1
|
Schickele A, Debeljak P, Ayata SD, Bittner L, Pelletier E, Guidi L, Irisson JO. The genomic potential of photosynthesis in piconanoplankton is functionally redundant but taxonomically structured at a global scale. SCIENCE ADVANCES 2024; 10:eadl0534. [PMID: 39151014 PMCID: PMC11328907 DOI: 10.1126/sciadv.adl0534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 07/11/2024] [Indexed: 08/18/2024]
Abstract
Carbon fixation is a key metabolic function shaping marine life, but the underlying taxonomic and functional diversity involved is only partially understood. Using metagenomic resources targeted at marine piconanoplankton, we provide a reproducible machine learning framework to derive the potential biogeography of genomic functions through the multi-output regression of gene read counts on environmental climatologies. Leveraging the Marine Atlas of Tara Oceans Unigenes, we investigate the genomic potential of primary production in the global ocean. The latter is performed by ribulose-1,5-bisphosphate carboxylase/oxygenase (RUBISCO) and is often associated with carbon concentration mechanisms in piconanoplankton, major marine unicellular photosynthetic organisms. We show that the genomic potential supporting C4 enzymes and RUBISCO exhibits strong functional redundancy and important affinity toward tropical oligotrophic waters. This redundancy is taxonomically structured by the dominance of Mamiellophyceae and Prymnesiophyceae in mid and high latitudes. These findings enhance our understanding of the relationship between functional and taxonomic diversity of microorganisms and environmental drivers of key biogeochemical cycles.
Collapse
Affiliation(s)
- Alexandre Schickele
- Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche, LOV, F-06230 Villefranche-sur-Mer, France
| | - Pavla Debeljak
- Sorbonne Université, Muséum National d'Histoire Naturelle, CNRS, EPHE, Université des Antilles, Institut de Systématique, Evolution, Biodiversité (ISYEB), F-75005, Paris, France
- SupBiotech, Villejuif, France
| | - Sakina-Dorothée Ayata
- Sorbonne Université, CNRS, IRD, MNHN, Laboratoire d'Océanographie et du Climat, Institut Pierre Simon Laplace, LOCEAN-IPSL, F-75005 Paris, France
- Institut Universitaire de France, Paris, France
| | - Lucie Bittner
- Sorbonne Université, Muséum National d'Histoire Naturelle, CNRS, EPHE, Université des Antilles, Institut de Systématique, Evolution, Biodiversité (ISYEB), F-75005, Paris, France
- Institut Universitaire de France, Paris, France
| | - Eric Pelletier
- Metabolic Genomics, Genoscope, Institut de Biologie François Jacob, CEA, CNRS, Université d'Evry, Université Paris Saclay, 91000 Evry, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, Paris, France
| | - Lionel Guidi
- Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche, LOV, F-06230 Villefranche-sur-Mer, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, Paris, France
| | - Jean-Olivier Irisson
- Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche, LOV, F-06230 Villefranche-sur-Mer, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, Paris, France
| |
Collapse
|
2
|
Sands E, Davies S, Puxty RJ, Vergé V, Bouget FY, Scanlan DJ, Carré IA. Genetic and physiological responses to light quality in a deep ocean ecotype of Ostreococcus, an ecologically important photosynthetic picoeukaryote. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6773-6789. [PMID: 37658791 PMCID: PMC10662239 DOI: 10.1093/jxb/erad347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 08/31/2023] [Indexed: 09/05/2023]
Abstract
Phytoplankton are exposed to dramatic variations in light quality when cells are carried by upwelling or downwelling currents or encounter sediment. We investigated the potential impact of light quality changes in Ostreococcus, a key marine photosynthetic picoeukaryote, by analysing changes in its transcriptome, pigment content, and photophysiology after acclimation to monochromatic red, green, or blue light. The clade B species RCC809, isolated from the deep euphotic zone of the tropical Atlantic Ocean, responded to blue light by accelerating cell division at the expense of storage reserves and by increasing the relative level of blue-light-absorbing pigments. It responded to red and green light by increasing its potential for photoprotection. In contrast, the clade A species OTTH0595, which originated from a shallow water environment, showed no difference in photosynthetic properties and minor differences in carotenoid contents between light qualities. This was associated with the loss of candidate light-quality responsive promoter motifs identified in RCC809 genes. These results demonstrate that light quality can have a major influence on the physiology of eukaryotic phytoplankton and suggest that different light quality environments can drive selection for diverse patterns of responsiveness and environmental niche partitioning.
Collapse
Affiliation(s)
- Elizabeth Sands
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Sian Davies
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | | | - Valerie Vergé
- Université Pierre et Marie Curie, Paris 06, UMR 7621, Laboratoire d’Océanographie Microbienne, Observatoire Océanologique, Banyuls sur Mer, France
| | - François-Yves Bouget
- Université Pierre et Marie Curie, Paris 06, UMR 7621, Laboratoire d’Océanographie Microbienne, Observatoire Océanologique, Banyuls sur Mer, France
| | | | | |
Collapse
|
3
|
Li S, Peng H, Shi X, Gu Q, Shen Z, Wang M. Significant Effects of Associated Microorganisms on the Community of Photosynthetic Picoeukaryotes. MICROBIAL ECOLOGY 2023; 85:1164-1178. [PMID: 35355086 DOI: 10.1007/s00248-022-02001-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/17/2022] [Indexed: 05/10/2023]
Abstract
Photosynthetic picoeukaryotes (PPEs) form associations with other microorganisms. However, whether and how the associated microbes affect PPE communities remain unknown. We used flow cytometric cell sorting combined with parallel high-throughput sequencing of the 18S and 16S rRNA genes to simultaneously investigate PPEs and their associated microbial communities in the Yangtze-connected Lake Dongting. The lake harbors a great diversity of PPEs. PPE communities exhibited significant temporal rather than spatial variations. Two distinct PPE taxa affiliated with Discostella nipponica and Poterioochromonas malhamensis were dominant during winter/spring and summer, respectively. Parallel high-throughput sequencing revealed a great diversity of associated bacteria and non-pigmented eukaryotes (NPEs) in PPEs sorts. Proteobacteria, Actinobacteria, Bacteroidetes, and Cyanobacteria among the associated bacteria and fungi among the associated NPEs were dominant. PPEs were more apparently associated with bacteria than with NPEs. The co-occurrence network of PPEs and associated microbes formed five major modules, which exhibited distinct temporal patterns, being specific to a certain period. Variations in PPEs communities were significantly correlated with both environmental factors and associated microbial communities. In variation partitioning analysis, the associated bacteria explained the greatest variations in PPE communities, and associated bacteria and NPEs co-explained a large portion of environmental effects on PPE communities. Our results highlight the significance of associated microbes in shaping PPE communities.
Collapse
Affiliation(s)
- Shengnan Li
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, 36 Lushan Road, Yuelu District, Changsha, 410081, China.
- Hunan Institute of Agro-Environment and Ecology, Hunan Academy of Agricultural Sciences, Changsha, 410125, China.
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China.
| | - Hua Peng
- Hunan Institute of Agro-Environment and Ecology, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
| | - Xiaoli Shi
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Qianhong Gu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, 36 Lushan Road, Yuelu District, Changsha, 410081, China
| | - Zhongyuan Shen
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, 36 Lushan Road, Yuelu District, Changsha, 410081, China
| | - Min Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, 36 Lushan Road, Yuelu District, Changsha, 410081, China
| |
Collapse
|
4
|
Edwards KF, Li Q, McBeain KA, Schvarcz CR, Steward GF. Trophic strategies explain the ocean niches of small eukaryotic phytoplankton. Proc Biol Sci 2023; 290:20222021. [PMID: 36695036 PMCID: PMC9874276 DOI: 10.1098/rspb.2022.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
A large fraction of marine primary production is performed by diverse small protists, and many of these phytoplankton are phagotrophic mixotrophs that vary widely in their capacity to consume bacterial prey. Prior analyses suggest that mixotrophic protists as a group vary in importance across ocean environments, but the mechanisms leading to broad functional diversity among mixotrophs, and the biogeochemical consequences of this, are less clear. Here we use isolates from seven major taxa to demonstrate a tradeoff between phototrophic performance (growth in the absence of prey) and phagotrophic performance (clearance rate when consuming Prochlorococcus). We then show that trophic strategy along the autotrophy-mixotrophy spectrum correlates strongly with global niche differences, across depths and across gradients of stratification and chlorophyll a. A model of competition shows that community shifts can be explained by greater fitness of faster-grazing mixotrophs when nutrients are scarce and light is plentiful. Our results illustrate how basic physiological constraints and principles of resource competition can organize complexity in the surface ocean ecosystem.
Collapse
Affiliation(s)
- Kyle F. Edwards
- Department of Oceanography, School of Ocean and Earth Science and Technology (SOEST), University of Hawaiʻi at Mānoa, Honolulu, HI 96822, USA
| | - Qian Li
- Department of Oceanography, School of Ocean and Earth Science and Technology (SOEST), University of Hawaiʻi at Mānoa, Honolulu, HI 96822, USA,Daniel K. Inouye Center for Microbial Oceanography: Research and Education, School of Ocean and Earth Science and Technology (SOEST), University of Hawaiʻi at Mānoa, Honolulu, HI 96822, USA,School of Oceanography, Shanghai Jiao Tong University, 1954 Huashan Rd, Shanghai Shi, Xuhui Qu 200240, China
| | - Kelsey A. McBeain
- Department of Oceanography, School of Ocean and Earth Science and Technology (SOEST), University of Hawaiʻi at Mānoa, Honolulu, HI 96822, USA
| | - Christopher R. Schvarcz
- Department of Oceanography, School of Ocean and Earth Science and Technology (SOEST), University of Hawaiʻi at Mānoa, Honolulu, HI 96822, USA,Daniel K. Inouye Center for Microbial Oceanography: Research and Education, School of Ocean and Earth Science and Technology (SOEST), University of Hawaiʻi at Mānoa, Honolulu, HI 96822, USA
| | - Grieg F. Steward
- Department of Oceanography, School of Ocean and Earth Science and Technology (SOEST), University of Hawaiʻi at Mānoa, Honolulu, HI 96822, USA,Daniel K. Inouye Center for Microbial Oceanography: Research and Education, School of Ocean and Earth Science and Technology (SOEST), University of Hawaiʻi at Mānoa, Honolulu, HI 96822, USA
| |
Collapse
|
5
|
Patin NV, Goodwin KD. Long-Read Sequencing Improves Recovery of Picoeukaryotic Genomes and Zooplankton Marker Genes from Marine Metagenomes. mSystems 2022; 7:e0059522. [PMID: 36448813 PMCID: PMC9765425 DOI: 10.1128/msystems.00595-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/27/2022] [Indexed: 12/05/2022] Open
Abstract
Long-read sequencing offers the potential to improve metagenome assemblies and provide more robust assessments of microbial community composition and function than short-read sequencing. We applied Pacific Biosciences (PacBio) CCS (circular consensus sequencing) HiFi shotgun sequencing to 14 marine water column samples and compared the results with those for short-read metagenomes from the corresponding environmental DNA samples. We found that long-read metagenomes varied widely in quality and biological information. The community compositions of the corresponding long- and short-read metagenomes were frequently dissimilar, suggesting higher stochasticity and/or bias associated with PacBio sequencing. Long reads provided few improvements to the assembly qualities, gene annotations, and prokaryotic metagenome-assembled genome (MAG) binning results. However, only long reads produced high-quality eukaryotic MAGs and contigs containing complete zooplankton marker gene sequences. These results suggest that high-quality long-read metagenomes can improve marine community composition analyses and provide important insight into eukaryotic phyto- and zooplankton genetics, but the benefits may be outweighed by the inconsistent data quality. IMPORTANCE Ocean microbes provide critical ecosystem services, but most remain uncultivated. Their communities can be studied through shotgun metagenomic sequencing and bioinformatic analyses, including binning draft microbial genomes. However, most sequencing to date has been done using short-read technology, which rarely yields genome sequences of key microbes like SAR11. Long-read sequencing can improve metagenome assemblies but is hampered by technological shortcomings and high costs. In this study, we compared long- and short-read sequencing of marine metagenomes. We found a wide range of long-read metagenome qualities and minimal improvements to microbiome analyses. However, long reads generated draft genomes of eukaryotic algal species and provided full-length marker gene sequences of zooplankton species, including krill and copepods. These results suggest that long-read sequencing can provide greater genetic insight into the wide diversity of eukaryotic phyto- and zooplankton that interact as part of and with the marine microbiome.
