1
|
Gao T, Li Y, Dai K, Meng F. Electric syntrophy-driven modulation of Fe 0-dependent microbial denitrification. WATER RESEARCH 2024; 268:122722. [PMID: 39504696 DOI: 10.1016/j.watres.2024.122722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/17/2024] [Accepted: 10/29/2024] [Indexed: 11/08/2024]
Abstract
In natural or engineered anaerobic environments, iron oxidation-driven microbial denitrification plays a critical role in the water or wastewater treatment. Herein, we report a previously unidentified metallic iron (Fe0)-dependent denitrification mode driven by the electro-syntrophic interaction between electroactive microorganism and denitrifier. In a model denitrifying consortium of Shewanella oneidensis and Pseudomonas aeruginosa, we find that P. aeruginosa can accept electrons for nitrate reduction via the constructed electron transfer system of Fe0-S. oneidensis-P. aeruginosa. In the electro-syntrophic consortium, the membrane-bound CymA-OmcA-MtrC protein complexes of S. oneidensis drive the generation, transfer and consumption of electrons, thus enabling modulation of microbial metabolic activity. Specially, using Fe0 as the sole electron donor, S. oneidensis can act as a bio-engine to harvest electrons and conserve energy from Fe0 biocorrosion. Electrons released by S. oneidensis are utilized by P. aeruginosa for accomplishing microbial denitrification. Metatranscriptomics analysis demonstrated that the direct electron cross-feeding process facilitates the expression of genes encoding for denitrification enzymes, intracellular electron transfer proteins, and quorum sensing of P. aeruginosa. The Fe0-dependent electronic syntrophy in this work could provide a metabolic window for the growth of denitrifiers that is a new insight into nitrate removal or global nitrogen cycle.
Collapse
Affiliation(s)
- Tianyu Gao
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Laboratory of Biomass Bio-Chemical Conversion, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China
| | - Ying Li
- Laboratory of Biomass Bio-Chemical Conversion, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China.
| | - Ke Dai
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Fangang Meng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China.
| |
Collapse
|
2
|
Macey MC. Genome-resolved metagenomics identifies novel active microbes in biogeochemical cycling within methanol-enriched soil. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13246. [PMID: 38575138 PMCID: PMC10994693 DOI: 10.1111/1758-2229.13246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/15/2024] [Indexed: 04/06/2024]
Abstract
Metagenome assembled genomes (MAGs), generated from sequenced 13C-labelled DNA from 13C-methanol enriched soils, were binned using an ensemble approach. This method produced a significantly larger number of higher-quality MAGs compared to direct binning approaches. These MAGs represent both the primary methanol utilizers and the secondary utilizers labelled via cross-feeding and predation on the labelled methylotrophs, including numerous uncultivated taxa. Analysis of these MAGs enabled the identification of multiple metabolic pathways within these active taxa that have climatic relevance relating to nitrogen, sulfur and trace gas metabolism. This includes denitrification, dissimilatory nitrate reduction to ammonium, ammonia oxidation and metabolism of organic sulfur species. The binning of viral sequence data also yielded extensive viral MAGs, identifying active viral replication by both lytic and lysogenic phages within the methanol-enriched soils. These MAGs represent a valuable resource for characterizing biogeochemical cycling within terrestrial environments.
Collapse
Affiliation(s)
- Michael C. Macey
- AstrobiologyOU, Earth, Environment and Ecosystem SciencesThe Open UniversityMilton KeynesUK
| |
Collapse
|
3
|
Krichels AH, Jenerette GD, Shulman H, Piper S, Greene AC, Andrews HM, Botthoff J, Sickman JO, Aronson EL, Homyak PM. Bacterial denitrification drives elevated N 2O emissions in arid southern California drylands. SCIENCE ADVANCES 2023; 9:eadj1989. [PMID: 38055826 DOI: 10.1126/sciadv.adj1989] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 11/07/2023] [Indexed: 12/08/2023]
Abstract
Soils are the largest source of atmospheric nitrous oxide (N2O), a powerful greenhouse gas. Dry soils rarely harbor anoxic conditions to favor denitrification, the predominant N2O-producing process, yet, among the largest N2O emissions have been measured after wetting summer-dry desert soils, raising the question: Can denitrifiers endure extreme drought and produce N2O immediately after rainfall? Using isotopic and molecular approaches in a California desert, we found that denitrifiers produced N2O within 15 minutes of wetting dry soils (site preference = 12.8 ± 3.92 per mil, δ15Nbulk = 18.6 ± 11.1 per mil). Consistent with this finding, we detected nitrate-reducing transcripts in dry soils and found that inhibiting microbial activity decreased N2O emissions by 59%. Our results suggest that despite extreme environmental conditions-months without precipitation, soil temperatures of ≥40°C, and gravimetric soil water content of <1%-bacterial denitrifiers can account for most of the N2O emitted when dry soils are wetted.
Collapse
Affiliation(s)
- Alexander H Krichels
- Environmental Sciences, University of California, Riverside, CA, USA
- Center for Conservation Biology, University of California, Riverside, CA, USA
- USDA Rocky Mountain Research Station, Albuquerque, NM, USA
| | - G Darrel Jenerette
- Center for Conservation Biology, University of California, Riverside, CA, USA
- Botany and Plant Sciences, University of California, Riverside, CA, USA
| | - Hannah Shulman
- Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, USA
- Microbiology and Plant Pathology, University of California, Riverside, CA, USA
| | - Stephanie Piper
- Botany and Plant Sciences, University of California, Riverside, CA, USA
- Houston Advanced Research Center, The Woodlands, TX, USA
| | - Aral C Greene
- Environmental Sciences, University of California, Riverside, CA, USA
| | - Holly M Andrews
- Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA, USA
- Geography, Development and Environment, University of Arizona, Tucson, AZ, USA
| | - Jon Botthoff
- Center for Conservation Biology, University of California, Riverside, CA, USA
| | - James O Sickman
- Environmental Sciences, University of California, Riverside, CA, USA
| | - Emma L Aronson
- Microbiology and Plant Pathology, University of California, Riverside, CA, USA
| | - Peter M Homyak
- Environmental Sciences, University of California, Riverside, CA, USA
| |
Collapse
|
4
|
Abstract
Biological soil crusts are thin, inconspicuous communities along the soil atmosphere ecotone that, until recently, were unrecognized by ecologists and even more so by microbiologists. In its broadest meaning, the term biological soil crust (or biocrust) encompasses a variety of communities that develop on soil surfaces and are powered by photosynthetic primary producers other than higher plants: cyanobacteria, microalgae, and cryptogams like lichens and mosses. Arid land biocrusts are the most studied, but biocrusts also exist in other settings where plant development is constrained. The minimal requirement is that light impinge directly on the soil; this is impeded by the accumulation of plant litter where plants abound. Since scientists started paying attention, much has been learned about their microbial communities, their composition, ecological extent, and biogeochemical roles, about how they alter the physical behavior of soils, and even how they inform an understanding of early life on land. This has opened new avenues for ecological restoration and agriculture.
Collapse
Affiliation(s)
- Ferran Garcia-Pichel
- Center for Fundamental and Applied Microbiomics and School of Life Sciences, Arizona State University, Tempe, Arizona, USA;
| |
Collapse
|
5
|
Zhou Y, He G, Bhagwat G, Palanisami T, Yang Y, Liu W, Zhang Q. Nanoplastics alter ecosystem multifunctionality and may increase global warming potential. GLOBAL CHANGE BIOLOGY 2023; 29:3895-3909. [PMID: 37089084 DOI: 10.1111/gcb.16734] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 04/04/2023] [Indexed: 05/03/2023]
Abstract
Although the presence of nanoplastics in aquatic and terrestrial ecosystems has received increasing attention, little is known about its potential effect on ecosystem processes and functions. Here, we evaluated if differentially charged polystyrene (PS) nanoplastics (PS-NH2 and PS-SO3 H) exhibit distinct influences on microbial community structure, nitrogen removal processes (denitrification and anammox), emissions of greenhouse gases (CO2 , CH4 , and N2 O), and ecosystem multifunctionality in soils with and without earthworms through a 42-day microcosm experiment. Our results indicated that nanoplastics significantly altered soil microbial community structure and potential functions, with more pronounced effects for positively charged PS-NH2 than for negatively charged PS-SO3 H. Ecologically relevant concentration (3 g kg-1 ) of nanoplastics inhibited both soil denitrification and anammox rates, while environmentally realistic concentration (0.3 g kg-1 ) of nanoplastics decreased the denitrification rate and enhanced the anammox rate. The soil N2 O flux was always inhibited 6%-51% by both types of nanoplastics, whereas emissions of CO2 and CH4 were enhanced by nanoplastics in most cases. Significantly, although N2 O emissions were decreased by nanoplastics, the global warming potential of total greenhouse gases was increased 21%-75% by nanoplastics in soils without earthworms. Moreover, ecosystem multifunctionality was increased 4%-12% by 0.3 g kg-1 of nanoplastics but decreased 4%-11% by 3 g kg-1 of nanoplastics. Our findings provide the only evidence to date that the rapid increase in nanoplastics is altering not only ecosystem structure and processes but also ecosystem multifunctionality, and it may increase the emission of CO2 and CH4 and their global warming potential to some extent.
