1
|
Kondo K, Ohtake R, Nakano S, Terashima M, Kojima H, Fukui M, Demura M, Kikukawa T, Tsukamoto T. Contribution of Proteorhodopsin to Light-Dependent Biological Responses in Hymenobacter nivis P3 T Isolated from Red Snow in Antarctica. Biochemistry 2024; 63:2257-2265. [PMID: 39196915 DOI: 10.1021/acs.biochem.4c00286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2024]
Abstract
Proteorhodopsin (PR) is a major family of microbial rhodopsins that function as light-driven outward proton pumps. PR is now widely recognized for its ecological importance as a molecule responsible for solar energy flow in various ecosystems on the earth. However, few concrete examples of the actual use of light by natural microorganisms via PR have been demonstrated experimentally. This study reveals one example of that in a cryophilic bacterium Hymenobacter nivis P3T isolated from red snow in Antarctica. The results demonstrate light-dependent biochemical and biological responses in H. nivis cells, such as the proton pump activity of H. nivis PR (HnPR), which leads to the production of proton motive force, cellular ATP production, and cell growth. In addition, the results of this study demonstrate the photochemical properties of a PR, namely, HnPR, in the membrane of a natural host bacterium. The photocycle of HnPR was much faster than other PRs even at 5 °C, indicating that the proton pump function of HnPR has adapted to the low-temperature environment of Antarctica. Although it is well-known that PR helps natural host microorganisms to use light energy, this study provides another concrete example for understanding the biological role of PR by demonstrating the link between the molecular functions of PR and the light-dependent biochemical and biological responses of a PR-bearing host.
Collapse
Affiliation(s)
- Kaori Kondo
- Division of Soft Matter, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Ryouhei Ohtake
- Division of Soft Matter, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Shunsuke Nakano
- Division of Soft Matter, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Mia Terashima
- Institute of Low Temperature Science, Hokkaido University, Sapporo 060-0819, Japan
| | - Hisaya Kojima
- Institute of Low Temperature Science, Hokkaido University, Sapporo 060-0819, Japan
| | - Manabu Fukui
- Institute of Low Temperature Science, Hokkaido University, Sapporo 060-0819, Japan
| | - Makoto Demura
- Division of Soft Matter, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Takashi Kikukawa
- Division of Soft Matter, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Takashi Tsukamoto
- Division of Soft Matter, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
| |
Collapse
|
2
|
Lee JH, Oh HM. Effects of Light and Dark Conditions on the Transcriptome of Aging Cultures of Candidatus Puniceispirillum marinum IMCC1322. J Microbiol 2024; 62:297-314. [PMID: 38662311 DOI: 10.1007/s12275-024-00125-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 02/19/2024] [Accepted: 02/19/2024] [Indexed: 04/26/2024]
Abstract
To elucidate the function of proteorhodopsin in Candidatus Puniceispirillum marinum strain IMCC1322, a cultivated representative of SAR116, we produced RNA-seq data under laboratory conditions. We examined the transcriptomes of six different cultures, including sets of expression changes under constant dark (DD), constant light (LL), and diel-cycled (LD; 14 h light: 10 h dark) conditions at the exponential and stationary/death phases. Prepared mRNA extracted from the six samples was analyzed on the Solexa Genome Analyzer with 36 cycles. Differentially expressed genes on the IMCC1322 genome were distinguished as four clusters by K-mean clustering and each CDS (n = 2546) was annotated based on the KEGG BRITE hierarchy. Cluster 0 (n = 1573) covered most constitutive genes including proteorhodopsin, retinoids, and glycolysis/TCA cycle. Cluster 1 genes (n = 754) were upregulated in stationary/death phase under constant dark conditions and included genes associated with bacterial defense, membrane transporters, nitrogen metabolism, and senescence signaling. Cluster 2 genes (n = 197) demonstrated upregulation in exponential phase cultures and included genes involved in genes for oxidative phosphorylation, translation factors, and transcription machinery. Cluster 3 (n = 22) contained light-stimulated upregulated genes expressed under stationary/phases. Stringent response genes belonged to cluster 2, but affected genes spanned various cellular processes such as amino acids, nucleotides, translation, transcription, glycolysis, fatty acids, and cell wall components. The coordinated expression of antagonistic stringent genes, including mazG, ppx/gppA, and spoT/relA may provide insight into the controlled cultural response observed between constant light and constant dark conditions in IMCC1322 cultures, regardless of cell numbers and biomass.
Collapse
Affiliation(s)
- Ji Hyen Lee
- Department of Pediatrics, Ewha Womans University School of Medicine, Seoul, 07804, Republic of Korea
| | - Hyun-Myung Oh
- Institute of Liberal Arts Education, Pukyong National University, Busan, 48547, Republic of Korea.
| |
Collapse
|
3
|
Oggerin M, Viver T, Brüwer J, Voß D, García-Llorca M, Zielinski O, Orellana LH, Fuchs BM. Niche differentiation within bacterial key-taxa in stratified surface waters of the Southern Pacific Gyre. THE ISME JOURNAL 2024; 18:wrae155. [PMID: 39096506 PMCID: PMC11366302 DOI: 10.1093/ismejo/wrae155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/17/2024] [Accepted: 08/02/2024] [Indexed: 08/05/2024]
Abstract
One of the most hostile marine habitats on Earth is the surface of the South Pacific Gyre (SPG), characterized by high solar radiation, extreme nutrient depletion, and low productivity. During the SO-245 "UltraPac" cruise through the center of the ultra-oligotrophic SPG, the marine alphaproteobacterial group AEGEAN169 was detected by fluorescence in situ hybridization at relative abundances up to 6% of the total microbial community in the uppermost water layer, with two distinct populations (Candidatus Nemonibacter and Ca. Indicimonas). The high frequency of dividing cells combined with high transcript levels suggests that both clades may be highly metabolically active. Comparative metagenomic and metatranscriptomic analyses of AEGEAN169 revealed that they encoded subtle but distinct metabolic adaptions to this extreme environment in comparison to their competitors SAR11, SAR86, SAR116, and Prochlorococcus. Both AEGEAN169 clades had the highest percentage of transporters per predicted proteins (9.5% and 10.6%, respectively). In particular, the high expression of ABC transporters in combination with proteorhodopsins and the catabolic pathways detected suggest a potential scavenging lifestyle for both AEGEAN169 clades. Although both AEGEAN169 clades may share the genomic potential to utilize phosphonates as a phosphorus source, they differ in their metabolic pathways for carbon and nitrogen. Ca. Nemonibacter potentially use glycine-betaine, whereas Ca. Indicimonas may catabolize urea, creatine, and fucose. In conclusion, the different potential metabolic strategies of both clades suggest that both are well adapted to thrive resource-limited conditions and compete well with other dominant microbial clades in the uppermost layers of SPG surface waters.
Collapse
Affiliation(s)
- Monike Oggerin
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Bremen D-28359, Germany
| | - Tomeu Viver
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Bremen D-28359, Germany
| | - Jan Brüwer
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Bremen D-28359, Germany
| | - Daniela Voß
- Institute of Chemistry and Biology of the Marine Environment, University of Oldenburg, Wilhelmshafen, Germany
| | - Marina García-Llorca
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Bremen D-28359, Germany
| | - Oliver Zielinski
- Institute of Chemistry and Biology of the Marine Environment, University of Oldenburg, Wilhelmshafen, Germany
- Leibniz Institute for Baltic Sea Research Warnemünde, D-18119 Rostock, Germany
| | - Luis H Orellana
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Bremen D-28359, Germany
| | - Bernhard M Fuchs
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Bremen D-28359, Germany
| |
Collapse
|
4
|
Bar-Shalom R, Rozenberg A, Lahyani M, Hassanzadeh B, Sahoo G, Haber M, Burgsdorf I, Tang X, Squatrito V, Gomez-Consarnau L, Béjà O, Steindler L. Rhodopsin-mediated nutrient uptake by cultivated photoheterotrophic Verrucomicrobiota. THE ISME JOURNAL 2023:10.1038/s41396-023-01412-1. [PMID: 37120702 DOI: 10.1038/s41396-023-01412-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/31/2023] [Accepted: 04/05/2023] [Indexed: 05/01/2023]
Abstract
Rhodopsin photosystems convert light energy into electrochemical gradients used by the cell to produce ATP, or for other energy-demanding processes. While these photosystems are widespread in the ocean and have been identified in diverse microbial taxonomic groups, their physiological role in vivo has only been studied in few marine bacterial strains. Recent metagenomic studies revealed the presence of rhodopsin genes in the understudied Verrucomicrobiota phylum, yet their distribution within different Verrucomicrobiota lineages, their diversity, and function remain unknown. In this study, we show that more than 7% of Verrucomicrobiota genomes (n = 2916) harbor rhodopsins of different types. Furthermore, we describe the first two cultivated rhodopsin-containing strains, one harboring a proteorhodopsin gene and the other a xanthorhodopsin gene, allowing us to characterize their physiology under laboratory-controlled conditions. The strains were isolated in a previous study from the Eastern Mediterranean Sea and read mapping of 16S rRNA gene amplicons showed the highest abundances of these strains at the deep chlorophyll maximum (source of their inoculum) in winter and spring, with a substantial decrease in summer. Genomic analysis of the isolates suggests that motility and degradation of organic material, both energy demanding functions, may be supported by rhodopsin phototrophy in Verrucomicrobiota. Under culture conditions, we show that rhodopsin phototrophy occurs under carbon starvation, with light-mediated energy generation supporting sugar transport into the cells. Overall, this study suggests that photoheterotrophic Verrucomicrobiota may occupy an ecological niche where energy harvested from light enables bacterial motility toward organic matter and supports nutrient uptake.
Collapse
Affiliation(s)
- Rinat Bar-Shalom
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, 3498838, Israel
| | - Andrey Rozenberg
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Matan Lahyani
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, 3498838, Israel
| | - Babak Hassanzadeh
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA
| | - Gobardhan Sahoo
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, 3498838, Israel
- Department of Ecology and Environmental Sciences, School of Life Sciences, Pondicherry University, Puducherry, 605014, India
| | - Markus Haber
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, 3498838, Israel
- Institute of Hydrobiology, Biology Centre CAS, Na Sadkach 7, 37005, Ceske Budejovice, Czechia
| | - Ilia Burgsdorf
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, 3498838, Israel
| | - Xinyu Tang
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, 3498838, Israel
| | - Valeria Squatrito
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, 3498838, Israel
| | - Laura Gomez-Consarnau
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA
- Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, BC, México
| | - Oded Béjà
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Laura Steindler
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, 3498838, Israel.
| |
Collapse
|
5
|
Proteome Expression and Survival Strategies of a Proteorhodopsin-Containing Vibrio Strain under Carbon and Nitrogen Limitation. mSystems 2022; 7:e0126321. [PMID: 35384695 PMCID: PMC9040609 DOI: 10.1128/msystems.01263-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Photoheterotrophy is a widespread mode of microbial metabolism, notably in the oligotrophic surface ocean, where microbes experience chronic nutrient limitation. One especially widespread form of photoheterotrophy is based on proteorhodopsin (PR), which uses light to generate proton motive force that can drive ATP synthesis, flagellar movement, or nutrient uptake. To clarify the physiological benefits conferred by PR under nutrient stress conditions, we quantified protein-level gene expression of Vibrio campbellii CAIM 519 under both carbon and nitrogen limitation and under both light and dark conditions. Using a novel membrane proteomics strategy, we determined that PR expression is higher under C limitation than N limitation but is not light regulated. Despite expression of PR photosystems, V. campbellii does not exhibit any growth or survival advantages in the light and only a few proteins show significant expression differences between light and dark conditions. While protein-level proteorhodopsin expression in V. campbellii is clearly responsive to nutrient limitation, photoheterotrophy does not appear to play a central role in the survival physiology of this organism under these nutrient stress conditions. C limitation and N limitation, however, result in very different survival responses: under N-limited conditions, viability declines, cultivability is lost rapidly, central carbon flux through the Entner-Doudoroff pathway is increased, and ammonium is assimilated via the GS-GOGAT pathway. In contrast, C limitation drives cell dwarfing with maintenance of viability, as well as utilization of the glyoxylate shunt, glutamate dehydrogenase and anaplerotic C fixation, and a stringent response mediated by the Pho regulon. IMPORTANCE Understanding the nutrient stress responses of proteorhodopsin-bearing microbes like Vibrio campbellii yields insights into microbial contributions to nutrient cycling, lifestyles of emerging pathogens in aquatic environments, and protein-level adaptations implemented during times of nutrient limitation. In addition to its broad taxonomic and geographic prevalence, the physiological role of PR is diverse, so we developed a novel proteomics strategy to quantify its expression at the protein level. We found that proteorhodopsin expression levels in this wild-type photoheterotroph under these experimental conditions, while higher under C than under N limitation, do not afford measurable light-driven growth or survival advantages. Additionally, this work links differential protein expression patterns between C- and N-limited cultures to divergent stationary-phase survival phenotypes.
