1
|
Nielsen SS, Alvarez J, Calistri P, Canali E, Drewe JA, Garin‐Bastuji B, Gonzales Rojas JL, Gortázar C, Herskin MS, Michel V, Miranda Chueca MÁ, Padalino B, Roberts HC, Spoolder H, Ståhl K, Velarde A, Viltrop A, Winckler C, Bron J, Olesen NJ, Sindre H, Stone D, Vendramin N, Antoniou SE, Aznar I, Papanikolaou A, Karagianni AE, Bicout DJ. Assessment of listing and categorisation of animal diseases within the framework of the Animal Health Law (Regulation (EU) 2016/429): Bacterial kidney disease (BKD). EFSA J 2023; 21:e08326. [PMID: 37908448 PMCID: PMC10613944 DOI: 10.2903/j.efsa.2023.8326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023] Open
Abstract
Bacterial kidney disease (BKD) was assessed according to the criteria of the Animal Health Law (AHL), in particular the criteria of Article 7 on disease profile and impacts, Article 5 on its eligibility to be listed, Annex IV for its categorisation according to disease prevention and control rules as laid out in Article 9 and Article 8 for listing animal species related to BKD. The assessment was performed following the ad hoc method on data collection and assessment developed by AHAW Panel and already published. The outcome reported is the median of the probability ranges provided by the experts, which indicates whether each criterion is fulfilled (lower bound ≥ 66%) or not (upper bound ≤ 33%), or whether there is uncertainty about fulfilment. Reasoning points are reported for criteria with an uncertain outcome. According to this assessment, BKD can be considered eligible to be listed for Union intervention according to Article 5 of the AHL (66-90% probability). According to the criteria in Annex IV, for the purpose of categorisation related to the level of prevention and control as in Article 9 of the AHL, the AHAW Panel concluded that BKD does not meet the criteria in Sections 1, 2 and 3 (Categories A, B and C; 1-5%, 33-66% and 33-66% probability of meeting the criteria, respectively) but meets the criteria in Sections 4 and 5 (Categories D and E; 66-90% and 66-90% probability of meeting the criteria, respectively). The animal species to be listed for BKD according to Article 8 criteria are provided.
Collapse
|
2
|
Mora-Salas P, Zapararte S, Villouta P, Araya-León H, Avendaño-Herrera R, Melo F, Mardones FO. Method for lineage typing of epidemic Renibacterium salmoninarum in Chilean salmon farms. JOURNAL OF FISH DISEASES 2023; 46:499-506. [PMID: 36696457 DOI: 10.1111/jfd.13761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
Renibacterium salmoninarum (Rs) is the etiological agent of bacterial kidney disease (BKD), which significantly affects farmed and wild salmonids worldwide. Although the whole genome of Rs (~3.1 million nucleotides) is highly conserved, genomic epidemiology analyses have identified four sub-lineages from Chilean isolates. A total of 94 Rs genomes from the BIGSdb aquaculture database were aligned and compared using bioinformatics tools, identifying 2199 independent single-nucleotide polymorphisms (SNPs) spread along the genome. A detailed analysis of the distribution of the SNPs showed five local zones of a length in the range of 10-15 kbp that should be used to unambiguously identify a specific sub-lineage. Based on the Rs type strain DSM 20767T , we designed multiplex PCR primers that produce specific amplification products which were further sequenced by the Sanger method to obtain the genotype of the sub-lineage. For the genetic typing, we evaluated 27 Rs isolates recovered from BKD outbreaks from different fish species and regions of Chile. Based on the findings reported here, we propose the PCR approach as a valuable tool for the rapid and reliable studying of the relationships between Rs isolates and the different sub-lineages without requiring the sequencing of the entire genome.
Collapse
Affiliation(s)
- Patricia Mora-Salas
- Escuela de Medicina Veterinaria, Facultad de Agronomía e Ingeniería Forestal, Facultad de Ciencias Biológicas y Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Sebastián Zapararte
- Laboratorio de Bioinformática Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pamela Villouta
- Laboratorio de Bioinformática Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Henry Araya-León
- Laboratorio de Patología de Organismos Acuáticos y Biotecnología Acuícola, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Viña del Mar, Chile
- Centro FONDAP, Interdisciplinary Center for Aquaculture Research (INCAR), Universidad Andrés Bello, Viña del Mar, Chile
| | - Ruben Avendaño-Herrera
- Laboratorio de Patología de Organismos Acuáticos y Biotecnología Acuícola, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Viña del Mar, Chile
- Centro FONDAP, Interdisciplinary Center for Aquaculture Research (INCAR), Universidad Andrés Bello, Viña del Mar, Chile
- Centro de Investigaciones Marina Quintay (CIMARQ), Universidad Andrés Bello, Quintay, Chile
| | - Francisco Melo
- Laboratorio de Bioinformática Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Instituto de Ingeniería Biológica y Médica, Facultades de Ingeniería, Medicina y Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Fernando O Mardones
- Escuela de Medicina Veterinaria, Facultad de Agronomía e Ingeniería Forestal, Facultad de Ciencias Biológicas y Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
3
|
Saldarriaga-Córdoba M, Avendaño-Herrera R. Comparative pan-genomic analysis of 51 Renibacterium salmoninarum indicates heterogeneity in the principal virulence factor, the 57 kDa protein. JOURNAL OF FISH DISEASES 2022; 45:1173-1188. [PMID: 35604683 DOI: 10.1111/jfd.13653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/28/2022] [Accepted: 05/02/2022] [Indexed: 06/15/2023]
Abstract
Renibacterium salmoninarum, a Gram-positive intracellular pathogen, is the causative agent of bacterial kidney disease (BKD), the impacts of which are high mortalities and economic losses for the salmon industry. This study provides novel analyses for the whole-genome sequences of 50 R. salmoninarum isolates and the reference strain ATCC 33209 using a pan-genomic approach to elucidate phylogenomic relationships and identify unique and shared genes associated with pathogenicity and infection mechanisms. Genome size varied from 3,061,638 to 3,155,332 bp; gene count from 3452 to 3580; and predicted coding sequences from 3402 to 3527. Comparative analyses revealed an open, but approaching closed, pan-genome. The pan-genome analysis recovered 4064 genes, with a core genome containing 3306 genes. Phylogenetic analysis of R. salmoninarum showed high genomic homogeneity, apart from one isolate obtained from Salmo trutta in Norway. All genomes presented the 57-kDa protein (p57). Strain ATCC 33209 and the Chilean isolates H-2 and DJ2R presented two copies of the msa gene, while the remaining isolates had one copy. The pan-genome analysis further identified differences in the number of copies and length of the signalling peptide for p57, the principal virulence factor reported for this bacterium. This heterogeneity could be associated with the secretion levels of p57, potentially influencing virulence. Additionally identified were numerous common genes related to iron uptake, the stress response and regulation, and cell signalling-all of which constitute the pathogenic repertoire of R. salmoninarum. This investigation provides information that is applicable in future studies for identifying therapeutic targets and/or for designing new strategies (e.g., vaccines) to prevent BKD infections in salmon farming.
