1
|
Obiol A, del Campo J, de Vargas C, Mahé F, Massana R. How marine are Marine Stramenopiles (MAST)? A cross-system evaluation. FEMS Microbiol Ecol 2024; 100:fiae130. [PMID: 39375832 PMCID: PMC11523054 DOI: 10.1093/femsec/fiae130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 10/04/2024] [Indexed: 10/09/2024] Open
Abstract
Marine Stramenopiles (MAST) were first described two decades ago through ribosomal RNA gene (rRNA gene) sequences from marine surveys of microbial eukaryotes. MAST comprise several independent lineages at the base of the Stramenopiles. Despite their prevalence in the ocean, the majority of MAST diversity remains uncultured. Previous studies, mainly in marine environments, have explored MAST's cell morphology, distribution, trophic strategies, and genomics using culturing-independent methods. In comparison, less is known about their presence outside marine habitats. Here, we analyse the extensive EukBank dataset to assess the extent to which MAST can be considered marine protists. Additionally, by incorporating newly available rRNA gene sequences, we update Stramenopiles phylogeny, identifying three novel MAST lineages. Our results indicate that MAST are primarily marine with notable exceptions within MAST-2 and MAST-12, where certain subclades are prevalent in freshwater and soil habitats. In the marine water column, only a few MAST species, particularly within clades -1, -3, -4, and -7, dominate and exhibit clear latitudinal distribution patterns. Overall, the massive sequencing dataset analysed in our study confirms and partially expands the previously described diversity of MASTs groups and underscores the predominantly marine nature of most of these uncultured lineages.
Collapse
Affiliation(s)
- Aleix Obiol
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (ICM-CSIC), Barcelona, Catalonia, Spain
| | - Javier del Campo
- Biodiversity Program, Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Catalonia, Spain
| | - Colomban de Vargas
- Sorbonne Université, CNRS, Station Biologique de Roscoff, UMR7144, ECOMAP, Roscoff, France
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, Paris, France
| | - Frédéric Mahé
- CIRAD, UMR PHIM, F-34398 Montpellier, France
- PHIM, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
| | - Ramon Massana
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (ICM-CSIC), Barcelona, Catalonia, Spain
| |
Collapse
|
2
|
Lin YC, Chin CP, Yang JW, Chiang KP, Hsieh CH, Gong GC, Shih CY, Chen SY. How Communities of Marine Stramenopiles Varied with Environmental and Biological Variables in the Subtropical Northwestern Pacific Ocean. MICROBIAL ECOLOGY 2022; 83:916-928. [PMID: 34269858 PMCID: PMC9015972 DOI: 10.1007/s00248-021-01788-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 06/01/2021] [Indexed: 06/13/2023]
Abstract
MArine STramenopiles (MASTs) have been recognized as parts of heterotrophic protists and contribute substantially to protist abundances in the ocean. However, little is known about their spatiotemporal variations with respect to environmental and biological factors. The objectives of this study are to use canonical correspondence analysis to investigate how MASTs communities are shaped by environmental variables, and co-occurrence networks to examine their potential interactions with prokaryotic communities. Our dataset came from the southern East China Sea (sECS) in the subtropical northwestern Pacific, and involved 14 cruises along a coastal-oceanic transect, each of which sampled surface water from 4 to 7 stations. MASTs communities were revealed by metabarcoding of 18S rDNA V4 region. Most notably, MAST-9 had a high representation in warm waters in terms of read number and diversity. Subclades of MAST-9C and -9D showed slightly different niches, with MAST-9D dominating in more coastal waters where concentrations of nitrite and Synechococcus were higher. MAST-1C was a common component of colder water during spring. Overall, canonical correspondence analysis showed that MASTs communities were significantly influenced by temperature, nitrite and Synechococcus concentrations. The co-occurrence networks showed that certain other minor prokaryotic taxa can influence MAST communities. This study provides insight into how MASTs communities varied with environmental and biological variables.
Collapse
Affiliation(s)
- Yun-Chi Lin
- Institute of Marine Environment and Ecology, National Taiwan Ocean University, Keelung, Taiwan
| | | | - Jinny Wu Yang
- Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, USA
- Institute of Oceanography, National Taiwan University, Taipei, Taiwan
| | - Kuo-Ping Chiang
- Institute of Marine Environment and Ecology, National Taiwan Ocean University, Keelung, Taiwan.
| | - Chih-Hao Hsieh
- Institute of Oceanography, National Taiwan University, Taipei, Taiwan
| | - Gwo-Ching Gong
- Institute of Marine Environment and Ecology, National Taiwan Ocean University, Keelung, Taiwan
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan
| | - Chi-Yu Shih
- Institute of Marine Biology, National Taiwan Ocean University, Keelung, Taiwan
| | - Szu-Ying Chen
- Institute of Oceanography, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
3
|
Latorre F, Deutschmann IM, Labarre A, Obiol A, Krabberød AK, Pelletier E, Sieracki ME, Cruaud C, Jaillon O, Massana R, Logares R. Niche adaptation promoted the evolutionary diversification of tiny ocean predators. Proc Natl Acad Sci U S A 2021; 118:e2020955118. [PMID: 34155140 PMCID: PMC8237690 DOI: 10.1073/pnas.2020955118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Unicellular eukaryotic predators play a crucial role in the functioning of the ocean ecosystem by recycling nutrients and energy that are channeled to upper trophic levels. Traditionally, these evolutionarily diverse organisms have been combined into a single functional group (heterotrophic flagellates), overlooking their organismal differences. Here, we investigated four evolutionarily related species belonging to one cosmopolitan group of uncultured marine picoeukaryotic predators: marine stramenopiles (MAST)-4 (species A, B, C, and E). Co-occurrence and distribution analyses in the global surface ocean indicated contrasting patterns in MAST-4A and C, suggesting adaptation to different temperatures. We then investigated whether these spatial distribution patterns were mirrored by MAST-4 genomic content using single-cell genomics. Analyses of 69 single cells recovered 66 to 83% of the MAST-4A/B/C/E genomes, which displayed substantial interspecies divergence. MAST-4 genomes were similar in terms of broad gene functional categories, but they differed in enzymes of ecological relevance, such as glycoside hydrolases (GHs), which are part of the food degradation machinery in MAST-4. Interestingly, MAST-4 species featuring a similar GH composition (A and C) coexcluded each other in the surface global ocean, while species with a different set of GHs (B and C) appeared to be able to coexist, suggesting further niche diversification associated with prey digestion. We propose that differential niche adaptation to temperature and prey type has promoted adaptive evolutionary diversification in MAST-4. We show that minute ocean predators from the same phylogenetic group may have different biogeography and genomic content, which needs to be accounted for to better comprehend marine food webs.
