Australian Institute of Marine Science PMB No 3, Townsville, MC 4810 Qld Australia
| |
Collapse
|
40
|
Quigley KM, Alvarez Roa C, Torda G, Bourne DG, Willis BL. Co-dynamics of Symbiodiniaceae and bacterial populations during the first year of symbiosis with Acropora tenuis juveniles. Microbiologyopen 2019; 9:e959. [PMID: 31670480 PMCID: PMC7002099 DOI: 10.1002/mbo3.959] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 10/04/2019] [Accepted: 10/08/2019] [Indexed: 02/04/2023] Open
Abstract
Interactions between corals and their associated microbial communities (Symbiodiniaceae and prokaryotes) are key to understanding corals' potential for and rate of acclimatory and adaptive responses. However, the establishment of microalgal and bacterial communities is poorly understood during coral ontogeny in the wild. We examined the establishment and co-occurrence between multiple microbial communities using 16S rRNA (bacterial) and ITS2 rDNA (Symbiodiniaceae) gene amplicon sequencing in juveniles of the common coral, Acropora tenuis, across the first year of development. Symbiodiniaceae communities in juveniles were dominated by Durusdinium trenchii and glynnii (D1 and D1a), with lower abundances of Cladocopium (C1, C1d, C50, and Cspc). Bacterial communities were more diverse and dominated by taxa within Proteobacteria, Cyanobacteria, and Planctomycetes. Both communities were characterized by significant changes in relative abundance and diversity of taxa throughout the year. D1, D1a, and C1 were significantly correlated with multiple bacterial taxa, including Alpha-, Deltra-, and Gammaproteobacteria, Planctomycetacia, Oxyphotobacteria, Phycisphaerae, and Rhizobiales. Specifically, D1a tended to associate with Oxyphotobacteria and D1 with Alphaproteobacteria, although these associations may represent correlational and not causal relationships. Bioenergetic modeling combined with physiological measurements of coral juveniles (surface area and Symbiodiniaceae cell densities) identified key periods of carbon limitation and nitrogen assimilation, potentially coinciding with shifts in microbial community composition. These results demonstrate that Symbiodiniaceae and bacterial communities are dynamic throughout the first year of ontology and may vary in tandem, with important fitness effects on host juveniles.
Collapse
Affiliation(s)
- Kate M Quigley
- College of Marine and Environmental Sciences, James Cook University, Townsville, QLD, Australia.,AIMS@JCU, Australian Institute of Marine Science and James Cook University, Townsville, QLD, Australia.,Australian Institute of Marine Science, Townsville, QLD, Australia
| | | | - Greg Torda
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, Australia
| | - David G Bourne
- College of Marine and Environmental Sciences, James Cook University, Townsville, QLD, Australia.,AIMS@JCU, Australian Institute of Marine Science and James Cook University, Townsville, QLD, Australia.,Australian Institute of Marine Science, Townsville, QLD, Australia
| | - Bette L Willis
- College of Marine and Environmental Sciences, James Cook University, Townsville, QLD, Australia.,AIMS@JCU, Australian Institute of Marine Science and James Cook University, Townsville, QLD, Australia.,ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, Australia
| |
Collapse
|
41
|
Freire I, Gutner-Hoch E, Muras A, Benayahu Y, Otero A. The effect of bacteria on planula-larvae settlement and metamorphosis in the octocoral Rhytisma fulvum fulvum. PLoS One 2019; 14:e0223214. [PMID: 31568517 PMCID: PMC6768449 DOI: 10.1371/journal.pone.0223214] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 09/16/2019] [Indexed: 11/23/2022] Open
Abstract
While increasing evidence supports a key role of bacteria in coral larvae settlement and development, the relative importance of environmentally-acquired versus vertically-transferred bacterial population is not clear. Here we have attempted to elucidate the role of post-brooding-acquired bacteria on the development of planula-larvae of the octocoral Rhytisma f. fulvum, in an in vitro cultivation system employing different types of filtered (FSW) and autoclaved (ASW) seawater and with the addition of native bacteria. A good development of larvae was obtained in polystyrene 6-well cell culture plates in the absence of natural reef substrata, achieving a 60–80% of larvae entering metamorphosis after 32 days, even in bacteria-free seawater, indicating that the bacteria acquired during the brooding period are sufficient to support planulae development. No significant difference in planulae attachment and development was observed when using 0.45 μm or 0.22 μm FSW, although autoclaving the 0.45 μm FSW negatively affected larval development, indicating the presence of beneficial bacteria. Autoclaving the different FSW homogenized the development of the larvae among the different treatments. The addition of bacterial strains isolated from the different FSW did not cause any significant effect on planulae development, although some specific strains of the genus Alteromonas seem to be beneficial for larvae development. Light was beneficial for planulae development after day 20, although no Symbiodinium cells could be observed, indicating either that light acts as a positive cue for larval development or the presence of beneficial phototrophic bacteria in the coral microbiome. The feasibility of obtaining advanced metamorphosed larvae in sterilized water provides an invaluable tool for studying the physiological role of the bacterial symbionts in the coral holobiont and the specificity of bacteria-coral interactions.