Collapse
|
6
|
Králová S, Busse HJ, Bezdíček M, Sandoval-Powers M, Nykrýnová M, Staňková E, Krsek D, Sedláček I. Flavobacterium flabelliforme sp. nov. and Flavobacterium geliluteum sp. nov., Two Multidrug-Resistant Psychrotrophic Species Isolated From Antarctica. Front Microbiol 2021; 12:729977. [PMID: 34745033 PMCID: PMC8570120 DOI: 10.3389/fmicb.2021.729977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 09/27/2021] [Indexed: 11/13/2022] Open
Abstract
Despite unfavorable Antarctic conditions, such as cold temperatures, freeze-thaw cycles, high ultraviolet radiation, dryness and lack of nutrients, microorganisms were able to adapt and surprisingly thrive in this environment. In this study, eight cold-adapted Flavobacterium strains isolated from a remote Antarctic island, James Ross Island, were studied using a polyphasic taxonomic approach to determine their taxonomic position. Phylogenetic analyses based on the 16S rRNA gene and 92 core genes clearly showed that these strains formed two distinct phylogenetic clusters comprising three and five strains, with average nucleotide identities significantly below 90% between both proposed species as well as between their closest phylogenetic relatives. Phenotyping revealed a unique pattern of biochemical and physiological characteristics enabling differentiation from the closest phylogenetically related Flavobacterium spp. Chemotaxonomic analyses showed that type strains P4023T and P7388T were characterized by the major polyamine sym-homospermidine and a quinone system containing predominantly menaquinone MK-6. In the polar lipid profile phosphatidylethanolamine, an ornithine lipid and two unidentified lipids lacking a functional group were detected as major lipids. These characteristics along with fatty acid profiles confirmed that these species belong to the genus Flavobacterium. Thorough genomic analysis revealed the presence of numerous cold-inducible or cold-adaptation associated genes, such as cold-shock proteins, proteorhodopsin, carotenoid biosynthetic genes or oxidative-stress response genes. Genomes of type strains surprisingly harbored multiple prophages, with many of them predicted to be active. Genome-mining identified biosynthetic gene clusters in type strain genomes with a majority not matching any known clusters which supports further exploratory research possibilities involving these psychrotrophic bacteria. Antibiotic susceptibility testing revealed a pattern of multidrug-resistant phenotypes that were correlated with in silico antibiotic resistance prediction. Interestingly, while typical resistance finder tools failed to detect genes responsible for antibiotic resistance, genomic prediction confirmed a multidrug-resistant profile and suggested even broader resistance than tested. Results of this study confirmed and thoroughly characterized two novel psychrotrophic Flavobacterium species, for which the names Flavobacterium flabelliforme sp. nov. and Flavobacterium geliluteum sp. nov. are proposed.
Collapse
Affiliation(s)
- Stanislava Králová
- Department of Experimental Biology, Czech Collection of Microorganisms, Faculty of Science, Masaryk University, Brno, Czechia
| | - Hans-Jürgen Busse
- Institut für Mikrobiologie, Veterinärmedizinische Universität Wien, Vienna, Austria
| | - Matěj Bezdíček
- Department of Internal Medicine - Hematology and Oncology, University Hospital Brno, Brno, Czechia.,Department of Internal Medicine - Hematology and Oncology, Masaryk University, Brno, Czechia
| | | | - Markéta Nykrýnová
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czechia
| | - Eva Staňková
- Department of Experimental Biology, Czech Collection of Microorganisms, Faculty of Science, Masaryk University, Brno, Czechia
| | - Daniel Krsek
- NRL for Diagnostic Electron Microscopy of Infectious Agents, National Institute of Public Health, Prague, Czechia
| | - Ivo Sedláček
- Department of Experimental Biology, Czech Collection of Microorganisms, Faculty of Science, Masaryk University, Brno, Czechia
| |
Collapse
|
7
|
The Role of Selected Wavelengths of Light in the Activity of Photosystem II in Gloeobacter violaceus. Int J Mol Sci 2021; 22:ijms22084021. [PMID: 33924720 PMCID: PMC8069770 DOI: 10.3390/ijms22084021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 01/03/2023] Open
Abstract
Gloeobacter violaceus is a cyanobacteria species with a lack of thylakoids, while photosynthetic antennas, i.e., phycobilisomes (PBSs), photosystem II (PSII), and I (PSI), are located in the cytoplasmic membrane. We verified the hypothesis that blue–red (BR) light supplemented with a far-red (FR), ultraviolet A (UVA), and green (G) light can affect the photosynthetic electron transport chain in PSII and explain the differences in the growth of the G. violaceus culture. The cyanobacteria were cultured under different light conditions. The largest increase in G. violaceus biomass was observed only under BR + FR and BR + G light. Moreover, the shape of the G. violaceus cells was modified by the spectrum with the addition of G light. Furthermore, it was found that both the spectral composition of light and age of the cyanobacterial culture affect the different content of phycobiliproteins in the photosynthetic antennas (PBS). Most likely, in cells grown under light conditions with the addition of FR and G light, the average antenna size increased due to the inactivation of some reaction centers in PSII. Moreover, the role of PSI and gloeorhodopsin as supplementary sources of metabolic energy in the G. violaceus growth is discussed.
Collapse
|
8
|
Sánchez O, Ferrera I, Mabrito I, Gazulla CR, Sebastián M, Auladell A, Marín-Vindas C, Cardelús C, Sanz-Sáez I, Pernice MC, Marrasé C, Sala MM, Gasol JM. Seasonal impact of grazing, viral mortality, resource availability and light on the group-specific growth rates of coastal Mediterranean bacterioplankton. Sci Rep 2020; 10:19773. [PMID: 33188261 PMCID: PMC7666142 DOI: 10.1038/s41598-020-76590-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 10/19/2020] [Indexed: 11/25/2022] Open
Abstract
Estimation of prokaryotic growth rates is critical to understand the ecological role and contribution of different microbes to marine biogeochemical cycles. However, there is a general lack of knowledge on what factors control the growth rates of different prokaryotic groups and how these vary between sites and along seasons at a given site. We carried out several manipulation experiments during the four astronomical seasons in the coastal NW Mediterranean in order to evaluate the impact of grazing, viral mortality, resource competition and light on the growth and loss rates of prokaryotes. Gross and net growth rates of different bacterioplankton groups targeted by group-specific CARD-FISH probes and infrared microscopy (for aerobic anoxygenic phototrophs, AAP), were calculated from changes in cell abundances. Maximal group-specific growth rates were achieved when both predation pressure and nutrient limitation were experimentally minimized, while only a minimal effect of viral pressure on growth rates was observed; nevertheless, the response to predation removal was more remarkable in winter, when the bacterial community was not subjected to nutrient limitation. Although all groups showed increases in their growth rates when resource competition as well as grazers and viral pressure were reduced, Alteromonadaceae consistently presented the highest rates in all seasons. The response to light availability was generally weaker than that to the other factors, but it was variable between seasons. In summer and spring, the growth rates of AAP were stimulated by light whereas the growth of the SAR11 clade (likely containing proteorhodopsin) was enhanced by light in all seasons. Overall, our results set thresholds on bacterioplankton group-specific growth and mortality rates and contribute to estimate the seasonally changing contribution of various bacterioplankton groups to the function of microbial communities. Our results also indicate that the least abundant groups display the highest growth rates, contributing to the recycling of organic matter to a much greater extent than what their abundances alone would predict.
Collapse
Affiliation(s)
- Olga Sánchez
- Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, 08193, Bellaterra, Catalunya, Spain.
| | - Isabel Ferrera
- Centro Oceanográfico de Málaga, Instituto Español de Oceanografía, 29640, Fuengirola, Málaga, Spain. .,Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, ICM-CSIC, 08003, Barcelona, Catalunya, Spain.
| | - Isabel Mabrito
- Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, 08193, Bellaterra, Catalunya, Spain
| | - Carlota R Gazulla
- Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, 08193, Bellaterra, Catalunya, Spain.,Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, ICM-CSIC, 08003, Barcelona, Catalunya, Spain
| | - Marta Sebastián
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, ICM-CSIC, 08003, Barcelona, Catalunya, Spain.,Instituto de Oceanografía y Cambio Global (IOCAG), Universidad de Las Palmas de Gran Canaria (ULPGC), Telde, 35214, Spain
| | - Adrià Auladell
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, ICM-CSIC, 08003, Barcelona, Catalunya, Spain
| | - Carolina Marín-Vindas
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, ICM-CSIC, 08003, Barcelona, Catalunya, Spain.,Escuela de Ciencias Biológicas, Universidad Nacional, Heredia, 40101, Costa Rica
| | - Clara Cardelús
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, ICM-CSIC, 08003, Barcelona, Catalunya, Spain
| | - Isabel Sanz-Sáez
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, ICM-CSIC, 08003, Barcelona, Catalunya, Spain
| | - Massimo C Pernice
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, ICM-CSIC, 08003, Barcelona, Catalunya, Spain
| | - Cèlia Marrasé
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, ICM-CSIC, 08003, Barcelona, Catalunya, Spain
| | - M Montserrat Sala
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, ICM-CSIC, 08003, Barcelona, Catalunya, Spain
| | - Josep M Gasol
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, ICM-CSIC, 08003, Barcelona, Catalunya, Spain
| |
Collapse
|
9
|
Hameed A, Lai WA, Shahina M, Stothard P, Young LS, Lin SY, Sridhar KR, Young CC. Differential visible spectral influence on carbon metabolism in heterotrophic marine flavobacteria. FEMS Microbiol Ecol 2020; 96:5710931. [PMID: 31960903 DOI: 10.1093/femsec/fiaa011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 01/20/2020] [Indexed: 12/26/2022] Open
Abstract
The visible spectrum of solar radiation is known to stimulate photoheterotrophic bacterial carbon metabolism. However, its impact on 'strictly' heterotrophic bacteria remains less explored. Here, we show that heterotrophic flavobacteria exhibit enhanced uptake and mineralization of dissolved organic carbon with increasing wavelengths of visible light, without employing any 'known' light-harvesting mechanisms. RNA sequencing identified blue light as a major constraint in the extracellular enzymatic hydrolysis of polymeric carbohydrates and acquisition of sugars, despite acting as a stimulus for inorganic carbon sequestration. In contrast, green-red and continuous full-spectrum lights activated diverse hydrolytic enzymes and sugar transporters, but obstructed inorganic carbon fixation. This 'metabolic switching' was apparent through limited nutrient uptake, suppressed light-sensitivity, oxidative stress response and promotion of inorganic carbon sequestration pathways under blue light. The visible light impact on metabolism may be of significant ecological relevance as it appears to promote cell-mediated mineralization of organic carbon in 'green-colored' chlorophyll-rich copiotrophic coastal seawater and inorganic carbon sequestration in 'blue-colored' oligotrophic open ocean. Thus, a novel regulatory role played by light on heterotrophic metabolism and a hidden potential of flavobacteria to sense and respond differentially to monochromatic lights influencing marine carbon cycling were unraveled.