Collapse
Affiliation(s)
- Yanfei Zhou
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Gang He
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Geetika Bhagwat
- Global Innovative Centre for Advanced Nanomaterials, School of Engineering, The University of Newcastle, Callaghan, New South Wales, Australia
| | - Thava Palanisami
- Global Innovative Centre for Advanced Nanomaterials, School of Engineering, The University of Newcastle, Callaghan, New South Wales, Australia
| | - Yuyi Yang
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Wenzhi Liu
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Quanfa Zhang
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
6
|
Rempfert KR, Nothaft DB, Kraus EA, Asamoto CK, Evans RD, Spear JR, Matter JM, Kopf SH, Templeton AS. Subsurface biogeochemical cycling of nitrogen in the actively serpentinizing Samail Ophiolite, Oman. Front Microbiol 2023; 14:1139633. [PMID: 37152731 PMCID: PMC10160414 DOI: 10.3389/fmicb.2023.1139633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 03/15/2023] [Indexed: 05/09/2023] Open
Abstract
Nitrogen (N) is an essential element for life. N compounds such as ammonium ( NH 4 + ) may act as electron donors, while nitrate ( NO 3 - ) and nitrite ( NO 2 - ) may serve as electron acceptors to support energy metabolism. However, little is known regarding the availability and forms of N in subsurface ecosystems, particularly in serpentinite-hosted settings where hydrogen (H2) generated through water-rock reactions promotes habitable conditions for microbial life. Here, we analyzed N and oxygen (O) isotope composition to investigate the source, abundance, and cycling of N species within the Samail Ophiolite of Oman. The dominant dissolved N species was dependent on the fluid type, with Mg2+- HCO 3 - type fluids comprised mostly of NO 3 - , and Ca2+-OH- fluids comprised primarily of ammonia (NH3). We infer that fixed N is introduced to the serpentinite aquifer as NO 3 - . High concentrations of NO 3 - (>100 μM) with a relict meteoric oxygen isotopic composition (δ18O ~ 22‰, Δ17O ~ 6‰) were observed in shallow aquifer fluids, indicative of NO 3 - sourced from atmospheric deposition (rainwater NO 3 - : δ18O of 53.7‰, Δ17O of 16.8‰) mixed with NO 3 - produced in situ through nitrification (estimated endmember δ18O and Δ17O of ~0‰). Conversely, highly reacted hyperalkaline fluids had high concentrations of NH3 (>100 μM) with little NO 3 - detectable. We interpret that NH3 in hyperalkaline fluids is a product of NO 3 - reduction. The proportionality of the O and N isotope fractionation (18ε / 15ε) measured in Samail Ophiolite NO 3 - was close to unity (18ε / 15ε ~ 1), which is consistent with dissimilatory NO 3 - reduction with a membrane-bound reductase (NarG); however, abiotic reduction processes may also be occurring. The presence of genes commonly involved in N reduction processes (narG, napA, nrfA) in the metagenomes of biomass sourced from aquifer fluids supports potential biological involvement in the consumption of NO 3 - . Production of NH 4 + as the end-product of NO 3 - reduction via dissimilatory nitrate reduction to ammonium (DNRA) could retain N in the subsurface and fuel nitrification in the oxygenated near surface. Elevated bioavailable N in all sampled fluids indicates that N is not likely limiting as a nutrient in serpentinites of the Samail Ophiolite.
Collapse
Affiliation(s)
- Kaitlin R. Rempfert
- Department of Geological Sciences, University of Colorado, Boulder, CO, United States
- *Correspondence: Kaitlin R. Rempfert
| | - Daniel B. Nothaft
- Department of Geological Sciences, University of Colorado, Boulder, CO, United States
| | - Emily A. Kraus
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO, United States
| | - Ciara K. Asamoto
- Department of Geological Sciences, University of Colorado, Boulder, CO, United States
| | - R. Dave Evans
- School of Biological Sciences, Washington State University, Pullman, WA, United States
| | - John R. Spear
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO, United States
- Quantitative Biosciences and Engineering, Colorado School of Mines, Golden, CO, United States
| | - Juerg M. Matter
- National Oceanography Centre, University of Southampton, Southampton, United Kingdom
| | - Sebastian H. Kopf
- Department of Geological Sciences, University of Colorado, Boulder, CO, United States
| | - Alexis S. Templeton
- Department of Geological Sciences, University of Colorado, Boulder, CO, United States
- Alexis S. Templeton
| |
Collapse
|
7
|
Xing CY, Li H, Li Q, Lu LH, Li Z. Shifts in composition and function of bacterial communities reveal the effect of small barriers on nitrous oxide and methane accumulation in fragmented rivers. Front Microbiol 2023; 14:1110025. [PMID: 36896435 PMCID: PMC9990636 DOI: 10.3389/fmicb.2023.1110025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/30/2023] [Indexed: 02/23/2023] Open
Abstract
Rivers are often blocked by barriers to form different habitats, but it is not clear whether this change will affect the accumulation of N2O and CH4 in rivers. Here, low barriers (less than 2 m, LB) increased N2O concentration by 1.13 times and CH4 decreased by 0.118 times, while high barriers (higher than 2 m, less than 5 m high, HB) increased N2O concentration by 1.19 times and CH4 by 2.76 times. Co-occurrence network analysis indicated LB and HB can promote the enrichment of Cyanobium and Chloroflexi, further limiting complete denitrification and increasing N2O accumulation. The LB promotes methanotrophs (Methylocystis, Methylophilus, and Methylotenera) to compete with denitrifiers (Pseudomonas) in water, and reduce CH4 accumulation. While the HB can promote the methanotrophs to compete with nitrifiers (Nitrosospira) in sediment, thus reducing the consumption of CH4. LB and HB reduce river velocity, increase water depth, and reduce dissolved oxygen (DO), leading to enrichment of nirS-type denitrifiers and the increase of N2O concentration in water. Moreover, the HB reduces DO concentration and pmoA gene abundance in water, which can increase the accumulation of CH4. In light of the changes in the microbial community and variation in N2O and CH4 accumulation, the impact of fragmented rivers on global greenhouse gas emissions merits further study.
Collapse
Affiliation(s)
- Chong-Yang Xing
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institutes of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China.,Chongqing School, University of Chinese Academy of Sciences, Chongqing, China
| | - Hang Li
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institutes of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China.,Chongqing School, University of Chinese Academy of Sciences, Chongqing, China
| | - Qi Li
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institutes of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China.,Chongqing School, University of Chinese Academy of Sciences, Chongqing, China
| | - Lun-Hui Lu
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institutes of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China.,Chongqing School, University of Chinese Academy of Sciences, Chongqing, China
| | - Zhe Li
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institutes of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China.,Chongqing School, University of Chinese Academy of Sciences, Chongqing, China
| |
Collapse
|
8
|
Li S, Wang S, Ji G. Influences of carbon sources on N 2O production during denitrification in freshwaters: Activity, isotopes and functional microbes. WATER RESEARCH 2022; 226:119315. [PMID: 36369690 DOI: 10.1016/j.watres.2022.119315] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 08/15/2022] [Accepted: 10/29/2022] [Indexed: 06/16/2023]
Abstract
Denitrification is one of the major sources of N2O in freshwaters. Diverse forms of organic compounds act as the electron donors for microbial denitrification. However, the influences of carbon sources on N2O production, N2O reduction, isotope fractionation and functional microbes during denitrification were largely unknown. In this study, five forms of carbon sources (i.e. acetate, citrate, glucose, cellobiose and leucine) were used to enrich denitrifiers in freshwater sediments. N2O conversion in the enrichments was investigated by a combination of inhibition technique, natural stable isotope method and metagenomics. Acetylene was effective in inhibiting N2O reduction without influencing the isotopic characteristics during N2O production. Glucose led to the least N2O production and reduction, in accordance with the lowest abundance of both NO and N2O reductases in this enrichment. δ18O and site preference value (SP, =δ15Nα-δ15Nβ) of N2O were sensitive to discriminate the five carbon sources, except when comparing acetate and leucine. Isotopic values of N2O were not significantly different in these two enrichments due to the similarity of NO reductases - Pseudomonas-type cNorB. Specifically, the enrichment with cellobiose produced N2O with the lowest δ18O values (39.4‰±1.1‰), due to Alicycliphilus with both cNorB and qNorB. The enrichment with glucose led to the highest SP values (8.9‰±8.6‰), caused by Thiobacillus-type cNorB. Our results demonstrated the link between carbon sources, N2O production and reduction, isotopic signatures, microbial populations and enzymes during denitrification in freshwaters.