Collapse
Affiliation(s)
- Mónica Saldarriaga-Córdoba
- Centro de Investigación en Recursos Naturales y Sustentabilidad, Universidad Bernardo O'Higgins, Santiago, Chile
- Centro FONDAP, Interdisciplinary Center for Aquaculture Research (INCAR), Universidad Andrés Bello, Viña del Mar, Chile
| | - Ruben Avendaño-Herrera
- Centro FONDAP, Interdisciplinary Center for Aquaculture Research (INCAR), Universidad Andrés Bello, Viña del Mar, Chile
- Laboratorio de Patología de Organismos Acuáticos y Biotecnología Acuícola, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Viña del Mar, Chile
- Centro de Investigaciones Marina Quintay (CIMARQ), Universidad Andés Bello, Quintay, Chile
| |
Collapse
|
4
|
A panoptic review of techniques for finfish disease diagnosis: The status quo and future perspectives. J Microbiol Methods 2022; 196:106477. [DOI: 10.1016/j.mimet.2022.106477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/21/2022] [Accepted: 04/21/2022] [Indexed: 12/27/2022]
|
5
|
Persson DB, Aspán A, Hysing P, Blomkvist E, Jansson E, Orsén L, Hällbom H, Axén C. Assessing the presence and spread of Renibacterium salmoninarum between farmed and wild fish in Sweden. JOURNAL OF FISH DISEASES 2022; 45:613-621. [PMID: 35092707 PMCID: PMC9304202 DOI: 10.1111/jfd.13586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/10/2022] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
Bacterial kidney disease (BKD) can be a devastating bacterial infection in salmonids, and it is present in aquaculture throughout the world. BKD is caused by the Gram-positive facultative intracellular bacterium Renibacterium salmoninarum (R. salmoninarum) that is spread both horizontally and vertically. Disease signs include external ulcerations and blisters and internal signs such as organ swelling, granulomas, petechiae and ascites. In Sweden, BKD accounts for a significant income loss in aquacultures due to expensive decontamination of the facility and increased disease susceptibility for the immunocompromised fish leading to higher mortality rates. In addition, uncontrolled spread in aquaculture may threaten the survival of wild fish populations. The aim of our study was to investigate the prevalence of R. salmoninarum in wild salmonids caught in Swedish waters where net pen farms with a recent history of BKD are present. Four rivers with at least one BKD-positive or recently BKD-positive farm were selected. In addition, we evaluated the use of environmental DNA (eDNA) for surveillance and monitoring of ongoing infections at these locations. In total, 1058 fish were sampled from four different river systems, and of them 52 (4.9%) were positive for R. salmoninarum by antigen ELISA. Surprisingly, these fish were not evenly distributed between the four river systems, but 50 were caught in the same river (Ljungan). This accounts for an alarmingly high rate of 17% R. salmoninarum-positive samples in wild salmonids in this area. This number is far above what was expected and clearly shows the risk with an open farming system as well as the importance of effective health monitoring programmes to avoid an uncontrolled spread of the disease. The use of eDNA for monitoring BKD is somewhat difficult to evaluate. Few of the water samples analysed were PCR positive for R. salmoninarum (2 of 38) and those were collected where no ELISA positive fish were identified. In addition to water, sediment samples were collected under a net pen farm that had recently slaughtered all fish due to ongoing R. salmoninarum infections. Sediment samples are more promising than water as 4 of 5 samples at one farming facility where positive for R. salmoninarum. Thus, sediment samples may be valuable for monitoring potential ongoing BKD in farms, without the need to sacrifice valuable fish.