Collapse
Affiliation(s)
- Isabel Freire
- Instituto de Acuicultura and Departamento de Microbiología, Facultad de Biología, Edificio CIBUS, Universidade de Santiago de Compostela, Santiago de Compostela, SPAIN
| | - Eldad Gutner-Hoch
- School of Zoology, George S. Wise Faculty of Life Sciences, Tel–Aviv University, Ramat-Aviv, Tel-Aviv, Israel
| | - Andrea Muras
- Instituto de Acuicultura and Departamento de Microbiología, Facultad de Biología, Edificio CIBUS, Universidade de Santiago de Compostela, Santiago de Compostela, SPAIN
| | - Yehuda Benayahu
- Interuniversity Institute for Marine Sciences, Eilat, Israel
| | - Ana Otero
- Instituto de Acuicultura and Departamento de Microbiología, Facultad de Biología, Edificio CIBUS, Universidade de Santiago de Compostela, Santiago de Compostela, SPAIN
- * E-mail:
| |
Collapse
|
42
|
Transgenerational inheritance of shuffled symbiont communities in the coral Montipora digitata. Sci Rep 2019; 9:13328. [PMID: 31527788 PMCID: PMC6746730 DOI: 10.1038/s41598-019-50045-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 09/05/2019] [Indexed: 11/08/2022] Open
Abstract
Adult organisms may "prime" their offspring for environmental change through a number of genetic and non-genetic mechanisms, termed parental effects. Some coral species may shuffle the proportions of Symbiodiniaceae within their endosymbiotic communities, subsequently altering their thermal tolerance, but it is unclear if shuffled communities are transferred to offspring. We evaluated Symbiodiniaceae community composition in tagged colonies of Montipora digitata over two successive annual spawning seasons and the 2016 bleaching event on the Great Barrier Reef. ITS2 amplicon sequencing was applied to four families (four maternal colonies and 10-12 eggs per family) previously sampled and sequenced the year before to characterize shuffling potential in these M. digitata colonies and determine if shuffled abundances were preserved in gametes. Symbiont densities and photochemical efficiencies differed significantly among adults in 2016, suggesting differential responses to increased temperatures. Low-abundance ("background") sequence variants differed more among years than between maternal colonies and offspring. Results indicate that shuffling can occur in a canonically 'stable' symbiosis, and that the shuffled community is heritable. Hence, acclimatory changes like shuffling of the Symbiodiniaceae community are not limited to the lifetime of an adult coral and that shuffled communities are inherited across generations in a species with vertical symbiont transmission. Although previously hypothesized, to our knowledge, this is the first evidence that shuffled Symbiodiniaceae communities (at both the inter- and intra- genera level) can be inherited by offspring and supports the hypothesis that shuffling in microbial communities may serve as a mechanism of rapid coral acclimation to changing environmental conditions.