Collapse
Affiliation(s)
- Shengjie Li
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing 100871, China
| | - Shuo Wang
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing 100871, China
| | - Guodong Ji
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
9
|
Chen Z, Zhang T, Meng J, Zhou S, Zhang Z, Chen Z, Liu Y, Zhang J, Cui J. Efficient nitrate removal of immobilized mixed aerobic denitrifying bacteria and community dynamics response to temperature and low carbon/nitrogen polluted water. BIORESOURCE TECHNOLOGY 2022; 362:127873. [PMID: 36049711 DOI: 10.1016/j.biortech.2022.127873] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
The denitrification performance of immobilized mixed aerobic denitrifying bacteria (IMADB) was investigated. IMADB displayed strong temperature adaptability under low Carbon/Nitrogen conditions. At 5, 15, and 25 °C, the nitrate removal efficiencies of volcanic rock and polyester fiber sponge immobilized system reached 83.95%-98.25% and 89.71%-98.14%, respectively. The nitrate content removed by the carrier accounted for 41.18%-82.47% of the nitrate content removed by the immobilized system at different temperature, and played a major role in nitrate removal. The lower the temperature, the greater the role of the carrier. At the same temperature, carrier had a relatively higher richness, diversity, and evenness. Network analysis revealed that carrier species, which were positively correlated with nitrate removal efficiency, had the largest OTUs and abundance. Meanwhile, carrier had the widest niche. The total nitrogen removal efficiency of IMADB reached 56.10%-62.31% in the natural water system, highlighting a promising application prospect.
Collapse
Affiliation(s)
- Zhaoying Chen
- Pollution Prevention Biotechnology Laboratory of Hebei Province, School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, PR China
| | - Tianna Zhang
- Pollution Prevention Biotechnology Laboratory of Hebei Province, School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, PR China
| | - Jiajing Meng
- Pollution Prevention Biotechnology Laboratory of Hebei Province, School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, PR China
| | - Shilei Zhou
- Pollution Prevention Biotechnology Laboratory of Hebei Province, School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, PR China.
| | - Ziwei Zhang
- Pollution Prevention Biotechnology Laboratory of Hebei Province, School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, PR China
| | - Zhe Chen
- Pollution Prevention Biotechnology Laboratory of Hebei Province, School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, PR China
| | - Yilin Liu
- Pollution Prevention Biotechnology Laboratory of Hebei Province, School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, PR China
| | - Jiafeng Zhang
- Pollution Prevention Biotechnology Laboratory of Hebei Province, School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, PR China
| | - Jiansheng Cui
- Pollution Prevention Biotechnology Laboratory of Hebei Province, School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, PR China
| |
Collapse
|
10
|
Lu Y, Tao Y, Yin B, Li Y, Tucker C, Zhou X, Zhang Y. Nitrogen deposition stimulated winter nitrous oxide emissions from bare sand more than biological soil crusts in cold desert ecosystem. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 841:156779. [PMID: 35724796 DOI: 10.1016/j.scitotenv.2022.156779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
Dryland ecosystems are often nitrogen-limited, and small nitrogen inputs may produce large responses to dryland ecological processes, such as gaseous nitrogen emission. The effect of increased anthropogenic nitrogen deposition on N2O and NO emissions in desert ecosystems is unclear, especially in non-growing seasons when the surface is covered with snow. In this study, nitrogen applications were performed on biological soil crusts (lichen crust and moss crust, bare sand for control) in the Gurbantunggut Desert, Northwest China. We measured the fluxes of N2O and NO and related nitrogen cycle functional gene abundances in winter for three-years period. Nitrogen addition significantly affected N2O emissions and increased the abundances of key functional gene for nitrogen cycle, while it only slightly influenced NO emissions. These effects of nitrogen addition depended on composition of biological soil crusts. For bare sand and lichen crust, nitrogen addition significantly increased N2O emissions, whereas for moss crust, only a negligible effect was observed. Meanwhile, significant differences in nitrogen cycle functional gene abundances were found among different composition of biological soil crusts. Abundance of amoA, narG, and nosZ genes were highly related to N2O and NO emissions. Thus, our results indicate that gaseous nitrogen emissions were generally increased by nitrogen addition through their effects on related functional microbial groups. The effects were regulated by composition of biological soil crusts which can buffer the effects of increasing nitrogen addition during winter.
Collapse
Affiliation(s)
- Yongxing Lu
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, 830011 Urumqi, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Ye Tao
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, 830011 Urumqi, China
| | - Benfeng Yin
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, 830011 Urumqi, China
| | - Yonggang Li
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, 830011 Urumqi, China
| | - Colin Tucker
- USDA Forest Service Northern Research Station, Houghton, MI, United States
| | - Xiaobing Zhou
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, 830011 Urumqi, China.
| | - Yuanming Zhang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, 830011 Urumqi, China.
| |
Collapse
|
11
|
Kratz AM, Maier S, Weber J, Kim M, Mele G, Gargiulo L, Leifke AL, Prass M, Abed RMM, Cheng Y, Su H, Pöschl U, Weber B. Reactive Nitrogen Hotspots Related to Microscale Heterogeneity in Biological Soil Crusts. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:11865-11877. [PMID: 35929951 PMCID: PMC9387110 DOI: 10.1021/acs.est.2c02207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/12/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
Biocrusts covering drylands account for major fractions of terrestrial biological nitrogen fixation and release large amounts of gaseous reactive nitrogen (Nr) as nitrous acid (HONO) and nitric oxide (NO). Recent investigations suggested that aerobic and anaerobic microbial nitrogen transformations occur simultaneously upon desiccation of biocrusts, but the spatio-temporal distribution of seemingly contradictory processes remained unclear. Here, we explore small-scale gradients in chemical concentrations related to structural characteristics and organism distribution. X-ray microtomography and fluorescence microscopy revealed mixed pore size structures, where photoautotrophs and cyanobacterial polysaccharides clustered irregularly in the uppermost millimeter. Microsensor measurements showed strong gradients of pH, oxygen, and nitrite, nitrate, and ammonium ion concentrations at micrometer scales in both vertical and lateral directions. Initial oxygen saturation was mostly low (∼30%) at full water holding capacity, suggesting widely anoxic conditions, and increased rapidly upon desiccation. Nitrite concentrations (∼6 to 800 μM) and pH values (∼6.5 to 9.5) were highest around 70% WHC. During further desiccation they decreased, while emissions of HONO and NO increased, reaching maximum values around 20% WHC. Our results illustrate simultaneous, spatially separated aerobic and anaerobic nitrogen transformations, which are critical for Nr emissions, but might be impacted by future global change and land management.
Collapse
Affiliation(s)
- Alexandra Maria Kratz
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz 55128, Germany
| | - Stefanie Maier
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz 55128, Germany
- Institute
of Biology, Division of Plant Sciences, University of Graz, Graz 8010, Austria
| | - Jens Weber
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz 55128, Germany
- Institute
of Biology, Division of Plant Sciences, University of Graz, Graz 8010, Austria
| | - Minsu Kim
- Institute
of Biology, Division of Plant Sciences, University of Graz, Graz 8010, Austria
| | - Giacomo Mele
- Institute
for Agriculture and Forestry in the Mediterranean, National Council of Research, 80055 Portici, Italy
| | - Laura Gargiulo
- Institute
for Agriculture and Forestry in the Mediterranean, National Council of Research, 80055 Portici, Italy
| | - Anna Lena Leifke
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz 55128, Germany
| | - Maria Prass
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz 55128, Germany
| | - Raeid M. M. Abed
- College
of Science, Biology Department, Sultan Qaboos
University, P.O. Box 36, Al Khoud, Seeb 123, Sultanate of Oman
| | - Yafang Cheng
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz 55128, Germany
| | - Hang Su
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz 55128, Germany
| | - Ulrich Pöschl
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz 55128, Germany
| | - Bettina Weber
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz 55128, Germany
- Institute
of Biology, Division of Plant Sciences, University of Graz, Graz 8010, Austria
| |
Collapse
|
12
|
Tian C, Pang J, Bu C, Wu S, Bai H, Li Y, Guo Q, Siddique KHM. The Microbiomes in Lichen and Moss Biocrust Contribute Differently to Carbon and Nitrogen Cycles in Arid Ecosystems. MICROBIAL ECOLOGY 2022:10.1007/s00248-022-02077-7. [PMID: 35864173 DOI: 10.1007/s00248-022-02077-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Biological soil crusts (biocrusts) are distributed in arid and semiarid regions across the globe. Microorganisms are an essential component in biocrusts. They add and accelerate critical biochemical processes. However, little is known about the functional genes and metabolic processes of microbiomes in lichen and moss biocrust. This study used shotgun metagenomic sequencing to compare the microbiomes of lichen-dominated and moss-dominated biocrust and reveal the microbial genes and metabolic pathways involved in carbon and nitrogen cycling. The results showed that Actinobacteria, Bacteroidetes, and Acidobacteria were more abundant in moss biocrust than lichen biocrust, while Proteobacteria and Cyanobacteria were more abundant in lichen biocrust than moss biocrust. The relative abundance of carbohydrate-active enzymes and enzymes associated with carbon and nitrogen metabolism differed significantly between microbiomes of the two biocrust types. However, in the microbial communities of both biocrust types, respiration pathways dominated over carbon fixation pathways. The genes encoding carbon monoxide dehydrogenase were more abundant than those encoding ribulose 1,5-bisphosphate carboxylase/oxygenase (RuBisCo) involved in carbon fixation. Similarly, metabolic N-pathway diversity was dominated by nitrogen reduction, followed by denitrification, with nitrogen fixation the lowest proportion. Gene diversity involved in N cycling differed between the microbiomes of the two biocrust types. Assimilatory nitrate reduction genes had higher relative abundance in lichen biocrust, whereas dissimilatory nitrate reduction genes had higher relative abundance in moss biocrust. As dissolved organic carbon and soil organic carbon are considered the main drivers of the community structure in the microbiome of biocrust, these results indicate that biocrust type has a pivotal role in microbial diversity and related biogeochemical cycling.