Collapse
Affiliation(s)
- Francisco Latorre
- Institute of Marine Sciences (ICM), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona E-08003, Spain;
| | - Ina M Deutschmann
- Institute of Marine Sciences (ICM), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona E-08003, Spain
| | - Aurélie Labarre
- Institute of Marine Sciences (ICM), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona E-08003, Spain
| | - Aleix Obiol
- Institute of Marine Sciences (ICM), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona E-08003, Spain
| | - Anders K Krabberød
- Department of Biosciences, Section for Genetics and Evolutionary Biology, University of Oslo, Oslo N-0316, Norway
| | - Eric Pelletier
- Metabolic Genomics, Genoscope, Institut de Biologie François Jacob, Commissariat à l'Energie Atomique, CNRS, Univ Evry, Université Paris-Saclay, 91000 Evry, France
- Research Federation for the Study of Global Ocean Systems Ecology & Evolution, FR2022/Tara Oceans Global Ocean System Ecology & Evolution, 75016 Paris, France
| | - Michael E Sieracki
- Ocean Science Division, National Science Foundation, Alexandria, VA 22314
| | - Corinne Cruaud
- Genoscope, Institut de Biologie François Jacob, Commissariat à l'Energie Atomique, Université Paris-Saclay, 91000 Evry, France
| | - Olivier Jaillon
- Metabolic Genomics, Genoscope, Institut de Biologie François Jacob, Commissariat à l'Energie Atomique, CNRS, Univ Evry, Université Paris-Saclay, 91000 Evry, France
- Research Federation for the Study of Global Ocean Systems Ecology & Evolution, FR2022/Tara Oceans Global Ocean System Ecology & Evolution, 75016 Paris, France
| | - Ramon Massana
- Institute of Marine Sciences (ICM), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona E-08003, Spain
| | - Ramiro Logares
- Institute of Marine Sciences (ICM), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona E-08003, Spain;
| |
Collapse
|
4
|
Piwosz K, Mukherjee I, Salcher MM, Grujčić V, Šimek K. CARD-FISH in the Sequencing Era: Opening a New Universe of Protistan Ecology. Front Microbiol 2021; 12:640066. [PMID: 33746931 PMCID: PMC7970053 DOI: 10.3389/fmicb.2021.640066] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/09/2021] [Indexed: 12/12/2022] Open
Abstract
Phagotrophic protists are key players in aquatic food webs. Although sequencing-based studies have revealed their enormous diversity, ecological information on in situ abundance, feeding modes, grazing preferences, and growth rates of specific lineages can be reliably obtained only using microscopy-based molecular methods, such as Catalyzed Reporter Deposition-Fluorescence in situ Hybridization (CARD-FISH). CARD-FISH is commonly applied to study prokaryotes, but less so to microbial eukaryotes. Application of this technique revealed that Paraphysomonas or Spumella-like chrysophytes, considered to be among the most prominent members of protistan communities in pelagic environments, are omnipresent but actually less abundant than expected, in contrast to little known groups such as heterotrophic cryptophyte lineages (e.g., CRY1), cercozoans, katablepharids, or the MAST lineages. Combination of CARD-FISH with tracer techniques and application of double CARD-FISH allow visualization of food vacuole contents of specific flagellate groups, thus considerably challenging our current, simplistic view that they are predominantly bacterivores. Experimental manipulations with natural communities revealed that larger flagellates are actually omnivores ingesting both prokaryotes and other protists. These new findings justify our proposition of an updated model of microbial food webs in pelagic environments, reflecting more authentically the complex trophic interactions and specific roles of flagellated protists, with inclusion of at least two additional trophic levels in the nanoplankton size fraction. Moreover, we provide a detailed CARD-FISH protocol for protists, exemplified on mixo- and heterotrophic nanoplanktonic flagellates, together with tips on probe design, a troubleshooting guide addressing most frequent obstacles, and an exhaustive list of published probes targeting protists.
Collapse
Affiliation(s)
- Kasia Piwosz
- Department of Fisheries Oceanography and Marine Ecology, National Marine Fisheries Research Institute, Gdynia, Poland
- Centre ALGATECH, Institute of Microbiology of the Czech Academy of Sciences, Třeboň, Czechia
| | - Indranil Mukherjee
- Biology Centre of the Czech Academy of Sciences, Institute of Hydrobiology, České Budějovice, Czechia
| | - Michaela M. Salcher
- Biology Centre of the Czech Academy of Sciences, Institute of Hydrobiology, České Budějovice, Czechia
| | - Vesna Grujčić
- Science for Life Laboratory, Department of Gene Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Karel Šimek
- Biology Centre of the Czech Academy of Sciences, Institute of Hydrobiology, České Budějovice, Czechia
| |
Collapse
|
5
|
Liu Q, Zhao Q, McMinn A, Yang EJ, Jiang Y. Planktonic microbial eukaryotes in polar surface waters: recent advances in high-throughput sequencing. MARINE LIFE SCIENCE & TECHNOLOGY 2021; 3:94-102. [PMID: 37073396 PMCID: PMC10064379 DOI: 10.1007/s42995-020-00062-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 07/22/2020] [Indexed: 05/03/2023]
Abstract
Marine microbial eukaryotes are important primary producers and play critical roles in key biogeochemical cycles. Recent advances in sequencing technology have focused attention on the extent of microbial biodiversity, revealing a huge, previously underestimated phylogenetic diversity with many new lineages. This technology has now become the most important tool to understand the ecological significance of this huge and novel diversity in polar oceans. In particular, high-throughput sequencing technologies have been successfully applied to enumerate and compare marine microbial diversity in polar environments. Here, a brief overview of polar microbial eukaryote diversity, as revealed by in-situ surveys of the high-throughput sequencing on 18S rRNA gene, is presented. Using these 'omic' approaches, further attention still needs to be focused on differences between specific locations and/or entire polar oceans and on bipolar comparisons of diversity and distribution.