Collapse
|
43
|
Bernasconi R, Stat M, Koenders A, Paparini A, Bunce M, Huggett MJ. Establishment of Coral-Bacteria Symbioses Reveal Changes in the Core Bacterial Community With Host Ontogeny. Front Microbiol 2019; 10:1529. [PMID: 31338082 PMCID: PMC6629827 DOI: 10.3389/fmicb.2019.01529] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 06/18/2019] [Indexed: 12/25/2022] Open
Abstract
Bacterial communities are fundamental symbionts of corals. However, the process by which bacterial communities are acquired across the life history of corals, particularly in larval and early juvenile stages, is still poorly characterized. Here, transfer of bacteria of the Scleractinian coral Acropora digitifera from adults to spawned egg-sperm bundles was analyzed, as well as acquisition across early developmental stages (larvae and newly settled spat), and 6-month-old juveniles. Larvae were reared under manipulated environmental conditions to determine the source (maternal, seawater, or sediment) of bacteria likely to establish symbiotic relationships with the host using amplicon sequencing of the 16S rRNA gene. Maternal colonies directly transferred bacteria from the families Rhodobacteraceae, Cryomorphaceae, and Endozoicimonaceae to egg-sperm bundles. Furthermore, significant differences in the microbial community structure were identified across generations, yet the structure of the coral bacterial community across early life history stages was not impacted by different environmental rearing conditions. These data indicate that the uptake and structure of bacterial communities is developmentally, rather than environmentally, regulated. Both maternal coral colonies and ubiquitous bacteria found across environmental substrates represent a potential source of symbionts important in establishing the coral microbiome. Uniquely, we report the presence of variation with ontogeny of both the core and resident bacterial communities, supporting the hypothesis that microbial communities are likely to play specific roles within the distinct life history stages of the coral host.
Collapse
Affiliation(s)
- Rachele Bernasconi
- Centre for Marine Ecosystems Research, Edith Cowan University, Joondalup, WA, Australia
- Centre for Ecosystem Management, School of Science, Edith Cowan University, Joondalup, WA, Australia
| | - Michael Stat
- Faculty of Science, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia
| | - Annette Koenders
- Centre for Ecosystem Management, School of Science, Edith Cowan University, Joondalup, WA, Australia
| | - Andrea Paparini
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA, Australia
| | - Michael Bunce
- Trace and Environmental DNA Laboratory, Department of Environment and Agriculture Curtin University, Bentley, WA, Australia
| | - Megan J. Huggett
- Centre for Marine Ecosystems Research, Edith Cowan University, Joondalup, WA, Australia
- Centre for Ecosystem Management, School of Science, Edith Cowan University, Joondalup, WA, Australia
- Faculty of Science, School of Environmental and Life Sciences, The University of Newcastle, Ourimbah, NSW, Australia
| |
Collapse
|
44
|
van Oppen MJH, Blackall LL. Coral microbiome dynamics, functions and design in a changing world. Nat Rev Microbiol 2019; 17:557-567. [DOI: 10.1038/s41579-019-0223-4] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2019] [Indexed: 12/20/2022]
|
45
|
Dunphy CM, Gouhier TC, Chu ND, Vollmer SV. Structure and stability of the coral microbiome in space and time. Sci Rep 2019; 9:6785. [PMID: 31043671 PMCID: PMC6494856 DOI: 10.1038/s41598-019-43268-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 04/18/2019] [Indexed: 11/09/2022] Open
Abstract
Although it is well established that the microbial communities inhabiting corals perform key functions that promote the health and persistence of their hosts, little is known about their spatial structure and temporal stability. We examined the natural variability of microbial communities associated with six Caribbean coral species from three genera at four reef sites over one year. We identified differences in microbial community composition between coral genera and species that persisted across space and time, suggesting that local host identity likely plays a dominant role in structuring the microbiome. However, we found that microbial community dissimilarity increased with geographical distance, which indicates that regional processes such as dispersal limitation and spatiotemporal environmental heterogeneity also influence microbial community composition. In addition, network analysis revealed that the strength of host identity varied across coral host genera, with species from the genus Acropora having the most influence over their microbial community. Overall, our results demonstrate that despite high levels of microbial diversity, coral species are characterized by signature microbiomes that are stable in both space and time.