Collapse
Affiliation(s)
- Chang Tian
- Institute of Soil and Water Conservation, Northwest A & F University, Yangling, Shaanxi, 712100, China
- Institute of Soil and Water Conservation, CAS & MWR, Yangling, Shaanxi, 712100, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jingwen Pang
- Institute of Soil and Water Conservation, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Chongfeng Bu
- Institute of Soil and Water Conservation, Northwest A & F University, Yangling, Shaanxi, 712100, China.
- Institute of Soil and Water Conservation, CAS & MWR, Yangling, Shaanxi, 712100, China.
| | - Shufang Wu
- College of Water Resources and Architectural Engineering, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Hao Bai
- Sichuan Expressway Construction & Development Group Co., Ltd, Chengdu, Sichuan, 610041, China
| | - Yahong Li
- Institute of Soil and Water Conservation, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Qi Guo
- Institute of Soil and Water Conservation, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture and School of Agriculture & Environment, The University of Western Australia, Perth, WA, 6001, Australia
| |
Collapse
|
13
|
Hu Y, Xu B, Wang Y, He Z, Zhang P, Wang G. Reference for different sensitivities of greenhouse gases effluxes to warming climate among types of desert biological soil crust. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 830:154805. [PMID: 35341852 DOI: 10.1016/j.scitotenv.2022.154805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 03/19/2022] [Accepted: 03/20/2022] [Indexed: 06/14/2023]
Abstract
There is much uncertainty about how climate warming will impact greenhouse gases (GHG) budget in dry environments due to the lack of available data for desert biocrust soil. We implemented a 2.5-year field measurement of CO2, CH4 and N2O effluxes in cyanobacteria-dominated, moss-dominated and mixed (cyanobacteria, moss and lichen) biocrust soils using open-top-chambers to simulate climate warming (1.2 °C on average). Desert biocrust soils generally acted as a weak sink of atmospheric CH4 and N2O. Although warming effects on daily CO2, CH4, and N2O effluxes varied depending on sampling date and biocrust soil, there was no significant difference in daily, monthly and seasonal average CO2, CH4 and N2O effluxes between warming and control in most cases for three biocrust soils. However, warming caused a marginal (p = 0.06) decrease (14.2%) in annual accumulative CO2 efflux in moss-dominated biocrust soil due to the drought effects caused by warming indirectly and OTC sheltering of precipitation directly, while there was no significant difference between warming and control for cyanobacteria-dominated and mixed biocrust soils, implying a neutral response of GHG effluxes to climate warming. These results suggest that the GHG budget in arid desert biocrust soil would not be significantly changed in the warmer future when the direct negative effects of drought on CO2 effluxes were excluded. Therefore, a marginal decrease of accumulative CO2 effluxes in response to warming coupled with drought for moss-dominated biocrust soil might offer a weak negative feedback to warming and drier climate change pattern.
Collapse
Affiliation(s)
- Yigang Hu
- Shapotou Desert Experiment and Research Station, Northwest Institute of Eco-Environmental and Resources, Chinese Academy of Sciences, Lanzhou, China.
| | - Bingxin Xu
- Shapotou Desert Experiment and Research Station, Northwest Institute of Eco-Environmental and Resources, Chinese Academy of Sciences, Lanzhou, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yani Wang
- Shapotou Desert Experiment and Research Station, Northwest Institute of Eco-Environmental and Resources, Chinese Academy of Sciences, Lanzhou, China; University of Chinese Academy of Sciences, Beijing, China
| | - Zhenzi He
- Shapotou Desert Experiment and Research Station, Northwest Institute of Eco-Environmental and Resources, Chinese Academy of Sciences, Lanzhou, China; University of Chinese Academy of Sciences, Beijing, China
| | - Peng Zhang
- Shapotou Desert Experiment and Research Station, Northwest Institute of Eco-Environmental and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Guojie Wang
- Eastern Oregon Agriculture and Natural Resource Program, Oregon State University, La Grande, OR, USA
| |
Collapse
|
14
|
Abstract
Arid ecosystems cover ∼40% of the Earth's terrestrial surface and store a high proportion of the global nitrogen (N) pool. They are low-productivity, low-biomass, and polyextreme ecosystems, i.e., with (hyper)arid and (hyper)oligotrophic conditions and high surface UV irradiation and evapotranspiration. These polyextreme conditions severely limit the presence of macrofauna and -flora and, particularly, the growth and productivity of plant species. Therefore, it is generally recognized that much of the primary production (including N-input processes) and nutrient biogeochemical cycling (particularly N cycling) in these ecosystems are microbially mediated. Consequently, we present a comprehensive survey of the current state of knowledge of biotic and abiotic N-cycling processes of edaphic (i.e., open soil, biological soil crust, or plant-associated rhizosphere and rhizosheath) and hypo/endolithic refuge niches from drylands in general, including hot, cold, and polar desert ecosystems. We particularly focused on the microbially mediated biological nitrogen fixation, N mineralization, assimilatory and dissimilatory nitrate reduction, and nitrification N-input processes and the denitrification and anaerobic ammonium oxidation (anammox) N-loss processes. We note that the application of modern meta-omics and related methods has generated comprehensive data sets on the abundance, diversity, and ecology of the different N-cycling microbial guilds. However, it is worth mentioning that microbial N-cycling data from important deserts (e.g., Sahara) and quantitative rate data on N transformation processes from various desert niches are lacking or sparse. Filling this knowledge gap is particularly important, as climate change models often lack data on microbial activity and environmental microbial N-cycling communities can be key actors of climate change by producing or consuming nitrous oxide (N2O), a potent greenhouse gas.
Collapse
|
15
|
Water-driven microbial nitrogen transformations in biological soil crusts causing atmospheric nitrous acid and nitric oxide emissions. THE ISME JOURNAL 2022; 16:1012-1024. [PMID: 34764454 PMCID: PMC8941053 DOI: 10.1038/s41396-021-01127-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 09/16/2021] [Accepted: 09/22/2021] [Indexed: 01/12/2023]
Abstract
Biological soil crusts (biocrusts) release the reactive nitrogen gases (Nr) nitrous acid (HONO) and nitric oxide (NO) into the atmosphere, but the underlying microbial process controls have not yet been resolved. In this study, we analyzed the activity of microbial consortia relevant in Nr emissions during desiccation using transcriptome and proteome profiling and fluorescence in situ hybridization. We observed that < 30 min after wetting, genes encoding for all relevant nitrogen (N) cycling processes were expressed. The most abundant transcriptionally active N-transforming microorganisms in the investigated biocrusts were affiliated with Rhodobacteraceae, Enterobacteriaceae, and Pseudomonadaceae within the Alpha- and Gammaproteobacteria. Upon desiccation, the nitrite (NO2-) content of the biocrusts increased significantly, which was not the case when microbial activity was inhibited. Our results confirm that NO2- is the key precursor for biocrust emissions of HONO and NO. This NO2- accumulation likely involves two processes related to the transition from oxygen-limited to oxic conditions in the course of desiccation: (i) a differential regulation of the expression of denitrification genes; and (ii) a physiological response of ammonia-oxidizing organisms to changing oxygen conditions. Thus, our findings suggest that the activity of N-cycling microorganisms determines the process rates and overall quantity of Nr emissions.
Collapse
|
16
|
Zhao X, Zhang Y, Cui Z, Peng L, Cao C. Dynamics of phoD- and gcd-Harboring Microbial Communities Across an Age Sequence of Biological Soil Crusts Under Sand-Fixation Plantation. Front Microbiol 2022; 13:831888. [PMID: 35308398 PMCID: PMC8931599 DOI: 10.3389/fmicb.2022.831888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/16/2022] [Indexed: 11/29/2022] Open
Abstract
Biological soil crusts (BSCs) are important for restoring vegetation and improving soil fertility in arid or semiarid desertified land. However, studies on the contribution of BSC microbes to phosphorus (P) transformation remains limited. The microbial diversity involved in P transformation and its dynamic along BSC development should be examined to further understand the microbial regulatory mechanism of the P-cycling process. This paper investigates the soil properties, P fractions, and potential of P transformation across a chronosequence (0-, 8-, 20-, and 35-year) of the BSC under Caragana microphylla plantation on the moving sand dunes in Horqin Grassland, China. An abundance of phoD and gcd genes was detected, and the diversities and structures of phoD- and gcd-haboring microbial communities were illustrated via high-throughput sequencing. Soil nutrient content, activity of alkaline phosphomonoesterase, potential of organic P (OP) mineralization, and the abundance of phoD and gcd genes all linearly increased along with BSC age. The microbial quantity and species diversity of the phoD community were greater than those of gcd. BSC development increased the availability of inorganic P (IP) fractions, and both NaHCO3-Pi and NaOH-Pi were positively correlated with the abundance of the two genes and the activity of alkaline phosphomonoesterase. The phyla of Actinobacteria, Planctomycetes, and Proteobacteria and the family of Streptomycetaceae were the most dominant taxa in the phoD community, Proteobacteria was the dominant phylum in the gcd community in BSC soils, and Rhizobium and Planctomyces were the most dominant genera. The dominant taxa quantitatively responded to soil property improvement, but the basic compositions and dominant taxa did not change along with BSC development. The structures of phoD and gcd communities were linked to soil properties, and pH available K, and total K tend to be the direct determining factors.