Collapse
Affiliation(s)
- Qian Liu
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003 China
- Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao, 266003 China
| | - Qiannan Zhao
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003 China
- Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao, 266003 China
| | - Andrew McMinn
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003 China
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Australia
| | - Eun Jin Yang
- Division of Polar Ocean Environment, Korea Polar Research Institute, 213-3 Songdo-dong, Yeonsu-gu, Incheon, 406-840 Korea
| | - Yong Jiang
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003 China
- Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao, 266003 China
| |
Collapse
|
6
|
Differences in diversity and photoprotection capability between ice algae and under-ice phytoplankton in Saroma-Ko Lagoon, Japan: a comparative taxonomic diatom analysis with microscopy and DNA barcoding. Polar Biol 2020. [DOI: 10.1007/s00300-020-02751-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
7
|
Xu D, Kong H, Yang EJ, Li X, Jiao N, Warren A, Wang Y, Lee Y, Jung J, Kang SH. Contrasting Community Composition of Active Microbial Eukaryotes in Melt Ponds and Sea Water of the Arctic Ocean Revealed by High Throughput Sequencing. Front Microbiol 2020; 11:1170. [PMID: 32582106 PMCID: PMC7291953 DOI: 10.3389/fmicb.2020.01170] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 05/07/2020] [Indexed: 01/03/2023] Open
Abstract
Melt ponds (MPs), form as the result of thawing of snow and sea ice in the summer, have lower albedo than the sea ice and are thus partly responsible for the polar amplification of global warming. Knowing the community composition of MP organisms is key to understanding their roles in the biogeochemical cycles of nutrients and elements. However, the community composition of MP microbial eukaryotes has rarely been studied. In the present study, we assessed the microbial eukaryote biodiversity, community composition, and assembly processes in MPs and surface sea water (SW) using high throughput sequencing of 18S rRNA of size-fractionated samples. Alpha diversity estimates were lower in the MPs than SW across all size fractions. The community composition of MPs was significantly different from that of SW. The MP communities were dominated by members from Chrysophyceae, the ciliate classes Litostomatea and Spirotrichea, and the cercozoan groups Filosa-Thecofilosea. One open MP community was similar to SW communities, which was probably due to the advanced stage of development of the MP enabling the exchange of species between it and adjacent SW. High portions of shared species between MPs and SW may indicate the vigorous exchange of species between these two major types of environments in the Arctic Ocean. SW microbial eukaryote communities are mainly controlled by dispersal limitation whereas those of MP are mainly controlled by ecological drift.
Collapse
Affiliation(s)
- Dapeng Xu
- State Key Laboratory of Marine Environmental Science, Institute of Marine Microbes and Ecospheres, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China.,Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, China
| | - Hejun Kong
- State Key Laboratory of Marine Environmental Science, Institute of Marine Microbes and Ecospheres, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China.,Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, China
| | - Eun-Jin Yang
- Division of Polar Ocean Science, Korea Polar Research Institute, Incheon, South Korea
| | - Xinran Li
- State Key Laboratory of Marine Environmental Science, Institute of Marine Microbes and Ecospheres, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China.,Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, China
| | - Nianzhi Jiao
- State Key Laboratory of Marine Environmental Science, Institute of Marine Microbes and Ecospheres, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China.,Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, China
| | - Alan Warren
- Department of Life Sciences, Natural History Museum, London, United Kingdom
| | - Ying Wang
- State Key Laboratory of Marine Environmental Science, Institute of Marine Microbes and Ecospheres, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Youngju Lee
- Division of Polar Ocean Science, Korea Polar Research Institute, Incheon, South Korea
| | - Jinyoung Jung
- Division of Polar Ocean Science, Korea Polar Research Institute, Incheon, South Korea
| | - Sung-Ho Kang
- Division of Polar Ocean Science, Korea Polar Research Institute, Incheon, South Korea
| |
Collapse
|
8
|
Photosynthetic Picoeukaryotes Diversity in the Underlying Ice Waters of the White Sea, Russia. DIVERSITY-BASEL 2020. [DOI: 10.3390/d12030093] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The White Sea is a unique basin combining features of temperate and arctic seas. The current state of its biocenoses can serve as a reference point in assessing the expected desalination of the ocean as a result of climate change. A metagenomic study of under-ice ice photosynthetic picoeukaryotes (PPEs) was undertaken by Illumina high-throughput sequencing of the 18S rDNA V4 region from probes collected in March 2013 and 2014. The PPE biomass in samples was 0.03–0.17 µg C·L−1 and their abundance varied from 10 cells·mL−1 to 140 cells·mL−1. There were representatives of 16 algae genera from seven classes and three supergroups, but Chlorophyta, especially Mamiellophyceae, dominated. The most represented genera were Micromonas and Mantoniella. For the first time, the predominance of Mantoniella (in four samples) and Bolidophyceae (in one sample) was observed in under-ice water. It can be assumed that a change in environmental conditions will lead to a considerable change in the structure of arctic PPE communities.