Collapse
Affiliation(s)
- N. V. Patin
- Ocean Chemistry and Ecosystems Division, Atlantic Oceanographic and Meteorological Laboratory, National Oceanic and Atmospheric Administration, Miami, Florida, USA
- Cooperative Institute for Marine and Atmospheric Studies, Rosenstiel School of Marine, Atmospheric & Earth Science, University of Miami, Miami, Florida, USA
- Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, La Jolla, California, USA
| | - K. D. Goodwin
- Ocean Chemistry and Ecosystems Division, Atlantic Oceanographic and Meteorological Laboratory, National Oceanic and Atmospheric Administration, Miami, Florida, USA
- Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, La Jolla, California, USA
| |
Collapse
|
6
|
Sun P, Wang Y, Huang X, Huang B, Wang L. Water masses and their associated temperature and cross-domain biotic factors co-shape upwelling microbial communities. WATER RESEARCH 2022; 215:118274. [PMID: 35298994 DOI: 10.1016/j.watres.2022.118274] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/25/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
Disentangling the drivers and mechanisms that shape microbial communities in a river-influenced coastal upwelling system requires considering a hydrologic dimension that can drive both deterministic and stochastic community assembly by generating hydrological heterogeneity and dispersal events. Additionally, ubiquitous and complex microbial interactions can play a significant role in community structuring. However, how the hydrology, biotic, and abiotic factors collectively shape microbial distribution in the hydrologically complicated river plume-upwelling coupling system remains unknown. Through underway sampling and daily observations, we employed 16S and 18S ribosomal RNA sequencing to disentangle drivers and mechanisms shaping the protist-bacteria microbiota in a river-influenced coastal upwelling system. Our findings indicate that the composition of microbial communities was water mass specific. Collectively, water mass, local water chemistry (mostly temperature) and biotic interaction (mostly cross-domain biotic interaction) shaped the protistan-bacterial communities. In comparison to protists, bacteria were more influenced by abiotic factors such as temperature than by cross-domain biotic factors, implying a stronger coupling of geochemical cycles. Both deterministic and stochastic processes had an effect on the distribution of microbial communities, but deterministic processes were more important for bacteria and were especially pronounced for upwelling communities. The co-occurrence network revealed strong associations between the protistan assemblages Orchrophyta and Ciliophora and the bacterial assemblages Alphaproteobacteria, Deltaproteobacteria, and Bacteroidetes, which may reflect predation and mutualism interactions. Overall, this study emphasizes the importance of taking water masses, temperature and domains of life into account when seeking to understand the drivers and assemblies of protist-bacteria microbiome dynamics in coastal upwelling systems, which is especially true given the complex and dynamic nature of the coastal ecosystem.
Collapse
Affiliation(s)
- Ping Sun
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, Xiamen University, Xiamen 361102, China; Fujian Province Key Laboratory for Coastal Ecology and Environmental Studies, Xiamen University, Xiamen 361102, China.
| | - Ying Wang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, Xiamen University, Xiamen 361102, China
| | - Xin Huang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, Xiamen University, Xiamen 361102, China
| | - Bangqin Huang
- Fujian Province Key Laboratory for Coastal Ecology and Environmental Studies, Xiamen University, Xiamen 361102, China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China.
| | - Lei Wang
- Fujian Province Key Laboratory for Coastal Ecology and Environmental Studies, Xiamen University, Xiamen 361102, China
| |
Collapse
|
7
|
Chen Z, Gu T, Wang X, Wu X, Sun J. Oxygen gradients shape the unique structure of picoeukaryotic communities in the Bay of Bengal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 814:152862. [PMID: 35016938 DOI: 10.1016/j.scitotenv.2021.152862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/21/2021] [Accepted: 12/29/2021] [Indexed: 06/14/2023]
Abstract
Picoeukaryotic communities respond rapidly to global climate change and play an important role in marine biological food webs and ecosystems. The formation of oxygen minimum zones (OMZ) is facilitated by the stratification of seawater and higher primary production in the surface layer, and the marine picoeukaryotic community this low-oxygen environment is topic of interest. To better understand the picoeukaryotic community assembly mechanisms in an OMZ, we collected samples from the Bay of Bengal (BOB) in October and November 2020 and used 18S rDNA to study the picoeukaryotic communities and their community assembly mechanisms that they are controlled by in deep-sea and hypoxic zones. The results show that deterministic and stochastic processes combine to shape picoeukaryotic communities in the BOB. We divided the water column into three vertical layers: the upper oxycline (UO), the OMZ, and the lower oxycline (LO), based on dissolved oxygen concentrations (dissolved oxygen: UO > LO > OMZ) at vertical depths (from 5 m to 2000 m). Deterministic processes controlled the picoeukaryotic community in the UO, while the picoeukaryotic communities in the OMZ and LO were dominated by stochastic processes. The OMZ had a stronger diffusional limitation and the habitat niche breadth in the UO was wider than that in OMZ and LO. We classified the picoeukaryotic community into three functional composition types (phototrophic, mixotrophic, and heterotrophic); heterotrophs were most abundant in the surveyed area, and the proportion of decreased significantly with increasing depth and decreasing dissolved oxygen. The picoeukaryotes in the investigated area also correlated with temperature, salinity, and nutrients (phosphate, silicate, nitrate, nitrite, and ammonium). These findings contribute to a better understanding of picoeukaryotic communities in deep-sea and low-oxygen environments, their functional structuring, as well as the effects of environmental changes on their community structure.
Collapse
Affiliation(s)
- Zhuo Chen
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China,; Research Centre for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin, China
| | - Ting Gu
- Research Centre for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin, China
| | - Xingzhou Wang
- Research Centre for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin, China
| | - Xi Wu
- College of Marine Science and Technology, China University of Geosciences (Wuhan), Wuhan, China; Research Centre for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin, China
| | - Jun Sun
- College of Marine Science and Technology, China University of Geosciences (Wuhan), Wuhan, China; Research Centre for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin, China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Wuhan), Wuhan, Hubei 430074, PR China.
| |
Collapse
|
8
|
Belevich TA, Milyutina IA. Species Diversity of Phototrophic Picoplankton in the Kara and Laptev Seas. Microbiology (Reading) 2022. [DOI: 10.1134/s0026261722010027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
9
|
Pierella Karlusich JJ, Pelletier E, Zinger L, Lombard F, Zingone A, Colin S, Gasol JM, Dorrell RG, Henry N, Scalco E, Acinas SG, Wincker P, de Vargas C, Bowler C. A robust approach to estimate relative phytoplankton cell abundances from metagenomes. Mol Ecol Resour 2022; 23:16-40. [PMID: 35108459 PMCID: PMC10078663 DOI: 10.1111/1755-0998.13592] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 01/09/2022] [Accepted: 01/25/2022] [Indexed: 11/28/2022]
Abstract
Phytoplankton account for >45% of global primary production, and have an enormous impact on aquatic food webs and on the entire Earth System. Their members are found among prokaryotes (cyanobacteria) and multiple eukaryotic lineages containing chloroplasts. Genetic surveys of phytoplankton communities generally consist of PCR amplification of bacterial (16S), nuclear (18S) and/or chloroplastic (16S) rRNA marker genes from DNA extracted from environmental samples. However, our appreciation of phytoplankton abundance or biomass is limited by PCR-amplification biases, rRNA gene copy number variations across taxa, and the fact that rRNA genes do not provide insights into metabolic traits such as photosynthesis. Here, we targeted the photosynthetic gene psbO from metagenomes to circumvent these limitations: the method is PCR-free, and the gene is universally and exclusively present in photosynthetic prokaryotes and eukaryotes, mainly in one copy per genome. We applied and validated this new strategy with the size-fractionated marine samples collected by Tara Oceans, and showed improved correlations with flow cytometry and microscopy than when based on rRNA genes. Furthermore, we revealed unexpected features of the ecology of these ecosystems, such as the high abundance of picocyanobacterial aggregates and symbionts in the ocean, and the decrease in relative abundance of phototrophs towards the larger size classes of marine dinoflagellates. To facilitate the incorporation of psbO in molecular-based surveys, we compiled a curated database of >18,000 unique sequences. Overall, psbO appears to be a promising new gene marker for molecular-based evaluations of entire phytoplankton communities.
Collapse
Affiliation(s)
- Juan José Pierella Karlusich
- Institut de Biologie de l'ENS (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, Département de biologie, 75005, Paris, France.,CNRS Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 3 rue Michel-Ange, 75016, Paris, France
| | - Eric Pelletier
- CNRS Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 3 rue Michel-Ange, 75016, Paris, France.,Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry, France
| | - Lucie Zinger
- Institut de Biologie de l'ENS (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, Département de biologie, 75005, Paris, France.,CNRS Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 3 rue Michel-Ange, 75016, Paris, France
| | - Fabien Lombard
- CNRS Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 3 rue Michel-Ange, 75016, Paris, France.,Sorbonne Universités, CNRS, Laboratoire d'Océanographie de Villefranche (LOV), 06230, Villefranche-sur-Mer, France.,Institut Universitaire de France (IUF), Paris, France
| | - Adriana Zingone
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy
| | - Sébastien Colin
- European Molecular Biology Laboratory, Heidelberg, Germany.,Sorbonne Université, CNRS, Station Biologique de Roscoff, UMR 7144, ECOMAP, 29680, Roscoff, France.,Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Josep M Gasol
- Department of Marine Biology and Oceanography, Institut de Ciènces del Mar, CSIC, Barcelona, Spain
| | - Richard G Dorrell
- Institut de Biologie de l'ENS (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, Département de biologie, 75005, Paris, France
| | - Nicolas Henry
- CNRS Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 3 rue Michel-Ange, 75016, Paris, France.,CNRS, Sorbonne Université, FR2424, ABiMS, Station Biologique de Roscoff, 29680, Roscoff, France
| | - Eleonora Scalco
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy
| | - Silvia G Acinas
- Department of Marine Biology and Oceanography, Institut de Ciènces del Mar, CSIC, Barcelona, Spain
| | - Patrick Wincker
- CNRS Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 3 rue Michel-Ange, 75016, Paris, France.,Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry, France
| | - Colomban de Vargas
- CNRS Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 3 rue Michel-Ange, 75016, Paris, France.,Sorbonne Université, CNRS, Station Biologique de Roscoff, UMR 7144, ECOMAP, 29680, Roscoff, France
| | - Chris Bowler
- Institut de Biologie de l'ENS (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, Département de biologie, 75005, Paris, France.,CNRS Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 3 rue Michel-Ange, 75016, Paris, France
| |
Collapse
|
10
|
Pang M, Liu K, Liu H. Evidence for mixotrophy in pico-chlorophytes from a new Picochlorum (Trebouxiophyceae) strain. JOURNAL OF PHYCOLOGY 2022; 58:80-91. [PMID: 34676899 DOI: 10.1111/jpy.13218] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
Mixotrophs are increasingly recognized for their wide distribution in aquatic ecosystems and significant contributions to biogeochemical cycling. Many taxa within the phyla Chrysophyta, Cryptophyta, and Haptophyta are capable of phago-mixotrophy, however, phagotrophy in the Chlorophyta remains controversial due to insufficient research and solid evidence. In this study, we identified a new strain, Picochlorum sp. GLMF1 (Trebouxiophyceae), using 18S rRNA gene analysis and morphological observations. It displayed multi-cell division through autosporulation (two- or four-cell daughters) and has two unequal flagella that have never been reported in the genus Picochlorum. By using multiple methods, including 3D bioimaging analysis, acidic food vacuole-like compartment staining, and prey reduction calculation, we discovered and confirmed bacterivory in Picochlorum, which provided strong evidence for phago-mixotrophy in this green alga. In addition, we found that Picochlorum sp. GLMF1 cannot grow under complete darkness or prey-depleted conditions, suggesting that both light and bacteria are indispensable for this strain, and its mixotrophic nutrition mode is obligate. Like other phago-phototrophs, Picochlorum sp. GLMF1 is capable of regulating their growth and ingestion rates according to light intensity and inorganic nutrient concentration. The confirmation of mixotrophy in this Picochlorum strain advances our understanding of the trophic roles of green algae, as well as the photosynthetic picoeukaryotes, in marine microbial food webs.
Collapse
Affiliation(s)
- Mengwen Pang
- Department of Ocean Science, Hong Kong University of Science and Technology, Clear Water Bay Road, Kowloon, Hong Kong, China
| | - Kailin Liu
- Department of Ocean Science, Hong Kong University of Science and Technology, Clear Water Bay Road, Kowloon, Hong Kong, China
| | - Hongbin Liu
- Department of Ocean Science, Hong Kong University of Science and Technology, Clear Water Bay Road, Kowloon, Hong Kong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| |
Collapse
|
11
|
Han Y, Guo C, Guan X, McMinn A, Liu L, Zheng G, Jiang Y, Liang Y, Shao H, Tian J, Wang M. Comparison of Deep-Sea Picoeukaryotic Composition Estimated from the V4 and V9 Regions of 18S rRNA Gene with a Focus on the Hadal Zone of the Mariana Trench. MICROBIAL ECOLOGY 2022; 83:34-47. [PMID: 33811505 DOI: 10.1007/s00248-021-01747-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 03/25/2021] [Indexed: 06/12/2023]
Abstract
Diversity of microbial eukaryotes is estimated largely based on sequencing analysis of the hypervariable regions of 18S rRNA genes. But the use of different regions of 18S rRNA genes as molecular markers may generate bias in diversity estimation. Here, we compared the differences between the two most widely used markers, V4 and V9 regions of the 18S rRNA gene, in describing the diversity of epipelagic, bathypelagic, and hadal picoeukaryotes in the Challenger Deep of the Mariana Trench, which is a unique and little explored environment. Generally, the V9 region identified more OTUs in deeper waters than V4, while the V4 region provided greater Shannon diversity than V9. In the epipelagic zone, where Alveolata was the dominant group, picoeukaryotic community compositions identified by V4 and V9 markers are similar at different taxonomic levels. However, in the deep waters, the results of the two datasets show clear differences. These differences were mainly contributed by Retaria, Fungi, and Bicosoecida. The primer targeting the V9 region has an advantage in amplifying Bicosoecids in the bathypelagic and hadal zone of the Mariana Trench, and its high abundance in V9 dataset pointed out the possibility of Bicosoecids as a dominant group in this environment. Chrysophyceae, Fungi, MALV-I, and Retaria were identified as the dominant picoeukaryotes in the bathypelagic and hadal zone and potentially play important roles in deep-sea microbial food webs and biogeochemical cycling by their phagotrophic, saprotrophic, and parasitic life styles. Overall, the use of different markers of 18S rRNA gene allows a better assessment and understanding of the picoeukaryotic diversity in deep-sea environments.
Collapse
Affiliation(s)
- Yuye Han
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
| | - Cui Guo
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China.
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China.
| | - Xuran Guan
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
| | - Andrew McMinn
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | - Lu Liu
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
| | - Guiliang Zheng
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
| | - Yong Jiang
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Yantao Liang
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Hongbing Shao
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Jiwei Tian
- Key Laboratory of Physical Oceanography, Ministry of Education, Ocean University of China, Qingdao, China
- Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Min Wang
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China.