Collapse
|
17
|
Wang Q, Han Y, Lan S, Hu C. Metagenomic Insight Into Patterns and Mechanism of Nitrogen Cycle During Biocrust Succession. Front Microbiol 2021; 12:633428. [PMID: 33815315 PMCID: PMC8009985 DOI: 10.3389/fmicb.2021.633428] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/22/2021] [Indexed: 11/13/2022] Open
Abstract
The successional ecology of nitrogen cycling in biocrusts and the linkages to ecosystem processes remains unclear. To explore this, four successional stages of natural biocrust with five batches of repeated sampling and three developmental stages of simulated biocrust were studied using relative and absolute quantified multi-omics methods. A consistent pattern across all biocrust was found where ammonium assimilation, mineralization, dissimilatory nitrite to ammonium (DNiRA), and assimilatory nitrate to ammonium were abundant, while denitrification medium, N-fixation, and ammonia oxidation were low. Mathematic analysis showed that the nitrogen cycle in natural biocrust was driven by dissolved organic N and NO3–. pH and SO42– were the strongest variables affecting denitrification, while C:(N:P) was the strongest variable affecting N-fixation, DNiRA, nitrite oxidation, and dissimilatory nitrate to nitrite. Furthermore, N-fixation and DNiRA were closely related to elemental stoichiometry and redox balance, while assimilatory nitrite to ammonium (ANiRA) and mineralization were related to hydrological cycles. Together with the absolute quantification and network models, our results suggest that responsive ANiRA and mineralization decreased during biocrust succession; whereas central respiratory DNiRA, the final step of denitrification, and the complexity and interaction of the whole nitrogen cycle network increased. Therefore, our study stresses the changing environmental functions in the biocrust N-cycle, which are succession-dependent.
Collapse
Affiliation(s)
- Qiong Wang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yingchun Han
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Shubin Lan
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Chunxiang Hu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
18
|
Quantifying potential N turnover rates in hypersaline microbial mats by 15N tracer techniques. Appl Environ Microbiol 2021; 87:AEM.03118-20. [PMID: 33579680 PMCID: PMC8091114 DOI: 10.1128/aem.03118-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Microbial mats, due to stratification of the redox zones, have a potential to include a complete N cycle, however an attempt to evaluate a complete N cycle in these ecosystems has not been yet made. In this study, occurrence and rates of major N cycle processes were evaluated in intact microbial mats from Elkhorn Slough, Monterey Bay, CA, USA, and Baja California Sur, Mexico under oxic and anoxic conditions using 15N-labeling techniques. All of the major N transformation pathways, with the exception of anammox, were detected in both microbial mats. Nitrification rates were found to be low at both sites for both seasons investigated. The highest rates of ammonium assimilation were measured in Elkhorn Slough mats in April and corresponded to high in situ ammonium concentration in the overlying water. Baja mats featured higher ammonification than ammonium assimilation rates and this, along with their higher affinity for nitrate compared to ammonium and low dissimilatory nitrate reduction to ammonium rates, characterized their differences from Elkhorn Slough mats. Nitrogen fixation rates in Elkhorn Slough microbial mats were found to be low implying that other processes such as recycling and assimilation from water are main sources of N for these mats at the times sampled. Denitrification in all of the mats was incomplete with nitrous oxide as end product and not dinitrogen. Our findings highlight N cycling features not previously quantified in microbial mats and indicate a need of further investigations in these microbial ecosystems.Importance: Nitrogen is essential for life. The nitrogen cycle on Earth is mediated by microbial activity and has had a profound impact on both the atmosphere and the biosphere throughout geologic time. Microbial mats, present in many modern environments, have been regarded as living records of the organisms, genes, and phylogenies of microbes, as they are one of the most ancient ecosystems on Earth. While rates of major nitrogen metabolic pathways have been evaluated in a number of ecosystems, it remains elusive in microbial mats. In particular it is unclear what factors affect nitrogen cycling in these ecosystems and how morphological differences between mats impact nitrogen transformations. In this study we investigate nitrogen cycling in two microbial mats having morphological differences. Our findings provide insight for further understanding of biogeochemistry and microbial ecology of microbial mats.
Collapse
|
19
|
Moraetis D, Al-Suhai AS, Pracejus B, Pyrgaki K, Argyraki A, Dermatas D. Origin of Cr in Alluvial and Aeolian Sediments and Ultramafic Rocks in Sultanate of Oman: Magnetic Fractionation and Sunlight Effect. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 106:458-464. [PMID: 32676684 DOI: 10.1007/s00128-020-02931-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 07/02/2020] [Indexed: 06/11/2023]
Abstract
The changing climatic conditions are imposing a vital re-consideration on the hydro-chemical pathways for contaminants. The circumference Mediterranean countries will be possibly under imminent water stress. The present study attempts to identify the sources and the leaching capacity of Cr(VI) in a coastal alluvial fan and aeolian soil and in a serpentine soil in an area offering an aridity analogue, like Oman. Magnetic separation and different leaching media were applied along with Cr(VI) sorption experiments in daylight (open air) and in laboratory conditions (without direct sunlight). In most of the samples the released Cr(VI) concentration was higher that the drinking water standard (50 μg L-1). Magnetic soil fraction has the highest bulk Cr concentration, however, the leaching of Cr with phosphate extraction solution was high in the no-magnetic fraction. Immobilization of Cr(VI) was higher in the sunlight conditions for the serpentine soil and not for the alluvial/aeolian soils.
Collapse
Affiliation(s)
- D Moraetis
- Department of Applied Physics and Astronomy, University of Sharjah, P.O. 27272, Sharjah, United Arab Emirates.
| | - A S Al-Suhai
- Department of Earth Sciences, Sultan Qaboos University, Al-Khod, 123, Muscat, Oman
| | - B Pracejus
- Department of Earth Sciences, Sultan Qaboos University, Al-Khod, 123, Muscat, Oman
| | - K Pyrgaki
- Department of Geology and Geoenvironment, National and Kapodistrian University of Athens, Athens, Greece
| | - A Argyraki
- Department of Geology and Geoenvironment, National and Kapodistrian University of Athens, Athens, Greece
| | - D Dermatas
- Department of Water Resources and Environmental Engineering, School of Civil Engineering, National Technical University of Athens, Athens, Greece
| |
Collapse
|
20
|
Meier DV, Imminger S, Gillor O, Woebken D. Distribution of Mixotrophy and Desiccation Survival Mechanisms across Microbial Genomes in an Arid Biological Soil Crust Community. mSystems 2021; 6:e00786-20. [PMID: 33436509 PMCID: PMC7901476 DOI: 10.1128/msystems.00786-20] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 12/08/2020] [Indexed: 02/06/2023] Open
Abstract
Desert surface soils devoid of plant cover are populated by a variety of microorganisms, many with yet unresolved physiologies and lifestyles. Nevertheless, a common feature vital for these microorganisms inhabiting arid soils is their ability to survive long drought periods and reactivate rapidly in rare incidents of rain. Chemolithotrophic processes such as oxidation of atmospheric hydrogen and carbon monoxide are suggested to be a widespread energy source to support dormancy and resuscitation in desert soil microorganisms. Here, we assessed the distribution of chemolithotrophic, phototrophic, and desiccation-related metabolic potential among microbial populations in arid biological soil crusts (BSCs) from the Negev Desert, Israel, via population-resolved metagenomic analysis. While the potential to utilize light and atmospheric hydrogen as additional energy sources was widespread, carbon monoxide oxidation was less common than expected. The ability to utilize continuously available energy sources might decrease the dependency of mixotrophic populations on organic storage compounds and carbon provided by the BSC-founding cyanobacteria. Several populations from five different phyla besides the cyanobacteria encoded CO2 fixation potential, indicating further potential independence from photoautotrophs. However, we also found population genomes with a strictly heterotrophic genetic repertoire. The highly abundant Rubrobacteraceae (Actinobacteriota) genomes showed particular specialization for this extreme habitat, different from their closest cultured relatives. Besides the ability to use light and hydrogen as energy sources, they encoded extensive O2 stress protection and unique DNA repair potential. The uncovered differences in metabolic potential between individual, co-occurring microbial populations enable predictions of their ecological niches and generation of hypotheses on the dynamics and interactions among them.IMPORTANCE This study represents a comprehensive community-wide genome-centered metagenome analysis of biological soil crust (BSC) communities in arid environments, providing insights into the distribution of genes encoding different energy generation mechanisms, as well as survival strategies, among populations in an arid soil ecosystem. It reveals the metabolic potential of several uncultured and previously unsequenced microbial genera, families, and orders, as well as differences in the metabolic potential between the most abundant BSC populations and their cultured relatives, highlighting once more the danger of inferring function on the basis of taxonomy. Assigning functional potential to individual populations allows for the generation of hypotheses on trophic interactions and activity patterns in arid soil microbial communities and represents the basis for future resuscitation and activity studies of the system, e.g., involving metatranscriptomics.