Collapse
|
9
|
Kellogg CTE, McClelland JW, Dunton KH, Crump BC. Strong Seasonality in Arctic Estuarine Microbial Food Webs. Front Microbiol 2019; 10:2628. [PMID: 31849850 PMCID: PMC6896822 DOI: 10.3389/fmicb.2019.02628] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 10/29/2019] [Indexed: 11/17/2022] Open
Abstract
Microbial communities in the coastal Arctic Ocean experience extreme variability in organic matter and inorganic nutrients driven by seasonal shifts in sea ice extent and freshwater inputs. Lagoons border more than half of the Beaufort Sea coast and provide important habitats for migratory fish and seabirds; yet, little is known about the planktonic food webs supporting these higher trophic levels. To investigate seasonal changes in bacterial and protistan planktonic communities, amplicon sequences of 16S and 18S rRNA genes were generated from samples collected during periods of ice-cover (April), ice break-up (June), and open water (August) from shallow lagoons along the eastern Alaska Beaufort Sea coast from 2011 through 2013. Protist communities shifted from heterotrophic to photosynthetic taxa (mainly diatoms) during the winter–spring transition, and then back to a heterotroph-dominated summer community that included dinoflagellates and mixotrophic picophytoplankton such as Micromonas and Bathycoccus. Planktonic parasites belonging to Syndiniales were abundant under ice in winter at a time when allochthonous carbon inputs were low. Bacterial communities shifted from coastal marine taxa (Oceanospirillaceae, Alteromonadales) to estuarine taxa (Polaromonas, Bacteroidetes) during the winter-spring transition, and then to oligotrophic marine taxa (SAR86, SAR92) in summer. Chemolithoautotrophic taxa were abundant under ice, including iron-oxidizing Zetaproteobacteria. These results suggest that wintertime Arctic bacterial communities capitalize on the unique biogeochemical gradients that develop below ice near shore, potentially using chemoautotrophic metabolisms at a time when carbon inputs to the system are low. Co-occurrence networks constructed for each season showed that under-ice networks were dominated by relationships between parasitic protists and other microbial taxa, while spring networks were by far the largest and dominated by bacteria-bacteria co-occurrences. Summer networks were the smallest and least connected, suggesting a more detritus-based food web less reliant on interactions among microbial taxa. Eukaryotic and bacterial community compositions were significantly related to trends in concentrations of stable isotopes of particulate organic carbon and nitrogen, among other physiochemical variables such as dissolved oxygen, salinity, and temperature. This suggests the importance of sea ice cover and terrestrial carbon subsidies in contributing to seasonal trends in microbial communities in the coastal Beaufort Sea.
Collapse
Affiliation(s)
| | - James W McClelland
- Marine Science Institute, University of Texas at Austin, Port Aransas, TX, United States
| | - Kenneth H Dunton
- Marine Science Institute, University of Texas at Austin, Port Aransas, TX, United States
| | - Byron C Crump
- College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, OR, United States
| |
Collapse
|
10
|
Castillo YM, Mangot J, Benites LF, Logares R, Kuronishi M, Ogata H, Jaillon O, Massana R, Sebastián M, Vaqué D. Assessing the viral content of uncultured picoeukaryotes in the global‐ocean by single cell genomics. Mol Ecol 2019; 28:4272-4289. [DOI: 10.1111/mec.15210] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 07/23/2019] [Accepted: 08/01/2019] [Indexed: 12/25/2022]
Affiliation(s)
- Yaiza M. Castillo
- Department of Marine Biology and Oceanography Institute of Marine Sciences (ICM) CSIC Barcelona Spain
| | - Jean‐François Mangot
- Department of Marine Biology and Oceanography Institute of Marine Sciences (ICM) CSIC Barcelona Spain
| | - Luiz Felipe Benites
- Integrative Biology of Marine Organisms (BIOM) CNRS Oceanological Observatory of Banyuls Sorbonne University Banyuls‐sur‐Mer France
| | - Ramiro Logares
- Department of Marine Biology and Oceanography Institute of Marine Sciences (ICM) CSIC Barcelona Spain
| | - Megumi Kuronishi
- Bioinformatic Center Institute for Chemical Research Kyoto University Uji Japan
| | - Hiroyuki Ogata
- Bioinformatic Center Institute for Chemical Research Kyoto University Uji Japan
| | - Olivier Jaillon
- Génomique Métabolique Genoscope Institut de biologie François Jacob CEA CNRS Université d'Evry Université Paris‐Saclay Evry France
| | - Ramon Massana
- Department of Marine Biology and Oceanography Institute of Marine Sciences (ICM) CSIC Barcelona Spain
| | - Marta Sebastián
- Department of Marine Biology and Oceanography Institute of Marine Sciences (ICM) CSIC Barcelona Spain
- Institute of Oceanography and Global Change (IOCAG) University of Las Palmas de Gran Canaria Telde Spain
| | - Dolors Vaqué
- Department of Marine Biology and Oceanography Institute of Marine Sciences (ICM) CSIC Barcelona Spain
| |
Collapse
|
11
|
Mangot JF, Forn I, Obiol A, Massana R. Constant abundances of ubiquitous uncultured protists in the open sea assessed by automated microscopy. Environ Microbiol 2018; 20:3876-3889. [PMID: 30209866 DOI: 10.1111/1462-2920.14408] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 09/06/2018] [Accepted: 09/08/2018] [Indexed: 11/28/2022]
Abstract
Protists have fundamental ecological roles in marine environments and their diversity is being increasingly explored, yet little is known about the quantitative importance of specific taxa in these ecosystems. Here we optimized a newly developed automated system of image acquisition and image analysis to enumerate minute uncultured cells of different sizes targeted by fluorescence in situ hybridization. The automated counting routine was highly reproducible, well correlated with manual counts, and was then applied on surface and deep chlorophyll maximum samples from the Malaspina 2010 circumnavigation. The three targeted uncultured taxa (MAST-4, MAST-7 and MAST-1C) were found in virtually all samples from several ocean basins (Atlantic, Indian and Pacific) in fairly constant cell abundances, following typical lognormal distributions. Their global abundances averaged 49, 23 and 7 cells ml-1 , respectively, and altogether the three groups accounted for about 10%-20% of heterotrophic picoeukaryotes. Our innovative high-throughput cell counting routine allows for the first time a direct assessment of the biogeographic distribution of small protists (< 5 μm) and shows the ubiquity in sunlit oceans of three bacterivorous taxa, suggesting their key roles in marine ecosystems.