Collapse
Affiliation(s)
| | - Anna Aspán
- National Veterinary InstituteUppsalaSweden
| | | | | | | | | | | | | |
Collapse
|
6
|
Abstract
Globally, V. parahaemolyticus-related gastroenteritis outbreaks caused by seafood consumption represent an increasing threat to human health. Despite advances in our understanding of the global epidemiology of pandemic V. parahaemolyticus, fundamental questions about the key driving forces for the spread of V. parahaemolyticus at regional and national scales remain unanswered. Vibrio parahaemolyticus is becoming the leading cause of acute bacterial gastroenteritis, but its population dynamics in aquafarms have received limited attention. To address this research gap, we selected three shellfish farms to examine the impacts of ocean currents and the transport of live aquatic animals on the transmission and microevolution of V. parahaemolyticus by using multilocus sequence typing (MLST) and whole-genome sequencing. MLST and genomic analysis revealed that the community structure of V. parahaemolyticus in Dalian and Donggang was relatively stable in the presence of ocean currents; however, horizontal gene transfer of mobile genetic elements (MGEs) between Dalian and Donggang was very common. Further analysis indicated that the transport of live aquatic animals from Dalian to Xiamen not only introduced new V. parahaemolyticus populations but also allowed the exchange of genetic material between the two sites. More interestingly, Dalian-originated strain ST722 was introduced to Xiamen farms, resulting in one MLST allele change and the acquisition of two genomic islands from indigenous isolates in Xiamen within 8 months; such alterations are thought to promote the adaptation of V. parahaemolyticus. These results provide direct observations of how ocean currents and the transport of live aquatic animals contribute to the dissemination and genetic mixture of V. parahaemolyticus, which provides insights into the dynamics and microevolution of V. parahaemolyticus in aquacultural environments. IMPORTANCE Globally, V. parahaemolyticus-related gastroenteritis outbreaks caused by seafood consumption represent an increasing threat to human health. Despite advances in our understanding of the global epidemiology of pandemic V. parahaemolyticus, fundamental questions about the key driving forces for the spread of V. parahaemolyticus at regional and national scales remain unanswered. This study revealed that the transregional transport of aquatic animals and the movement of ocean currents both contributed to the mixing of V. parahaemolyticus populations. More importantly, this study demonstrated how genetic mixture occurred between introduced and endemic V. parahaemolyticus populations via the transport of aquatic animals, which accelerated bacterial adaptation by transferring ecologically important functions. These results suggest that human activities entail a risk of the emergence of new virulent populations for both aquatic animals and humans by horizontal gene transfer and provide important insights into the microevolution and population mixing of V. parahaemolyticus.
Collapse
|
7
|
Renibacterium salmoninarum-The Causative Agent of Bacterial Kidney Disease in Salmonid Fish. Pathogens 2020; 9:pathogens9100845. [PMID: 33076564 PMCID: PMC7602803 DOI: 10.3390/pathogens9100845] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/04/2020] [Accepted: 10/14/2020] [Indexed: 12/20/2022] Open
Abstract
Renibacterium salmoninarum is one of the oldest known bacterial pathogens of fish. This Gram-positive bacterium is the causative agent of bacterial kidney disease, a chronic infection that is mostly known to infect salmonid fish at low temperatures. Externally, infected fish can display exophthalmia as well as blebs on the skin and ulcerations alongside haemorrhages at the base of the fins and alongside the lateral line. Internally, the kidney, heart, spleen and liver can show signs of swelling. Granulomas can be seen on various internal organs, as can haemorrhages, and the organs can be covered with a false membrane. Ascites can also accumulate in the abdominal cavity. The bacterium is generally cultivated on specialized media such as kidney disease medium-1 (KDM-1), KDM-2 and selective kidney disease medium (SKDM), and a diagnostic is performed using molecular tools such as PCRs or real-time quantitative PCRs (RT-qPCRs). Several virulence mechanisms have been identified in R. salmoninarum, in particular the protein p57 that is known to play a role in both agglutination and immunosuppression of the host’s defense mechanisms. Control of the disease is difficult; the presence of asymptomatic carriers complicates the eradication of the disease, as does the ability of the bacterium to gain entrance inside the eggs. Bacterin-killed vaccines have proven to be of doubtful efficacy in controlling the disease, and even more recent application of a virulent environmental relative of R. salmoninarum is of limited efficacy. Treatment by antibiotics such as erythromycin, azithromycin and enrofloxacin can be effective but it is slow and requires prolonged treatment. Moreover, antibiotic-resistant strains have been reported. Despite being known for a long time, there is still much to be discovered about R. salmoninarum, notably regarding its virulence mechanisms and its vaccine potential. Consequently, these gaps in knowledge continue to hinder control of this bacterial disease in aquaculture settings.
Collapse
|
8
|
Rozas-Serri M, Lobos C, Correa R, Ildefonso R, Vásquez J, Muñoz A, Maldonado L, Jaramillo V, Coñuecar D, Oyarzún C, Walker R, Navarrete C, Gayosa J, Mancilla P, Peña A, Senn C, Schwerter F. Atlantic Salmon Pre-smolt Survivors of Renibacterium salmoninarum Infection Show Inhibited Cell-Mediated Adaptive Immune Response and a Higher Risk of Death During the Late Stage of Infection at Lower Water Temperatures. Front Immunol 2020; 11:1378. [PMID: 32695119 PMCID: PMC7338658 DOI: 10.3389/fimmu.2020.01378] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 05/29/2020] [Indexed: 12/20/2022] Open
Abstract
Bacterial kidney disease (BKD) is widespread in many areas of the world and can cause substantial economic losses for the salmon aquaculture industry. The objective of this study was to investigate the pathophysiological response and gene expression profiles related to the immune response at different water temperatures and to identify the best immunopathological biomarkers to define a phenotype of resistance to BKD. The abundance of msa transcripts of R. salmoninarum in the head kidney was significantly higher in infected fish at 11°C. R. salmoninarum induced significantly more severe kidney lesions, anemia and impaired renal function at 11°C. In addition, the expression pattern of the genes related to humoral and cell-mediated immune responses in infected fish at 11 and 15°C was very similar, although R. salmoninarum induced a significantly greater downregulation of the adaptive immune response genes at the lower water temperature. These results could be due to a suppressed host response directly related to the lowest water temperature and/or associated with a delayed host response related to the lowest water temperature. Although no significant differences in survival rate were observed, fish infected at the lowest temperature showed a higher probability of death and delayed the mortality curve during the late stage of infection (35 days after infection). Thirty-three immunopathological biomarkers were identified for potential use in the search for a resistance phenotype for BKD, and eight were genes related specifically to the adaptive cell-mediated immune response.