Collapse
Affiliation(s)
- Dimitri V Meier
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Stefanie Imminger
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Osnat Gillor
- Zuckerberg Institute for Water Research, Blaustein Institutes for Desert Research, Ben Gurion University of the Negev, Sde Boker, Israel
| | - Dagmar Woebken
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| |
Collapse
|
21
|
Tucker C, Ferrenberg S, Reed SC. Modest Residual Effects of Short-Term Warming, Altered Hydration, and Biocrust Successional State on Dryland Soil Heterotrophic Carbon and Nitrogen Cycling. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.467157] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
22
|
Characteristics and Driving Factors of the Aerobic Denitrifying Microbial Community in Baiyangdian Lake, Xiong'an New Area. Microorganisms 2020; 8:microorganisms8050714. [PMID: 32403444 PMCID: PMC7284800 DOI: 10.3390/microorganisms8050714] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/09/2020] [Accepted: 05/11/2020] [Indexed: 11/30/2022] Open
Abstract
Here, the ion-exchangeable form of nitrogen (IEF-N), weak-acid extractable form of nitrogen (WAEF-N), strong-alkali extractable form of nitrogen (SAEF-N), strong-oxidant extractable form of nitrogen (SOEF-N), residue nitrogen (Res-N), and total nitrogen (TN) showed spatial differences, and most of the sediment nitrogen fractions exhibited positive correlations in Baiyangdian Lake. High-throughput sequencing analysis revealed that the aerobic denitrification microbial community was composed of proteobacteria (42.04%–99.08%) and unclassified_bacteria (0.92%–57.92%). Moreover, the microbial community exhibited significant differences (R2 = 0.4422, P < 0.05) on the basis of the adonis analysis. T(temperature), Moisture content (MC), sediment total phosphorus (STP), ion-exchangeable form of ammonia (IEF-NH4+-N), weak-acid extractable form of ammonia (WAEF-NH4+-N), weak-acid extractable form of nitrate (WAEF-NO3−-N), and strong-alkali extractable form of ammonia (SAEF-NH4+-N) were the dominant environmental factors and explained 11.1%, 8.2%, 10.7%, 6.9%, 9.3%, 8.1%, 10.5%, 7.5%, and 7% variation, respectively, of the total variation in the microbial community. Furthermore, the network analysis showed that symbiotic relationships accounted for a major percentage of the microbial networks. The keystone aerobic denitrifying bacteria belonged to Comamonas, Rhodobacter, Achromobacter, Aeromonas, Azoarcus, Leptothrix_Burkholderiales, Pseudomonas, Thauera, unclassified_Burkholderiales, and unclassified_bacteria. The composition of the keystone aerobic denitrifying microbial community also exhibited significant differences (R2 = 0.4534, P < 0.05) on the basis of the adonis analysis. T, STP, IEF-NH4+-N, ion-exchangeable form of nitrate (IEF-NO3−-N), WAEF-NO3−-N, SAEF-NH4+-N, and TN were the dominant environmental factors that explained 8.4%, 6.2%, 4.6%, 5.9%, 5.9%, 4.5%, and 9.4% variation, respectively, of the total variation in the keystone aerobic denitrifying microbial community. The systematic investigation could provide a theoretical foundation for the evolution mechanism of the aerobic denitrifying microbial community in Baiyangdian Lake.
Collapse
|
23
|
Lan S, Thomas AD, Tooth S, Wu L, Hu C. Small-Scale Spatial Heterogeneity of Photosynthetic Fluorescence Associated with Biological Soil Crust Succession in the Tengger Desert, China. MICROBIAL ECOLOGY 2019; 78:936-948. [PMID: 30949750 DOI: 10.1007/s00248-019-01356-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 03/06/2019] [Indexed: 06/09/2023]
Abstract
In dryland regions, biological soil crusts (BSCs) have numerous important ecosystem functions. Crust species and functions are, however, highly spatially heterogeneous and remain poorly understood at a range of scales. In this study, chlorophyll fluorescence imaging was used to quantify millimeter-scale patterns in the distribution and activity of photosynthetic organisms in BSCs of different successional stages (including cyanobacterial, lichen, moss three main successional stages and three intermixed transitional stages) from the Tengger Desert, China. Chlorophyll fluorescence images derived from the Imaging PAM (Pulse Amplitude Modulation) showed that with the succession from cyanobacterial to lichen and to moss crusts, crust photosynthetic efficiency (including the maximum and effective photosynthetic efficiency, respectively) and fluorescence coverage increased significantly (P < 0.05), and that increasing photosynthetically active radiation (PAR) reduced the effective photosynthetic efficiency (Yield). The distribution of photosynthetic organisms in crusts determined Fv/Fm (ratio of variable fluorescence to maximum fluorescence) frequency pattern, although the photosynthetic heterogeneity (SHI index) was not significantly different (P > 0.05) between cyanobacterial and moss crusts, and showed a unimodal pattern of Fv/Fm values. In contrast, photosynthetic heterogeneity was significantly higher in lichen, cyanobacteria-moss and lichen-moss crusts (P < 0.05), with a bimodal pattern of Fv/Fm values. Point pattern analysis showed that the distribution pattern of chlorophyll fluorescence varied at different spatial scales and also among the different crust types. These new results provide a detailed (millimeter-scale) insight into crust photosynthetic mechanisms and spatial distribution patterns associated with their community types. Collectively, this information provides an improved theoretical basis for crust maintenance and management in dryland regions.
Collapse
Affiliation(s)
- Shubin Lan
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- Department of Geography and Earth Sciences, Aberystwyth University, Aberystwyth, SY23 3DB, UK
| | - Andrew David Thomas
- Department of Geography and Earth Sciences, Aberystwyth University, Aberystwyth, SY23 3DB, UK
| | - Stephen Tooth
- Department of Geography and Earth Sciences, Aberystwyth University, Aberystwyth, SY23 3DB, UK
| | - Li Wu
- Department of Geography and Earth Sciences, Aberystwyth University, Aberystwyth, SY23 3DB, UK
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430072, China
| | - Chunxiang Hu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
24
|
Moreira-Grez B, Tam K, Cross AT, Yong JWH, Kumaresan D, Nevill P, Farrell M, Whiteley AS. The Bacterial Microbiome Associated With Arid Biocrusts and the Biogeochemical Influence of Biocrusts Upon the Underlying Soil. Front Microbiol 2019; 10:2143. [PMID: 31608023 PMCID: PMC6768011 DOI: 10.3389/fmicb.2019.02143] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 08/30/2019] [Indexed: 02/01/2023] Open
Abstract
Biocrusts are aggregated crusts that exist on the soil surface of arid environments. They are complex microbial communities comprised of cyanobacteria, lichens, mosses, algae and fungi. Recently, biocrusts have gained significant attention due to their ubiquitous distribution and likely important ecological roles, including soil stabilization, soil moisture retention, carbon (C) and nitrogen (N) fixation, as well as microbial engineers for semi-arid ecosystem restoration. Here, we collected three co-occurring types of biocrust (Cyanobacterial crust, Crustose lichen, and Foliose lichen) and their underlying soil from arid zones within Western Australia. Bacterial microbiome composition was determined through 16S rRNA gene amplicon sequencing to assess the extent of microbiome selection within the crusts versus underlying soil and biogeochemical measures performed to determine whether the crusts had significant impact upon the underlying soil for nutrient input. We determined that the bacterial communities of native biocrusts are distinct from those in their underlying soil, where dominant bacterial taxa differed according to crust morphologies. δ15N revealed that N-fixation appeared most evident in Foliose lichen crust (1.73 ± 1.04‰). Consequently, depending upon the crust type, biocrusts contained higher concentrations of organic C (2 to 50 times), total N (4 to 16 times) and available ammonium (2 to 4 times), though this enrichment did not extend to the soils underneath them. These findings demonstrate that biocrust communities are seemingly islands of biological activity in an arid landscape, uniquely different from their surrounding and underlying soil.