Collapse
Affiliation(s)
- Jean-François Mangot
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (CSIC), E-08003 Barcelona, Catalonia, Spain
| | - Irene Forn
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (CSIC), E-08003 Barcelona, Catalonia, Spain
| | - Aleix Obiol
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (CSIC), E-08003 Barcelona, Catalonia, Spain
| | - Ramon Massana
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (CSIC), E-08003 Barcelona, Catalonia, Spain
| |
Collapse
|
12
|
Belevich TA, Ilyash LV, Milyutina IA, Logacheva MD, Goryunov DV, Troitsky AV. Photosynthetic Picoeukaryotes in the Land-Fast Ice of the White Sea, Russia. MICROBIAL ECOLOGY 2018; 75:582-597. [PMID: 28942559 DOI: 10.1007/s00248-017-1076-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 09/14/2017] [Indexed: 06/07/2023]
Abstract
The White Sea is a unique marine environment combining features of temperate and Arctic seas. The composition and abundance of photosynthetic picoeukaryotes (PPEs) were investigated in the land-fast ice of the White Sea, Russia, in March 2013 and 2014. High-throughput tag sequencing (Illumina MiSeq system) of the V4 region of the 18S rRNA gene was used to reveal the diversity of PPE ice community. The integrated PPE abundance varied from 11 × 106 cells/m2 to 364 × 106 cells/m2; the integrated biomass ranged from 0.02 to 0.26 mg С/m2. The composition of sea-ice PPEs was represented by 16 algae genera belonging to eight classes and three super-groups. Chlorophyta, especially Mamiellophyceae, dominated among ice PPEs. The detailed analysis revealed the latent diversity of Micromonas and Mantоniella. Micromonas clade E2 revealed in the subarctic White Sea ice indicates that the area of distribution of this species is wider than previously thought. We suppose there exists a new Micromonas clade F. Micromonas clade C and Minutocellulus polymorphus were first discovered in the ice and extend the modern concept of sympagic communities' diversity generally and highlights the importance of further targeting subarctic sea ice for microbial study.
Collapse
Affiliation(s)
- T A Belevich
- Biological Faculty, Lomonosov Moscow State University, Moscow, Russia.
| | - L V Ilyash
- Biological Faculty, Lomonosov Moscow State University, Moscow, Russia
| | - I A Milyutina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - M D Logacheva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - D V Goryunov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - A V Troitsky
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
13
|
Cryptophyta as major bacterivores in freshwater summer plankton. ISME JOURNAL 2018; 12:1668-1681. [PMID: 29463895 PMCID: PMC6018765 DOI: 10.1038/s41396-018-0057-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 11/20/2017] [Accepted: 11/28/2017] [Indexed: 01/05/2023]
Abstract
Small bacterivorous eukaryotes play a cardinal role in aquatic food webs and their taxonomic classification is currently a hot topic in aquatic microbial ecology. Despite increasing interest in their diversity, core questions regarding predator–prey specificity remain largely unanswered, e.g., which heterotrophic nanoflagellates (HNFs) are the main bacterivores in freshwaters and which prokaryotes support the growth of small HNFs. To answer these questions, we fed natural communities of HNFs from Římov reservoir (Czech Republic) with five different bacterial strains of the ubiquitous betaproteobacterial genera Polynucleobacter and Limnohabitans. We combined amplicon sequencing and catalyzed reporter deposition fluorescence in situ hybridization (CARD-FISH) targeting eukaryotic 18 S rRNA genes to track specific responses of the natural HNF community to prey amendments. While amplicon sequencing provided valuable qualitative data and a basis for designing specific probes, the number of reads was insufficient to accurately quantify certain eukaryotic groups. We also applied a double-hybridization technique that allows simultaneous phylogenetic identification of both predator and prey. Our results show that community composition of HNFs is strongly dependent upon prey type. Surprisingly, Cryptophyta were the most abundant bacterivores, although this phylum has been so far assumed to be mainly autotrophic. Moreover, the growth of a small lineage of Cryptophyta (CRY1 clade) was strongly stimulated by one Limnohabitans strain in our experiment. Thus, our study is the first report that colorless Cryptophyta are major bacterivores in summer plankton samples and can play a key role in the carbon transfer from prokaryotes to higher trophic levels.
Collapse
|
14
|
Orsi WD, Wilken S, Del Campo J, Heger T, James E, Richards TA, Keeling PJ, Worden AZ, Santoro AE. Identifying protist consumers of photosynthetic picoeukaryotes in the surface ocean using stable isotope probing. Environ Microbiol 2018; 20:815-827. [PMID: 29215213 DOI: 10.1111/1462-2920.14018] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 11/26/2017] [Accepted: 11/26/2017] [Indexed: 11/29/2022]
Abstract
Photosynthetic picoeukaryotes contribute a significant fraction of primary production in the upper ocean. Micromonas pusilla is an ecologically relevant photosynthetic picoeukaryote, abundantly and widely distributed in marine waters. Grazing by protists may control the abundance of picoeukaryotes such as M. pusilla, but the diversity of the responsible grazers is poorly understood. To identify protists consuming photosynthetic picoeukaryotes in a productive North Pacific Ocean region, we amended seawater with living 15 N, 13 C-labelled M. pusilla cells in a 24-h replicated bottle experiment. DNA stable isotope probing, combined with high-throughput sequencing of V4 hypervariable regions from 18S rRNA gene amplicons (Tag-SIP), identified 19 operational taxonomic units (OTUs) of microbial eukaryotes that consumed M. pusilla. These OTUs were distantly related to cultured taxa within the dinoflagellates, ciliates, stramenopiles (MAST-1C and MAST-3 clades) and Telonema flagellates, thus, far known only from their environmental 18S rRNA gene sequences. Our discovery of eukaryotic prey consumption by MAST cells confirms that their trophic role in marine microbial food webs includes grazing upon picoeukaryotes. Our study provides new experimental evidence directly linking the genetic identity of diverse uncultivated microbial eukaryotes to the consumption of picoeukaryotic phytoplankton in the upper ocean.