Collapse
Affiliation(s)
- Asif Hameed
- Department of Soil & Environmental Sciences, College of Agriculture and Natural Resources, National Chung Hsing University, 145, XingDa Road, Taichung 40227, Taiwan
| | - Wei-An Lai
- Department of Soil & Environmental Sciences, College of Agriculture and Natural Resources, National Chung Hsing University, 145, XingDa Road, Taichung 40227, Taiwan
| | - Mariyam Shahina
- Department of Soil & Environmental Sciences, College of Agriculture and Natural Resources, National Chung Hsing University, 145, XingDa Road, Taichung 40227, Taiwan
| | - Paul Stothard
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 1427 College Plaza, Edmonton, Alberta, Canada
| | - Li-Sen Young
- Tetanti AgriBiotech Inc. No. 1, Gongyequ 10th Rd., Xitun Dist., Taichung 40755, Taiwan
| | - Shih-Yao Lin
- Department of Soil & Environmental Sciences, College of Agriculture and Natural Resources, National Chung Hsing University, 145, XingDa Road, Taichung 40227, Taiwan
| | | | - Chiu-Chung Young
- Department of Soil & Environmental Sciences, College of Agriculture and Natural Resources, National Chung Hsing University, 145, XingDa Road, Taichung 40227, Taiwan.,Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, 145, XingDa Road, Taichung 40227, Taiwan
| |
Collapse
|
10
|
Chen Q, Arents J, Schuurmans JM, Ganapathy S, de Grip WJ, Cheregi O, Funk C, Branco Dos Santos F, Hellingwerf KJ. Functional Expression of Gloeobacter Rhodopsin in PSI-Less Synechocystis sp. PCC6803. Front Bioeng Biotechnol 2019; 7:67. [PMID: 30984754 PMCID: PMC6450040 DOI: 10.3389/fbioe.2019.00067] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 03/11/2019] [Indexed: 01/30/2023] Open
Abstract
The approach of providing an oxygenic photosynthetic organism with a cyclic electron transfer system, i.e., a far-red light-driven proton pump, is widely proposed to maximize photosynthetic efficiency via expanding the absorption spectrum of photosynthetically active radiation. As a first step in this approach, Gloeobacter rhodopsin was expressed in a PSI-deletion strain of Synechocystis sp. PCC6803. Functional expression of Gloeobacter rhodopsin, in contrast to Proteorhodopsin, did not stimulate the rate of photoheterotrophic growth of this Synechocystis strain, analyzed with growth rate measurements and competition experiments. Nevertheless, analysis of oxygen uptake and—production rates of the Gloeobacter rhodopsin-expressing strains, relative to the ΔPSI control strain, confirm that the proton-pumping Gloeobacter rhodopsin provides the cells with additional capacity to generate proton motive force. Significantly, expression of the Gloeobacter rhodopsin did modulate levels of pigment formation in the transgenic strain.
Collapse
Affiliation(s)
- Que Chen
- Molecular Microbial Physiology Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands.,Center of Synthetic Biochemistry, Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jos Arents
- Molecular Microbial Physiology Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - J Merijn Schuurmans
- Aquatic Microbiology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| | - Srividya Ganapathy
- Biophysical Organic Chemistry, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
| | - Willem J de Grip
- Biophysical Organic Chemistry, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
| | | | | | - Filipe Branco Dos Santos
- Molecular Microbial Physiology Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Klaas J Hellingwerf
- Molecular Microbial Physiology Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
11
|
Srinivasan K, Buys EM. Insights into the role of bacteria in vitamin A biosynthesis: Future research opportunities. Crit Rev Food Sci Nutr 2019; 59:3211-3226. [PMID: 30638045 DOI: 10.1080/10408398.2018.1546670] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Significant efforts have been made to address the hidden hunger challenges due to iron, zinc, iodine, and vitamin A since the beginning of the 21st century. Prioritizing the vitamin A deficiency (VAD) disorders, many countries are looking for viable alternative strategies such as biofortification. One of the leading causes of VAD is the poor bioconversion of β-carotene into retinoids. This review is focused on the opportunities of bacterial biosynthesis of retinoids, in particular, through the gut microbiota. The proposed hypothesis starts with the premise that an animal can able to store and timely convert carotenoids into retinoids in the liver and intestinal tissues. This theory is experimental with many scientific insights. The syntrophic metabolism, potential crosstalk of bile acids, lipocalins and lipopolysaccharides of gut microbiota are reported to contribute significantly to the retinoid biosynthesis. The gut bacteria respond to these kinds of factors by genetic restructuring driven mainly by events like horizontal gene transfer. A phylogenetic analysis of β-carotene 15, 15'-mono (di) oxygenase enzymes among a selected group of prokaryotes and eukaryotes was carried out to validate the hypotheses. Shedding light on the probiotic strategies through non-genetically modified organism such as gut bacteria capable of synthesizing vitamin A would address the VAD disorders.
Collapse
Affiliation(s)
- K Srinivasan
- Department of Consumer and Food Sciences, University of Pretoria, Hatfield Campus, Pretoria, South Africa
| | - Elna M Buys
- Department of Consumer and Food Sciences, University of Pretoria, Hatfield Campus, Pretoria, South Africa
| |
Collapse
|
12
|
Maresca JA, Miller KJ, Keffer JL, Sabanayagam CR, Campbell BJ. Distribution and Diversity of Rhodopsin-Producing Microbes in the Chesapeake Bay. Appl Environ Microbiol 2018; 84:e00137-18. [PMID: 29703736 PMCID: PMC6007120 DOI: 10.1128/aem.00137-18] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 04/23/2018] [Indexed: 01/09/2023] Open
Abstract
Although sunlight is an abundant source of energy in surface environments, less than 0.5% of the available photons are captured by (bacterio)chlorophyll-dependent photosynthesis in plants and bacteria. Metagenomic data indicate that 30 to 60% of the bacterial genomes in some environments encode rhodopsins, retinal-based photosystems found in heterotrophs, suggesting that sunlight may provide energy for more life than previously suspected. However, quantitative data on the number of cells that produce rhodopsins in environmental systems are limited. Here, we use total internal reflection fluorescence microscopy to show that the number of free-living microbes that produce rhodopsins increases along the salinity gradient in the Chesapeake Bay. We correlate this functional data with environmental data to show that rhodopsin abundance is positively correlated with salinity and with indicators of active heterotrophy during the day. Metagenomic and metatranscriptomic data suggest that the microbial rhodopsins in the low-salinity samples are primarily found in Actinobacteria and Bacteroidetes, while those in the high-salinity samples are associated with SAR-11 type AlphaproteobacteriaIMPORTANCE Microbial rhodopsins are common light-activated ion pumps in heterotrophs, and previous work has proposed that heterotrophic microbes use them to conserve energy when organic carbon is limiting. If this hypothesis is correct, rhodopsin-producing cells should be most abundant where nutrients are most limited. Our results indicate that in the Chesapeake Bay, rhodopsin gene abundance is correlated with salinity, and functional rhodopsin production is correlated with nitrate, bacterial production, and chlorophyll a We propose that in this environment, where carbon and nitrogen are likely not limiting, heterotrophs do not need to use rhodopsins to supplement ATP synthesis. Rather, the light-generated proton motive force in nutrient-rich environments could be used to power energy-dependent membrane-associated processes, such as active transport of organic carbon and cofactors, enabling these organisms to more efficiently utilize exudates from primary producers.
Collapse
Affiliation(s)
- Julia A Maresca
- Department of Civil and Environmental Engineering, University of Delaware, Newark, Delaware, USA
| | - Kelsey J Miller
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
| | - Jessica L Keffer
- Department of Civil and Environmental Engineering, University of Delaware, Newark, Delaware, USA
| | | | - Barbara J Campbell
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, USA
| |
Collapse
|
13
|
Olson DK, Yoshizawa S, Boeuf D, Iwasaki W, DeLong EF. Proteorhodopsin variability and distribution in the North Pacific Subtropical Gyre. ISME JOURNAL 2018; 12:1047-1060. [PMID: 29476140 PMCID: PMC5864233 DOI: 10.1038/s41396-018-0074-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 11/21/2017] [Accepted: 12/05/2017] [Indexed: 11/17/2022]
Abstract
Proteorhodopsin is a light-activated retinal-containing proton pump found in many marine bacteria. These photoproteins are globally distributed in the ocean’s photic zone and are capable of generating a proton motive force across the cell membrane. We investigated the phylogenetic diversity, distribution, and abundance of proteorhodopsin encoding genes in free-living bacterioplankton in the North Pacific Subtropical Gyre, leveraging a gene catalog derived from metagenomic samples from the ocean’s surface to 1000 m depth. Proteorhodopsin genes were identified at all depths sampled, but were most abundant at depths shallower than 200 m. The majority of proteorhodopsin gene sequences (60.9%) belonged to members of the SAR11 lineage, with remaining sequences distributed among other diverse taxa. We observed variations in the conserved residues involved in ion pumping and spectral tuning, and biochemically confirmed four different proton pumping proteorhodopsin motifs, including one unique to deep-water SAR11. We also identified a new group of putative proteorhodopsins having unknown function. Our results reveal a broad organismal and unexpected depth distribution for different proteorhodopsin types, as well as substantial within-taxon variability. These data provide a framework for exploring the ecological relevance of proteorhodopsins and their spatiotemporal variation and function in heterotrophic bacteria in the open ocean.
Collapse
Affiliation(s)
- Daniel K Olson
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, Department of Oceanography, University of Hawaii, Honolulu, HI, 96822, USA
| | - Susumu Yoshizawa
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba, 277-8564, Japan
| | - Dominique Boeuf
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, Department of Oceanography, University of Hawaii, Honolulu, HI, 96822, USA
| | - Wataru Iwasaki
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba, 277-8564, Japan.,Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0032, Japan
| | - Edward F DeLong
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, Department of Oceanography, University of Hawaii, Honolulu, HI, 96822, USA.
| |
Collapse
|
14
|
Casey JR, Ferrón S, Karl DM. Light-Enhanced Microbial Organic Carbon Yield. Front Microbiol 2017; 8:2157. [PMID: 29250035 PMCID: PMC5715323 DOI: 10.3389/fmicb.2017.02157] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 10/20/2017] [Indexed: 11/30/2022] Open
Abstract
Molecular evidence for proteorhodopsin- and bacteriochlorophyll-based photoheterotrophy is widespread in oligotrophic marine microbial community metagenomes, and has been implicated in light-enhanced growth rates, substrate uptake rates, and anapleurotic carbon fixation, thus complicating the web of interactions within the ‘microbial loop.’ We quantified photoheterotrophic metabolism of the oxidized organic acid glycolate, a fast-turnover and exclusively phytoplankton-derived substrate at an oligotrophic site in the subtropical North Pacific Ocean. As expected, concentration-dependent changes in uptake rates were observed over the diel cycle, with maxima occurring at midday. Although no light-enhanced substrate uptake rates were observed, samples exposed to light altered the balance between assimilation and respiration, resulting in an approximately four-fold increase in glycolate-specific assimilation efficiency. Energy demand for such a metabolic adjustment was linearly related to light, consistent with photoheterotrophy.