Collapse
Affiliation(s)
- Benjamin Moreira-Grez
- UWA School of Agriculture and Environment, Faculty of Science, The University of Western Australia, Perth, WA, Australia
| | - Kang Tam
- UWA School of Agriculture and Environment, Faculty of Science, The University of Western Australia, Perth, WA, Australia
- Centre for Mine Site Restoration, Department of Environment and Agriculture, Curtin University, Perth, WA, Australia
| | - Adam T. Cross
- Centre for Mine Site Restoration, Department of Environment and Agriculture, Curtin University, Perth, WA, Australia
| | - Jean W. H. Yong
- Centre for Mine Site Restoration, Department of Environment and Agriculture, Curtin University, Perth, WA, Australia
- School of Biological Sciences, Faculty of Science, The University of Western Australia, Perth, WA, Australia
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Deepak Kumaresan
- School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Paul Nevill
- Centre for Mine Site Restoration, Department of Environment and Agriculture, Curtin University, Perth, WA, Australia
| | - Mark Farrell
- CSIRO Agriculture and Food, Urrbrae, SA, Australia
| | - Andrew S. Whiteley
- UWA School of Agriculture and Environment, Faculty of Science, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
25
|
Microscale pH variations during drying of soils and desert biocrusts affect HONO and NH 3 emissions. Nat Commun 2019; 10:3944. [PMID: 31477724 PMCID: PMC6718665 DOI: 10.1038/s41467-019-11956-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 08/01/2019] [Indexed: 11/08/2022] Open
Abstract
Microscale interactions in soil may give rise to highly localised conditions that disproportionally affect soil nitrogen transformations. We report mechanistic modelling of coupled biotic and abiotic processes during drying of soil surfaces and biocrusts. The model links localised microbial activity with pH variations within thin aqueous films that jointly enhance emissions of nitrous acid (HONO) and ammonia (NH3) during soil drying well above what would be predicted from mean hydration conditions and bulk soil pH. We compared model predictions with case studies in which reactive nitrogen gaseous fluxes from drying biocrusts were measured. Soil and biocrust drying rates affect HONO and NH3 emission dynamics. Additionally, we predict strong effects of atmospheric NH3 levels on reactive nitrogen gas losses. Laboratory measurements confirm the onset of microscale pH localisation and highlight the critical role of micro-environments in the resulting biogeochemical fluxes from terrestrial ecosystems. The mechanisms that determine the composition of nitrogen gas emissions from soil remain unclear. A biocrust mechanistic model was developed to resolve puzzling dynamics of nitrous acid and ammonia emissions from drying soil pointing to previously unknown microscale pH zonation in thinning water films that affect soil biogeochemical fluxes.
Collapse
|
26
|
Zhou S, Zhang Y, Huang T, Liu Y, Fang K, Zhang C. Microbial aerobic denitrification dominates nitrogen losses from reservoir ecosystem in the spring of Zhoucun reservoir. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 651:998-1010. [PMID: 30266057 DOI: 10.1016/j.scitotenv.2018.09.160] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 09/11/2018] [Accepted: 09/12/2018] [Indexed: 06/08/2023]
Abstract
The mechanism and factors influencing nitrogen loss in the Zhoucun reservoir were explored during the spring. The results showed that the nitrate and total nitrogen concentration decreased from 1.84 ± 0.01 mg/L and 2.34 ± 0.06 mg/L to 0.06 ± 0.01 mg/L and 0.48 ± 0.09 mg/L, respectively. Meanwhile, the nitrate and total nitrogen removal rate reached 97.02% ± 0.25 and 79.38% ± 3.32, respectively. Moreover, the abundance of nirS gene and aerobic denitrification bacteria increased from 1.04-3.38 × 103 copies/mL and 0.71 ± 0.22 × 102 cfu/mL to 5.36-5.81 × 103 copies/mL and 8.64 ± 2.08 × 103 cfu/mL, respectively. The low MW fractions of DOM (<5 kDa) increased from 0.94 ± 0.02 mg/L in February to 1.51 ± 0.09 mg/L in April. E3/E4 and absorption spectral slope ratio (SR) showed that fulvic acid accounted for the main proportion with autochthonous characteristics. These findings were consistent with the fluorescence components and fluorescence characteristic indices based on EEM-PARAFAC. Meanwhile, the microbial metabolism activity increased significantly from February to April, which contributed to the cycle of nutrients within the reservoir water system. Moreover, the abundance of the bacterial species involved in denitrification (Exiguobacterium, Brevundimonas, Deinococcus, Paracoccus, and Pseudomonas) increased significantly. The relative abundance of KOs related to nitrogen metabolism, were initially increased and then decreased. Specifically, K02567 (napA) represented the main proportion of KOs related to denitrification. The abundance of napA-type denitrifying bacteria (Dechloromonas, Pseudomonas, Azospira, Rhodopseudomonas, Aeromonas, Zobellella, Sulfuritalea, Bradyrhizobium, Achromobacter, Enterobacter, Thauera, and Magnetospirillum) increased significantly during the period of nitrogen loss. Furthermore, the levels of nitrate, T, DO, and AWCD were the most important factors affecting the N-functional bacteria composition. The systematic investigation of the nitrogen loss would provide a theoretical foundation for the remediation of the water reservoir via aerobic denitrification in the future.
Collapse
Affiliation(s)
- Shilei Zhou
- Pollution Prevention Biotechnology Laboratory of Hebei Province, School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Yiran Zhang
- Pollution Prevention Biotechnology Laboratory of Hebei Province, School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Tinglin Huang
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture & Technology, Xi'an 710055, China.
| | - Yanfang Liu
- Pollution Prevention Biotechnology Laboratory of Hebei Province, School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Kaikai Fang
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture & Technology, Xi'an 710055, China
| | - Chunhua Zhang
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture & Technology, Xi'an 710055, China
| |
Collapse
|
27
|
Puente-Sánchez F, Arce-Rodríguez A, Oggerin M, García-Villadangos M, Moreno-Paz M, Blanco Y, Rodríguez N, Bird L, Lincoln SA, Tornos F, Prieto-Ballesteros O, Freeman KH, Pieper DH, Timmis KN, Amils R, Parro V. Viable cyanobacteria in the deep continental subsurface. Proc Natl Acad Sci U S A 2018; 115:10702-10707. [PMID: 30275328 PMCID: PMC6196553 DOI: 10.1073/pnas.1808176115] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Cyanobacteria are ecologically versatile microorganisms inhabiting most environments, ranging from marine systems to arid deserts. Although they possess several pathways for light-independent energy generation, until now their ecological range appeared to be restricted to environments with at least occasional exposure to sunlight. Here we present molecular, microscopic, and metagenomic evidence that cyanobacteria predominate in deep subsurface rock samples from the Iberian Pyrite Belt Mars analog (southwestern Spain). Metagenomics showed the potential for a hydrogen-based lithoautotrophic cyanobacterial metabolism. Collectively, our results suggest that they may play an important role as primary producers within the deep-Earth biosphere. Our description of this previously unknown ecological niche for cyanobacteria paves the way for models on their origin and evolution, as well as on their potential presence in current or primitive biospheres in other planetary bodies, and on the extant, primitive, and putative extraterrestrial biospheres.