Collapse
Affiliation(s)
- Marco Rozas-Serri
- Laboratorio Pathovet Ltda., Puerto Montt, Chile.,Newenko Group SpA., Puerto Montt, Chile
| | - Carlos Lobos
- Hendrix Genetics Aquaculture S.A., Puerto Varas, Chile
| | | | | | | | - Ariel Muñoz
- Laboratorio Pathovet Ltda., Puerto Montt, Chile
| | | | | | | | | | | | | | | | | | - Andrea Peña
- Laboratorio Pathovet Ltda., Puerto Montt, Chile
| | | | | |
Collapse
|
9
|
Bridel S, Olsen AB, Nilsen H, Bernardet JF, Achaz G, Avendaño-Herrera R, Duchaud E. Comparative Genomics of Tenacibaculum dicentrarchi and "Tenacibaculum finnmarkense" Highlights Intricate Evolution of Fish-Pathogenic Species. Genome Biol Evol 2018; 10:452-457. [PMID: 29360975 PMCID: PMC5793721 DOI: 10.1093/gbe/evy020] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2018] [Indexed: 01/03/2023] Open
Abstract
The genus Tenacibaculum encompasses several species pathogenic for marine fish. Tenacibaculum dicentrarchi and "Tenacibaculum finnmarkense" (Quotation marks denote species that have not been validly named.) were retrieved from skin lesions of farmed fish such as European sea bass or Atlantic salmon. They cause a condition referred to as tenacibaculosis and severe outbreaks and important fish losses have been reported in Spanish, Norwegian, and Chilean marine farms. We report here the draft genomes of the T. dicentrarchi and "T. finnmarkense" type strains. These genomes were compared with draft genomes from field isolates retrieved from Chile and Norway and with previously published Tenacibaculum genomes. We used Average Nucleotide Identity and core genome-based phylogeny as a proxy index for species boundary delineation. This work highlights evolution of closely related fish-pathogenic species and suggests that homologous recombination likely contributes to genome evolution. It also corrects the species affiliation of strain AYD7486TD claimed by Grothusen et al. (2016).
Collapse
Affiliation(s)
- Sébastien Bridel
- VIM, INRA, Université Paris-Saclay, Jouy-en-Josas, France.,Labofarm, Finalab, Loudéac, France.,Université de Versailles Saint-Quentin-En-Yvelines, Montigny-Le-Bretonneux, France
| | | | | | | | - Guillaume Achaz
- Atelier de Bioinformatique, UMR 7205 ISyEB, MNHN-UPMC-CNRS-EPHE, Muséum National d'Histoire Naturelle, Paris, France
| | - Ruben Avendaño-Herrera
- Laboratorio de Patología de Organismos Acuáticos y Biotecnología Acuícola, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Viña del Mar, Chile.,Interdisciplinary Center for Aquaculture Research (INCAR), Concepción, Chile
| | - Eric Duchaud
- VIM, INRA, Université Paris-Saclay, Jouy-en-Josas, France
| |
Collapse
|
10
|
Microevolution of Streptococcus agalactiae ST-261 from Australia Indicates Dissemination via Imported Tilapia and Ongoing Adaptation to Marine Hosts or Environment. Appl Environ Microbiol 2018; 84:AEM.00859-18. [PMID: 29915111 DOI: 10.1128/aem.00859-18] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 06/12/2018] [Indexed: 11/20/2022] Open
Abstract
Streptococcus agalactiae (group B Streptococcus [GBS]) causes disease in a wide range of animals. The serotype Ib lineage is highly adapted to aquatic hosts, exhibiting substantial genome reduction compared with terrestrial conspecifics. Here, we sequence genomes from 40 GBS isolates, including 25 isolates from wild fish and captive stingrays in Australia, six local veterinary or human clinical isolates, and nine isolates from farmed tilapia in Honduras, and compared them with 42 genomes from public databases. Phylogenetic analysis based on nonrecombinant core-genome single nucleotide polymorphisms (SNPs) indicated that aquatic serotype Ib isolates from Queensland were distantly related to local veterinary and human clinical isolates. In contrast, Australian aquatic isolates are most closely related to a tilapia isolate from Israel, differing by only 63 core-genome SNPs. A consensus minimum spanning tree based on core-genome SNPs indicates the dissemination of sequence type 261 (ST-261) from an ancestral tilapia strain, which is congruent with several introductions of tilapia into Australia from Israel during the 1970s and 1980s. Pangenome analysis identified 1,440 genes as core, with the majority being dispensable or strain specific, with non-protein-coding intergenic regions (IGRs) divided among core and strain-specific genes. Aquatic serotype Ib strains have lost many virulence factors during adaptation, but six adhesins were well conserved across the aquatic isolates and might be critical for virulence in fish and for targets in vaccine development. The close relationship among recent ST-261 isolates from Ghana, the United States, and China with the Israeli tilapia isolate from 1988 implicates the global trade in tilapia seed for aquaculture in the widespread dissemination of serotype Ib fish-adapted GBS.IMPORTANCEStreptococcus agalactiae (GBS) is a significant pathogen of humans and animals. Some lineages have become adapted to particular hosts, and serotype Ib is highly specialized to fish. Here, we show that this lineage is likely to have been distributed widely by the global trade in tilapia for aquaculture, with probable introduction into Australia in the 1970s and subsequent dissemination in wild fish populations. We report here the variability in the polysaccharide capsule among this lineage but identify a cohort of common surface proteins that may be a focus of future vaccine development to reduce the biosecurity risk in international fish trade.