Collapse
Affiliation(s)
- John R Casey
- Center for Microbial Oceanography, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, HI, United States
| | - Sara Ferrón
- Center for Microbial Oceanography, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, HI, United States
| | - David M Karl
- Center for Microbial Oceanography, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, HI, United States
| |
Collapse
|
15
|
Thomas F, Bordron P, Eveillard D, Michel G. Gene Expression Analysis of Zobellia galactanivorans during the Degradation of Algal Polysaccharides Reveals both Substrate-Specific and Shared Transcriptome-Wide Responses. Front Microbiol 2017; 8:1808. [PMID: 28983288 PMCID: PMC5613140 DOI: 10.3389/fmicb.2017.01808] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 09/05/2017] [Indexed: 11/13/2022] Open
Abstract
Flavobacteriia are recognized as key players in the marine carbon cycle, due to their ability to efficiently degrade algal polysaccharides both in the open ocean and in coastal regions. The chemical complexity of algal polysaccharides, their differences between algal groups and variations through time and space, imply that marine flavobacteria have evolved dedicated degradation mechanisms and regulation of their metabolism during interactions with algae. In the present study, we report the first transcriptome-wide gene expression analysis for an alga-associated flavobacterium during polysaccharide degradation. Zobellia galactanivorans DsijT, originally isolated from a red alga, was grown in minimal medium with either glucose (used as a reference monosaccharide) or one selected algal polysaccharide from brown (alginate, laminarin) or red algae (agar, porphyran, ι- or κ-carrageenan) as sole carbon source. Expression profiles were determined using whole-genome microarrays. Integration of genomic knowledge with the automatic building of a co-expression network allowed the experimental validation of operon-like transcription units. Differential expression analysis revealed large transcriptomic shifts depending on the carbon source. Unexpectedly, transcriptomes shared common signatures when growing on chemically divergent polysaccharides from the same algal phylum. Together with the induction of numerous transcription factors, this hints at complex regulation events that fine-tune the cell behavior during interactions with algal biomass in the marine environment. The results further highlight genes and loci that may participate in polysaccharide utilization, notably encoding Carbohydrate Active enZymes (CAZymes) and glycan binding proteins together with a number of proteins of unknown function. This constitutes a set of candidate genes potentially representing new substrate specificities. By providing an unprecedented view of global transcriptomic responses during polysaccharide utilization in an alga-associated model flavobacterium, this study expands the current knowledge on the functional role of flavobacteria in the marine carbon cycle and on their interactions with algae.
Collapse
Affiliation(s)
- François Thomas
- Sorbonne Universités, UPMC Univ Paris 06, Centre National de la Recherche Scientifique, UMR 8227, Integrative Biology of Marine Models, Station Biologique de RoscoffRoscoff, France
| | - Philippe Bordron
- Sorbonne Universités, UPMC Univ Paris 06, Centre National de la Recherche Scientifique, FR2424, Analysis and Bioinformatics for Marine Science, Station Biologique de RoscoffRoscoff, France.,Mathomics, Center for Mathematical Modeling, Universidad de ChileSantiago, Chile.,Center for Genome Regulation (Fondap 15090007), Universidad de ChileSantiago, Chile
| | - Damien Eveillard
- Université de Nantes, Laboratoire des Sciences du Numérique de Nantes, Centre National de la Recherche Scientifique, ECN, IMTANantes, France
| | - Gurvan Michel
- Sorbonne Universités, UPMC Univ Paris 06, Centre National de la Recherche Scientifique, UMR 8227, Integrative Biology of Marine Models, Station Biologique de RoscoffRoscoff, France
| |
Collapse
|
16
|
Guerrero LD, Vikram S, Makhalanyane TP, Cowan DA. Evidence of microbial rhodopsins in Antarctic Dry Valley edaphic systems. Environ Microbiol 2017; 19:3755-3767. [PMID: 28752953 DOI: 10.1111/1462-2920.13877] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 07/24/2017] [Accepted: 07/25/2017] [Indexed: 12/30/2022]
Abstract
Microorganisms able to synthesize rhodopsins have the capacity to translocate ions through their membranes, using solar energy to generate a proton motive force. Rhodopsins are the most abundant phototrophic proteins in oceanic surface waters and are key constituents in marine bacterial ecology. However, it remains unclear how rhodopsins are used in most microorganisms. Despite their abundance in marine and fresh-water systems, the presence of functional rhodopsin systems in edaphic habitats has never been reported. Here, we show the presence of several new putative H+ , Na+ and Cl+ pumping rhodopsins identified by metagenomic analysis of Antarctic desert hypolithic communities. Reconstruction of two Proteobacteria genomes harboring xanthorhodopsin-like proteins and one Bacteroidetes genome with a Na-pumping-like rhodopsin indicated that these bacteria were aerobic heterotrophs possessing the apparent capacity for the functional expression of rhodopsins. The existence of these protein systems in hypolithic bacteria expands the known role of rhodopsins to include terrestrial environments and suggests a possible predominant function as heterotrophic energy supply proteins, a feasible microbial adaptation to the harsh conditions prevalent in Antarctic edaphic systems.
Collapse
Affiliation(s)
- Leandro D Guerrero
- Centre of Microbial Ecology and Genomics, Department of Genetics, University of Pretoria, Pretoria, South Africa
| | - Surendra Vikram
- Centre of Microbial Ecology and Genomics, Department of Genetics, University of Pretoria, Pretoria, South Africa
| | - Thulani P Makhalanyane
- Centre of Microbial Ecology and Genomics, Department of Genetics, University of Pretoria, Pretoria, South Africa
| | - Don A Cowan
- Centre of Microbial Ecology and Genomics, Department of Genetics, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
17
|
Ahn JH, Kim TW, Kim TS, Joung Y, Kim SB. Flavobacterium fluminis sp. nov. to accommodate an aerobic, halotolerant and gliding flavobacterium isolated from freshwater. Int J Syst Evol Microbiol 2017; 67:3117-3121. [DOI: 10.1099/ijsem.0.002135] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Joong-Hyeon Ahn
- Department of Microbiology and Molecular Biology, Chungnam National University, 99 Daehak-Ro, Yuseong, Daejeon 34134, Republic of Korea
| | - Tae Woon Kim
- Department of Microbiology and Molecular Biology, Chungnam National University, 99 Daehak-Ro, Yuseong, Daejeon 34134, Republic of Korea
| | - Tae-Su Kim
- Department of Microbiology and Molecular Biology, Chungnam National University, 99 Daehak-Ro, Yuseong, Daejeon 34134, Republic of Korea
| | - Yochan Joung
- Department of Microbiology and Molecular Biology, Chungnam National University, 99 Daehak-Ro, Yuseong, Daejeon 34134, Republic of Korea
- Department of Biology, Inha University, Incheon 402-751, Republic of Korea
| | - Seung Bum Kim
- Department of Microbiology and Molecular Biology, Chungnam National University, 99 Daehak-Ro, Yuseong, Daejeon 34134, Republic of Korea
| |
Collapse
|
18
|
Sánchez O, Koblížek M, Gasol JM, Ferrera I. Effects of grazing, phosphorus and light on the growth rates of major bacterioplankton taxa in the coastal NW Mediterranean. ENVIRONMENTAL MICROBIOLOGY REPORTS 2017; 9:300-309. [PMID: 28401694 DOI: 10.1111/1758-2229.12535] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Estimation of growth rates is crucial to understand the ecological role of prokaryotes and their contribution to marine biogeochemical cycling. However, there are only a few estimates for individual taxa. Two top-down (grazing) and bottom-up (phosphorus (P) availability) manipulation experiments were conducted under different light regimes in the NW Mediterranean Sea. Growth rate of different phylogenetic groups, including the Bacteroidetes, Rhodobacteraceae, SAR11, Gammaproteobacteria and its subgroups Alteromonadaceae and the NOR5/OM60 clade, were estimated from changes in cell numbers. Maximal growth rates were achieved in the P-amended treatments but when comparing values between treatments (response ratios), the response to predation removal was in general larger than to P-amendment. The Alteromonadaceae displayed the highest rates in both experiments followed by the Rhodobacteraceae, but all groups largely responded to filtration and P-amendment, even the SAR11 which presented low growth rates. Comparing light and dark treatments, growth rates were on average equal or higher in the dark than in the light for all groups, except for the Rhodobacteraceae and particularly the NOR5 clade, groups that contain photoheterotrophic species. These results are useful to evaluate the potential contributions of different bacterial types to biogeochemical processes under changing environmental conditions.
Collapse
Affiliation(s)
- Olga Sánchez
- Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Catalunya, 08193, Spain
| | - Michal Koblížek
- Institute of Microbiology CAS, Center Algatech, 379 81 Třeboň, Czech Republic
| | - Josep M Gasol
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, CSIC, Barcelona, Catalunya, E08003, Spain
| | - Isabel Ferrera
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, CSIC, Barcelona, Catalunya, E08003, Spain
| |
Collapse
|
19
|
Chen Q, Arents J, Ganapathy S, de Grip WJ, Hellingwerf KJ. Functional Expression of Gloeobacter Rhodopsin inSynechocystissp. PCC6803. Photochem Photobiol 2017; 93:772-781. [DOI: 10.1111/php.12745] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 01/07/2017] [Indexed: 12/22/2022]
Affiliation(s)
- Que Chen
- Molecular Microbial Physiology; Swammerdam Institute for Life Sciences; University of Amsterdam; Amsterdam The Netherlands
| | - Jos Arents
- Molecular Microbial Physiology; Swammerdam Institute for Life Sciences; University of Amsterdam; Amsterdam The Netherlands
| | - Srividya Ganapathy
- Biophysical Organic Chemistry; Leiden Institute of Chemistry; Leiden University; Leiden The Netherlands
| | - Willem J. de Grip
- Biophysical Organic Chemistry; Leiden Institute of Chemistry; Leiden University; Leiden The Netherlands
| | - Klaas J. Hellingwerf
- Molecular Microbial Physiology; Swammerdam Institute for Life Sciences; University of Amsterdam; Amsterdam The Netherlands
| |
Collapse
|
20
|
Luria CM, Amaral-Zettler LA, Ducklow HW, Rich JJ. Seasonal Succession of Free-Living Bacterial Communities in Coastal Waters of the Western Antarctic Peninsula. Front Microbiol 2016; 7:1731. [PMID: 27857708 PMCID: PMC5093341 DOI: 10.3389/fmicb.2016.01731] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 10/17/2016] [Indexed: 01/05/2023] Open
Abstract
The marine ecosystem along the Western Antarctic Peninsula undergoes a dramatic seasonal transition every spring, from almost total darkness to almost continuous sunlight, resulting in a cascade of environmental changes, including phytoplankton blooms that support a highly productive food web. Despite having important implications for the movement of energy and materials through this ecosystem, little is known about how these changes impact bacterial succession in this region. Using 16S rRNA gene amplicon sequencing, we measured changes in free-living bacterial community composition and richness during a 9-month period that spanned winter to the end of summer. Chlorophyll a concentrations were relatively low until summer when a major phytoplankton bloom occurred, followed 3 weeks later by a high peak in bacterial production. Richness in bacterial communities varied between ~1,200 and 1,800 observed operational taxonomic units (OTUs) before the major phytoplankton bloom (out of ~43,000 sequences per sample). During peak bacterial production, OTU richness decreased to ~700 OTUs. The significant decrease in OTU richness only lasted a few weeks, after which time OTU richness increased again as bacterial production declined toward pre-bloom levels. OTU richness was negatively correlated with bacterial production and chlorophyll a concentrations. Unlike the temporal pattern in OTU richness, community composition changed from winter to spring, prior to onset of the summer phytoplankton bloom. Community composition continued to change during the phytoplankton bloom, with increased relative abundance of several taxa associated with phytoplankton blooms, particularly Polaribacter. Bacterial community composition began to revert toward pre-bloom conditions as bacterial production declined. Overall, our findings clearly demonstrate the temporal relationship between phytoplankton blooms and seasonal succession in bacterial growth and community composition. Our study highlights the importance of high-resolution time series sampling, especially during the relatively under-sampled Antarctic winter and spring, which enabled us to discover seasonal changes in bacterial community composition that preceded the summertime phytoplankton bloom.