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China.
| |
Collapse
|
12
|
Shuwang X, Sun J, Wei Y, Guo C. Size-Fractionated Filtration Combined with Molecular Methods Reveals the Size and Diversity of Picophytoplankton. BIOLOGY 2021; 10:biology10121280. [PMID: 34943195 PMCID: PMC8698306 DOI: 10.3390/biology10121280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/14/2021] [Accepted: 11/27/2021] [Indexed: 06/14/2023]
Abstract
In this study, flow cytometry (FCM) and size-fractionated filtration, together with high-throughput molecular sequencing methods (SM), were used to investigate picophytoplankton. A particle separation filter and a higher-throughput sequencing method were used to evaluate the composition of a euphotic zone of picophytoplankton-especially picoeukaryotic phytoplankton-in the Western Pacific, and the results of flow cytometry, which is a classic way to detect picophytoplankton, were used as a standard to evaluate the reliability of the results of the SMs. Within a water column of 200 m, six water depths (5, 25, 50, 113 (DCM), 150, and 200 m) were established. In order to further study the particle size spectra of the picophytoplankton, size-fractionated filtration was used to separate water samples from each water depth into three particle size ranges: 0.2-0.6, 0.6-1.2, and 1.2-2 μm. A total of 36 (6 × 3 × 2) samples were obtained through PCR amplification of the 18S rRNA V4 hypervariable region and 16S rRNA, which were biased toward phytoplankton plastids, and then high-throughput sequencing was performed. The estimation of the picophytoplankton diameter relied on forward scattering (FSC) through FCM. The estimation of the vertical distribution and diameter of the picophytoplankton using the SM was consistent with the results with FCM; thus, we believe that the estimation of picophytoplankton composition with the SM has value as a reference, although the size-fractionated filtration seemed to cause some deviations. In addition to Prochlorococcus and Synechococcus, the SM was used to evaluate the composition of picoeukaryotic phytoplankton, which mainly included Prymnesiophycea (Haptophyta) (38.15%), Cryptophyceae (Cryptophyta) (22.36%), Dictyochophyceae (Chrysophyta) (12.22%), and Mamiellophyceae (Chlorophyta) (3.31%). In addition, the SM also detected Dinophyceae (Dinoflagellata) (11.69%) sequences and a small number of Bacillariophyceae (Diatom) (1.64%) sequences, which are generally considered to have large particle sizes. The results of the SM also showed that the picoeukaryotic phytoplankton were not evenly distributed in the euphotic layer, and the vertical distributions of the different picoeukaryotic phytoplankton were different. An analysis of correlations with environmental factors showed that temperature was the main environmental factor controlling the vertical distribution of picophytoplankton.
Collapse
Affiliation(s)
- Xinze Shuwang
- Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China; (X.S.); (C.G.)
| | - Jun Sun
- College of Marine Science and Technology, China University of Geosciences (Wuhan), Wuhan 430074, China
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Wuhan), Wuhan 430074, China
| | - Yuqiu Wei
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China;
| | - Congcong Guo
- Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China; (X.S.); (C.G.)
| |
Collapse
|
13
|
Seasonal Variability of Photosynthetic Microbial Eukaryotes (<3 µm) in the Kara Sea Revealed by 18S rDNA Metabarcoding of Sediment Trap Fluxes. PLANTS 2021; 10:plants10112394. [PMID: 34834757 PMCID: PMC8618269 DOI: 10.3390/plants10112394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 10/31/2021] [Accepted: 11/04/2021] [Indexed: 01/04/2023]
Abstract
This survey is the first to explore the seasonal cycle of microbial eukaryote diversity (<3 µm) using the NGS method and a 10-month sediment trap (2018–2019). The long-term trap was deployed from September to June in the northwestern part of the Kara Sea. A water sample collected before the sediment trap was deployed and also analyzed. The taxonomic composition of microbial eukaryotes in the water sample significantly differed from sediment trap samples, characterized by a high abundance of Ciliophora reads and low abundance of Fungi while trap samples contained an order of magnitude less Ciliophora sequences and high contribution of Fungi. Photosynthetic eukaryotes (PEs) accounting for about 34% of total protists reads were assigned to five major divisions: Chlorophyta, Cryptophyta, Dinoflagellata, Haptophyta, and Ochrophyta. The domination of phototrophic algae was revealed in late autumn. Mamiellophyceae and Trebouxiophyceae were the predominant PEs in mostly all of the studied seasons. Micromonas polaris was constantly present throughout the September–June period in the PE community. The obtained results determine the seasonal dynamics of picoplankton in order to improve our understanding of their role in polar ecosystems.
Collapse
|
14
|
Duerschlag J, Mohr W, Ferdelman TG, LaRoche J, Desai D, Croot PL, Voß D, Zielinski O, Lavik G, Littmann S, Martínez-Pérez C, Tschitschko B, Bartlau N, Osterholz H, Dittmar T, Kuypers MMM. Niche partitioning by photosynthetic plankton as a driver of CO 2-fixation across the oligotrophic South Pacific Subtropical Ocean. ISME JOURNAL 2021; 16:465-476. [PMID: 34413475 PMCID: PMC8776750 DOI: 10.1038/s41396-021-01072-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 07/08/2021] [Accepted: 07/16/2021] [Indexed: 11/09/2022]
Abstract
Oligotrophic ocean gyre ecosystems may be expanding due to rising global temperatures [1-5]. Models predicting carbon flow through these changing ecosystems require accurate descriptions of phytoplankton communities and their metabolic activities [6]. We therefore measured distributions and activities of cyanobacteria and small photosynthetic eukaryotes throughout the euphotic zone on a zonal transect through the South Pacific Ocean, focusing on the ultraoligotrophic waters of the South Pacific Gyre (SPG). Bulk rates of CO2 fixation were low (0.1 µmol C l-1 d-1) but pervasive throughout both the surface mixed-layer (upper 150 m), as well as the deep chlorophyll a maximum of the core SPG. Chloroplast 16S rRNA metabarcoding, and single-cell 13CO2 uptake experiments demonstrated niche differentiation among the small eukaryotes and picocyanobacteria. Prochlorococcus abundances, activity, and growth were more closely associated with the rims of the gyre. Small, fast-growing, photosynthetic eukaryotes, likely related to the Pelagophyceae, characterized the deep chlorophyll a maximum. In contrast, a slower growing population of photosynthetic eukaryotes, likely comprised of Dictyochophyceae and Chrysophyceae, dominated the mixed layer that contributed 65-88% of the areal CO2 fixation within the core SPG. Small photosynthetic eukaryotes may thus play an underappreciated role in CO2 fixation in the surface mixed-layer waters of ultraoligotrophic ecosystems.
Collapse
Affiliation(s)
- Julia Duerschlag
- Max Planck Institute for Marine Microbiology, Bremen, Germany.,Department of Geophysical Sciences, University of Chicago, Chicago, IL, USA
| | - Wiebke Mohr
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | | | - Julie LaRoche
- Department of Biology, Dalhousie University, Halifax, NS, Canada
| | - Dhwani Desai
- Department of Biology, Dalhousie University, Halifax, NS, Canada
| | - Peter L Croot
- iCRAG (Irish Centre for Research in Applied Geoscience), Earth and Ocean Sciences, School of Natural Sciences and the Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - Daniela Voß
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| | - Oliver Zielinski
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany.,Marine Perception Research Group, German Research Center for Artificial Intelligence (DFKI), Oldenburg, Germany
| | - Gaute Lavik
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Sten Littmann
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Clara Martínez-Pérez
- Max Planck Institute for Marine Microbiology, Bremen, Germany.,Institute for Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, Eidgenössische Technische Hochschule (ETH) Zürich, Zurich, Switzerland
| | | | - Nina Bartlau
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Helena Osterholz
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany.,Leibniz Institute for Baltic Sea Research Warnemünde, Rostock, Germany
| | - Thorsten Dittmar
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany.,Helmholtz Institute for Functional Marine Biodiversity (HIFMB), University of Oldenburg, Oldenburg, Germany
| | | |
Collapse
|
15
|
Small pigmented eukaryote assemblages of the western tropical North Atlantic around the Amazon River plume during spring discharge. Sci Rep 2021; 11:16200. [PMID: 34376772 PMCID: PMC8355221 DOI: 10.1038/s41598-021-95676-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 07/26/2021] [Indexed: 02/07/2023] Open
Abstract
Small pigmented eukaryotes (⩽ 5 µm) are an important, but overlooked component of global marine phytoplankton. The Amazon River plume delivers nutrients into the oligotrophic western tropical North Atlantic, shades the deeper waters, and drives the structure of microphytoplankton (> 20 µm) communities. For small pigmented eukaryotes, however, diversity and distribution in the region remain unknown, despite their significant contribution to open ocean primary production and other biogeochemical processes. To investigate how habitats created by the Amazon river plume shape small pigmented eukaryote communities, we used high-throughput sequencing of the 18S ribosomal RNA genes from up to five distinct small pigmented eukaryote cell populations, identified and sorted by flow cytometry. Small pigmented eukaryotes dominated small phytoplankton biomass across all habitat types, but the population abundances varied among stations resulting in a random distribution. Small pigmented eukaryote communities were consistently dominated by Chloropicophyceae (0.8-2 µm) and Bacillariophyceae (0.8-3.5 µm), accompanied by MOCH-5 at the surface or by Dinophyceae at the chlorophyll maximum. Taxonomic composition only displayed differences in the old plume core and at one of the plume margin stations. Such results reflect the dynamic interactions of the plume and offshore oceanic waters and suggest that the resident small pigmented eukaryote diversity was not strongly affected by habitat types at this time of the year.
Collapse
|
16
|
Lei J, Liu C, Zhang M, Yang J, Wu F, Ren M, Wu Q, Shi X. The daily effect is more important than the diurnal effect when shaping photosynthetic picoeukaryotes (PPEs) communities in Lake Taihu at a small temporal scale. FEMS Microbiol Ecol 2021; 97:6308367. [PMID: 34160594 DOI: 10.1093/femsec/fiab090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 06/21/2021] [Indexed: 11/13/2022] Open
Abstract
As major primary producers in aquatic systems, the diversity and community composition dynamics of photosynthetic picoeukaryotes (PPEs) have been investigated in recent years. Here, we explored the 3-day diurnal succession of the PPE community in a highly eutrophic lake in early spring using a combination of flow cytometric sorting and high-throughput sequencing. Our results showed that the PPEs were the dominant group of autotrophic picophytoplankton, although they had relatively low diversity and were dominated by the Stephanodiscaceae family in early spring in Lake Taihu. Furthermore, PPE abundance was significantly higher at night than during the day, probably due to their high specific rate of carbon uptake during the day and rapid proliferation at night. Several environmental variables had a significant influence on the PPE community composition, and the daily effect was more important than the diurnal effect when shaping the PPE community in Lake Taihu at a temporal scale of 3 days. Furthermore, based on the variation partitioning analysis (VPA), the relative importance of abiotic factors (deterministic processes) to short-term succession was low, explaining only 20.44% of the PPE community variation. We therefore conclude that stochastic processes determined PPE community assembly over a short temporal scale based on a neutral community model (NCM).
Collapse
Affiliation(s)
- Jin Lei
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Beijing East Road 73, Nanjing 210008, China
| | - Changqing Liu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Beijing East Road 73, Nanjing 210008, China.,University of Chinese Academy of Sciences, Yuquan Road 19, Beijing 100049, China
| | - Min Zhang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Beijing East Road 73, Nanjing 210008, China
| | - Jinsheng Yang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Beijing East Road 73, Nanjing 210008, China.,University of Chinese Academy of Sciences, Yuquan Road 19, Beijing 100049, China
| | - Fan Wu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Beijing East Road 73, Nanjing 210008, China.,University of Chinese Academy of Sciences, Yuquan Road 19, Beijing 100049, China
| | - Mingdong Ren
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Beijing East Road 73, Nanjing 210008, China.,University of Chinese Academy of Sciences, Yuquan Road 19, Beijing 100049, China
| | - Qinglong Wu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Beijing East Road 73, Nanjing 210008, China
| | - Xiaoli Shi
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Beijing East Road 73, Nanjing 210008, China
| |
Collapse
|
17
|
Experimental identification and in silico prediction of bacterivory in green algae. THE ISME JOURNAL 2021; 15:1987-2000. [PMID: 33649548 PMCID: PMC8245530 DOI: 10.1038/s41396-021-00899-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 01/03/2021] [Accepted: 01/18/2021] [Indexed: 01/31/2023]
Abstract
While algal phago-mixotrophs play a major role in aquatic microbial food webs, their diversity remains poorly understood. Recent studies have indicated several species of prasinophytes, early diverging green algae, to be able to consume bacteria for nutrition. To further explore the occurrence of phago-mixotrophy in green algae, we conducted feeding experiments with live fluorescently labeled bacteria stained with CellTracker Green CMFDA, heat-killed bacteria stained with 5-(4,6-dichlorotriazin-2-yl) aminofluorescein (DTAF), and magnetic beads. Feeding was detected via microscopy and/or flow cytometry in five strains of prasinophytes when provided with live bacteria: Pterosperma cristatum NIES626, Pyramimonas parkeae CCMP726, Pyramimonas parkeae NIES254, Nephroselmis pyriformis RCC618, and Dolichomastix tenuilepis CCMP3274. No feeding was detected when heat-killed bacteria or magnetic beads were provided, suggesting a strong preference for live prey in the strains tested. In parallel to experimental assays, green algal bacterivory was investigated using a gene-based prediction model. The predictions agreed with the experimental results and suggested bacterivory potential in additional green algae. Our observations underline the likelihood of widespread occurrence of phago-mixotrophy among green algae, while additionally highlighting potential biases introduced when using prey proxy to evaluate bacterial ingestion by algal cells.