Collapse
|
11
|
Bayliss SC, Verner-Jeffreys DW, Ryder D, Suarez R, Ramirez R, Romero J, Pascoe B, Sheppard SK, Godoy M, Feil EJ. Genomic epidemiology of the commercially important pathogen Renibacterium salmoninarum within the Chilean salmon industry. Microb Genom 2018; 4. [PMID: 30040063 PMCID: PMC6202448 DOI: 10.1099/mgen.0.000201] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Renibacterium salmoninarum is the causative agent of bacterial kidney disease (BKD), which is a commercially important disease of farmed salmonids. Typing by conventional methods provides limited information on the evolution and spread of this pathogen, as there is a low level of standing variation within the R. salmoninarum population. Here, we apply whole-genome sequencing to 42 R. salmoninarum isolates from Chile, primarily from salmon farms, in order to understand the epidemiology of BKD in this country. The patterns of genomic variation are consistent with multiple introductions to Chile, followed by rapid dissemination over a 30 year period. The estimated dates of introduction broadly coincide with major events in the development of the Chilean aquaculture industry. We find evidence for significant barriers to transmission of BKD in the Chilean salmon production chain that may also be explained by previously undescribed signals of host tropism in R. salmoninarum. Understanding the genomic epidemiology of BKD can inform disease intervention and improve sustainability of the economically important salmon industry. This article contains data hosted by Microreact.
Collapse
Affiliation(s)
- Sion C Bayliss
- 1Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, UK
| | - David W Verner-Jeffreys
- 2Weymouth Laboratory, Centre for Environment, Fisheries and Aquaculture Science (Cefas), The Nothe, Weymouth, UK
| | - David Ryder
- 2Weymouth Laboratory, Centre for Environment, Fisheries and Aquaculture Science (Cefas), The Nothe, Weymouth, UK
| | - Rudy Suarez
- 3Laboratorio ETECMA, Puerto Montt, Chile.,4Facultad de Medicina Veterinaria, Universidad San Sebastian, Puerto Montt 5501842, Chile
| | | | - Jaime Romero
- 5Laboratorio de Biotecnología, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
| | - Ben Pascoe
- 1Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, UK
| | - Sam K Sheppard
- 1Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, UK
| | - Marcos Godoy
- 4Facultad de Medicina Veterinaria, Universidad San Sebastian, Puerto Montt 5501842, Chile.,7Doctorado en Acuicultura, Programa Cooperativo Universidad de Chile, Universidad Católica del Norte, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile.,6Centro de Investigaciones Biológicas Aplicadas (CIBA), Puerto Montt, Chile.,3Laboratorio ETECMA, Puerto Montt, Chile
| | - Edward J Feil
- 1Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, UK
| |
Collapse
|
12
|
Graña-Miraglia L, Lozano LF, Velázquez C, Volkow-Fernández P, Pérez-Oseguera Á, Cevallos MA, Castillo-Ramírez S. Rapid Gene Turnover as a Significant Source of Genetic Variation in a Recently Seeded Population of a Healthcare-Associated Pathogen. Front Microbiol 2017; 8:1817. [PMID: 28979253 PMCID: PMC5611417 DOI: 10.3389/fmicb.2017.01817] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 09/06/2017] [Indexed: 12/11/2022] Open
Abstract
Genome sequencing has been useful to gain an understanding of bacterial evolution. It has been used for studying the phylogeography and/or the impact of mutation and recombination on bacterial populations. However, it has rarely been used to study gene turnover at microevolutionary scales. Here, we sequenced Mexican strains of the human pathogen Acinetobacter baumannii sampled from the same locale over a 3 year period to obtain insights into the microevolutionary dynamics of gene content variability. We found that the Mexican A. baumannii population was recently founded and has been emerging due to a rapid clonal expansion. Furthermore, we noticed that on average the Mexican strains differed from each other by over 300 genes and, notably, this gene content variation has accrued more frequently and faster than the accumulation of mutations. Moreover, due to its rapid pace, gene content variation reflects the phylogeny only at very short periods of time. Additionally, we found that the external branches of the phylogeny had almost 100 more genes than the internal branches. All in all, these results show that rapid gene turnover has been of paramount importance in producing genetic variation within this population and demonstrate the utility of genome sequencing to study alternative forms of genetic variation.