Collapse
Affiliation(s)
- Catherine M Luria
- Department of Ecology and Evolutionary Biology, Brown University, Providence RI, USA
| | - Linda A Amaral-Zettler
- The Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods HoleMA, USA; Department of Earth, Environmental and Planetary Sciences, Brown University, ProvidenceRI, USA
| | - Hugh W Ducklow
- Department of Earth and Environmental Sciences, Lamont-Doherty Earth Observatory of Columbia University, Palisades NY, USA
| | - Jeremy J Rich
- School of Marine Sciences and Darling Marine Center, University of Maine, Walpole ME, USA
| |
Collapse
|
21
|
Marine Bacterial and Archaeal Ion-Pumping Rhodopsins: Genetic Diversity, Physiology, and Ecology. Microbiol Mol Biol Rev 2016; 80:929-54. [PMID: 27630250 DOI: 10.1128/mmbr.00003-16] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The recognition of a new family of rhodopsins in marine planktonic bacteria, proton-pumping proteorhodopsin, expanded the known phylogenetic range, environmental distribution, and sequence diversity of retinylidene photoproteins. At the time of this discovery, microbial ion-pumping rhodopsins were known solely in haloarchaea inhabiting extreme hypersaline environments. Shortly thereafter, proteorhodopsins and other light-activated energy-generating rhodopsins were recognized to be widespread among marine bacteria. The ubiquity of marine rhodopsin photosystems now challenges prior understanding of the nature and contributions of "heterotrophic" bacteria to biogeochemical carbon cycling and energy fluxes. Subsequent investigations have focused on the biophysics and biochemistry of these novel microbial rhodopsins, their distribution across the tree of life, evolutionary trajectories, and functional expression in nature. Later discoveries included the identification of proteorhodopsin genes in all three domains of life, the spectral tuning of rhodopsin variants to wavelengths prevailing in the sea, variable light-activated ion-pumping specificities among bacterial rhodopsin variants, and the widespread lateral gene transfer of biosynthetic genes for bacterial rhodopsins and their associated photopigments. Heterologous expression experiments with marine rhodopsin genes (and associated retinal chromophore genes) provided early evidence that light energy harvested by rhodopsins could be harnessed to provide biochemical energy. Importantly, some studies with native marine bacteria show that rhodopsin-containing bacteria use light to enhance growth or promote survival during starvation. We infer from the distribution of rhodopsin genes in diverse genomic contexts that different marine bacteria probably use rhodopsins to support light-dependent fitness strategies somewhere between these two extremes.
Collapse
|
22
|
Complete Genome Sequence of the Proteorhodopsin-Containing Marine Flavobacterium Dokdonia donghaensis DSW-1T, Isolated from Seawater off Dokdo in the East Sea (Sea of Korea). GENOME ANNOUNCEMENTS 2016; 4:4/4/e00804-16. [PMID: 27491981 PMCID: PMC4974333 DOI: 10.1128/genomea.00804-16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Dokdonia spp. have been used for investigating the lifestyles of proteorhodopsin-containing photoheterotrophs and for understanding marine photobiology. Here, we report the complete genome sequence of Dokdonia donghaensis DSW-1T using the PacBio sequencing platform. It should provide a valuable resource for comparative genomic studies of marine life harboring microbial rhodopsins among others.
Collapse
|
23
|
Jin HM, Jeong HI, Kim KH, Hahn Y, Madsen EL, Jeon CO. Genome-wide transcriptional responses of Alteromonas naphthalenivorans SN2 to contaminated seawater and marine tidal flat sediment. Sci Rep 2016; 6:21796. [PMID: 26887987 PMCID: PMC4757865 DOI: 10.1038/srep21796] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 02/01/2016] [Indexed: 11/09/2022] Open
Abstract
A genome-wide transcriptional analysis of Alteromonas naphthalenivorans SN2 was performed to investigate its ecophysiological behavior in contaminated tidal flats and seawater. The experimental design mimicked these habitats that either added naphthalene or pyruvate; tidal flat-naphthalene (TF-N), tidal flat-pyruvate (TF-P), seawater-naphthalene (SW-N), and seawater-pyruvate (SW-P). The transcriptional profiles clustered by habitat (TF-N/TF-P and SW-N/SW-P), rather than carbon source, suggesting that the former may exert a greater influence on genome-wide expression in strain SN2 than the latter. Metabolic mapping of cDNA reads from strain SN2 based on KEGG pathway showed that metabolic and regulatory genes associated with energy metabolism, translation, and cell motility were highly expressed in all four test conditions, probably highlighting the copiotrophic properties of strain SN2 as an opportunistic marine r-strategist. Differential gene expression analysis revealed that strain SN2 displayed specific cellular responses to environmental variables (tidal flat, seawater, naphthalene, and pyruvate) and exhibited certain ecological fitness traits -- its notable PAH degradation capability in seasonally cold tidal flat might be reflected in elevated expression of stress response and chaperone proteins, while fast growth in nitrogen-deficient and aerobic seawater probably correlated with high expression of glutamine synthetase, enzymes utilizing nitrite/nitrate, and those involved in the removal of reactive oxygen species.
Collapse
Affiliation(s)
- Hyun Mi Jin
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea.,Freshwater Bioresources Utilization Division, Nakdonggang National Institute of Biological Resources, Gyeongsangbuk-do 37242, Republic of Korea
| | - Hye Im Jeong
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Kyung Hyun Kim
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Yoonsoo Hahn
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Eugene L Madsen
- Department of Microbiology, Cornell University, Ithaca, NY 14853-8101, USA
| | - Che Ok Jeon
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| |
Collapse
|
24
|
Chen Q, van der Steen JB, Dekker HL, Ganapathy S, de Grip WJ, Hellingwerf KJ. Expression of holo-proteorhodopsin in Synechocystis sp. PCC 6803. Metab Eng 2016; 35:83-94. [PMID: 26869136 DOI: 10.1016/j.ymben.2016.02.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 01/11/2016] [Accepted: 02/01/2016] [Indexed: 01/15/2023]
Abstract
Retinal-based photosynthesis may contribute to the free energy conversion needed for growth of an organism carrying out oxygenic photosynthesis, like a cyanobacterium. After optimization, this may even enhance the overall efficiency of phototrophic growth of such organisms in sustainability applications. As a first step towards this, we here report on functional expression of the archetype proteorhodopsin in Synechocystis sp. PCC 6803. Upon use of the moderate-strength psbA2 promoter, holo-proteorhodopsin is expressed in this cyanobacterium, at a level of up to 10(5) molecules per cell, presumably in a hexameric quaternary structure, and with approximately equal distribution (on a protein-content basis) over the thylakoid and the cytoplasmic membrane fraction. These results also demonstrate that Synechocystis sp. PCC 6803 has the capacity to synthesize all-trans-retinal. Expressing a substantial amount of a heterologous opsin membrane protein causes a substantial growth retardation Synechocystis, as is clear from a strain expressing PROPS, a non-pumping mutant derivative of proteorhodopsin. Relative to this latter strain, proteorhodopsin expression, however, measurably stimulates its growth.
Collapse
Affiliation(s)
- Que Chen
- Molecular Microbial Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Jeroen B van der Steen
- Molecular Microbial Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Henk L Dekker
- Mass Spectrometry of Biomacromolecules, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Srividya Ganapathy
- Biophysical Organic Chemistry, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Willem J de Grip
- Biophysical Organic Chemistry, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Klaas J Hellingwerf
- Molecular Microbial Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
25
|
Chloroflexi CL500-11 Populations That Predominate Deep-Lake Hypolimnion Bacterioplankton Rely on Nitrogen-Rich Dissolved Organic Matter Metabolism and C1 Compound Oxidation. Appl Environ Microbiol 2015; 82:1423-32. [PMID: 26682860 DOI: 10.1128/aem.03014-15] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 12/14/2015] [Indexed: 11/20/2022] Open
Abstract
The Chloroflexi CL500-11 clade contributes a large proportion of the bacterial biomass in the oxygenated hypolimnia of deep lakes worldwide, including the world's largest freshwater system, the Laurentian Great Lakes. Traits that allow CL500-11 to thrive and its biogeochemical role in these environments are currently unknown. Here, we found that a CL500-11 population was present mostly in offshore waters along a transect in ultraoligotrophic Lake Michigan (a Laurentian Great Lake). It occurred throughout the water column in spring and only in the hypolimnion during summer stratification, contributing up to 18.1% of all cells. Genome reconstruction from metagenomic data suggested an aerobic, motile, heterotrophic lifestyle, with additional energy being gained through carboxidovory and methylovory. Comparisons to other available streamlined freshwater genomes revealed that the CL500-11 genome contained a disproportionate number of cell wall/capsule biosynthesis genes and the most diverse spectrum of genes involved in the uptake of dissolved organic matter (DOM) substrates, particularly peptides. In situ expression patterns indicated the importance of DOM uptake and protein/peptide turnover, as well as type I and type II carbon monoxide dehydrogenase and flagellar motility. Its location in the water column influenced its gene expression patterns the most. We observed increased bacteriorhodopsin gene expression and a response to oxidative stress in surface waters compared to its response in deep waters. While CL500-11 carries multiple adaptations to an oligotrophic lifestyle, its investment in motility, its large cell size, and its distribution in both oligotrophic and mesotrophic lakes indicate its ability to thrive under conditions where resources are more plentiful. Our data indicate that CL500-11 plays an important role in nitrogen-rich DOM mineralization in the extensive deep-lake hypolimnion habitat.
Collapse
|
26
|
Kwon YM, Kim S, Jung K, Kim S. Diversity and functional analysis of light-driven pumping rhodopsins in marine Flavobacteria. Microbiologyopen 2015; 5:212-23. [PMID: 26663527 PMCID: PMC4831467 DOI: 10.1002/mbo3.321] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 10/28/2015] [Accepted: 11/04/2015] [Indexed: 12/13/2022] Open
Abstract
The aims of this study are the description of diversity for proteorhodopsin (PR)-containing flavobacteria in marine environments, the finding of novel photoreceptive membrane proteins, and the elucidation of the effect of light on the growth of three rhodopsin genes containing flavobacterium. We investigated novel sodium ion rhodopsin (NaR) and halorhodopsin (HR) genes from PR-containing flavobacteria that were previously isolated from diverse aquatic sites, mainly from tidal flat sediment (62.5%). In 16 PR-containing isolates, three new types of genes were found. Among these three isolates, one (Nonlabens sp. YIK11 isolated from sediment) contained both the NaR and chloride ion rhodopsin (ClR) - HR type of gene. The sequences showed that the DTE (proton pump), NDQ (sodium ion pump) and NTQ (chloride ion pump) motifs corresponding to the D85, T89, and D96 positions in bacteriorhodopsin (BR) were well conserved. Phylogenetic analysis indicated that three NaR and one ClR grouped within the same clade, as previously reported. Illumination of cell suspensions showed the change in proton pump activity, supporting that one or more rhodopsins are functional. The qRT-PCR study revealed that three rhodopsin genes, especially NaR, are highly induced when they are incubated in the presence of light or in the absence of sufficient nutrients. The expression levels of the DTE, NDQ, and NTQ motif-containing rhodopsin genes in YIK11 correlate positively with illumination, but negatively with nutrient levels. Based on those results, we concluded that light has a positive impact on the relative expression levels of the three rhodopsin genes in the flavobacterium, Nonlabens sp. YIK11, but with no apparent positive impact on growth. Consequently, light did not stimulate the growth of YIK11 as determined by cell numbers in a nutrient-limited or -enriched medium, although it contains and induces three rhodopsins.