Collapse
|
18
|
Lange PK, Jeremy Werdell P, Erickson ZK, Dall'Olmo G, Brewin RJW, Zubkov MV, Tarran GA, Bouman HA, Slade WH, Craig SE, Poulton NJ, Bracher A, Lomas MW, Cetinić I. Radiometric approach for the detection of picophytoplankton assemblages across oceanic fronts. OPTICS EXPRESS 2020; 28:25682-25705. [PMID: 32906854 DOI: 10.1364/oe.398127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 08/03/2020] [Indexed: 06/11/2023]
Abstract
Cell abundances of Prochlorococcus, Synechococcus, and autotrophic picoeukaryotes were estimated in surface waters using principal component analysis (PCA) of hyperspectral and multispectral remote-sensing reflectance data. This involved the development of models that employed multilinear correlations between cell abundances across the Atlantic Ocean and a combination of PCA scores and sea surface temperatures. The models retrieve high Prochlorococcus abundances in the Equatorial Convergence Zone and show their numerical dominance in oceanic gyres, with decreases in Prochlorococcus abundances towards temperate waters where Synechococcus flourishes, and an emergence of picoeukaryotes in temperate waters. Fine-scale in-situ sampling across ocean fronts provided a large dynamic range of measurements for the training dataset, which resulted in the successful detection of fine-scale Synechococcus patches. Satellite implementation of the models showed good performance (R2 > 0.50) when validated against in-situ data from six Atlantic Meridional Transect cruises. The improved relative performance of the hyperspectral models highlights the importance of future high spectral resolution satellite instruments, such as the NASA PACE mission's Ocean Color Instrument, to extend our spatiotemporal knowledge about ecologically relevant phytoplankton assemblages.
Collapse
|
19
|
Derilus D, Rahman MZ, Pinero F, Massey SE. Synergism between the Black Queen effect and the proteomic constraint on genome size reduction in the photosynthetic picoeukaryotes. Sci Rep 2020; 10:8918. [PMID: 32488045 PMCID: PMC7265537 DOI: 10.1038/s41598-020-65476-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 05/05/2020] [Indexed: 01/01/2023] Open
Abstract
The photosynthetic picoeukaryotes (PPEs) comprise a rare example of free-living eukaryotes that have undergone genome reduction. Here, we examine a duality in the process; the proposed driver of genome reduction (the Black Queen hypothesis, BQH), and the resultant impact of genome information loss (the Proteomic Constraint hypothesis, PCH). The BQH predicts that some metabolites may be shared in the open ocean, thus driving loss of redundant metabolic pathways in individual genomes. In contrast, the PCH predicts that as the information content of a genome is reduced, the total mutation load is also reduced, leading to loss of DNA repair genes due to the resulting reduction in selective constraint. Consistent with the BQH, we observe that biosynthetic pathways involved with soluble metabolites such as amino acids and carotenoids are preferentially lost from the PPEs, in contrast to biosynthetic pathways involved with insoluble metabolites, such as lipids, which are retained. Consistent with the PCH, a correlation between proteome size and the number of DNA repair genes, and numerous other informational categories, is observed. While elevated mutation rates resulting from the loss of DNA repair genes have been linked to reduced effective population sizes in intracellular bacteria, this remains to be established. This study shows that in microbial species with large population sizes, an underlying factor in modulating their DNA repair capacity appears to be information content.
Collapse
Affiliation(s)
- D Derilus
- Environmental Sciences Department, University of Puerto Rico - Rio Piedras, San Juan, Puerto Rico
| | - M Z Rahman
- Biology Department, University of Puerto Rico - Rio Piedras, San Juan, Puerto Rico
| | - F Pinero
- Mathematics Department, University of Puerto Rico - Ponce, Ponce, Puerto Rico
| | - S E Massey
- Biology Department, University of Puerto Rico - Rio Piedras, San Juan, Puerto Rico.
| |
Collapse
|
20
|
Al-Otaibi N, Huete-Stauffer TM, Calleja ML, Irigoien X, Morán XAG. Seasonal variability and vertical distribution of autotrophic and heterotrophic picoplankton in the Central Red Sea. PeerJ 2020; 8:e8612. [PMID: 32140305 PMCID: PMC7045887 DOI: 10.7717/peerj.8612] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 01/21/2020] [Indexed: 12/21/2022] Open
Abstract
The Red Sea is characterized by higher temperatures and salinities than other oligotrophic tropical regions. Here, we investigated the vertical and seasonal variations in the abundance and biomass of autotrophic and heterotrophic picoplankton. Using flow cytometry, we consistently observed five groups of autotrophs (Prochlorococcus, two populations of Synechococcus separated by their relative phycoerythrin fluorescence, low (LF-Syn) and high (HF-Syn), and two differently-sized groups of picoeukaryotes, small (Speuk) and large (Lpeuk)) and two groups of heterotrophic prokaryotes of low and high nucleic acid content (LNA and HNA, respectively). Samples were collected in 15 surveys conducted from 2015 to 2017 at a 700-m depth station in the central Red Sea. Surface temperature ranged from 24.6 to 32.6 °C with a constant value of 21.7 °C below 200 m. Integrated (0-100 m) chlorophyll a concentrations were low, with maximum values in fall (24.0 ± 2.7 mg m-2) and minima in spring and summer (16.1 ± 1.9 and 1.1 mg m-2, respectively). Picoplankton abundance was generally lower than in other tropical environments. Vertical distributions differed for each group, with Synechococcus and LNA prokaryotes more abundant at the surface while Prochlorococcus, picoeukaryotes and HNA prokaryotes peaked at the deep chlorophyll maximum, located between 40 and 76 m. Surface to 100 m depth-weighted abundances exhibited clear seasonal patterns for Prochlorococcus, with maxima in summer (7.83 × 104 cells mL-1, July 2015) and minima in winter (1.39 × 104 cells mL-1, January 2015). LF-Syn (0.32 - 2.70 × 104 cells mL-1 ), HF-Syn (1.11 - 3.20 × 104 cells mL-1) and Speuk (0.99 - 4.81 × 102 cells mL-1) showed an inverse pattern to Prochlorococcus, while Lpeuk (0.16 - 7.05 × 104 cells mL-1) peaked in fall. Synechococcus unexpectedly outnumbered Prochlorococcus in winter and at the end of fall. The seasonality of heterotrophic prokaryotes (2.29 - 4.21×105 cells mL-1 ) was less noticeable than autotrophic picoplankton. The contribution of HNA cells was generally low in the upper layers, ranging from 36% in late spring and early summer to ca. 50% in winter and fall. Autotrophs dominated integrated picoplankton biomass in the upper 100 m, with 1.4-fold higher values in summer than in winter (mean 387 and 272 mg C m-2, respectively). However, when the whole water column was considered, the biomass of heterotrophic prokaryotes exceeded that of autotrophic picoplankton with an average of 411 mg C m-2. Despite being located in tropical waters, our results show that the picoplankton community seasonal differences in the central Red Sea are not fundamentally different from higher latitude regions.
Collapse
Affiliation(s)
- Najwa Al-Otaibi
- Red Sea Research Center (RSRC), Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Tamara M Huete-Stauffer
- Red Sea Research Center (RSRC), Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Maria Ll Calleja
- Department of Climate Geochemistry, Max Planck Institute for Chemistry (MPIC), Mainz, Germany
| | - Xabier Irigoien
- AZTI - Marine Research, Pasaia, Spain.,Basque Foundation for Science, IKERBASQUE, Bilbao, Spain
| | - Xosé Anxelu G Morán
- Red Sea Research Center (RSRC), Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| |
Collapse
|
21
|
Wilken S, Choi CJ, Worden AZ. Contrasting Mixotrophic Lifestyles Reveal Different Ecological Niches in Two Closely Related Marine Protists. JOURNAL OF PHYCOLOGY 2020; 56:52-67. [PMID: 31529498 PMCID: PMC7065223 DOI: 10.1111/jpy.12920] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 08/13/2019] [Indexed: 05/13/2023]
Abstract
Many marine microbial eukaryotes combine photosynthetic with phagotrophic nutrition, but incomplete understanding of such mixotrophic protists, their functional diversity, and underlying physiological mechanisms limits the assessment and modeling of their roles in present and future ocean ecosystems. We developed an experimental system to study responses of mixotrophic protists to availability of living prey and light, and used it to characterize contrasting physiological strategies in two stramenopiles in the genus Ochromonas. We show that oceanic isolate CCMP1393 is an obligate mixotroph, requiring both light and prey as complementary resources. Interdependence of photosynthesis and heterotrophy in CCMP1393 comprises a significant role of mitochondrial respiration in photosynthetic electron transport. In contrast, coastal isolate CCMP2951 is a facultative mixotroph that can substitute photosynthesis by phagotrophy and hence grow purely heterotrophically in darkness. In contrast to CCMP1393, CCMP2951 also exhibits a marked photoprotection response that integrates non-photochemical quenching and mitochondrial respiration as electron sink for photosynthetically produced reducing equivalents. Facultative mixotrophs similar to CCMP2951 might be well adapted to variable environments, while obligate mixotrophs similar to CCMP1393 appear capable of resource efficient growth in oligotrophic ocean environments. Thus, the responses of these phylogenetically close protists to the availability of different resources reveals niche differentiation that influences impacts in food webs and leads to opposing carbon cycle roles.
Collapse
Affiliation(s)
- Susanne Wilken
- Monterey Bay Aquarium Research Institute7700 Sandholdt RoadMoss LandingCalifornia95039USA
- Department of Freshwater and Marine EcologyInstitute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamScience Park 904Amsterdam1098 XHThe Netherlands
| | - Chang Jae Choi
- Monterey Bay Aquarium Research Institute7700 Sandholdt RoadMoss LandingCalifornia95039USA
- Ocean EcoSystems Biology UnitGEOMAR Helmholtz Centre for Ocean ResearchDüsternbrooker Weg 20Kiel24105Germany
| | - Alexandra Z. Worden
- Monterey Bay Aquarium Research Institute7700 Sandholdt RoadMoss LandingCalifornia95039USA
- Ocean EcoSystems Biology UnitGEOMAR Helmholtz Centre for Ocean ResearchDüsternbrooker Weg 20Kiel24105Germany
| |
Collapse
|
22
|
Leys SP, Kahn AS. Oxygen and the Energetic Requirements of the First Multicellular Animals. Integr Comp Biol 2019; 58:666-676. [PMID: 29889237 DOI: 10.1093/icb/icy051] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The appearance of multicellular animals during the Neoproterozoic Era is thought to have coincided with oxygenation of the oceans; however, we know little about the physiological needs of early animals or about the environment they lived in. Approaches using biomarkers, fossils, and phylogenomics have provided some hints of the types of animals that may have been present during the Neoproterozoic, but extant animals are our best modern links to the theoretical ancestors of animals. Neoproterozoic oceans were low energy habitats, with low oxygen concentrations and sparse food availability for the first animals. We examined tolerance of extant ctenophores and sponges-as representatives of extant lineages of the earliest known metazoan groups-to feeding and oxygen use. A review of respiration rates in species across several phyla suggests that suspension feeders in general have a wide range of metabolic rates, but sponges have some of the highest of invertebrates and ctenophores some of the lowest. Our own studies on the metabolism of two groups of deep water sponges show that sponges have different approaches to deal with the cost of filtration and low food availability. We also confirmed that deep water sponges tolerate periods of hypoxia, but at the cost of filtration, indicating that normal feeding is energetically expensive. Predictions of oxygen levels in the Neoproterozoic suggest the last common ancestor of multicellular animals was unlikely to have filtered like modern sponges. Getting enough food at low oxygen would have been a more important driver of the evolution of early body plans.
Collapse
Affiliation(s)
- Sally P Leys
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Amanda S Kahn
- Monterey Bay Aquarium Research Institute, 7700 Sandholdt Road, Moss Landing, CA 95039, USA
| |
Collapse
|
23
|
Wang F, Xie Y, Wu W, Sun P, Wang L, Huang B. Picoeukaryotic Diversity And Activity in the Northwestern Pacific Ocean Based on rDNA and rRNA High-Throughput Sequencing. Front Microbiol 2019; 9:3259. [PMID: 30687258 PMCID: PMC6333705 DOI: 10.3389/fmicb.2018.03259] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 12/14/2018] [Indexed: 01/12/2023] Open
Abstract
Picoeukaryotes play an important role in the biogenic element cycle and energy flow in oligotrophic ecosystems. However, their biodiversity and activity are poorly studied in open ocean systems, such as the northwestern Pacific Ocean, which is characterized by a complex hydrological setting. Here, we investigated the diversity and activity of picoeukaryotes in the northwestern Pacific Ocean using high-throughput sequencing targeting the V9 region of 18S rDNA and rRNA. Our results showed that the DNA picoeukaryotic communities were mainly represented by Mamiellophyceae, MAST, MALV-II, Spirotrichea, Prymnesiophyceae, and MALV-I (69.33% of the total DNA reads), and the RNA communities were dominated by Spirotrichea, Mamiellophyceae, MAST, Pelagophyceae, and MALV-II (67.46% of the total RNA reads). The number of operational taxonomic units (OTUs) was significantly affected by temperature and salinity, and was decreased with the increasing nutrient concentration both in the DNA and RNA surveys. Significant differences were observed in the community composition between DNA-based and RNA-based molecular approaches, and these differences were mainly attributed to Mamiellophyceae, Spirotrichea, and Pelagophyceae. The RNA: DNA ratio was used as a proxy for relative metabolic activity of the individual OTUs. We found that the relative metabolic activities of Mamiellophyceae, Spirotrichea, and Pelagophyceae species in the northwestern Pacific Ocean were highly affected by the nutrient concentration, i.e., the NO3 + NO2 and SiO3 concentration. Overall, our study shed light on picoeukaryotic diversity and distribution in the northwestern Pacific Ocean and revealed the correlation between the diversity, relative metabolic activities of marine picoeukaryotes, and the environmental factors.