Collapse
Affiliation(s)
- Lucía Graña-Miraglia
- Programa de Genómica Evolutiva, Centro de Ciencias Génomicas, Universidad Nacional Autónoma de MéxicoCuernavaca, Mexico
| | - Luis F Lozano
- Programa de Genómica Evolutiva, Centro de Ciencias Génomicas, Universidad Nacional Autónoma de MéxicoCuernavaca, Mexico
| | - Consuelo Velázquez
- Departamento de Enfermedades Infecciosas, Instituto Nacional de CancerologíaMexico, Mexico
| | | | - Ángeles Pérez-Oseguera
- Programa de Genómica Evolutiva, Centro de Ciencias Génomicas, Universidad Nacional Autónoma de MéxicoCuernavaca, Mexico
| | - Miguel A Cevallos
- Programa de Genómica Evolutiva, Centro de Ciencias Génomicas, Universidad Nacional Autónoma de MéxicoCuernavaca, Mexico
| | - Santiago Castillo-Ramírez
- Programa de Genómica Evolutiva, Centro de Ciencias Génomicas, Universidad Nacional Autónoma de MéxicoCuernavaca, Mexico
| |
Collapse
|
13
|
Kayansamruaj P, Dong HT, Hirono I, Kondo H, Senapin S, Rodkhum C. Comparative genome analysis of fish pathogen Flavobacterium columnare reveals extensive sequence diversity within the species. INFECTION GENETICS AND EVOLUTION 2017. [PMID: 28624550 DOI: 10.1016/j.meegid.2017.06.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Flavobacterium columnare is one of the deadliest fish pathogens causing devastating mortality in various freshwater fish species globally. To gain an insight into bacterial genomic contents and structures, comparative genome analyses were performed using the reference and newly sequenced genomes of F. columnare including genomovar I, II and I/II strains isolated from Thailand, Europe and the USA. Bacterial genomes varied in size from 3.09 to 3.39Mb (2714 to 3101 CDSs). The pan-genome analysis revealed open pan-genome nature of F. columnare strains, which possessed at least 4953 genes and tended to increase progressively with the addition of a new genome. Genomic islands (GIs) present in bacterial genomes were diverse, in which 65% (39 out of 60) of possible GIs were strain-specific. A CRISPR/cas investigation indicated at least two different CRISPR systems with varied spacer profiles. On the other hand, putative virulence genes, including those related to gliding motility, type IX secretion system (T9SS), outer membrane proteins (Omp), were equally distributed among F. columnare strains. The MLSA scheme categorized bacterial strains into nine different sequence types (ST 9-17). Phylogenetic analyses based on either 16S rRNA, MLSA and concatenated SNPs of core genome revealed the diversity of F. columnare strains. DNA homology analysis indicated that the estimated digital DNA-DNA hybridization (dDDH) between strains of genomovar I and II can be as low as 42.6%, while the three uniquely tilapia-originated strains from Thailand (1214, NK01 and 1215) were clearly dissimilar to other F. columnare strains as the dDDH values were only 27.7-30.4%. Collectively, this extensive diversity among bacterial strains suggested that species designation of F. columnare would potentially require re-emendation.
Collapse
Affiliation(s)
- Pattanapon Kayansamruaj
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand; Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Bangkok, Thailand.
| | - Ha Thanh Dong
- Department Microbiology, Faculty of Science, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| | - Ikuo Hirono
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Hidehiro Kondo
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Saengchan Senapin
- Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Channarong Rodkhum
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
14
|
Bayliss SC, Verner-Jeffreys DW, Bartie KL, Aanensen DM, Sheppard SK, Adams A, Feil EJ. The Promise of Whole Genome Pathogen Sequencing for the Molecular Epidemiology of Emerging Aquaculture Pathogens. Front Microbiol 2017; 8:121. [PMID: 28217117 PMCID: PMC5290457 DOI: 10.3389/fmicb.2017.00121] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 01/17/2017] [Indexed: 01/23/2023] Open
Abstract
Aquaculture is the fastest growing food-producing sector, and the sustainability of this industry is critical both for global food security and economic welfare. The management of infectious disease represents a key challenge. Here, we discuss the opportunities afforded by whole genome sequencing of bacterial and viral pathogens of aquaculture to mitigate disease emergence and spread. We outline, by way of comparison, how sequencing technology is transforming the molecular epidemiology of pathogens of public health importance, emphasizing the importance of community-oriented databases and analysis tools.
Collapse
Affiliation(s)
- Sion C Bayliss
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath Bath, UK
| | | | - Kerry L Bartie
- Institute of Aquaculture, University of Stirling Stirling, UK
| | - David M Aanensen
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College LondonLondon, UK; The Centre for Genomic Pathogen Surveillance, Wellcome Genome CampusCambridge, UK
| | - Samuel K Sheppard
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath Bath, UK
| | - Alexandra Adams
- Institute of Aquaculture, University of Stirling Stirling, UK
| | - Edward J Feil
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath Bath, UK
| |
Collapse
|
15
|
Barnes AC, Delamare-Deboutteville J, Gudkovs N, Brosnahan C, Morrison R, Carson J. Whole genome analysis of Yersinia ruckeri isolated over 27 years in Australia and New Zealand reveals geographical endemism over multiple lineages and recent evolution under host selection. Microb Genom 2016; 2:e000095. [PMID: 28348835 PMCID: PMC5320707 DOI: 10.1099/mgen.0.000095] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 10/25/2016] [Indexed: 01/06/2023] Open
Abstract
Yersinia ruckeri is a salmonid pathogen with widespread distribution in cool-temperate waters including Australia and New Zealand, two isolated environments with recently developed salmonid farming industries. Phylogenetic comparison of 58 isolates from Australia, New Zealand, USA, Chile, Finland and China based on non-recombinant core genome SNPs revealed multiple deep-branching lineages, with a most recent common ancestor estimated at 18 500 years BP (12 355–24 757 95% HPD) and evidence of Australasian endemism. Evolution within the Tasmanian Atlantic salmon serotype O1b lineage has been slow, with 63 SNPs describing the variance over 27 years. Isolates from the prevailing lineage are poorly/non-motile compared to a lineage pre-vaccination, introduced in 1997, which is highly motile but has not been isolated since from epizootics. A non-motile phenotype has arisen independently in Tasmania compared to Europe and USA through a frameshift in fliI, encoding the ATPase of the flagella cluster. We report for the first time lipopolysaccharide O-antigen serotype O2 isolates in Tasmania. This phenotype results from deletion of the O-antigen cluster and consequent loss of high-molecular-weight O-antigen. This phenomenon has occurred independently on three occasions on three continents (Australasia, North America and Asia) as O2 isolates from the USA, China and Tasmania share the O-antigen deletion but occupy distant lineages. Despite the European and North American origins of the Australasian salmonid stocks, the lineages of Y. ruckeri in Australia and New Zealand are distinct from those of the northern hemisphere, suggesting they are pre-existing ancient strains that have emerged and evolved with the introduction of susceptible hosts following European colonization.