Collapse
Affiliation(s)
- Courtney M Dunphy
- Marine Science Center, Northeastern University, 430 Nahant Road, Nahant, MA, 01908, USA.
| | - Tarik C Gouhier
- Marine Science Center, Northeastern University, 430 Nahant Road, Nahant, MA, 01908, USA
| | - Nathaniel D Chu
- Marine Science Center, Northeastern University, 430 Nahant Road, Nahant, MA, 01908, USA.,Microbiology Graduate Program, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
| | - Steven V Vollmer
- Marine Science Center, Northeastern University, 430 Nahant Road, Nahant, MA, 01908, USA
| |
Collapse
|
46
|
Guibert I, Bonnard I, Pochon X, Zubia M, Sidobre C, Lecellier G, Berteaux-Lecellier V. Differential effects of coral-giant clam assemblages on biofouling formation. Sci Rep 2019; 9:2675. [PMID: 30804382 PMCID: PMC6389951 DOI: 10.1038/s41598-019-39268-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 01/14/2019] [Indexed: 11/09/2022] Open
Abstract
To prevent the settlement and/or the growth of fouling organisms (i.e. bacteria, fungi or microalgae), benthic sessile species have developed various defense mechanisms among which the production of chemical molecules. While studies have mostly focused on the release of chemical compounds by single species, there exist limited data on multi-species assemblages. We used an integrative approach to explore the potential interactive effects of distinct assemblages of two corals species and one giant clam species on biofouling appearance and composition. Remarkably, we found distinct biofouling communities suggesting the importance of benthic sessile assemblages in biofouling control. Moreover, the assemblage of 3 species led to an inhibition of biofouling, likely through a complex of secondary metabolites. Our results highlight that through their different effect on their near environment, species assemblages might be of upmost importance for their survival and therefore, should now be taken into account for sustainable management of coral reefs.
Collapse
Affiliation(s)
- Isis Guibert
- Sorbonne Université, Collège Doctoral, F-75005, paris, France.
- USR3278 PSL CRIOBE CNRS-EPHE-UPVD, LabEx CORAIL, Papetoai, Moorea, French Polynesia.
- UMR250/9220 ENTROPIE IRD-CNRS-UR, LabEx CORAIL, Promenade Roger-Laroque, Noumea cedex, New Caledonia, France.
| | - Isabelle Bonnard
- USR3278 PSL CRIOBE CNRS-EPHE-UPVD, LabEx CORAIL, Université de Perpignan, 58 avenue Paul Alduy, 66860, Perpignan, France
| | - Xavier Pochon
- Coastal and Freshwater Group, Cawthron Institute, Private Bag 2, Nelson, 7042, New Zealand
- Institute of Marine Science, University of Auckland, Private Bag 349, Warkworth, 0941, New Zealand
| | - Mayalen Zubia
- University of French Polynesia, UMR-241 Ecosystèmes Insulaires Océaniens, BP 6570, 98702, Faa'a, Tahiti, French Polynesia
| | - Christine Sidobre
- USR3278 PSL CRIOBE CNRS-EPHE-UPVD, LabEx CORAIL, Papetoai, Moorea, French Polynesia
| | - Gaël Lecellier
- UMR250/9220 ENTROPIE IRD-CNRS-UR, LabEx CORAIL, Promenade Roger-Laroque, Noumea cedex, New Caledonia, France
- Université de Paris-Saclay, UVSQ, 45 avenue des Etats-Unis, Versailles Cedex, France
| | - Véronique Berteaux-Lecellier
- USR3278 PSL CRIOBE CNRS-EPHE-UPVD, LabEx CORAIL, Papetoai, Moorea, French Polynesia
- UMR250/9220 ENTROPIE IRD-CNRS-UR, LabEx CORAIL, Promenade Roger-Laroque, Noumea cedex, New Caledonia, France
| |
Collapse
|
47
|
O'Brien PA, Webster NS, Miller DJ, Bourne DG. Host-Microbe Coevolution: Applying Evidence from Model Systems to Complex Marine Invertebrate Holobionts. mBio 2019; 10:e02241-18. [PMID: 30723123 PMCID: PMC6428750 DOI: 10.1128/mbio.02241-18] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Marine invertebrates often host diverse microbial communities, making it difficult to identify important symbionts and to understand how these communities are structured. This complexity has also made it challenging to assign microbial functions and to unravel the myriad of interactions among the microbiota. Here we propose to address these issues by applying evidence from model systems of host-microbe coevolution to complex marine invertebrate microbiomes. Coevolution is the reciprocal adaptation of one lineage in response to another and can occur through the interaction of a host and its beneficial symbiont. A classic indicator of coevolution is codivergence of host and microbe, and evidence of this is found in both corals and sponges. Metabolic collaboration between host and microbe is often linked to codivergence and appears likely in complex holobionts, where microbial symbionts can interact with host cells through production and degradation of metabolic compounds. Neutral models are also useful to distinguish selected microbes against a background population consisting predominately of random associates. Enhanced understanding of the interactions between marine invertebrates and their microbial communities is urgently required as coral reefs face unprecedented local and global pressures and as active restoration approaches, including manipulation of the microbiome, are proposed to improve the health and tolerance of reef species. On the basis of a detailed review of the literature, we propose three research criteria for examining coevolution in marine invertebrates: (i) identifying stochastic and deterministic components of the microbiome, (ii) assessing codivergence of host and microbe, and (iii) confirming the intimate association based on shared metabolic function.