Collapse
Affiliation(s)
- Yong Min Kwon
- Marine Biotechnology Research CenterKorea Institute of Ocean Science & Technology787 HaeanroAnsan426‐744Korea
| | - So‐Young Kim
- Department of Life Science and Institute of Biological ScienceSogang University35 Baekbeom‐RoMapo‐GuSeoul121‐742Korea
| | - Kwang‐Hwan Jung
- Department of Life Science and Institute of Biological ScienceSogang University35 Baekbeom‐RoMapo‐GuSeoul121‐742Korea
| | - Sang‐Jin Kim
- Marine Biotechnology Research CenterKorea Institute of Ocean Science & Technology787 HaeanroAnsan426‐744Korea
- Marine Biodiversity Institute of KoreaSeocheon325‐902Korea
| |
Collapse
|
27
|
Proteorhodopsin light-enhanced growth linked to vitamin-B1 acquisition in marine Flavobacteria. ISME JOURNAL 2015; 10:1102-12. [PMID: 26574687 DOI: 10.1038/ismej.2015.196] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 09/11/2015] [Accepted: 09/24/2015] [Indexed: 01/17/2023]
Abstract
Proteorhodopsins (PR) are light-driven proton pumps widely distributed in bacterioplankton. Although they have been thoroughly studied for more than a decade, it is still unclear how the proton motive force (pmf) generated by PR is used in most organisms. Notably, very few PR-containing bacteria show growth enhancement in the light. It has been suggested that the presence of specific functions within a genome may define the different PR-driven light responses. Thus, comparing closely related organisms that respond differently to light is an ideal setup to identify the mechanisms involved in PR light-enhanced growth. Here, we analyzed the transcriptomes of three PR-harboring Flavobacteria strains of the genus Dokdonia: Dokdonia donghaensis DSW-1(T), Dokdonia MED134 and Dokdonia PRO95, grown in identical seawater medium in light and darkness. Although only DSW-1(T) and MED134 showed light-enhanced growth, all strains expressed their PR genes at least 10 times more in the light compared with dark. According to their genomes, DSW-1(T) and MED134 are vitamin-B1 auxotrophs, and their vitamin-B1 TonB-dependent transporters (TBDT), accounted for 10-18% of all pmf-dependent transcripts. In contrast, the expression of vitamin-B1 TBDT was 10 times lower in the prototroph PRO95, whereas its vitamin-B1 synthesis genes were among the highest expressed. Our data suggest that light-enhanced growth in DSW-1(T) and MED134 derives from the use of PR-generated pmf to power the uptake of vitamin-B1, essential for central carbon metabolism, including the TCA cycle. Other pmf-generating mechanisms available in darkness are probably insufficient to power transport of enough vitamin-B1 to support maximum growth of these organisms.
Collapse
|
28
|
Feng S, Powell SM, Wilson R, Bowman JP. Proteomic Insight into Functional Changes of Proteorhodopsin-Containing Bacterial Species Psychroflexus torquis under Different Illumination and Salinity Levels. J Proteome Res 2015; 14:3848-58. [DOI: 10.1021/acs.jproteome.5b00241] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shi Feng
- Food
Safety Centre, Tasmanian Institute of Agriculture, University of Tasmania, Sandy Bay, Hobart, Tasmania 7005, Australia
| | - Shane M. Powell
- Food
Safety Centre, Tasmanian Institute of Agriculture, University of Tasmania, Sandy Bay, Hobart, Tasmania 7005, Australia
| | - Richard Wilson
- Central
Science Laboratory, University of Tasmania, Sandy Bay, Hobart, Tasmania 7005, Australia
| | - John P. Bowman
- Food
Safety Centre, Tasmanian Institute of Agriculture, University of Tasmania, Sandy Bay, Hobart, Tasmania 7005, Australia
| |
Collapse
|
29
|
Courties A, Riedel T, Rapaport A, Lebaron P, Suzuki MT. Light-driven increase in carbon yield is linked to maintenance in the proteorhodopsin-containing Photobacterium angustum S14. Front Microbiol 2015. [PMID: 26217320 PMCID: PMC4498439 DOI: 10.3389/fmicb.2015.00688] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A type of photoheterotrophic bacteria contain a transmembrane light-driven proton pump called proteorhodopsins (PRs). Due to the prevalence of these organisms in the upper water column of the World's Ocean, and their potential for light-driven ATP generation, they have been suggested to significantly influence energy and matter flows in the biosphere. To date, evidence for the significance of the light-driven metabolism of PR-containing prokaryotes has been obtained by comparing growth in batch culture, under light versus dark conditions, and it appears that responses to light are linked to unfavorable conditions, which so far have not been well parameterized. We studied light responses to carbon yields of the PR-containing Photobacterium angustum S14 using continuous culture conditions and light-dark cycles. We observed significant effects of light-dark cycles compared to dark controls, as well as significant differences between samples after 12 h illumination versus 12 h darkness. However, these effects were only observed under higher cell counts and lower pH associated with higher substrate concentrations. Under these substrate levels Pirt's maintenance coefficient was higher when compared to lower substrate dark controls, and decreased under light-dark cycles. It appears that light responses by P. angustum S14 are induced by the energetic status of the cells rather than by low substrate concentrations.
Collapse
Affiliation(s)
- Alicia Courties
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire d'Océanographie Microbienne (LOMIC), Observatoire Océanologique , Banyuls-sur-Mer, France
| | - Thomas Riedel
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire d'Océanographie Microbienne (LOMIC), Observatoire Océanologique , Banyuls-sur-Mer, France
| | - Alain Rapaport
- INRA-Supagro, UMR MISTEA , Montpellier, France ; INRA-INRIA, MODEMIC Team , Sophia Antipolis, France
| | - Philippe Lebaron
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes (LBBM), Observatoire Océanologique , Banyuls-sur-Mer, France
| | - Marcelino T Suzuki
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes (LBBM), Observatoire Océanologique , Banyuls-sur-Mer, France
| |
Collapse
|
30
|
Characterization of an Unconventional Rhodopsin from the Freshwater Actinobacterium Rhodoluna lacicola. J Bacteriol 2015; 197:2704-12. [PMID: 26055118 DOI: 10.1128/jb.00386-15] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 06/04/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Rhodopsin-encoding microorganisms are common in many environments. However, knowing that rhodopsin genes are present provides little insight into how the host cells utilize light. The genome of the freshwater actinobacterium Rhodoluna lacicola encodes a rhodopsin of the uncharacterized actinorhodopsin family. We hypothesized that actinorhodopsin was a light-activated proton pump and confirmed this by heterologously expressing R. lacicola actinorhodopsin in retinal-producing Escherichia coli. However, cultures of R. lacicola did not pump protons, even though actinorhodopsin mRNA and protein were both detected. Proton pumping in R. lacicola was induced by providing exogenous retinal, suggesting that the cells lacked the retinal cofactor. We used high-performance liquid chromatography (HPLC) and oxidation of accessory pigments to confirm that R. lacicola does not synthesize retinal. These results suggest that in some organisms, the actinorhodopsin gene is constitutively expressed, but rhodopsin-based light capture may require cofactors obtained from the environment. IMPORTANCE Up to 70% of microbial genomes in some environments are predicted to encode rhodopsins. Because most microbial rhodopsins are light-activated proton pumps, the prevalence of this gene suggests that in some environments, most microorganisms respond to or utilize light energy. Actinorhodopsins were discovered in an analysis of freshwater metagenomic data and subsequently identified in freshwater actinobacterial cultures. We hypothesized that actinorhodopsin from the freshwater actinobacterium Rhodoluna lacicola was a light-activated proton pump and confirmed this by expressing actinorhodopsin in retinal-producing Escherichia coli. Proton pumping in R. lacicola was induced only after both light and retinal were provided, suggesting that the cells lacked the retinal cofactor. These results indicate that photoheterotrophy in this organism and others may require cofactors obtained from the environment.
Collapse
|
31
|
Niches of two polysaccharide-degrading Polaribacter isolates from the North Sea during a spring diatom bloom. ISME JOURNAL 2014; 9:1410-22. [PMID: 25478683 DOI: 10.1038/ismej.2014.225] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 10/06/2014] [Accepted: 10/23/2014] [Indexed: 11/08/2022]
Abstract
Members of the flavobacterial genus Polaribacter thrive in response to North Sea spring phytoplankton blooms. We analyzed two respective Polaribacter species by whole genome sequencing, comparative genomics, substrate tests and proteomics. Both can degrade algal polysaccharides but occupy distinct niches. The liquid culture isolate Polaribacter sp. strain Hel1_33_49 has a 3.0-Mbp genome with an overall peptidase:CAZyme ratio of 1.37, four putative polysaccharide utilization loci (PULs) and features proteorhodopsin, whereas the agar plate isolate Polaribacter sp. strain Hel1_85 has a 3.9-Mbp genome with an even peptidase:CAZyme ratio, eight PULs, a mannitol dehydrogenase for decomposing algal mannitol-capped polysaccharides but no proteorhodopsin. Unlike other sequenced Polaribacter species, both isolates have larger sulfatase-rich PULs, supporting earlier assumptions that Polaribacter take part in the decomposition of sulfated polysaccharides. Both strains grow on algal laminarin and the sulfated polysaccharide chondroitin sulfate. For strain Hel1_33_49, we identified by proteomics (i) a laminarin-induced PUL, (ii) chondroitin sulfate-induced CAZymes and (iii) a chondroitin-induced operon that likely enables chondroitin sulfate recognition. These and other data suggest that strain Hel1_33_49 is a planktonic flavobacterium feeding on proteins and a small subset of algal polysaccharides, while the more versatile strain Hel1_85 can decompose a broader spectrum of polysaccharides and likely associates with algae.
Collapse
|
32
|
Karl DM, Church MJ. Microbial oceanography and the Hawaii Ocean Time-series programme. Nat Rev Microbiol 2014; 12:699-713. [PMID: 25157695 DOI: 10.1038/nrmicro3333] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The Hawaii Ocean Time-series (HOT) programme has been tracking microbial and biogeochemical processes in the North Pacific Subtropical Gyre since October 1988. The near-monthly time series observations have revealed previously undocumented phenomena within a temporally dynamic ecosystem that is vulnerable to climate change. Novel microorganisms, genes and unexpected metabolic pathways have been discovered and are being integrated into our evolving ecological paradigms. Continued research, including higher-frequency observations and at-sea experimentation, will help to provide a comprehensive scientific understanding of microbial processes in the largest biome on Earth.
Collapse
Affiliation(s)
- David M Karl
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, University of Hawaii, 1950 East-West Road, Honolulu, Hawaii 96822, USA
| | - Matthew J Church
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, University of Hawaii, 1950 East-West Road, Honolulu, Hawaii 96822, USA
| |
Collapse
|
33
|
Stimulation of growth by proteorhodopsin phototrophy involves regulation of central metabolic pathways in marine planktonic bacteria. Proc Natl Acad Sci U S A 2014; 111:E3650-8. [PMID: 25136122 DOI: 10.1073/pnas.1402617111] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Proteorhodopsin (PR) is present in half of surface ocean bacterioplankton, where its light-driven proton pumping provides energy to cells. Indeed, PR promotes growth or survival in different bacteria. However, the metabolic pathways mediating the light responses remain unknown. We analyzed growth of the PR-containing Dokdonia sp. MED134 (where light-stimulated growth had been found) in seawater with low concentrations of mixed [yeast extract and peptone (YEP)] or single (alanine, Ala) carbon compounds as models for rich and poor environments. We discovered changes in gene expression revealing a tightly regulated shift in central metabolic pathways between light and dark conditions. Bacteria showed relatively stronger light responses in Ala compared with YEP. Notably, carbon acquisition pathways shifted toward anaplerotic CO2 fixation in the light, contributing 31 ± 8% and 24 ± 6% of the carbon incorporated into biomass in Ala and YEP, respectively. Thus, MED134 was a facultative double mixotroph, i.e., photo- and chemotrophic for its energy source and using both bicarbonate and organic matter as carbon sources. Unexpectedly, relative expression of the glyoxylate shunt genes (isocitrate lyase and malate synthase) was >300-fold higher in the light--but only in Ala--contributing a more efficient use of carbon from organic compounds. We explored these findings in metagenomes and metatranscriptomes and observed similar prevalence of the glyoxylate shunt compared with PR genes and highest expression of the isocitrate lyase gene coinciding with highest solar irradiance. Thus, regulatory interactions between dissolved organic carbon quality and central metabolic pathways critically determine the fitness of surface ocean bacteria engaging in PR phototrophy.