Collapse
Affiliation(s)
- Andrew C Barnes
- 1School of Biological Sciences, The University of Queensland, Gehrmann Laboratories (60), St Lucia, Brisbane, QL 4072, Australia
| | - Jerome Delamare-Deboutteville
- 1School of Biological Sciences, The University of Queensland, Gehrmann Laboratories (60), St Lucia, Brisbane, QL 4072, Australia
| | - Nicholas Gudkovs
- 2CSIRO Australian Animal Health Laboratory, Newcomb, VIC 3219, Australia
| | - Cara Brosnahan
- 3Ministry for Primary Industries, Animal Health Laboratory, Wallaceville, New Zealand
| | - Richard Morrison
- 4Department of Primary Industries Parks Water & Environment (DPIPWE), Kings Meadows, Launceston, TAS 7249, Australia
| | - Jeremy Carson
- 4Department of Primary Industries Parks Water & Environment (DPIPWE), Kings Meadows, Launceston, TAS 7249, Australia
| |
Collapse
|
16
|
Krasnov A, Moghadam H, Larsson T, Afanasyev S, Mørkøre T. Gene expression profiling in melanised sites of Atlantic salmon fillets. FISH & SHELLFISH IMMUNOLOGY 2016; 55:56-63. [PMID: 27211262 DOI: 10.1016/j.fsi.2016.05.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 05/09/2016] [Accepted: 05/09/2016] [Indexed: 06/05/2023]
Abstract
Black spots, which deteriorate quality of Atlantic salmon fillets represent a significant problem for commercial aquaculture. These areas are characterized with accumulation of melanomacrophages, occasional formation of granulomas and substitution of skeletal muscle with connective tissue. A number of possible causative agents have been suggested including vaccination and infection with piscine reovirus (PRV). We report transcriptome profiling of melanised foci with oligonucleotide DNA microarrays. Analyses revealed a multitude of differentially expressed genes associated with melanogenesis, metabolic changes and formation of scar. The immune profile was characterized with inflammation, preferential activation of classical complement pathway, MHCII and helper T cells combined with strong B cells responses and massive induction of immunoglobulins; innate antiviral responses were relatively weak in sharp contrast to PRV-caused heart and skeletal muscle inflammation and other viral infections. A panel of immune genes with specific activation in dark spots was found, most up-regulated were CD209-like lectin (44-fold) and prostaglandin reductase (11-fold). Further, RNA sequencing was performed on the same material to search for the presence of putative pathogens. Transcripts of prokaryotic rRNA with exclusive or preferential location in black spots were found. Results suggest mild chronic inflammation initiated with trauma, bacterial or viral infection followed by sustained immune responses to opportunistic microorganisms as a realistic scenario of dark spots formation.
Collapse
Affiliation(s)
| | | | | | - Sergey Afanasyev
- Nofima AS, P.O. Box 5010, N-1432, Ås, Norway; Sechenov Institute of Evolutionary Physiology and Biochemistry, M. Toreza av. 44, Saint Petersburg, 194223, Russia
| | | |
Collapse
|
17
|
Purcell MK, McKibben CL, Pearman-Gillman S, Elliott DG, Winton JR. Effects of temperature on Renibacterium salmoninarum infection and transmission potential in Chinook salmon, Oncorhynchus tshawytscha (Walbaum). JOURNAL OF FISH DISEASES 2016; 39:787-798. [PMID: 26449619 DOI: 10.1111/jfd.12409] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 07/14/2015] [Accepted: 07/15/2015] [Indexed: 06/05/2023]
Abstract
Renibacterium salmoninarum is a significant pathogen of salmonids and the causative agent of bacterial kidney disease (BKD). Water temperature affects the replication rate of pathogens and the function of the fish immune system to influence the progression of disease. In addition, rapid shifts in temperature may serve as stressors that reduce host resistance. This study evaluated the effect of shifts in water temperature on established R. salmoninarum infections. We challenged Chinook salmon with R. salmoninarum at 12 °C for 2 weeks and then divided the fish into three temperature groups (8, 12 and 15 °C). Fish in the 8 °C group had significantly higher R. salmoninarum-specific mortality, kidney R. salmoninarum loads and bacterial shedding rates relative to the fish held at 12 or 15 °C. There was a trend towards suppressed bacterial load and shedding in the 15 °C group, but the results were not significant. Bacterial load was a significant predictor of shedding for the 8 and 12 °C groups but not for the 15 °C group. Overall, our results showed little effect of temperature stress on the progress of infection, but do support the conclusion that cooler water temperatures contribute to infection progression and increased transmission potential in Chinook salmon infected with R. salmoninarum.
Collapse
Affiliation(s)
- M K Purcell
- U.S. Geological Survey, Western Fisheries Research Center, Seattle, WA, USA
| | - C L McKibben
- U.S. Geological Survey, Western Fisheries Research Center, Seattle, WA, USA
| | - S Pearman-Gillman
- U.S. Geological Survey, Western Fisheries Research Center, Seattle, WA, USA
| | - D G Elliott
- U.S. Geological Survey, Western Fisheries Research Center, Seattle, WA, USA
| | - J R Winton
- U.S. Geological Survey, Western Fisheries Research Center, Seattle, WA, USA
| |
Collapse
|
18
|
Brynildsrud O, Gulla S, Feil EJ, Nørstebø SF, Rhodes LD. Identifying copy number variation of the dominant virulence factors msa and p22 within genomes of the fish pathogen Renibacterium salmoninarum. Microb Genom 2016; 2:e000055. [PMID: 28348850 PMCID: PMC5320689 DOI: 10.1099/mgen.0.000055] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 03/17/2016] [Indexed: 11/24/2022] Open
Abstract
Renibacterium salmoninarum is the causative agent of bacterial kidney disease, an important disease of farmed and wild salmonid fish worldwide. Despite the wide spatiotemporal distribution of this disease and habitat pressures ranging from the natural environment to aquaculture and rivers to marine environments, little variation has been observed in the R. salmoninarum genome. Here we use the coverage depth from genomic sequencing corroborated by real-time quantitative PCR to detect copy number variation (CNV) among the genes of R. salmoninarum. CNV was primarily limited to the known dominant virulence factors msa and p22. Among 68 isolates representing the UK, Norway and North America, the msa gene ranged from two to five identical copies and the p22 gene ranged from one to five copies. CNV for these two genes co-occurred, suggesting they may be functionally linked. Isolates carrying CNV were phylogenetically restricted and originated predominantly from sites in North America, rather than the UK or Norway. Although both phylogenetic relationship and geographical origin were found to correlate with CNV status, geographical origin was a much stronger predictor than phylogeny, suggesting a role for local selection pressures in the repeated emergence and maintenance of this trait.