Collapse
Affiliation(s)
- Paul A O'Brien
- College of Science and Engineering, James Cook University, Townsville, QLD, Australia
- Australian Institute of Marine Science, Townsville, QLD, Australia
- AIMS@JCU, Townsville, QLD, Australia
| | - Nicole S Webster
- Australian Institute of Marine Science, Townsville, QLD, Australia
- AIMS@JCU, Townsville, QLD, Australia
- Australian Centre for Ecogenomics, University of Queensland, Brisbane, QLD, Australia
| | - David J Miller
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, QLD, Australia
| | - David G Bourne
- College of Science and Engineering, James Cook University, Townsville, QLD, Australia
- Australian Institute of Marine Science, Townsville, QLD, Australia
- AIMS@JCU, Townsville, QLD, Australia
| |
Collapse
|
48
|
Parental and early life stage environments drive establishment of bacterial and dinoflagellate communities in a common coral. ISME JOURNAL 2019; 13:1635-1638. [PMID: 30705413 DOI: 10.1038/s41396-019-0358-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 01/15/2019] [Accepted: 01/17/2019] [Indexed: 11/08/2022]
Abstract
The establishment of coral microbial communities in early developmental stages is fundamental to coral fitness, but its drivers are largely unknown, particularly for bacteria. Using an in situ reciprocal transplant experiment, we examined the influence of parental, planulation and early recruit environments on the microbiome of brooded offspring in the coral Pocillopora damicornis. 16S rRNA and ITS2 rDNA gene metabarcoding showed that bacterial and microalgal endosymbiont communities varied according to parental and planulation environments, but not with early recruit environment. Only a small number of bacterial strains were shared between offspring and their respective parents, revealing bacterial establishment as largely environmentally driven in very early life stages. Conversely, microalgal communities of recruits were highly similar to those of their respective parents, but also contained additional low abundance strains, suggesting both vertical transmission and novel ('horizontal') acquisition. Altogether, recruits harboured more variable microbiomes compared to their parents, indicating winnowing occurs as corals mature.