Collapse
|
34
|
The sodium pumping NADH:quinone oxidoreductase (Na⁺-NQR), a unique redox-driven ion pump. J Bioenerg Biomembr 2014; 46:289-98. [PMID: 25052842 DOI: 10.1007/s10863-014-9565-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Accepted: 07/03/2014] [Indexed: 12/15/2022]
Abstract
The Na(+)-translocating NADH:quinone oxidoreductase (Na(+)-NQR) is a unique Na(+) pumping respiratory complex found only in prokaryotes, that plays a key role in the metabolism of marine and pathogenic bacteria, including Vibrio cholerae and other human pathogens. Na(+)-NQR is the main entrance for reducing equivalents into the respiratory chain of these bacteria, catalyzing the oxidation of NADH and the reduction of quinone, the free energy of this redox reaction drives the selective translocation of Na(+) across the cell membrane, which energizes key cellular processes. In this review we summarize the unique properties of Na(+)-NQR in terms of its redox cofactor composition, electron transfer reactions and a possible mechanism of coupling and pumping.
Collapse
|
35
|
Complete Genome Sequence of Winogradskyella sp. Strain PG-2, a Proteorhodopsin-Containing Marine Flavobacterium. GENOME ANNOUNCEMENTS 2014; 2:2/3/e00490-14. [PMID: 24874677 PMCID: PMC4038882 DOI: 10.1128/genomea.00490-14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Winogradskyella sp. strain PG-2 is a marine flavobacterium isolated from surface seawater. This organism contains proteorhodopsin, which can convert light energy into available forms of biochemical energy. Here, we present its complete genome sequence and annotation, which provide further insights into the life strategy of proteorhodopsin-mediated phototrophy in the ocean.
Collapse
|
36
|
Functional characterization of flavobacteria rhodopsins reveals a unique class of light-driven chloride pump in bacteria. Proc Natl Acad Sci U S A 2014; 111:6732-7. [PMID: 24706784 DOI: 10.1073/pnas.1403051111] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Light-activated, ion-pumping rhodopsins are broadly distributed among many different bacteria and archaea inhabiting the photic zone of aquatic environments. Bacterial proton- or sodium-translocating rhodopsins can convert light energy into a chemiosmotic force that can be converted into cellular biochemical energy, and thus represent a widespread alternative form of photoheterotrophy. Here we report that the genome of the marine flavobacterium Nonlabens marinus S1-08(T) encodes three different types of rhodopsins: Nonlabens marinus rhodopsin 1 (NM-R1), Nonlabens marinus rhodopsin 2 (NM-R2), and Nonlabens marinus rhodopsin 3 (NM-R3). Our functional analysis demonstrated that NM-R1 and NM-R2 are light-driven outward-translocating H(+) and Na(+) pumps, respectively. Functional analyses further revealed that the light-activated NM-R3 rhodopsin pumps Cl(-) ions into the cell, representing the first chloride-pumping rhodopsin uncovered in a marine bacterium. Phylogenetic analysis revealed that NM-R3 belongs to a distinct phylogenetic lineage quite distant from archaeal inward Cl(-)-pumping rhodopsins like halorhodopsin, suggesting that different types of chloride-pumping rhodopsins have evolved independently within marine bacterial lineages. Taken together, our data suggest that similar to haloarchaea, a considerable variety of rhodopsin types with different ion specificities have evolved in marine bacteria, with individual marine strains containing as many as three functionally different rhodopsins.
Collapse
|
37
|
Draft Genome Sequence of the Gammaproteobacterial Strain MOLA455, a Representative of a Ubiquitous Proteorhodopsin-Producing Group in the Ocean. GENOME ANNOUNCEMENTS 2014; 2:2/1/e01203-13. [PMID: 24482511 PMCID: PMC3907726 DOI: 10.1128/genomea.01203-13] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Strain MOLA455 is a marine gammaproteobacterium isolated from the bay of Banyuls-sur-Mer, France. Here, we present its genome sequence and annotation. Genome analysis revealed the presence of genes associated with a possibly photoheterotrophic lifestyle that uses a proteorhodopsin protein.
Collapse
|
38
|
Genome Sequence of Strain MOLA814, a Proteorhodopsin-Containing Representative of the Betaproteobacteria Common in the Ocean. GENOME ANNOUNCEMENTS 2013; 1:1/6/e01062-13. [PMID: 24356832 PMCID: PMC3868856 DOI: 10.1128/genomea.01062-13] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Strain MOLA814 is a marine betaproteobacterium that was isolated from seawater in the Beaufort Sea. Here, we present its genome sequence and annotation. Genome analysis revealed the presence of a proteorhodopsin-encoding sequence together with its retinal-producing pathway, indicating that this strain might generate energy by using light.
Collapse
|
39
|
Light-stimulated growth of proteorhodopsin-bearing sea-ice psychrophile Psychroflexus torquis is salinity dependent. ISME JOURNAL 2013; 7:2206-13. [PMID: 23788334 PMCID: PMC3806269 DOI: 10.1038/ismej.2013.97] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 03/15/2013] [Accepted: 05/16/2013] [Indexed: 12/27/2022]
Abstract
Proteorhodopsins (PRs) are commonly found in marine prokaryotes and allow microbes to use light as an energy source. In recent studies, it was reported that PR stimulates growth and survival under nutrient-limited conditions. In this study, we tested the effect of nutrient and salinity stress on the extremely psychrophilic sea-ice bacterial species Psychroflexus torquis, which possesses PR. We demonstrated for the first time that light-stimulated growth occurs under conditions of salinity stress rather than nutrient limitation and that elevated salinity is related to increased growth yields, PR levels and associated proton-pumping activity. PR abundance in P. torquis also is post-transcriptionally regulated by both light and salinity and thus could represent an adaptation to its sea-ice habitat. Our findings extend the existing paradigm that light provides an energy source for marine prokaryotes under stress conditions other than nutrient limitation.
Collapse
|
40
|
Kwon SK, Kim BK, Song JY, Kwak MJ, Lee CH, Yoon JH, Oh TK, Kim JF. Genomic makeup of the marine flavobacterium Nonlabens (Donghaeana) dokdonensis and identification of a novel class of rhodopsins. Genome Biol Evol 2013; 5:187-99. [PMID: 23292138 PMCID: PMC3595038 DOI: 10.1093/gbe/evs134] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Rhodopsin-containing marine microbes such as those in the class Flavobacteriia play a pivotal role in the biogeochemical cycle of the euphotic zone (Fuhrman JA, Schwalbach MS, Stingl U. 2008. Proteorhodopsins: an array of physiological roles? Nat Rev Microbiol. 6:488–494). Deciphering the genome information of flavobacteria and accessing the diversity and ecological impact of microbial rhodopsins are important in understanding and preserving the global ecosystems. The genome sequence of the orange-pigmented marine flavobacterium Nonlabens dokdonensis (basonym: Donghaeana dokdonensis) DSW-6 was determined. As a marine photoheterotroph, DSW-6 has written in its genome physiological features that allow survival in the oligotrophic environments. The sequence analysis also uncovered a gene encoding an unexpected type of microbial rhodopsin containing a unique motif in addition to a proteorhodopsin gene and a number of photolyase or cryptochrome genes. Homologs of the novel rhodopsin gene were found in other flavobacteria, alphaproteobacteria, a species of Cytophagia, a deinococcus, and even a eukaryote diatom. They all contain the characteristic NQ motif and form a phylogenetically distinct group. Expression analysis of this rhodopsin gene in DSW-6 indicated that it is induced at high NaCl concentrations, as well as in the presence of light and the absence of nutrients. Genomic and metagenomic surveys demonstrate the diversity of the NQ rhodopsins in nature and the prevalent occurrence of the encoding genes among microbial communities inhabiting hypersaline niches, suggesting its involvement in sodium metabolism and the sodium-adapted lifestyle.
Collapse
Affiliation(s)
- Soon-Kyeong Kwon
- Systems and Synthetic Biology Research Center, Division of Biosystems Research, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon, Korea
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Brown LS. Eubacterial rhodopsins - unique photosensors and diverse ion pumps. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1837:553-61. [PMID: 23748216 DOI: 10.1016/j.bbabio.2013.05.006] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 05/27/2013] [Accepted: 05/29/2013] [Indexed: 10/26/2022]
Abstract
Since the discovery of proteorhodopsins, the ubiquitous marine light-driven proton pumps of eubacteria, a large number of other eubacterial rhodopsins with diverse structures and functions have been characterized. Here, we review the body of knowledge accumulated on the four major groups of eubacterial rhodopsins, with the focus on their biophysical characterization. We discuss advances and controversies on the unique eubacterial sensory rhodopsins (as represented by Anabaena sensory rhodopsin), proton-pumping proteorhodopsins and xanthorhodopsins, as well as novel non-proton ion pumps. This article is part of a Special Issue entitled: Retinal Proteins - You can teach an old dog new tricks.
Collapse
Affiliation(s)
- Leonid S Brown
- Department of Physics and Biophysics Interdepartmental Group, University of Guelph, Ontario N1G 2W1, Canada.
| |
Collapse
|
42
|
Zhu W, Lan Y, Lou X, Han N, Ran T, Xu L, Xu D, Wang WW. Isolation of proteorhodopsin-bearing bacterium JL-3 from fresh water and characterization of the proteorhodopsin. FEMS Microbiol Lett 2013; 344:10-7. [PMID: 23551202 DOI: 10.1111/1574-6968.12144] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 03/26/2013] [Accepted: 03/29/2013] [Indexed: 11/30/2022] Open
Abstract
Proteorhodopsins (PRs), light-driven proton pumps, constitute the largest family of the microbial rhodopsins. PRs are widely distributed in the oceanic environment and freshwater, but no bacteria with PRs have been isolated from freshwater so far. To facilitate isolation of the bacteria with PR genes, we constructed a vector system that can be used to clone potential PR genes and render color changes when overexpressed in Escherichia coli. Using this method, we successfully isolated a strain with PR gene from freshwater and identified it as Exiguobacterium sp. JL-3. The full length PR gene was then cloned using the SEFA PCR method. Protein sequence alignment showed that JL-3_PR shares high sequence identity (84-89%) with the PRs from Exiguobacterium strains, but low sequence identity (< 38%) with other PRs. Surprisingly, we could not detect any proton-pumping activity in the native JL-3 cells and protoplasts, but the recombinant JL-3_PR do pump protons when overexpressed in E. coli. Sequence analysis further revealed that the PRs from Exiguobacterium had an unusual lysine as the proton donor instead of the typical acidic residue. These data suggest that JL-3_PR is a sensory PR rather than a proton pump.
Collapse
Affiliation(s)
- Wenjun Zhu
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Inoue K, Ono H, Abe-Yoshizumi R, Yoshizawa S, Ito H, Kogure K, Kandori H. A light-driven sodium ion pump in marine bacteria. Nat Commun 2013; 4:1678. [DOI: 10.1038/ncomms2689] [Citation(s) in RCA: 291] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 03/01/2013] [Indexed: 11/09/2022] Open
|
44
|
Kirchman DL, Hanson TE. Bioenergetics of photoheterotrophic bacteria in the oceans. ENVIRONMENTAL MICROBIOLOGY REPORTS 2013; 5:188-199. [PMID: 23584962 DOI: 10.1111/j.1758-2229.2012.00367.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 06/26/2012] [Accepted: 06/28/2012] [Indexed: 06/02/2023]
Abstract
Photoheterotrophic microbes, such as proteorhodopsin (PR)-based phototrophic (PRP) and aerobic anoxygenic phototrophic (AAP) bacteria, are well known to be abundant in the oceans, potentially playing unique roles in biogeochemical cycles. However, the contribution of phototrophy to the energy requirements of these bacteria has not been quantitatively examined to date. To better understand the implications of photoheterophy in the oceans, we calculated energy benefits and costs of phototrophy and compared net benefits with maintenance costs. Benefits depend on the number of photosynthetic units (PSUs), absorption cross-section area of each PSU as function of wavelength, the in situ light quality, and the energy yield per absorbed photon. For costs we considered the energy required for the synthesis of pigments, amino acids and proteins in each PSU. Our calculations indicate that AAP bacteria harvest more light energy than do PRP bacteria, but the costs of phototrophy are much higher for AAP bacteria. Still, the net energy gained by AAP bacteria is often sufficient to meet maintenance costs, while that is not the case for PRP bacteria except with high light intensities and large numbers of proteorhodopsin molecules per cell. The low costs and simplicity of PR-based phototrophy explain the high abundance of proteorhodopsin genes in the oceans. However, even for AAP bacteria, the net energy yield of phototrophy is apparently too low to influence the distribution of photoheterotrophic bacteria among various marine systems.