Collapse
Affiliation(s)
- Feipeng Wang
- Fujian Provincial Key Laboratory of Coastal Ecology and Environmental Studies, State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| | - Yuyuan Xie
- Fujian Provincial Key Laboratory of Coastal Ecology and Environmental Studies, State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| | - Wenxue Wu
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
| | - Ping Sun
- Fujian Provincial Key Laboratory of Coastal Ecology and Environmental Studies, State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| | - Lei Wang
- Third Institute of Oceanography, State Oceanic Administration, Xiamen, China
| | - Bangqin Huang
- Fujian Provincial Key Laboratory of Coastal Ecology and Environmental Studies, State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| |
Collapse
|
24
|
Berthelot H, Duhamel S, L'Helguen S, Maguer JF, Wang S, Cetinić I, Cassar N. NanoSIMS single cell analyses reveal the contrasting nitrogen sources for small phytoplankton. ISME JOURNAL 2018; 13:651-662. [PMID: 30323264 DOI: 10.1038/s41396-018-0285-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 07/09/2018] [Accepted: 09/08/2018] [Indexed: 12/16/2022]
Abstract
Nitrogen (N) is a limiting nutrient in vast regions of the world's oceans, yet the sources of N available to various phytoplankton groups remain poorly understood. In this study, we investigated inorganic carbon (C) fixation rates and nitrate (NO3-), ammonium (NH4+) and urea uptake rates at the single cell level in photosynthetic pico-eukaryotes (PPE) and the cyanobacteria Prochlorococcus and Synechococcus. To that end, we used dual 15N and 13C-labeled incubation assays coupled to flow cytometry cell sorting and nanoSIMS analysis on samples collected in the North Pacific Subtropical Gyre (NPSG) and in the California Current System (CCS). Based on these analyses, we found that photosynthetic growth rates (based on C fixation) of PPE were higher in the CCS than in the NSPG, while the opposite was observed for Prochlorococcus. Reduced forms of N (NH4+ and urea) accounted for the majority of N acquisition for all the groups studied. NO3- represented a reduced fraction of total N uptake in all groups but was higher in PPE (17.4 ± 11.2% on average) than in Prochlorococcus and Synechococcus (4.5 ± 6.5 and 2.9 ± 2.1% on average, respectively). This may in part explain the contrasting biogeography of these picoplankton groups. Moreover, single cell analyses reveal that cell-to-cell heterogeneity within picoplankton groups was significantly greater for NO3- uptake than for C fixation and NH4+ uptake. We hypothesize that cellular heterogeneity in NO3- uptake within groups facilitates adaptation to the fluctuating availability of NO3- in the environment.
Collapse
Affiliation(s)
- Hugo Berthelot
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539 UBO/CNRS/IRD/IFREMER, Institut Universitaire Européen de la Mer (IUEM), Brest, France.
| | - Solange Duhamel
- Division of Biology and Paleo Environment, Lamont-Doherty Earth Observatory, PO Box 1000, 61 Route 9W, Palisades, NY, 10964, USA
| | - Stéphane L'Helguen
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539 UBO/CNRS/IRD/IFREMER, Institut Universitaire Européen de la Mer (IUEM), Brest, France
| | - Jean-Francois Maguer
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539 UBO/CNRS/IRD/IFREMER, Institut Universitaire Européen de la Mer (IUEM), Brest, France
| | - Seaver Wang
- Division of Earth and Ocean Sciences, Nicholas School of the Environment, Duke University, Durham, NC, 27708, USA
| | - Ivona Cetinić
- NASA Goddard Space Flight Center, Ocean Ecology Laboratory, Code 616, Greenbelt, MD, USA.,GESTAR/Universities Space Research Association, Columbia, MD, USA
| | - Nicolas Cassar
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539 UBO/CNRS/IRD/IFREMER, Institut Universitaire Européen de la Mer (IUEM), Brest, France. .,Division of Earth and Ocean Sciences, Nicholas School of the Environment, Duke University, Durham, NC, 27708, USA.
| |
Collapse
|
25
|
Guo R, Liang Y, Xin Y, Wang L, Mou S, Cao C, Xie R, Zhang C, Tian J, Zhang Y. Insight Into the Pico- and Nano-Phytoplankton Communities in the Deepest Biosphere, the Mariana Trench. Front Microbiol 2018; 9:2289. [PMID: 30319587 PMCID: PMC6168665 DOI: 10.3389/fmicb.2018.02289] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 09/07/2018] [Indexed: 01/21/2023] Open
Abstract
As photoautotrophs, phytoplankton are generally present in the euphotic zone of the ocean, however, recently healthy phytoplankton cells were found to be also ubiquitous in the dark deep sea, i.e., at water depths between 2000 and 4000 m. The distributions of phytoplankton communities in much deeper waters, such as the hadal zone, are unclear. In this study, the vertical distribution of the pico- and nano-phytoplankton (PN) communities from the surface to 8320 m, including the epipelagic, mesopelagic, bathypelagic, and hadal zones, were investigated via both 18S and p23S rRNA gene analysis in the Challenger Deep of the Mariana Trench. The results showed that Dinoflagellata, Chrysophyceae, Haptophyta, Chlorophyta, Prochloraceae, Pseudanabaenaceae, Synechococcaceae, and Eustigmatophyceae, etc., were the predominant PN in the Mariana Trench. Redundancy analyses revealed that depth, followed by temperature, was the most important environmental factors correlated with vertical distribution of PN community. In the hadal zone, the PN community structure was considerably different from those in the shallower zones. Some PN communities, e.g., Eustigmatophyceae and Chrysophyceae, which have the heterotrophic characteristics, were sparse in shallower waters, while they were identified with high relative abundance (94.1% and 20.1%, respectively) at the depth of 8320 m. However, the dinoflagellates and Prochloraceae Prochlorococcus were detected throughout the entire water column. We proposed that vertical sinking, heterotrophic metabolism, and/or the transition to resting stage of phytoplankton might contribute to the presence of phytoplankton in the hadal zone. This study provided insight into the PN community in the Mariana Trench, implied the significance of phytoplankton in exporting organic matters from the euphotic to the hadal zone, and also hinted the possible existence of some undetermined energy metabolism (e.g., heterotrophy) of phytoplankton making themselves adapt and survive in the hadal environment.
Collapse
Affiliation(s)
- Ruoyu Guo
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Yantao Liang
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Yu Xin
- Physical Oceanography Laboratory/Qingdao Collaborative Innovation Center of Marine Science and Technology, Key Laboratory of Marine Chemistry Theory & Engineering, Ocean University of China, Qingdao, China
| | - Long Wang
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Shanli Mou
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Chunjie Cao
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Ruize Xie
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Chuanlun Zhang
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Jiwei Tian
- Physical Oceanography Laboratory/Qingdao Collaborative Innovation Center of Marine Science and Technology, Key Laboratory of Marine Chemistry Theory & Engineering, Ocean University of China, Qingdao, China
| | - Yongyu Zhang
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|
26
|
Hernández-Ruiz M, Barber-Lluch E, Prieto A, Álvarez-Salgado XA, Logares R, Teira E. Seasonal succession of small planktonic eukaryotes inhabiting surface waters of a coastal upwelling system. Environ Microbiol 2018; 20:2955-2973. [DOI: 10.1111/1462-2920.14313] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 06/12/2018] [Indexed: 11/27/2022]
Affiliation(s)
- Marta Hernández-Ruiz
- Biological Oceanography Group, Department of Ecology and Animal Biology; University of Vigo; Vigo, 36310 Spain
- Oceanography, Marine Science Station of Toralla (ECIMAT); University of Vigo; Vigo, 36331 Spain
| | - Esther Barber-Lluch
- Biological Oceanography Group, Department of Ecology and Animal Biology; University of Vigo; Vigo, 36310 Spain
- Oceanography, Marine Science Station of Toralla (ECIMAT); University of Vigo; Vigo, 36331 Spain
| | - Antero Prieto
- Biological Oceanography Group, Department of Ecology and Animal Biology; University of Vigo; Vigo, 36310 Spain
- Oceanography, Marine Science Station of Toralla (ECIMAT); University of Vigo; Vigo, 36331 Spain
| | | | - Ramiro Logares
- Marine Biology and Oceanography, Institute of Marine Sciences (ICM-CSIC); Barcelona, 08003 Spain
| | - Eva Teira
- Biological Oceanography Group, Department of Ecology and Animal Biology; University of Vigo; Vigo, 36310 Spain
- Oceanography, Marine Science Station of Toralla (ECIMAT); University of Vigo; Vigo, 36331 Spain
| |
Collapse
|
27
|
Shi X, Li S, Liu C, Zhang M, Liu M. Community structure of photosynthetic picoeukaryotes differs in lakes with different trophic statuses along the middle-lower reaches of the Yangtze River. FEMS Microbiol Ecol 2018; 94:4817532. [DOI: 10.1093/femsec/fiy011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Accepted: 01/18/2018] [Indexed: 02/04/2023] Open
Affiliation(s)
- Xiaoli Shi
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Shengnan Li
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Changqing Liu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Zhang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Mixue Liu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
28
|
Belevich TA, Ilyash LV, Milyutina IA, Logacheva MD, Troitsky AV. Phototrophic picoeukaryotes of Onega Bay, the White Sea: Abundance and species composition. ACTA ACUST UNITED AC 2017. [DOI: 10.3103/s0096392517030014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
29
|
Cabello AM, Latasa M, Forn I, Morán XAG, Massana R. Vertical distribution of major photosynthetic picoeukaryotic groups in stratified marine waters. Environ Microbiol 2017; 18:1578-90. [PMID: 26971724 DOI: 10.1111/1462-2920.13285] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 02/26/2016] [Accepted: 02/28/2016] [Indexed: 02/01/2023]
Abstract
Photosynthetic picoeukaryotes (PPEs) are fundamental contributors to oceanic primary production and form diverse communities dominated by prymnesiophytes, chlorophytes, pelagophytes and chrysophytes. Here, we studied the vertical distribution of these major groups in two offshore regions of the northern Iberian Peninsula during summer stratification. We performed a fine-scale vertical sampling (every ∼2 m) across the DCM and used fluorescence in situ hybridization (FISH) to determine the PPE composition and to explore the possible segregation of target groups in the light, nutrient and temperature gradients. Chlorophytes, pelagophytes and prymnesiophytes, in this order of abundance, accounted for the total PPEs recorded by flow cytometry in the Avilés canyon, and for more than half in the Galicia Bank, whereas chrysophytes were undetected. Among the three detected groups, often the prymnesiophytes were dominant in biomass. In general, all groups were present throughout the water column with abundance peaks around the DCM, but their distributions differed: pelagophytes were located deeper than the other two groups, chlorophytes presented two peaks and prymnesiophytes exhibited surface abundances comparable to those at the DCM. This study offers first indications that the vertical distribution of different PPE groups is heterogeneous within the DCM.
Collapse
Affiliation(s)
- Ana M Cabello
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (CSIC), Barcelona, Catalonia, Spain
| | - Mikel Latasa
- Instituto Español de Oceanografía (IEO), Centro oceanográfico de Xixón, Xixón, Spain
| | - Irene Forn
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (CSIC), Barcelona, Catalonia, Spain
| | - Xosé Anxelu G Morán
- Instituto Español de Oceanografía (IEO), Centro oceanográfico de Xixón, Xixón, Spain.,Division of Biological and Environmental Sciences and Engineering, Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Ramon Massana
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (CSIC), Barcelona, Catalonia, Spain
| |
Collapse
|
30
|
Selosse MA, Charpin M, Not F. Mixotrophy everywhere on land and in water: thegrand écarthypothesis. Ecol Lett 2016; 20:246-263. [DOI: 10.1111/ele.12714] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 08/22/2016] [Accepted: 11/13/2016] [Indexed: 01/22/2023]
Affiliation(s)
- Marc-André Selosse
- Institut de Systématique, Évolution; Biodiversité (ISYEB - UMR 7205 - CNRS; MNHN; UPMC; EPHE); Muséum national d'Histoire naturelle; Sorbonne Universités; 57 rue Cuvier CP50 75005 Paris France
- Department of Plant Taxonomy and Nature Conservation; University of Gdansk; Wita Stwosza 59 80-308 Gdansk Poland
| | - Marie Charpin
- Université Blaise Pascal; Clermont-Ferrand; CNRS Laboratoire micro-organismes: Génome et Environnement; UMR 6023 1 Impasse Amélie Murat 63178 Aubière France
| | - Fabrice Not
- Sorbonne Universités; UPMC Université Paris 06; CNRS; Laboratoire Adaptation et Diversité en Milieu Marin UMR7144; Station Biologique de Roscoff; 29680 Roscoff France
| |
Collapse
|
31
|
Validation of trophic and anthropic underwater noise as settlement trigger in blue mussels. Sci Rep 2016; 6:33829. [PMID: 27644947 PMCID: PMC5028714 DOI: 10.1038/srep33829] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 08/31/2016] [Indexed: 11/08/2022] Open
Abstract
Like the majority of benthic invertebrates, the blue mussel Mytilus edulis has a bentho-pelagic cycle with its larval settlement being a complex phenomenon involving numerous factors. Among these factors, underwater noise and pelagic trophic conditions have been weakly studied in previous researches. Under laboratory conditions, we tested the hypothesis that picoplankton assimilation by the pediveliger blue mussel larvae acts as a food cue that interacts with anthropic underwater sound to stimulate settlement. We used 13C-labeling microalgae to validate the assimilation of different picoplankton species in the tissues of pediveliger larvae. Our results clearly confirm our hypothesis with a significant synergic effect of these two factors. However, only the picoeukaryotes strains assimilated by larvae stimulated the settlement, whereas the non-ingested picocyanobacteria did not. Similar positive responses were observed with underwater sound characterized by low frequency vessel noises. The combination of both factors (trophic and vessel noise) drastically increased the mussel settlement by an order of 4 compared to the control (without picoplankton and noise). Settlement levels ranged from 16.5 to 67% in 67 h.