Collapse
Affiliation(s)
- Ola Brynildsrud
- 1Department of Bacteriology and Immunology Lovisenberggata 8, Norwegian Institute of Public Health/Department of Food Safety and Infection Biology, Norwegian University of Life Sciences (NMBU),Oslo,Norway
| | - Snorre Gulla
- 2Department of Bacteriology - Aquatic and Terrestrial Animals, Norwegian Veterinary Institute (NVI), Oslo, Norway
| | - Edward J Feil
- 3Department of Biology and Biochemistry, University of Bath,Claverton Down, Bath,United Kingdom
| | - Simen Foyn Nørstebø
- 4Department of Food Safety and Infection Biology, Norwegian University of Life Sciences (NMBU),Oslo,Norway
| | - Linda D Rhodes
- 5Northwest Fisheries Science Center, National Marine Fisheries Service, NOAA,Seattle, WA,United States
| |
Collapse
|
19
|
Elliott DG, McKibben CL, Conway CM, Purcell MK, Chase DM, Applegate LJ. Testing of candidate non-lethal sampling methods for detection of Renibacterium salmoninarum in juvenile Chinook salmon Oncorhynchus tshawytscha. DISEASES OF AQUATIC ORGANISMS 2015; 114:21-43. [PMID: 25958804 DOI: 10.3354/dao02846] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Non-lethal pathogen testing can be a useful tool for fish disease research and management. Our research objectives were to determine if (1) fin clips, gill snips, surface mucus scrapings, blood draws, or kidney biopsies could be obtained non-lethally from 3 to 15 g Chinook salmon Oncorhynchus tshawytscha, (2) non-lethal samples could accurately discriminate between fish exposed to the bacterial kidney disease agent Renibacterium salmoninarum and non-exposed fish, and (3) non-lethal samples could serve as proxies for lethal kidney samples to assess infection intensity. Blood draws and kidney biopsies caused ≥5% post-sampling mortality (Objective 1) and may be appropriate only for larger fish, but the other sample types were non-lethal. Sampling was performed over 21 wk following R. salmoninarum immersion challenge of fish from 2 stocks (Objectives 2 and 3), and nested PCR (nPCR) and real-time quantitative PCR (qPCR) results from candidate non-lethal samples were compared with kidney tissue analysis by nPCR, qPCR, bacteriological culture, enzyme-linked immunosorbent assay (ELISA), fluorescent antibody test (FAT) and histopathology/immunohistochemistry. R. salmoninarum was detected by PCR in >50% of fin, gill, and mucus samples from challenged fish. Mucus qPCR was the only non-lethal assay exhibiting both diagnostic sensitivity and specificity estimates>90% for distinguishing between R. salmoninarum-exposed and non-exposed fish and was the best candidate for use as an alternative to lethal kidney sample testing. Mucus qPCR R. salmoninarum quantity estimates reflected changes in kidney bacterial load estimates, as evidenced by significant positive correlations with kidney R. salmoninarum infection intensity scores at all sample times and in both fish stocks, and were not significantly impacted by environmental R. salmoninarum concentrations.
Collapse
Affiliation(s)
- Diane G Elliott
- US Geological Survey, Western Fisheries Research Center, 6505 Northeast 65th Street, Seattle, Washington 98115, USA
| | | | | | | | | | | |
Collapse
|
20
|
Multilocus sequence analysis of the marine bacterial genus Tenacibaculum suggests parallel evolution of fish pathogenicity and endemic colonization of aquaculture systems. Appl Environ Microbiol 2014; 80:5503-14. [PMID: 24973065 DOI: 10.1128/aem.01177-14] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genus Tenacibaculum, a member of the family Flavobacteriaceae, is an abundant component of marine bacterial ecosystems that also hosts several fish pathogens, some of which are of serious concern for marine aquaculture. Here, we applied multilocus sequence analysis (MLSA) to 114 representatives of most known species in the genus and of the worldwide diversity of the major fish pathogen Tenacibaculum maritimum. Recombination hampers precise phylogenetic reconstruction, but the data indicate intertwined environmental and pathogenic lineages, which suggests that pathogenicity evolved independently in several species. At lower phylogenetic levels recombination is also important, and the species T. maritimum constitutes a cohesive group of isolates. Importantly, the data reveal no trace of long-distance dissemination that could be linked to international fish movements. Instead, the high number of distinct genotypes suggests an endemic distribution of strains. The MLSA scheme and the data described in this study will help in monitoring Tenacibaculum infections in marine aquaculture; we show, for instance, that isolates from tenacibaculosis outbreaks in Norwegian salmon farms are related to T. dicentrarchi, a recently described species.
Collapse
|