Collapse
Affiliation(s)
- David L Kirchman
- School of Marine Science and Policy, University of Delaware, Lewes, DE 19958, USA.
| | | |
Collapse
|
45
|
Riedel T, Gómez-Consarnau L, Tomasch J, Martin M, Jarek M, González JM, Spring S, Rohlfs M, Brinkhoff T, Cypionka H, Göker M, Fiebig A, Klein J, Goesmann A, Fuhrman JA, Wagner-Döbler I. Genomics and physiology of a marine flavobacterium encoding a proteorhodopsin and a xanthorhodopsin-like protein. PLoS One 2013; 8:e57487. [PMID: 23526944 PMCID: PMC3587595 DOI: 10.1371/journal.pone.0057487] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 01/22/2013] [Indexed: 01/10/2023] Open
Abstract
Proteorhodopsin (PR) photoheterotrophy in the marine flavobacterium Dokdonia sp. PRO95 has previously been investigated, showing no growth stimulation in the light at intermediate carbon concentrations. Here we report the genome sequence of strain PRO95 and compare it to two other PR encoding Dokdonia genomes: that of strain 4H-3-7-5 which shows the most similar genome, and that of strain MED134 which grows better in the light under oligotrophic conditions. Our genome analysis revealed that the PRO95 genome as well as the 4H-3-7-5 genome encode a protein related to xanthorhodopsins. The genomic environment and phylogenetic distribution of this gene suggest that it may have frequently been recruited by lateral gene transfer. Expression analyses by RT-PCR and direct mRNA-sequencing showed that both rhodopsins and the complete β-carotene pathway necessary for retinal production are transcribed in PRO95. Proton translocation measurements showed enhanced proton pump activity in response to light, supporting that one or both rhodopsins are functional. Genomic information and carbon source respiration data were used to develop a defined cultivation medium for PRO95, but reproducible growth always required small amounts of yeast extract. Although PRO95 contains and expresses two rhodopsin genes, light did not stimulate its growth as determined by cell numbers in a nutrient poor seawater medium that mimics its natural environment, confirming previous experiments at intermediate carbon concentrations. Starvation or stress conditions might be needed to observe the physiological effect of light induced energy acquisition.
Collapse
Affiliation(s)
- Thomas Riedel
- Helmholtz-Centre for Infection Research, Braunschweig, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Akram N, Palovaara J, Forsberg J, Lindh MV, Milton DL, Luo H, González JM, Pinhassi J. Regulation of proteorhodopsin gene expression by nutrient limitation in the marine bacterium Vibrio sp. AND4. Environ Microbiol 2013; 15:1400-15. [PMID: 23379752 DOI: 10.1111/1462-2920.12085] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 01/08/2013] [Indexed: 01/21/2023]
Abstract
Proteorhodopsin (PR), a ubiquitous membrane photoprotein in marine environments, acts as a light-driven proton pump and can provide energy for bacterial cellular metabolism. However, knowledge of factors that regulate PR gene expression in different bacteria remains strongly limited. Here, experiments with Vibrio sp. AND4 showed that PR phototrophy promoted survival only in cells from stationary phase and not in actively growing cells. PR gene expression was tightly regulated, with very low values in exponential phase, a pronounced peak at the exponential/stationary phase intersection, and a marked decline in stationary phase. Thus, PR gene expression at the entry into stationary phase preceded, and could therefore largely explain, the stationary phase light-induced survival response in AND4. Further experiments revealed nutrient limitation, not light exposure, regulated this differential PR expression. Screening of available marine vibrios showed that the PR gene, and thus the potential for PR phototrophy, is found in at least three different clusters in the genus Vibrio. In an ecological context, our findings suggest that some PR-containing bacteria adapted to the exploitation of nutrient-rich micro-environments rely on a phase of relatively slowly declining resources to mount a cellular response preparing them for adverse conditions dispersed in the water column.
Collapse
Affiliation(s)
- Neelam Akram
- Centre for Ecology and Evolution in Microbial model Systems - EEMiS, Linnaeus University, SE-39182, Kalmar, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Fernández-Gómez B, Richter M, Schüler M, Pinhassi J, Acinas SG, González JM, Pedrós-Alió C. Ecology of marine Bacteroidetes: a comparative genomics approach. ISME JOURNAL 2013; 7:1026-37. [PMID: 23303374 DOI: 10.1038/ismej.2012.169] [Citation(s) in RCA: 431] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bacteroidetes are commonly assumed to be specialized in degrading high molecular weight (HMW) compounds and to have a preference for growth attached to particles, surfaces or algal cells. The first sequenced genomes of marine Bacteroidetes seemed to confirm this assumption. Many more genomes have been sequenced recently. Here, a comparative analysis of marine Bacteroidetes genomes revealed a life strategy different from those of other important phyla of marine bacterioplankton such as Cyanobacteria and Proteobacteria. Bacteroidetes have many adaptations to grow attached to particles, have the capacity to degrade polymers, including a large number of peptidases, glycoside hydrolases (GHs), glycosyl transferases, adhesion proteins, as well as the genes for gliding motility. Several of the polymer degradation genes are located in close association with genes for TonB-dependent receptors and transducers, suggesting an integrated regulation of adhesion and degradation of polymers. This confirmed the role of this abundant group of marine bacteria as degraders of particulate matter. Marine Bacteroidetes had a significantly larger number of proteases than GHs, while non-marine Bacteroidetes had equal numbers of both. Proteorhodopsin containing Bacteroidetes shared two characteristics: small genome size and a higher number of genes involved in CO2 fixation per Mb. The latter may be important in order to survive when floating freely in the illuminated, but nutrient-poor, ocean surface.
Collapse
Affiliation(s)
- Beatriz Fernández-Gómez
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
48
|
Williams TJ, Wilkins D, Long E, Evans F, DeMaere MZ, Raftery MJ, Cavicchioli R. The role of planktonic Flavobacteria in processing algal organic matter in coastal East Antarctica revealed using metagenomics and metaproteomics. Environ Microbiol 2012; 15:1302-17. [PMID: 23126454 DOI: 10.1111/1462-2920.12017] [Citation(s) in RCA: 175] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 09/20/2012] [Accepted: 09/26/2012] [Indexed: 11/27/2022]
Abstract
Heterotrophic marine bacteria play key roles in remineralizing organic matter generated from primary production. However, far more is known about which groups are dominant than about the cellular processes they perform in order to become dominant. In the Southern Ocean, eukaryotic phytoplankton are the dominant primary producers. In this study we used metagenomics and metaproteomics to determine how the dominant bacterial and archaeal plankton processed bloom material. We examined the microbial community composition in 14 metagenomes and found that the relative abundance of Flavobacteria (dominated by Polaribacter) was positively correlated with chlorophyll a fluorescence, and the relative abundance of SAR11 was inversely correlated with both fluorescence and Flavobacteria abundance. By performing metaproteomics on the sample with the highest relative abundance of Flavobacteria (Newcomb Bay, East Antarctica) we defined how Flavobacteria attach to and degrade diverse complex organic material, how they make labile compounds available to Alphaproteobacteria (especially SAR11) and Gammaproteobacteria, and how these heterotrophic Proteobacteria target and utilize these nutrients. The presence of methylotrophic proteins for archaea and bacteria also indicated the importance of metabolic specialists. Overall, the study provides functional data for the microbial mechanisms of nutrient cycling at the surface of the coastal Southern Ocean.
Collapse
Affiliation(s)
- Timothy J Williams
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | | | | | | | | | | | | |
Collapse
|
49
|
Expression patterns reveal niche diversification in a marine microbial assemblage. ISME JOURNAL 2012; 7:281-98. [PMID: 22931830 DOI: 10.1038/ismej.2012.96] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Resolving the ecological niches of coexisting marine microbial taxa is challenging due to the high species richness of microbial communities and the apparent functional redundancy in bacterial genomes and metagenomes. Here, we generated over 11 million Illumina reads of protein-encoding transcripts collected from well-mixed southeastern US coastal waters to characterize gene expression patterns distinguishing the ecological roles of hundreds of microbial taxa sharing the same environment. The taxa with highest in situ growth rates (based on relative abundance of ribosomal protein transcripts) were typically not the greatest contributors to community transcription, suggesting strong top-down ecological control, and their diverse transcriptomes indicated roles as metabolic generalists. The taxa with low in situ growth rates typically had low diversity transcriptomes dominated by specialized metabolisms. By identifying protein-encoding genes with atypically high expression for their level of conservation, unique functional roles of community members emerged related to substrate use (such as complex carbohydrates, fatty acids, methanesulfonate, taurine, tartrate, ectoine), alternative energy-conservation strategies (proteorhodopsin, AAnP, V-type pyrophosphatases, sulfur oxidation, hydrogen oxidation) and mechanisms for negotiating a heterogeneous environment (flagellar motility, gliding motility, adhesion strategies). On average, the heterotrophic bacterioplankton dedicated 7% of their transcriptomes to obtaining energy by non-heterotrophic means. This deep sequencing of a coastal bacterioplankton transcriptome provides the most highly resolved view of bacterioplankton niche dimensions yet available, uncovering a spectrum of unrecognized ecological strategies.
Collapse
|
50
|
Wang Z, O'Shaughnessy TJ, Soto CM, Rahbar AM, Robertson KL, Lebedev N, Vora GJ. Function and regulation of Vibrio campbellii proteorhodopsin: acquired phototrophy in a classical organoheterotroph. PLoS One 2012; 7:e38749. [PMID: 22741028 PMCID: PMC3380642 DOI: 10.1371/journal.pone.0038749] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 05/12/2012] [Indexed: 11/20/2022] Open
Abstract
Proteorhodopsins (PRs) are retinal-binding photoproteins that mediate light-driven proton translocation across prokaryotic cell membranes. Despite their abundance, wide distribution and contribution to the bioenergy budget of the marine photic zone, an understanding of PR function and physiological significance in situ has been hampered as the vast majority of PRs studied to date are from unculturable bacteria or culturable species that lack the tools for genetic manipulation. In this study, we describe the presence and function of a horizontally acquired PR and retinal biosynthesis gene cluster in the culturable and genetically tractable bioluminescent marine bacterium Vibrio campbellii. Pigmentation analysis, absorption spectroscopy and photoinduction assays using a heterologous over-expression system established the V. campbellii PR as a functional green light absorbing proton pump. In situ analyses comparing PR expression and function in wild type (WT) V. campbellii with an isogenic ΔpR deletion mutant revealed a marked absence of PR membrane localization, pigmentation and light-induced proton pumping in the ΔpR mutant. Comparative photoinduction assays demonstrated the distinct upregulation of pR expression in the presence of light and PR-mediated photophosphorylation in WT cells that resulted in the enhancement of cellular survival during respiratory stress. In addition, we demonstrate that the master regulator of adaptive stress response and stationary phase, RpoS1, positively regulates pR expression and PR holoprotein pigmentation. Taken together, the results demonstrate facultative phototrophy in a classical marine organoheterotrophic Vibrio species and provide a salient example of how this organism has exploited lateral gene transfer to further its adaptation to the photic zone.
Collapse
Affiliation(s)
- Zheng Wang
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, Washington, D.C., United States of America
| | - Thomas J. O'Shaughnessy
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, Washington, D.C., United States of America
| | - Carissa M. Soto
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, Washington, D.C., United States of America
| | - Amir M. Rahbar
- National Cancer Institute, Bethesda, Maryland, United States of America
| | - Kelly L. Robertson
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, Washington, D.C., United States of America
| | - Nikolai Lebedev
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, Washington, D.C., United States of America
| | - Gary J. Vora
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, Washington, D.C., United States of America
- * E-mail:
| |
Collapse
|