Collapse
|
32
|
Lepère C, Ostrowski M, Hartmann M, Zubkov MV, Scanlan DJ. In situ associations between marine photosynthetic picoeukaryotes and potential parasites - a role for fungi? ENVIRONMENTAL MICROBIOLOGY REPORTS 2016; 8:445-51. [PMID: 26420747 DOI: 10.1111/1758-2229.12339] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 09/23/2015] [Accepted: 09/25/2015] [Indexed: 05/25/2023]
Abstract
Photosynthetic picoeukaryotes (PPEs) are important components of the marine picophytoplankton community playing a critical role in CO2 fixation but also as bacterivores, particularly in the oligotrophic gyres. Despite an increased interest in these organisms and an improved understanding of the genetic diversity of this group, we still know little of the environmental factors controlling the abundance of these organisms. Here, we investigated the quantitative importance of eukaryotic parasites in the free-living fraction as well as in associations with PPEs along a transect in the South Atlantic. Using tyramide signal amplification-fluorescence in situ hybridization (TSA-FISH), we provide quantitative evidence of the occurrence of free-living fungi in open ocean marine systems, while the Perkinsozoa and Syndiniales parasites were not abundant in these waters. Using flow cytometric cell sorting of different PPE populations followed by a dual-labelled TSA-FISH approach, we also demonstrate fungal associations, potentially parasitic, occurring with both pico-Prymnesiophyceae and pico-Chrysophyceae. These data highlight the necessity for further work investigating the specific role of marine fungi as parasites of phytoplankton to improve understanding of carbon flow in marine ecosystems.
Collapse
Affiliation(s)
- Cécile Lepère
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
- Université Clermont Auvergne, Université Blaise Pascal, Laboratoire 'Microorganismes : Génome et Environnement', BP 10448, Clermont-Ferrand, F-63000, France
- CNRS, UMR 6023, LMGE, Aubière, F-63171, France
| | - Martin Ostrowski
- Department of Chemistry and Biomolecular Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| | | | | | - David J Scanlan
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| |
Collapse
|
33
|
Brannock PM, Ortmann AC, Moss AG, Halanych KM. Metabarcoding reveals environmental factors influencing spatio‐temporal variation in pelagic micro‐eukaryotes. Mol Ecol 2016; 25:3593-604. [DOI: 10.1111/mec.13709] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 04/06/2016] [Accepted: 05/22/2016] [Indexed: 01/16/2023]
Affiliation(s)
- Pamela M. Brannock
- Department of Biological Sciences Auburn University 101 Rouse Life Science Building Auburn AL 36849 USA
| | - Alice C. Ortmann
- Department of Marine Sciences University of South Alabama 307 University Blvd Mobile AL 36688 USA
- Dauphin Island Sea Lab 101B Bienville Blvd Dauphin Island AL 36528 USA
- Department of Fisheries and Ocean Canada Centre for Offshore Oil, Gas and Energy Research Bedford Institute of Oceanography Dartmouth B2Y 4A2 Canada
| | - Anthony G. Moss
- Department of Biological Sciences Auburn University 101 Rouse Life Science Building Auburn AL 36849 USA
| | - Kenneth M. Halanych
- Department of Biological Sciences Auburn University 101 Rouse Life Science Building Auburn AL 36849 USA
| |
Collapse
|
34
|
Yoon TH, Kang HE, Kang CK, Lee SH, Ahn DH, Park H, Kim HW. Development of a cost-effective metabarcoding strategy for analysis of the marine phytoplankton community. PeerJ 2016; 4:e2115. [PMID: 27326375 PMCID: PMC4911951 DOI: 10.7717/peerj.2115] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Accepted: 05/17/2016] [Indexed: 01/27/2023] Open
Abstract
We developed a cost-effective metabarcoding strategy to analyze phytoplankton community structure using the Illumina MiSeq system. The amplicons (404-411 bp) obtained by end-pairing of two reads were sufficiently long to distinguish algal species and provided barcode data equivalent to those generated with the Roche 454 system, but at less than 1/20th of the cost. The original universal primer sequences targeting the 23S rDNA region and the PCR strategy were both modified, and this resulted in higher numbers of eukaryotic algal sequences by excluding non-photosynthetic proteobacterial sequences supporting effectiveness of this strategy. The novel strategy was used to analyze the phytoplankton community structure of six water samples from the East/Japan Sea: surface and 50 m depths at coastal and open-sea sites, with collections in May and July 2014. In total, 345 operational taxonomic units (OTUs) were identified, which covered most of the prokaryotic and eukaryotic algal phyla, including Dinophyta, Rhodophyta, Ochrophyta, Chlorophyta, Streptophyta, Cryptophyta, Haptophyta, and Cyanophyta. This highlights the importance of plastid 23S primers, which perform better than the currently used 16S primers for phytoplankton community surveys. The findings also revealed that more efforts should be made to update 23S rDNA sequences as well as those of 16S in the databases. Analysis of algal proportions in the six samples showed that community structure differed depending on location, depth and season. Across the six samples evaluated, the numbers of OTUs in each phylum were similar but their relative proportions varied. This novel strategy would allow laboratories to analyze large numbers of samples at reasonable expense, whereas this has not been possible to date due to cost and time. In addition, we expect that this strategy will generate a large amount of novel data that could potentially change established methods and tools that are currently used in the realms of oceanography and marine ecology.
Collapse
Affiliation(s)
- Tae-Ho Yoon
- Interdiciplinary Program of Biomedical Engineering, Pukyong National University, Busan, Republic of Korea
| | - Hye-Eun Kang
- Department of Marine Biology, Pukyong National University, Busan, South Korea
| | - Chang-Keun Kang
- School of Earth Science & Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Sang Heon Lee
- Department of Oceanography, Pusan National University, Busan, South Korea
| | - Do-Hwan Ahn
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon, South Korea
| | - Hyun Park
- Korea Polar Research Institute, Korea Ocean Research and Development Institute, Incheon, Republic of Korea
| | - Hyun-Woo Kim
- Interdiciplinary Program of Biomedical Engineering, Pukyong National University, Busan, Republic of Korea
- Department of Marine Biology, Pukyong National University, Busan, South Korea
| |
Collapse
|
35
|
Simon M, López-García P, Deschamps P, Restoux G, Bertolino P, Moreira D, Jardillier L. Resilience of Freshwater Communities of Small Microbial Eukaryotes Undergoing Severe Drought Events. Front Microbiol 2016; 7:812. [PMID: 27303393 PMCID: PMC4885337 DOI: 10.3389/fmicb.2016.00812] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 05/12/2016] [Indexed: 01/15/2023] Open
Abstract
Small and shallow aquatic ecosystems such as ponds and streams constitute a significant proportion of continental surface waters, especially in temperate zones. In comparison with bigger lakes and rivers, they harbor higher biodiversity but they also exhibit reduced buffering capacity face to environmental shifts, such that climate global change can affect them in a more drastic way. For instance, many temperate areas are predicted to undergo droughts with increasing frequency in the near future, which may lead to the temporal desiccation of streams and ponds. In this work, we monitored temporal dynamics of planktonic communities of microbial eukaryotes (cell size range: 0.2–5 μm) in one brook and one pond that experienced recurrent droughts from 1 to 5 consecutive months during a temporal survey carried out monthly for 2 years based on high-throughput 18S rDNA metabarcoding. During drought-induced desiccation events, protist communities present in the remaining dry sediment, though highly diverse, differed radically from their planktonic counterparts. However, after water refill, the aquatic protist assemblages recovered their original structure within a month. This rapid recovery indicates that these eukaryotic communities are resilient to droughts, most likely via the entrance in dormancy. This property is essential for the long-term survival and functional stability of small freshwater ecosystems.
Collapse
Affiliation(s)
- Marianne Simon
- Centre National de la Recherche Scientifique, Unite d'Ecologie Systématique Evolution, Université Paris-Sud, AgroParisTech, Université Paris-Saclay Orsay, France
| | - Purificación López-García
- Centre National de la Recherche Scientifique, Unite d'Ecologie Systématique Evolution, Université Paris-Sud, AgroParisTech, Université Paris-Saclay Orsay, France
| | - Philippe Deschamps
- Centre National de la Recherche Scientifique, Unite d'Ecologie Systématique Evolution, Université Paris-Sud, AgroParisTech, Université Paris-Saclay Orsay, France
| | - Gwendal Restoux
- Génétique Animale et Biologie Intégrative, INRA, AgroParisTech Paris, France
| | - Paola Bertolino
- Centre National de la Recherche Scientifique, Unite d'Ecologie Systématique Evolution, Université Paris-Sud, AgroParisTech, Université Paris-Saclay Orsay, France
| | - David Moreira
- Centre National de la Recherche Scientifique, Unite d'Ecologie Systématique Evolution, Université Paris-Sud, AgroParisTech, Université Paris-Saclay Orsay, France
| | - Ludwig Jardillier
- Centre National de la Recherche Scientifique, Unite d'Ecologie Systématique Evolution, Université Paris-Sud, AgroParisTech, Université Paris-Saclay Orsay, France
| |
Collapse
|
36
|
Milici M, Deng ZL, Tomasch J, Decelle J, Wos-Oxley ML, Wang H, Jáuregui R, Plumeier I, Giebel HA, Badewien TH, Wurst M, Pieper DH, Simon M, Wagner-Döbler I. Co-occurrence Analysis of Microbial Taxa in the Atlantic Ocean Reveals High Connectivity in the Free-Living Bacterioplankton. Front Microbiol 2016; 7:649. [PMID: 27199970 PMCID: PMC4858663 DOI: 10.3389/fmicb.2016.00649] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 04/18/2016] [Indexed: 12/04/2022] Open
Abstract
We determined the taxonomic composition of the bacterioplankton of the epipelagic zone of the Atlantic Ocean along a latitudinal transect (51°S–47°N) using Illumina sequencing of the V5-V6 region of the 16S rRNA gene and inferred co-occurrence networks. Bacterioplankon community composition was distinct for Longhurstian provinces and water depth. Free-living microbial communities (between 0.22 and 3 μm) were dominated by highly abundant and ubiquitous taxa with streamlined genomes (e.g., SAR11, SAR86, OM1, Prochlorococcus) and could clearly be separated from particle-associated communities which were dominated by Bacteroidetes, Planktomycetes, Verrucomicrobia, and Roseobacters. From a total of 369 different communities we then inferred co-occurrence networks for each size fraction and depth layer of the plankton between bacteria and between bacteria and phototrophic micro-eukaryotes. The inferred networks showed a reduction of edges in the deepest layer of the photic zone. Networks comprised of free-living bacteria had a larger amount of connections per OTU when compared to the particle associated communities throughout the water column. Negative correlations accounted for roughly one third of the total edges in the free-living communities at all depths, while they decreased with depth in the particle associated communities where they amounted for roughly 10% of the total in the last part of the epipelagic zone. Co-occurrence networks of bacteria with phototrophic micro-eukaryotes were not taxon-specific, and dominated by mutual exclusion (~60%). The data show a high degree of specialization to micro-environments in the water column and highlight the importance of interdependencies particularly between free-living bacteria in the upper layers of the epipelagic zone.
Collapse
Affiliation(s)
- Mathias Milici
- Group Microbial Communication, Helmholtz-Center for Infection Research Braunschweig, Germany
| | - Zhi-Luo Deng
- Group Microbial Communication, Helmholtz-Center for Infection Research Braunschweig, Germany
| | - Jürgen Tomasch
- Group Microbial Communication, Helmholtz-Center for Infection Research Braunschweig, Germany
| | - Johan Decelle
- UMR 7144 - Sorbonne Universités, UPMC Univ Paris 06Roscoff, France; Centre National de la Recherche Scientifique, UMR 7144Roscoff, France
| | - Melissa L Wos-Oxley
- Group Microbial Interactions and Processes, Helmholtz-Center for Infection Research Braunschweig, Germany
| | - Hui Wang
- Group Microbial Communication, Helmholtz-Center for Infection Research Braunschweig, Germany
| | - Ruy Jáuregui
- Group Microbial Interactions and Processes, Helmholtz-Center for Infection Research Braunschweig, Germany
| | - Iris Plumeier
- Group Microbial Interactions and Processes, Helmholtz-Center for Infection Research Braunschweig, Germany
| | - Helge-Ansgar Giebel
- Biology of Geological Processes, Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg Oldenburg, Germany
| | - Thomas H Badewien
- Biology of Geological Processes, Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg Oldenburg, Germany
| | - Mascha Wurst
- Biology of Geological Processes, Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg Oldenburg, Germany
| | - Dietmar H Pieper
- Group Microbial Interactions and Processes, Helmholtz-Center for Infection Research Braunschweig, Germany
| | - Meinhard Simon
- Biology of Geological Processes, Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg Oldenburg, Germany
| | - Irene Wagner-Döbler
- Group Microbial Communication, Helmholtz-Center for Infection Research Braunschweig, Germany
| |
Collapse
|
37
|
Endo H, Sugie K, Yoshimura T, Suzuki K. Response of Spring Diatoms to CO2 Availability in the Western North Pacific as Determined by Next-Generation Sequencing. PLoS One 2016; 11:e0154291. [PMID: 27124280 PMCID: PMC4849754 DOI: 10.1371/journal.pone.0154291] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 04/12/2016] [Indexed: 11/18/2022] Open
Abstract
Next-generation sequencing (NGS) technologies have enabled us to determine phytoplankton community compositions at high resolution. However, few studies have adopted this approach to assess the responses of natural phytoplankton communities to environmental change. Here, we report the impact of different CO2 levels on spring diatoms in the Oyashio region of the western North Pacific as estimated by NGS of the diatom-specific rbcL gene (DNA), which encodes the large subunit of RubisCO. We also examined the abundance and composition of rbcL transcripts (cDNA) in diatoms to assess their physiological responses to changing CO2 levels. A short-term (3-day) incubation experiment was carried out on-deck using surface Oyashio waters under different pCO2 levels (180, 350, 750, and 1000 μatm) in May 2011. During the incubation, the transcript abundance of the diatom-specific rbcL gene decreased with an increase in seawater pCO2 levels. These results suggest that CO2 fixation capacity of diatoms decreased rapidly under elevated CO2 levels. In the high CO2 treatments (750 and 1000 μatm), diversity of diatom-specific rbcL gene and its transcripts decreased relative to the control treatment (350 μatm), as well as contributions of Chaetocerataceae, Thalassiosiraceae, and Fragilariaceae to the total population, but the contributions of Bacillariaceae increased. In the low CO2 treatment, contributions of Bacillariaceae also increased together with other eukaryotes. These suggest that changes in CO2 levels can alter the community composition of spring diatoms in the Oyashio region. Overall, the NGS technology provided us a deeper understanding of the response of diatoms to changes in CO2 levels in terms of their community composition, diversity, and photosynthetic physiology.