Collapse
Affiliation(s)
- William D Orsi
- Horn Point Laboratory, University of Maryland Center for Environmental Science, Cambridge, MD 21613, USA
| | - Susanne Wilken
- Monterey Bay Aquarium Research Institute, Moss Landing, CA 95039, USA
| | - Javier Del Campo
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Thierry Heger
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Erick James
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Thomas A Richards
- Department of Biosciences, University of Exeter, Geoffrey Pope Building, Exeter, EX4 4QD, UK
| | - Patrick J Keeling
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Alyson E Santoro
- Horn Point Laboratory, University of Maryland Center for Environmental Science, Cambridge, MD 21613, USA
| |
Collapse
|
15
|
Belevich TA, Ilyash LV, Milyutina IA, Logacheva MD, Troitsky AV. Metagenomics of bolidophyceae in plankton and ice of the White Sea. BIOCHEMISTRY (MOSCOW) 2017; 82:1538-1548. [DOI: 10.1134/s0006297917120136] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Yoo YD, Seong KA, Jeong HJ, Yih W, Rho JR, Nam SW, Kim HS. Mixotrophy in the marine red-tide cryptophyte Teleaulax amphioxeia and ingestion and grazing impact of cryptophytes on natural populations of bacteria in Korean coastal waters. HARMFUL ALGAE 2017; 68:105-117. [PMID: 28962973 DOI: 10.1016/j.hal.2017.07.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 07/25/2017] [Accepted: 07/27/2017] [Indexed: 05/13/2023]
Abstract
Cryptophytes are ubiquitous and one of the major phototrophic components in marine plankton communities. They often cause red tides in the waters of many countries. Understanding the bloom dynamics of cryptophytes is, therefore, of great importance. A critical step in this understanding is unveiling their trophic modes. Prior to this study, several freshwater cryptophyte species and marine Cryptomonas sp. and Geminifera cryophila were revealed to be mixotrophic. The trophic mode of the common marine cryptophyte species, Teleaulax amphioxeia has not been investigated yet. Thus, to explore the mixotrophic ability of T. amphioxeia by assessing the types of prey species that this species is able to feed on, the protoplasms of T. amphioxeia cells were carefully examined under an epifluorescence microscope and a transmission electron microscope after adding each of the diverse prey species. Furthermore, T. amphioxeia ingestion rates heterotrophic bacteria and the cyanobacterium Synechococcus sp. were measured as a function of prey concentration. Moreover, the feeding of natural populations of cryptophytes on natural populations of heterotrophic bacteria was assessed in Masan Bay in April 2006. This study reported for the first time, to our knowledge, that T. amphioxeia is a mixotrophic species. Among the prey organisms offered, T. amphioxeia fed only on heterotrophic bacteria and Synechococcus sp. The ingestion rates of T. amphioxeia on heterotrophic bacteria or Synechococcus sp. rapidly increased with increasing prey concentrations up to 8.6×106 cells ml-1, but slowly at higher prey concentrations. The maximum ingestion rates of T. amphioxeia on heterotrophic bacteria and Synechococcus sp. reached 0.7 and 0.3 cells predator-1 h-1, respectively. During the field experiments, the ingestion rates and grazing coefficients of cryptophytes on natural populations of heterotrophic bacteria were 0.3-8.3 cells predator-1h-1 and 0.012-0.033d-1, respectively. Marine cryptophytes, including T. amphioxeia, are known to be favorite prey species for many mixotrophic and heterotrophic dinoflagellates and ciliates. Cryptophytes, therefore, likely play important roles in marine food webs and may exert a considerable potential grazing impact on the populations of marine bacteria.
Collapse
Affiliation(s)
- Yeong Du Yoo
- Department of Marine Biotechnology, College of Ocean Science and Technology, Kunsan National University, Kunsan 54150, Republic of Korea.
| | - Kyeong Ah Seong
- Department of Marine Biotechnology, College of Ocean Science and Technology, Kunsan National University, Kunsan 54150, Republic of Korea
| | - Hae Jin Jeong
- School of Earth and Environmental Sciences, College of Natural Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| | - Wonho Yih
- Department of Marine Biotechnology, College of Ocean Science and Technology, Kunsan National University, Kunsan 54150, Republic of Korea
| | - Jung-Rae Rho
- Department of Marine Biotechnology, College of Ocean Science and Technology, Kunsan National University, Kunsan 54150, Republic of Korea
| | - Seung Won Nam
- Nakdonggang National Institute of Biological Resources, Sangju, 37242, Republic of Korea
| | - Hyung Seop Kim
- Department of Marine Biotechnology, College of Ocean Science and Technology, Kunsan National University, Kunsan 54150, Republic of Korea
| |
Collapse
|
17
|
Cabello AM, Latasa M, Forn I, Morán XAG, Massana R. Vertical distribution of major photosynthetic picoeukaryotic groups in stratified marine waters. Environ Microbiol 2017; 18:1578-90. [PMID: 26971724 DOI: 10.1111/1462-2920.13285] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 02/26/2016] [Accepted: 02/28/2016] [Indexed: 02/01/2023]
Abstract
Photosynthetic picoeukaryotes (PPEs) are fundamental contributors to oceanic primary production and form diverse communities dominated by prymnesiophytes, chlorophytes, pelagophytes and chrysophytes. Here, we studied the vertical distribution of these major groups in two offshore regions of the northern Iberian Peninsula during summer stratification. We performed a fine-scale vertical sampling (every ∼2 m) across the DCM and used fluorescence in situ hybridization (FISH) to determine the PPE composition and to explore the possible segregation of target groups in the light, nutrient and temperature gradients. Chlorophytes, pelagophytes and prymnesiophytes, in this order of abundance, accounted for the total PPEs recorded by flow cytometry in the Avilés canyon, and for more than half in the Galicia Bank, whereas chrysophytes were undetected. Among the three detected groups, often the prymnesiophytes were dominant in biomass. In general, all groups were present throughout the water column with abundance peaks around the DCM, but their distributions differed: pelagophytes were located deeper than the other two groups, chlorophytes presented two peaks and prymnesiophytes exhibited surface abundances comparable to those at the DCM. This study offers first indications that the vertical distribution of different PPE groups is heterogeneous within the DCM.