Collapse
|
49
|
Hernandez-Agreda A, Leggat W, Bongaerts P, Herrera C, Ainsworth TD. Rethinking the Coral Microbiome: Simplicity Exists within a Diverse Microbial Biosphere. mBio 2018; 9:e00812-18. [PMID: 30301849 PMCID: PMC6178627 DOI: 10.1128/mbio.00812-18] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 08/27/2018] [Indexed: 12/28/2022] Open
Abstract
Studies of the coral microbiome predominantly characterize the microbial community of the host species as a collective, rather than that of the individual. This ecological perspective on the coral microbiome has led to the conclusion that the coral holobiont is the most diverse microbial biosphere studied thus far. However, investigating the microbiome of the individual, rather than that of the species, highlights common and conserved community attributes which can provide insights into the significance of microbial associations to the host. Here, we show there are consistent characteristics between individuals in the proposed three components of the coral microbiome (i.e., "environmentally responsive community," "resident or individual microbiome," and "core microbiome"). We found that the resident microbiome of a photoendosymbiotic coral harbored <3% (∼605 phylotypes) of the 16S rRNA phylotypes associated with all investigated individuals of that species ("species-specific microbiome") (∼21,654 phylotypes; individuals from Pachyseris speciosa [n = 123], Mycedium elephantotus [n = 95], and Acropora aculeus [n = 91] from 10 reef locations). The remaining bacterial phylotypes (>96%) (environmentally responsive community) of the species-specific microbiome were in fact not found in association with the majority of individuals of the species. Only 0.1% (∼21 phylotypes) of the species-specific microbiome of each species was shared among all individuals of the species (core microbiome), equating to ∼3.4% of the resident microbiome. We found taxonomic redundancy and consistent patterns of composition, structure, and taxonomic breadth across individual microbiomes from the three coral species. Our results demonstrate that the coral microbiome is structured at the individual level.IMPORTANCE We propose that the coral holobiont should be conceptualized as a diverse transient microbial community that is responsive to the surrounding environment and encompasses a simple, redundant, resident microbiome and a small conserved core microbiome. Most importantly, we show that the coral microbiome is comparable to the microbiomes of other organisms studied thus far. Accurately characterizing the coral-microbe interactions provides an important baseline from which the functional roles and the functional niches within which microbes reside can be deciphered.
Collapse
Affiliation(s)
- Alejandra Hernandez-Agreda
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Australia
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Australia
- California Academy of Sciences, San Francisco, California, USA
| | - William Leggat
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Australia
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Australia
- School of Environmental and Life Sciences, The University of Newcastle, Ourimbah, Australia
| | - Pim Bongaerts
- Global Change Institute, The University of Queensland, Brisbane, Australia
- California Academy of Sciences, San Francisco, California, USA
| | - César Herrera
- TropWATER, Centre for Tropical Water & Aquatic Ecosystem Research, James Cook University, Townsville, Australia
- College of Science and Engineering, James Cook University, Townsville, Australia
| | - Tracy D Ainsworth
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Australia
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, Australia
| |
Collapse
|
50
|
van de Water JAJM, Allemand D, Ferrier-Pagès C. Host-microbe interactions in octocoral holobionts - recent advances and perspectives. MICROBIOME 2018; 6:64. [PMID: 29609655 PMCID: PMC5880021 DOI: 10.1186/s40168-018-0431-6] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 03/01/2018] [Indexed: 05/05/2023]
Abstract
Octocorals are one of the most ubiquitous benthic organisms in marine ecosystems from the shallow tropics to the Antarctic deep sea, providing habitat for numerous organisms as well as ecosystem services for humans. In contrast to the holobionts of reef-building scleractinian corals, the holobionts of octocorals have received relatively little attention, despite the devastating effects of disease outbreaks on many populations. Recent advances have shown that octocorals possess remarkably stable bacterial communities on geographical and temporal scales as well as under environmental stress. This may be the result of their high capacity to regulate their microbiome through the production of antimicrobial and quorum-sensing interfering compounds. Despite decades of research relating to octocoral-microbe interactions, a synthesis of this expanding field has not been conducted to date. We therefore provide an urgently needed review on our current knowledge about octocoral holobionts. Specifically, we briefly introduce the ecological role of octocorals and the concept of holobiont before providing detailed overviews of (I) the symbiosis between octocorals and the algal symbiont Symbiodinium; (II) the main fungal, viral, and bacterial taxa associated with octocorals; (III) the dominance of the microbial assemblages by a few microbial species, the stability of these associations, and their evolutionary history with the host organism; (IV) octocoral diseases; (V) how octocorals use their immune system to fight pathogens; (VI) microbiome regulation by the octocoral and its associated microbes; and (VII) the discovery of natural products with microbiome regulatory activities. Finally, we present our perspectives on how the field of octocoral research should move forward, and the recognition that these organisms may be suitable model organisms to study coral-microbe symbioses.
Collapse
Affiliation(s)
| | - Denis Allemand
- Centre Scientifique de Monaco, 8 Quai Antoine 1er, 98000, Monaco, Monaco
| | | |
Collapse
|