Collapse
Affiliation(s)
- Hisashi Endo
- Faculty of Environmental Earth Science/Graduate School of Environmental Science, Hokkaido University, Sapporo, Hokkaido, Japan.,CREST, Japan Science and Technology, Sapporo, Hokkaido, Japan
| | - Koji Sugie
- Central Research Institute of Electric Power Industry, Abiko, Chiba, Japan.,Research and Development Center for Global Change, Japan Agency for Marine Earth-Science and Technology (JAMSTEC), Yokosuka, Kanagawa, Japan
| | - Takeshi Yoshimura
- Central Research Institute of Electric Power Industry, Abiko, Chiba, Japan
| | - Koji Suzuki
- Faculty of Environmental Earth Science/Graduate School of Environmental Science, Hokkaido University, Sapporo, Hokkaido, Japan.,CREST, Japan Science and Technology, Sapporo, Hokkaido, Japan
| |
Collapse
|
38
|
Choi DH, An SM, Chun S, Yang EC, Selph KE, Lee CM, Noh JH. Dynamic changes in the composition of photosynthetic picoeukaryotes in the northwestern Pacific Ocean revealed by high-throughput tag sequencing of plastid 16S rRNA genes. FEMS Microbiol Ecol 2015; 92:fiv170. [PMID: 26712350 DOI: 10.1093/femsec/fiv170] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2015] [Indexed: 11/14/2022] Open
Abstract
Photosynthetic picoeukaryotes (PPEs) are major oceanic primary producers. However, the diversity of such communities remains poorly understood, especially in the northwestern (NW) Pacific. We investigated the abundance and diversity of PPEs, and recorded environmental variables, along a transect from the coast to the open Pacific Ocean. High-throughput tag sequencing (using the MiSeq system) revealed the diversity of plastid 16S rRNA genes. The dominant PPEs changed at the class level along the transect. Prymnesiophyceae were the only dominant PPEs in the warm pool of the NW Pacific, but Mamiellophyceae dominated in coastal waters of the East China Sea. Phylogenetically, most Prymnesiophyceae sequences could not be resolved at lower taxonomic levels because no close relatives have been cultured. Within the Mamiellophyceae, the genera Micromonas and Ostreococcus dominated in marginal coastal areas affected by open water, whereas Bathycoccus dominated in the lower euphotic depths of oligotrophic open waters. Cryptophyceae and Phaeocystis (of the Prymnesiophyceae) dominated in areas affected principally by coastal water. We also defined the biogeographical distributions of Chrysophyceae, prasinophytes, Bacillariophyceaea and Pelagophyceae. These distributions were influenced by temperature, salinity and chlorophyll a and nutrient concentrations.
Collapse
Affiliation(s)
- Dong H Choi
- Marine Ecosystem and Biological Research Center, Korea Institute of Ocean Science and Technology, Ansan 15627, Republic of Korea Department of Marine Biology, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Sung M An
- Marine Ecosystem and Biological Research Center, Korea Institute of Ocean Science and Technology, Ansan 15627, Republic of Korea
| | - Sungjun Chun
- Marine Ecosystem and Biological Research Center, Korea Institute of Ocean Science and Technology, Ansan 15627, Republic of Korea Department of Marine Biology, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Eun C Yang
- Marine Ecosystem and Biological Research Center, Korea Institute of Ocean Science and Technology, Ansan 15627, Republic of Korea Department of Marine Biology, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Karen E Selph
- Deparment of Oceanography, University of Hawaii, Honolulu, HI 96822, USA
| | - Charity M Lee
- Korea Institute of Ocean Science and Technology, Ansan 15627, Republic of Korea
| | - Jae H Noh
- Marine Ecosystem and Biological Research Center, Korea Institute of Ocean Science and Technology, Ansan 15627, Republic of Korea Department of Marine Biology, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
| |
Collapse
|
39
|
Hovde BT, Deodato CR, Hunsperger HM, Ryken SA, Yost W, Jha RK, Patterson J, Monnat RJ, Barlow SB, Starkenburg SR, Cattolico RA. Genome Sequence and Transcriptome Analyses of Chrysochromulina tobin: Metabolic Tools for Enhanced Algal Fitness in the Prominent Order Prymnesiales (Haptophyceae). PLoS Genet 2015; 11:e1005469. [PMID: 26397803 PMCID: PMC4580454 DOI: 10.1371/journal.pgen.1005469] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 07/27/2015] [Indexed: 12/11/2022] Open
Abstract
Haptophytes are recognized as seminal players in aquatic ecosystem function. These algae are important in global carbon sequestration, form destructive harmful blooms, and given their rich fatty acid content, serve as a highly nutritive food source to a broad range of eco-cohorts. Haptophyte dominance in both fresh and marine waters is supported by the mixotrophic nature of many taxa. Despite their importance the nuclear genome sequence of only one haptophyte, Emiliania huxleyi (Isochrysidales), is available. Here we report the draft genome sequence of Chrysochromulina tobin (Prymnesiales), and transcriptome data collected at seven time points over a 24-hour light/dark cycle. The nuclear genome of C. tobin is small (59 Mb), compact (∼40% of the genome is protein coding) and encodes approximately 16,777 genes. Genes important to fatty acid synthesis, modification, and catabolism show distinct patterns of expression when monitored over the circadian photoperiod. The C. tobin genome harbors the first hybrid polyketide synthase/non-ribosomal peptide synthase gene complex reported for an algal species, and encodes potential anti-microbial peptides and proteins involved in multidrug and toxic compound extrusion. A new haptophyte xanthorhodopsin was also identified, together with two “red” RuBisCO activases that are shared across many algal lineages. The Chrysochromulina tobin genome sequence provides new information on the evolutionary history, ecology and economic importance of haptophytes. Microalgae are important contributors to global ecological balance, and process nearly half of the world’s carbon each year. Additionally, these organisms are deeply rooted in the earths’ evolutionary history. To better understand why algae are such strong survivors in aquatic environments and to better understand their contribution to global ecology, we sequenced the genome of a microalga that is abundant in both fresh and salt water environments, but poorly represented by current genomic information. We identify protein-coding genes responsible for the synthesis of potential toxins as well as those that produce antibiotics, and describe gene products that enhanced the ability of the alga to use light energy. We observed that a day-night cycle, similar to that found in natural environments, significantly impacts the expression of algal genes whose products are responsible for synthesizing fats—a rich source of nutrition for many other organisms.
Collapse
Affiliation(s)
- Blake T. Hovde
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
- * E-mail: (BTH); (RAC)
| | - Chloe R. Deodato
- Department of Biology, University of Washington, Seattle, Washington, United States of America
| | - Heather M. Hunsperger
- Department of Biology, University of Washington, Seattle, Washington, United States of America
| | - Scott A. Ryken
- Department of Biology, University of Washington, Seattle, Washington, United States of America
| | - Will Yost
- Department of Biology, University of Washington, Seattle, Washington, United States of America
| | - Ramesh K. Jha
- Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Johnathan Patterson
- Department of Biology, University of Washington, Seattle, Washington, United States of America
| | - Raymond J. Monnat
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
- University of Washington, Department of Pathology, Seattle, Washington, United States of America
| | - Steven B. Barlow
- Electron Microscope Facility, San Diego State University, San Diego, California, United States of America
| | - Shawn R. Starkenburg
- Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Rose Ann Cattolico
- Department of Biology, University of Washington, Seattle, Washington, United States of America
- * E-mail: (BTH); (RAC)
| |
Collapse
|
40
|
Ševčíková T, Horák A, Klimeš V, Zbránková V, Demir-Hilton E, Sudek S, Jenkins J, Schmutz J, Přibyl P, Fousek J, Vlček Č, Lang BF, Oborník M, Worden AZ, Eliáš M. Updating algal evolutionary relationships through plastid genome sequencing: did alveolate plastids emerge through endosymbiosis of an ochrophyte? Sci Rep 2015; 5:10134. [PMID: 26017773 PMCID: PMC4603697 DOI: 10.1038/srep10134] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 03/31/2015] [Indexed: 01/15/2023] Open
Abstract
Algae with secondary plastids of a red algal origin, such as ochrophytes (photosynthetic stramenopiles), are diverse and ecologically important, yet their evolutionary history remains controversial. We sequenced plastid genomes of two ochrophytes, Ochromonas sp. CCMP1393 (Chrysophyceae) and Trachydiscus minutus (Eustigmatophyceae). A shared split of the clpC gene as well as phylogenomic analyses of concatenated protein sequences demonstrated that chrysophytes and eustigmatophytes form a clade, the Limnista, exhibiting an unexpectedly elevated rate of plastid gene evolution. Our analyses also indicate that the root of the ochrophyte phylogeny falls between the recently redefined Khakista and Phaeista assemblages. Taking advantage of the expanded sampling of plastid genome sequences, we revisited the phylogenetic position of the plastid of Vitrella brassicaformis, a member of Alveolata with the least derived plastid genome known for the whole group. The results varied depending on the dataset and phylogenetic method employed, but suggested that the Vitrella plastids emerged from a deep ochrophyte lineage rather than being derived vertically from a hypothetical plastid-bearing common ancestor of alveolates and stramenopiles. Thus, we hypothesize that the plastid in Vitrella, and potentially in other alveolates, may have been acquired by an endosymbiosis of an early ochrophyte.
Collapse
Affiliation(s)
- Tereza Ševčíková
- University of Ostrava, Faculty of Science, Department of Biology and Ecology, Life Science Research Centre, Chittussiho 10, 710 00 Ostrava, Czech Republic
| | - Aleš Horák
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, 370 05 České Budějovice, Czech Republic.,University of South Bohemia, Faculty of Science, Branišovská 1760, 370 05 České Budějovice, Czech Republic
| | - Vladimír Klimeš
- University of Ostrava, Faculty of Science, Department of Biology and Ecology, Life Science Research Centre, Chittussiho 10, 710 00 Ostrava, Czech Republic
| | - Veronika Zbránková
- University of Ostrava, Faculty of Science, Department of Biology and Ecology, Life Science Research Centre, Chittussiho 10, 710 00 Ostrava, Czech Republic
| | - Elif Demir-Hilton
- Monterey Bay Aquarium Research Institute (MBARI), Moss Landing, CA 95039, USA
| | - Sebastian Sudek
- Monterey Bay Aquarium Research Institute (MBARI), Moss Landing, CA 95039, USA
| | - Jerry Jenkins
- US Department of Energy Joint Genome Institute, Walnut Creek, California 94598, USA
| | - Jeremy Schmutz
- HudsonAlpha Institute for Biotechnology, 601 Genome Way NW, Huntsville, Alabama 35806, USA
| | - Pavel Přibyl
- Centre for Algology and Biorefinery Research Centre of Competence, Institute of Botany, Czech Academy of Sciences, Dukelská 135, 379 82 Třeboň, Czech Republic
| | - Jan Fousek
- Institute of Molecular Genetics, Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - Čestmír Vlček
- Institute of Molecular Genetics, Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - B Franz Lang
- Département de Biochimie, Centre Robert-Cedergren, Université de Montréal, 2900 Boulevard Edouard Montpetit, Montréal, Québec, H3C 3J7, Canada
| | - Miroslav Oborník
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, 370 05 České Budějovice, Czech Republic.,University of South Bohemia, Faculty of Science, Branišovská 1760, 370 05 České Budějovice, Czech Republic
| | - Alexandra Z Worden
- Monterey Bay Aquarium Research Institute (MBARI), Moss Landing, CA 95039, USA.,Integrated Microbial Biodiversity Program, Canadian Institute for Advanced Research, Toronto, M5G 1Z8, Canada
| | - Marek Eliáš
- University of Ostrava, Faculty of Science, Department of Biology and Ecology, Life Science Research Centre, Chittussiho 10, 710 00 Ostrava, Czech Republic
| |
Collapse
|
41
|
Decelle J, Romac S, Stern RF, Bendif EM, Zingone A, Audic S, Guiry MD, Guillou L, Tessier D, Le Gall F, Gourvil P, Dos Santos AL, Probert I, Vaulot D, de Vargas C, Christen R. PhytoREF: a reference database of the plastidial 16S rRNA gene of photosynthetic eukaryotes with curated taxonomy. Mol Ecol Resour 2015; 15:1435-45. [PMID: 25740460 DOI: 10.1111/1755-0998.12401] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 02/20/2015] [Accepted: 03/02/2015] [Indexed: 11/30/2022]
Abstract
Photosynthetic eukaryotes have a critical role as the main producers in most ecosystems of the biosphere. The ongoing environmental metabarcoding revolution opens the perspective for holistic ecosystems biological studies of these organisms, in particular the unicellular microalgae that often lack distinctive morphological characters and have complex life cycles. To interpret environmental sequences, metabarcoding necessarily relies on taxonomically curated databases containing reference sequences of the targeted gene (or barcode) from identified organisms. To date, no such reference framework exists for photosynthetic eukaryotes. In this study, we built the PhytoREF database that contains 6490 plastidial 16S rDNA reference sequences that originate from a large diversity of eukaryotes representing all known major photosynthetic lineages. We compiled 3333 amplicon sequences available from public databases and 879 sequences extracted from plastidial genomes, and generated 411 novel sequences from cultured marine microalgal strains belonging to different eukaryotic lineages. A total of 1867 environmental Sanger 16S rDNA sequences were also included in the database. Stringent quality filtering and a phylogeny-based taxonomic classification were applied for each 16S rDNA sequence. The database mainly focuses on marine microalgae, but sequences from land plants (representing half of the PhytoREF sequences) and freshwater taxa were also included to broaden the applicability of PhytoREF to different aquatic and terrestrial habitats. PhytoREF, accessible via a web interface (http://phytoref.fr), is a new resource in molecular ecology to foster the discovery, assessment and monitoring of the diversity of photosynthetic eukaryotes using high-throughput sequencing.