Collapse
Affiliation(s)
- Ana M Cabello
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (CSIC), Barcelona, Catalonia, Spain
| | - Mikel Latasa
- Instituto Español de Oceanografía (IEO), Centro oceanográfico de Xixón, Xixón, Spain
| | - Irene Forn
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (CSIC), Barcelona, Catalonia, Spain
| | - Xosé Anxelu G Morán
- Instituto Español de Oceanografía (IEO), Centro oceanográfico de Xixón, Xixón, Spain.,Division of Biological and Environmental Sciences and Engineering, Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Ramon Massana
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (CSIC), Barcelona, Catalonia, Spain
| |
Collapse
|
18
|
Seasonal dynamics of algal and bacterial communities in Arctic sea ice under variable snow cover. Polar Biol 2017. [DOI: 10.1007/s00300-017-2168-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
19
|
Moustaka-Gouni M, Kormas KA, Scotti M, Vardaka E, Sommer U. Warming and Acidification Effects on Planktonic Heterotrophic Pico- and Nanoflagellates in a Mesocosm Experiment. Protist 2016; 167:389-410. [DOI: 10.1016/j.protis.2016.06.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 06/27/2016] [Accepted: 06/29/2016] [Indexed: 01/16/2023]
|
20
|
Belevich TA, Ilyash LV, Milyutina IA, Logacheva MD, Goryunov DV, Troitsky AV. Metagenomic analyses of white sea picoalgae: First data. BIOCHEMISTRY (MOSCOW) 2015; 80:1514-21. [DOI: 10.1134/s0006297915110140] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Molecular diversity of microbial eukaryotes in sea water from Fildes Peninsula, King George Island, Antarctica. Polar Biol 2015. [DOI: 10.1007/s00300-015-1815-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
22
|
Mukherjee I, Hodoki Y, Nakano SI. Kinetoplastid flagellates overlooked by universal primers dominate in the oxygenated hypolimnion of Lake Biwa, Japan. FEMS Microbiol Ecol 2015; 91:fiv083. [PMID: 26187480 DOI: 10.1093/femsec/fiv083] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2015] [Indexed: 11/12/2022] Open
Abstract
Kinetoplastid flagellates, microscopically often detected from various aquatic environments and considered ubiquitous are seldom reported in molecular diversity studies with universal eukaryote DNA primers. To investigate this inconsistency, we examined nanoflagellate diversity in Lake Biwa, Japan by 18S rRNA gene clone libraries using universal eukaryote and kinetoplastid-specific primers. We also examined the abundance of kinetoplastids by Catalyzed Reporter Deposition-Fluorescence In Situ Hybridization. No, kinetoplastid sequences were detected in the universal eukaryote primers library from epilimnion and hypolimnion in different seasons. However, kinetoplastid flagellates were detected with kinetoplastid-specific probe from all of the seasons and contributed up to 11.9 and 36.0% of total eukaryotes in the epilimnion and hypolimnion, respectively. Thus, kinetoplastids probably are a significant, sometimes dominant, group in the hypolimnion, contributing up to 43.7% of the total flagellates. Using group-specific primers, kinetoplastid sequences were also obtained from both epilimnion and hypolimnion library. Therefore, we attributed the inconsistency to the divergent nature of 18S rRNA gene of kinetoplastids, which lead to their undetection in the universal eukaryote primer libraries. This study revealed that kinetoplastids have significant ecological importance in the hypolimnion of Lake Biwa, suggesting that these flagellates have been overlooked in other studies using universal eukaryote primers.
Collapse
Affiliation(s)
- Indranil Mukherjee
- Center for Ecological Research, Kyoto University, Otsu, Shiga 520-2113, Japan
| | - Yoshikuni Hodoki
- Department of Biology, Keio University, Yokohama, Kanagawa 223-8521, Japan
| | - Shin-Ichi Nakano
- Center for Ecological Research, Kyoto University, Otsu, Shiga 520-2113, Japan
| |
Collapse
|
23
|
Piwosz K, Spich K, Całkiewicz J, Weydmann A, Kubiszyn AM, Wiktor JM. Distribution of small phytoflagellates along an Arctic fjord transect. Environ Microbiol 2015; 17:2393-406. [PMID: 25384623 DOI: 10.1111/1462-2920.12705] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 10/27/2014] [Accepted: 10/28/2014] [Indexed: 11/30/2022]
Abstract
Phytoflagellates <10 μm substantially contribute to the abundance, biomass and primary production in polar waters, but information on the distribution of specific groups is scarce. We applied catalysed reporter deposition-fluorescence in situ hybridization to investigate the distribution of total phytoflagellates and of eight specific groups along a 100 km transect west off Kongsfjorden (Spitsbergen) from 29 to 31 July 2010. Phytoflagellates contributed to >75% of the depth-integrated abundance and biomass of total eukaryotes <10 μm at all stations. Their depth-integrated abundance and biomass decreased along the transect from 1.5 × 10(12) cells m(-2) (6.6 × 10(12) pgC m(-2) ) at the outermost station to 1.7 × 10(10) cells m(-2) (4.7 × 10(10) pgC m(-2) ) at the innermost station. Chlorophytes contributed to the total abundance of phytoflagellates with a range from 13% to 87% (0.7-30.5 × 10(3) cells ml(-1) ), and predominated in open waters. The contribution of haptophytes was < 1-38% (10-4500 cells ml(-1) ). The other groups represented <10%. The temperature and salinity positively correlated with the total abundance of phytoflagellates, chlorophytes, haptophytes, bolidophytes and pelagophytes. Cryptophytes, pedinellids and pavlovophytes were negatively associated with the nutrient concentrations. The community composition of phytoflagellates changed along the transect, which could have implications on food web dynamics and biogeochemical cycles between the open ocean environment and Kongsfjorden investigated here.
Collapse
Affiliation(s)
- Kasia Piwosz
- Department of Fisheries Oceanography and Marine Ecology, National Marine Fisheries Research Institute, Gdynia, 81-332, Poland
| | - Katarzyna Spich
- Department of Fisheries Oceanography and Marine Ecology, National Marine Fisheries Research Institute, Gdynia, 81-332, Poland
| | - Joanna Całkiewicz
- Department of Fisheries Oceanography and Marine Ecology, National Marine Fisheries Research Institute, Gdynia, 81-332, Poland
| | - Agata Weydmann
- Department of Marine Ecology, Institute of Oceanology of the Polish Academy of Sciences, Sopot, 81-712, Poland.,Institute of Oceanography, University of Gdańsk, Piłsudskiego 46, 81-378, Gdynia, Poland
| | - Anna M Kubiszyn
- Department of Marine Ecology, Institute of Oceanology of the Polish Academy of Sciences, Sopot, 81-712, Poland
| | - Józef M Wiktor
- Department of Marine Ecology, Institute of Oceanology of the Polish Academy of Sciences, Sopot, 81-712, Poland
| |
Collapse
|
24
|
Biogeography of heterotrophic flagellate populations indicates the presence of generalist and specialist taxa in the Arctic Ocean. Appl Environ Microbiol 2015; 81:2137-48. [PMID: 25595764 DOI: 10.1128/aem.02737-14] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Heterotrophic marine flagellates (HF) are ubiquitous in the world's oceans and represented in nearly all branches of the domain Eukaryota. However, the factors determining distributions of major taxonomic groups are poorly known. The Arctic Ocean is a good model environment for examining the distribution of functionally similar but phylogenetically diverse HF because the physical oceanography and annual ice cycles result in distinct environments that could select for microbial communities or favor specific taxa. We reanalyzed new and previously published high-throughput sequencing data from multiple studies in the Arctic Ocean to identify broad patterns in the distribution of individual taxa. HF accounted for fewer than 2% to over one-half of the reads from the water column and for up to 60% of reads from ice, which was dominated by Cryothecomonas. In the water column, many HF phylotypes belonging to Telonemia and Picozoa, uncultured marine stramenopiles (MAST), and choanoflagellates were geographically widely distributed. However, for two groups in particular, Telonemia and Cryothecomonas, some species level taxa showed more restricted distributions. For example, several phylotypes of Telonemia favored open waters with lower nutrients such as the Canada Basin and offshore of the Mackenzie Shelf. In summary, we found that while some Arctic HF were successful over a range of conditions, others could be specialists that occur under particular conditions. We conclude that tracking species level diversity in HF not only is feasible but also provides a potential tool for understanding the responses of marine microbial ecosystems to rapidly changing ice regimes.
Collapse
|
25
|
Exploring the uncultured microeukaryote majority in the oceans: reevaluation of ribogroups within stramenopiles. ISME JOURNAL 2013; 8:854-66. [PMID: 24196325 DOI: 10.1038/ismej.2013.204] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 10/08/2013] [Accepted: 10/09/2013] [Indexed: 11/08/2022]
Abstract
Molecular surveys in planktonic marine systems have unveiled a large novel diversity of small protists. A large part of this diversity belongs to basal heterotrophic stramenopiles and is distributed in a set of polyphyletic ribogroups (described from rDNA sequences) collectively named as MAST (MArine STramenopiles). In the few groups investigated, MAST cells are globally distributed and abundant bacterial grazers, therefore having a putatively large impact on marine ecosystem functioning. The main aim of this study is to reevaluate the MAST ribogroups described so far and to determine whether additional groups can be found. For this purpose, we used traditional and state-of-the-art molecular tools, combining 18S rDNA sequences from publicly available clone libraries, single amplified genomes (SAGs) of planktonic protists, and a pyrosequencing survey from coastal waters and sediments. Our analysis indicated a final set of 18 MAST groups plus 5 new ribogroups within Ochrophyta (named as MOCH). The MAST ribogroups were then analyzed in more detail. Seven were typical of anoxic systems and one of oxic sediments. The rest were clearly members of oxic marine picoplankton. We characterized the genetic diversity within each MAST group and defined subclades for the more diverse (46 subclades in 8 groups). The analyses of sequences within subclades revealed further ecological specializations. Our data provide a renovated framework for phylogenetic classification of the numerous MAST ribogroups and support the notion of a tight link between phylogeny and ecological distribution. These diverse and largely uncultured protists are widespread and ecologically relevant members of marine microbial assemblages.
Collapse
|
26
|
Mixotrophic haptophytes are key bacterial grazers in oligotrophic coastal waters. ISME JOURNAL 2013; 8:164-76. [PMID: 23924785 DOI: 10.1038/ismej.2013.132] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 06/13/2013] [Accepted: 07/01/2013] [Indexed: 11/08/2022]
Abstract
Grazing rate estimates indicate that approximately half of the bacterivory in oligotrophic oceans is due to mixotrophic flagellates (MFs). However, most estimations have considered algae as a single group. Here we aimed at opening the black-box of the phytoflagellates (PFs) <20 μm. Haptophytes, chlorophytes, cryptophytes and pigmented dinoflagellates were identified using fluorescent in situ hybridization or by standard 4',6-diamidino-2-phenylindole staining. Their fluctuations in abundance, cell size, biomass and bacterivory rates were measured through an annual cycle in an oligotrophic coastal system. On average, we were able to assign to these groups: 37% of the total pico-PFs and 65% of the nano-PFs composition. Chlorophytes were mostly picoplanktonic and they never ingested fluorescently labeled bacteria. About 50% of the PF <20 μm biomass was represented by mixotrophic algae. Pigmented dinoflagellates were the least abundant group with little impact on bacterioplankton. Cryptophytes were quantitatively important during the coldest periods and explained about 4% of total bacterivory. Haptophytes were the most important mixotrophic group: (i) they were mostly represented by cells 3-5 μm in size present year-round; (ii) cell-specific grazing rates were comparable to those of other bacterivorous non-photosynthetic organisms, regardless of the in situ nutrient availability conditions; (iii) these organisms could acquire a significant portion of their carbon by ingesting bacteria; and (iv) haptophytes explained on average 40% of the bacterivory exerted by MFs and were responsible for 9-27% of total bacterivory at this site. Our results, when considered alongside the widespread distribution of haptophytes in the ocean, indicate that they have a key role as bacterivores in marine ecosystems.
Collapse
|