Collapse
Affiliation(s)
- Johan Decelle
- UMR 7144 - Sorbonne Universités, UPMC Univ Paris 06, Station Biologique de Roscoff, Roscoff, 29680, France.,CNRS, UMR 7144, Station Biologique de Roscoff, Roscoff, 29680, France
| | - Sarah Romac
- UMR 7144 - Sorbonne Universités, UPMC Univ Paris 06, Station Biologique de Roscoff, Roscoff, 29680, France.,CNRS, UMR 7144, Station Biologique de Roscoff, Roscoff, 29680, France
| | - Rowena F Stern
- Sir Alister Hardy Foundation for Ocean Science, The Laboratory, Citadel Hill, Plymouth, PL1 2PB, UK
| | - El Mahdi Bendif
- Marine Biological Association, The Laboratory, Citadel Hill, Plymouth, PL1 2PB, UK
| | - Adriana Zingone
- Stazione Zoologica Anton Dohrn, Villa Comunale, Naples, 80121, Italy
| | - Stéphane Audic
- UMR 7144 - Sorbonne Universités, UPMC Univ Paris 06, Station Biologique de Roscoff, Roscoff, 29680, France.,CNRS, UMR 7144, Station Biologique de Roscoff, Roscoff, 29680, France
| | - Michael D Guiry
- The AlgaeBase Foundation, c/o Ryan Institute, National University of Ireland, University Road, Galway, Ireland
| | - Laure Guillou
- UMR 7144 - Sorbonne Universités, UPMC Univ Paris 06, Station Biologique de Roscoff, Roscoff, 29680, France.,CNRS, UMR 7144, Station Biologique de Roscoff, Roscoff, 29680, France
| | - Désiré Tessier
- CNRS, UMR 7138, Systématique Adaptation Evolution, Parc Valrose, BP71, Nice, F06108, France.,Université de Nice-Sophia Antipolis, UMR 7138, Systématique Adaptation Evolution, Parc Valrose, BP71, Nice, F06108, France
| | - Florence Le Gall
- UMR 7144 - Sorbonne Universités, UPMC Univ Paris 06, Station Biologique de Roscoff, Roscoff, 29680, France.,CNRS, UMR 7144, Station Biologique de Roscoff, Roscoff, 29680, France
| | - Priscillia Gourvil
- UMR 7144 - Sorbonne Universités, UPMC Univ Paris 06, Station Biologique de Roscoff, Roscoff, 29680, France.,CNRS, UMR 7144, Station Biologique de Roscoff, Roscoff, 29680, France
| | - Adriana L Dos Santos
- UMR 7144 - Sorbonne Universités, UPMC Univ Paris 06, Station Biologique de Roscoff, Roscoff, 29680, France.,CNRS, UMR 7144, Station Biologique de Roscoff, Roscoff, 29680, France
| | - Ian Probert
- UMR 7144 - Sorbonne Universités, UPMC Univ Paris 06, Station Biologique de Roscoff, Roscoff, 29680, France.,CNRS, UMR 7144, Station Biologique de Roscoff, Roscoff, 29680, France
| | - Daniel Vaulot
- UMR 7144 - Sorbonne Universités, UPMC Univ Paris 06, Station Biologique de Roscoff, Roscoff, 29680, France.,CNRS, UMR 7144, Station Biologique de Roscoff, Roscoff, 29680, France
| | - Colomban de Vargas
- UMR 7144 - Sorbonne Universités, UPMC Univ Paris 06, Station Biologique de Roscoff, Roscoff, 29680, France.,CNRS, UMR 7144, Station Biologique de Roscoff, Roscoff, 29680, France
| | - Richard Christen
- CNRS, UMR 7138, Systématique Adaptation Evolution, Parc Valrose, BP71, Nice, F06108, France.,Université de Nice-Sophia Antipolis, UMR 7138, Systématique Adaptation Evolution, Parc Valrose, BP71, Nice, F06108, France
| |
Collapse
|
42
|
Grob C, Jardillier L, Hartmann M, Ostrowski M, Zubkov MV, Scanlan DJ. Cell-specific CO2 fixation rates of two distinct groups of plastidic protists in the Atlantic Ocean remain unchanged after nutrient addition. ENVIRONMENTAL MICROBIOLOGY REPORTS 2015; 7:211-218. [PMID: 25345650 DOI: 10.1111/1758-2229.12228] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 09/18/2014] [Accepted: 09/22/2014] [Indexed: 06/04/2023]
Abstract
To assess the role of open-ocean ecosystems in global CO2 fixation, we investigated how picophytoplankton, which dominate primary production, responded to episodic increases in nutrient availability. Previous experiments have shown nitrogen alone, or in combination with phosphorus or iron, to be the proximate limiting nutrient(s) for total phytoplankton grown over several days. Much less is known about how nutrient upshift affects picophytoplankton CO2 fixation over the duration of the light period. To address this issue, we performed a series of small volume (8-60 ml) - short term (10-11 h) nutrient addition experiments in different regions of the Atlantic Ocean using NH4 Cl, FeCl3 , K medium, dust and nutrient-rich water from 300 m depth. We found no significant nutrient stimulation of group-specific CO2 fixation rates of two taxonomically and size-distinct groups of plastidic protists. The above was true regardless of the region sampled or nutrient added, suggesting that this is a generic phenomenon. Our findings show that at least in the short term (i.e. daylight period), nutrient availability does not limit CO2 fixation by the smallest plastidic protists, while their taxonomic composition does not determine their response to nutrient addition.
Collapse
Affiliation(s)
- Carolina Grob
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | | | | | | | | | | |
Collapse
|
43
|
Simon M, Jardillier L, Deschamps P, Moreira D, Restoux G, Bertolino P, López-García P. Complex communities of small protists and unexpected occurrence of typical marine lineages in shallow freshwater systems. Environ Microbiol 2014; 17:3610-27. [PMID: 25115943 DOI: 10.1111/1462-2920.12591] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Accepted: 08/05/2014] [Indexed: 12/11/2022]
Abstract
Although inland water bodies are more heterogeneous and sensitive to environmental variation than oceans, the diversity of small protists in these ecosystems is much less well known. Some molecular surveys of lakes exist, but little information is available from smaller, shallower and often ephemeral freshwater systems, despite their global distribution and ecological importance. We carried out a comparative study based on massive pyrosequencing of amplified 18S rRNA gene fragments of protists in the 0.2-5 μm size range in one brook and four shallow ponds located in the Natural Regional Park of the Chevreuse Valley, France. Our study revealed a wide diversity of small protists, with 812 stringently defined operational taxonomic units (OTUs) belonging to the recognized eukaryotic supergroups (SAR--Stramenopiles, Alveolata, Rhizaria--Archaeplastida, Excavata, Amoebozoa, Opisthokonta) and to groups of unresolved phylogenetic position (Cryptophyta, Haptophyta, Centrohelida, Katablepharida, Telonemida, Apusozoa). Some OTUs represented deep-branching lineages (Cryptomycota, Aphelida, Colpodellida, Tremulida, clade-10 Cercozoa, HAP-1 Haptophyta). We identified several lineages previously thought to be marine including, in addition to MAST-2 and MAST-12, already detected in freshwater, MAST-3 and possibly MAST-6. Protist community structures were different in the five ecosystems. These differences did not correlate with geographical distances, but seemed to be influenced by environmental parameters.
Collapse
Affiliation(s)
- Marianne Simon
- Unité d'Ecologie, Systématique et Evolution, CNRS UMR 8079, Université Paris-Sud, 91405, Orsay, France
| | - Ludwig Jardillier
- Unité d'Ecologie, Systématique et Evolution, CNRS UMR 8079, Université Paris-Sud, 91405, Orsay, France
| | - Philippe Deschamps
- Unité d'Ecologie, Systématique et Evolution, CNRS UMR 8079, Université Paris-Sud, 91405, Orsay, France
| | - David Moreira
- Unité d'Ecologie, Systématique et Evolution, CNRS UMR 8079, Université Paris-Sud, 91405, Orsay, France
| | - Gwendal Restoux
- Unité d'Ecologie, Systématique et Evolution, CNRS UMR 8079, Université Paris-Sud, 91405, Orsay, France
| | - Paola Bertolino
- Unité d'Ecologie, Systématique et Evolution, CNRS UMR 8079, Université Paris-Sud, 91405, Orsay, France
| | - Purificación López-García
- Unité d'Ecologie, Systématique et Evolution, CNRS UMR 8079, Université Paris-Sud, 91405, Orsay, France
| |
Collapse
|
44
|
Brown MV, Ostrowski M, Grzymski JJ, Lauro FM. A trait based perspective on the biogeography of common and abundant marine bacterioplankton clades. Mar Genomics 2014; 15:17-28. [PMID: 24662471 DOI: 10.1016/j.margen.2014.03.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 03/08/2014] [Accepted: 03/08/2014] [Indexed: 11/26/2022]
Abstract
Marine microbial communities provide much of the energy upon which all higher trophic levels depend, particularly in open-ocean and oligotrophic systems, and play a pivotal role in biogeochemical cycling. How and why species are distributed in the global oceans, and whether net ecosystem function can be accurately predicted from community composition are fundamental questions for marine scientists. Many of the most abundant clades of marine bacteria, including the Prochlorococcus, Synechococcus, SAR11, SAR86 and Roseobacter, have a very broad, if not a cosmopolitan distribution. However this is not reflected in an underlying genetic identity. Rather, widespread distribution in these organisms is achieved by the existence of closely related but discrete ecotypes that display niche adaptations. Closely related ecotypes display specific nutritional or energy generating mechanisms and are adapted to different physical parameters including temperature, salinity, and hydrostatic pressure. Furthermore, biotic phenomena such as selective grazing and viral loss contribute to the success or failure of ecotypes allowing some to compete effectively in particular marine provinces but not in others. An additional layer of complexity is added by ocean currents and hydrodynamic specificity of water body masses that bound microbial dispersal and immigration. These vary in space and time with respect to intensity and direction, making the definition of large biogeographic provinces problematic. A deterministic theory aimed at understanding how all these factors shape microbial life in the oceans can only proceed through analysis of microbial traits, rather than pure phylogenetic assessments. Trait based approaches seek mechanistic explanations for the observed temporal and spatial patterns. This review will present successful recent advances in phylogenetic and trait based biogeographic analyses in some of the most abundant marine taxa.
Collapse
Affiliation(s)
- Mark V Brown
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia; Evolution and Ecology Research Center, University of New South Wales, Sydney, Australia
| | - Martin Ostrowski
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, Australia
| | - Joseph J Grzymski
- Division of Earth and Ecosystem Sciences, Desert Research Institute, Reno, NV, USA
| | - Federico M Lauro
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia; Singapore Centre on Environmental Life Sciences Engineering, Nanyang Technological University, Singapore.
| |
Collapse
|
45
|
Phagotrophy by the picoeukaryotic green alga Micromonas: implications for Arctic Oceans. ISME JOURNAL 2014; 8:1953-61. [PMID: 24553471 DOI: 10.1038/ismej.2014.16] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 01/04/2014] [Accepted: 01/14/2014] [Indexed: 11/09/2022]
Abstract
Photosynthetic picoeukaryotes (PPE) are recognized as major primary producers and contributors to phytoplankton biomass in oceanic and coastal environments. Molecular surveys indicate a large phylogenetic diversity in the picoeukaryotes, with members of the Prymnesiophyceae and Chrysophyseae tending to be more common in open ocean waters and Prasinophyceae dominating coastal and Arctic waters. In addition to their role as primary producers, PPE have been identified in several studies as mixotrophic and major predators of prokaryotes. Mixotrophy, the combination of photosynthesis and phagotrophy in a single organism, is well established for most photosynthetic lineages. However, green algae, including prasinophytes, were widely considered as a purely photosynthetic group. The prasinophyte Micromonas is perhaps the most common picoeukaryote in coastal and Arctic waters and is one of the relatively few cultured representatives of the picoeukaryotes available for physiological investigations. In this study, we demonstrate phagotrophy by a strain of Micromonas (CCMP2099) isolated from Arctic waters and show that environmental factors (light and nutrient concentration) affect ingestion rates in this mixotroph. In addition, we show size-selective feeding with a preference for smaller particles, and determine P vs I (photosynthesis vs irradiance) responses in different nutrient conditions. If other strains have mixotrophic abilities similar to Micromonas CCMP2099, the widespread distribution and frequently high abundances of Micromonas suggest that these green algae may have significant impact on prokaryote populations in several oceanic regimes.
Collapse
|