Collapse
Affiliation(s)
- Fernando Puente-Sánchez
- Department of Molecular Evolution, Centro de Astrobiología, Instituto Nacional de Técnica Aeroespacial-Consejo Superior de Investigaciones Científicas (INTA-CSIC), 28850 Torrejón de Ardoz, Madrid, Spain;
| | - Alejandro Arce-Rodríguez
- Institute of Microbiology, Technical University Braunschweig, D-38023 Braunschweig, Germany
- Microbial Interactions and Processes Group, Helmholtz Zentrum für Infektionsforschung, 38124 Braunschweig, Germany
| | - Monike Oggerin
- Department of Planetology and Habitability, Centro de Astrobiología, INTA-CSIC, 28850 Torrejón de Ardoz, Madrid, Spain
| | - Miriam García-Villadangos
- Department of Molecular Evolution, Centro de Astrobiología, Instituto Nacional de Técnica Aeroespacial-Consejo Superior de Investigaciones Científicas (INTA-CSIC), 28850 Torrejón de Ardoz, Madrid, Spain
| | - Mercedes Moreno-Paz
- Department of Molecular Evolution, Centro de Astrobiología, Instituto Nacional de Técnica Aeroespacial-Consejo Superior de Investigaciones Científicas (INTA-CSIC), 28850 Torrejón de Ardoz, Madrid, Spain
| | - Yolanda Blanco
- Department of Molecular Evolution, Centro de Astrobiología, Instituto Nacional de Técnica Aeroespacial-Consejo Superior de Investigaciones Científicas (INTA-CSIC), 28850 Torrejón de Ardoz, Madrid, Spain
| | - Nuria Rodríguez
- Department of Planetology and Habitability, Centro de Astrobiología, INTA-CSIC, 28850 Torrejón de Ardoz, Madrid, Spain
| | - Laurence Bird
- Department of Geosciences, The Pennsylvania State University, University Park, PA 16802
| | - Sara A Lincoln
- Department of Geosciences, The Pennsylvania State University, University Park, PA 16802
| | - Fernando Tornos
- Instituto de Geociencias, CSIC-Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Olga Prieto-Ballesteros
- Department of Planetology and Habitability, Centro de Astrobiología, INTA-CSIC, 28850 Torrejón de Ardoz, Madrid, Spain
| | - Katherine H Freeman
- Department of Geosciences, The Pennsylvania State University, University Park, PA 16802
| | - Dietmar H Pieper
- Microbial Interactions and Processes Group, Helmholtz Zentrum für Infektionsforschung, 38124 Braunschweig, Germany
| | - Kenneth N Timmis
- Institute of Microbiology, Technical University Braunschweig, D-38023 Braunschweig, Germany
| | - Ricardo Amils
- Department of Planetology and Habitability, Centro de Astrobiología, INTA-CSIC, 28850 Torrejón de Ardoz, Madrid, Spain
- Centro de Biología Molecular Severo Ochoa, CSIC-Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Víctor Parro
- Department of Molecular Evolution, Centro de Astrobiología, Instituto Nacional de Técnica Aeroespacial-Consejo Superior de Investigaciones Científicas (INTA-CSIC), 28850 Torrejón de Ardoz, Madrid, Spain
| |
Collapse
|
28
|
Zhang Y, Song C, Ji L, Liu Y, Xiao J, Cao X, Zhou Y. Cause and effect of N/P ratio decline with eutrophication aggravation in shallow lakes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 627:1294-1302. [PMID: 30857093 DOI: 10.1016/j.scitotenv.2018.01.327] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 01/03/2018] [Accepted: 01/31/2018] [Indexed: 06/09/2023]
Abstract
To explore the relationship and cause and effect between eutrophication and the nitrogen (N)/phosphorus (P) ratio, samples from 38 lakes in Wuhan City, China, with differing degrees of eutrophication, were collected for nutrient levels and extracellular enzyme activities (EEA) in the water column from July 2011 to November 2011. The phosphorus fraction, abundance and potential denitrification rate (PDR) as well as community composition of nirS-type denitrifier in sediments of five typical lakes were further analyzed. A higher trophic level index (TSI) corresponded to a lower N/P ratio, which can be attributed to a loss of N and an increase in P. Specifically, in more eutrophic lakes, the enrichment of total organic carbon and all forms of P in sediments could fuel PDR by shaping community composition and increasing the abundance of nirS-type denitrifier as evidenced by correlation and redundancy analysis, ultimately resulting in a loss of N. Meanwhile, iron-bound phosphorus release induced by anoxia and the hydrolysis of organic P accounted for the observed increase of P in the water column. The lower N/P ratio facilitated the production of leucine aminopeptidase, which was unexpectedly induced by high P but not by low N. Similarly, alkaline phosphatase was induced by high N but not by low P. These findings indicate a mutual coupling and interplay between N and P cycling and confirm our hypothesis that P accumulation accelerates N loss in the process of eutrophication.
Collapse
Affiliation(s)
- Yao Zhang
- Center for Environment and Health in Water Source Area of South-to-North Water Diversion, School of Public Health and Management, Hubei University of Medicine, Shiyan 442000, PR China
| | - Chunlei Song
- Key Laboratory of Algal Biology, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, the Chinese Academy of Sciences, 7# Donghu South Road, Wuhan 430072, PR China.
| | - Lei Ji
- College of Life Science, Huaibei Normal University, Huaibei 235000, PR China
| | - Yuqian Liu
- Yellow River Water Resources Protection Institution, Zhengzhou 450004, PR China
| | - Jian Xiao
- Key Laboratory of Algal Biology, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, the Chinese Academy of Sciences, 7# Donghu South Road, Wuhan 430072, PR China; University of Chinese Academy of Sciences, Beijing 100039, PR China
| | - Xiuyun Cao
- Key Laboratory of Algal Biology, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, the Chinese Academy of Sciences, 7# Donghu South Road, Wuhan 430072, PR China.
| | - Yiyong Zhou
- Key Laboratory of Algal Biology, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, the Chinese Academy of Sciences, 7# Donghu South Road, Wuhan 430072, PR China.
| |
Collapse
|
29
|
Hu HW, Trivedi P, He JZ, Singh BK. Microbial nitrous oxide emissions in dryland ecosystems: mechanisms, microbiome and mitigation. Environ Microbiol 2017; 19:4808-4828. [DOI: 10.1111/1462-2920.13795] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 05/01/2017] [Accepted: 05/05/2017] [Indexed: 01/21/2023]
Affiliation(s)
- Hang-Wei Hu
- Faculty of Veterinary and Agricultural Sciences; the University of Melbourne, Parkville; Victoria 3010, Australia
| | - Pankaj Trivedi
- Department of Bioagricultural Sciences and Pest Management; Colorado State University; Fort Collins CO USA
| | - Ji-Zheng He
- Faculty of Veterinary and Agricultural Sciences; the University of Melbourne, Parkville; Victoria 3010, Australia
| | - Brajesh K. Singh
- Hawkesbury Institute for the Environment; Western Sydney University; Penrith South DC NSW 2751, Australia
- Global Centre for Land-Based Innovation; Western Sydney University; Penrith South DC NSW 2751, Australia
| |
Collapse
|
30
|
Schütte UME, Cadieux SB, Hemmerich C, Pratt LM, White JR. Unanticipated Geochemical and Microbial Community Structure under Seasonal Ice Cover in a Dilute, Dimictic Arctic Lake. Front Microbiol 2016; 7:1035. [PMID: 27458438 PMCID: PMC4932660 DOI: 10.3389/fmicb.2016.01035] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 06/20/2016] [Indexed: 11/13/2022] Open
Abstract
Despite most lakes in the Arctic being perennially or seasonally frozen for at least 40% of the year, little is known about microbial communities and nutrient cycling under ice cover. We assessed the vertical microbial community distribution and geochemical composition in early spring under ice in a seasonally ice-covered lake in southwest Greenland using amplicon-based sequencing that targeted 16S rRNA genes and using a combination of field and laboratory aqueous geochemical methods. Microbial communities changed consistently with changes in geochemistry. Composition of the abundant members responded strongly to redox conditions, shifting downward from a predominantly heterotrophic aerobic community in the suboxic waters to a heterotrophic anaerobic community in the anoxic waters. Operational taxonomic units (OTUs) of Sporichthyaceae, Comamonadaceae, and the SAR11 Clade had higher relative abundances above the oxycline and OTUs within the genus Methylobacter, the phylum Lentisphaerae, and purple sulfur bacteria (PSB) below the oxycline. Notably, a 13-fold increase in sulfide at the oxycline was reflected in an increase and change in community composition of potential sulfur oxidizers. Purple non-sulfur bacteria were present above the oxycline and green sulfur bacteria and PSB coexisted below the oxycline, however, PSB were most abundant. For the first time we show the importance of PSB as potential sulfur oxidizers in an Arctic dimictic lake.
Collapse
Affiliation(s)
- Ursel M E Schütte
- Integrated Program in the Environment, Indiana University, BloomingtonIN, USA; Institute of Arctic Biology, University of Alaska Fairbanks, FairbanksAK, USA
| | - Sarah B Cadieux
- Department of Geological Sciences, Indiana University, BloomingtonIN, USA; University of Illinois at Chicago, ChicagoIL, USA
| | - Chris Hemmerich
- Center for Genomics and Bioinformatics, Indiana University, Bloomington IN, USA
| | - Lisa M Pratt
- Department of Geological Sciences, Indiana University, Bloomington IN, USA
| | - Jeffrey R White
- Integrated Program in the Environment, Indiana University, BloomingtonIN, USA; School of Public and Environmental Affairs, Indiana University, BloomingtonIN, USA
| |
Collapse
|
31
|
Patterns and Controls on Nitrogen Cycling of Biological Soil Crusts. BIOLOGICAL SOIL CRUSTS: AN ORGANIZING PRINCIPLE IN DRYLANDS 2016. [DOI: 10.1007/978-3-319-30214-0_14] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
32
|
Biological soil crusts accelerate the nitrogen cycle through large NO and HONO emissions in drylands. Proc Natl Acad Sci U S A 2015; 112:15384-9. [PMID: 26621714 DOI: 10.1073/pnas.1515818112] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Reactive nitrogen species have a strong influence on atmospheric chemistry and climate, tightly coupling the Earth's nitrogen cycle with microbial activity in the biosphere. Their sources, however, are not well constrained, especially in dryland regions accounting for a major fraction of the global land surface. Here, we show that biological soil crusts (biocrusts) are emitters of nitric oxide (NO) and nitrous acid (HONO). Largest fluxes are obtained by dark cyanobacteria-dominated biocrusts, being ∼20 times higher than those of neighboring uncrusted soils. Based on laboratory, field, and satellite measurement data, we obtain a best estimate of ∼1.7 Tg per year for the global emission of reactive nitrogen from biocrusts (1.1 Tg a(-1) of NO-N and 0.6 Tg a(-1) of HONO-N), corresponding to ∼20% of global nitrogen oxide emissions from soils under natural vegetation. On continental scales, emissions are highest in Africa and South America and lowest in Europe. Our results suggest that dryland emissions of reactive nitrogen are largely driven by biocrusts rather than the underlying soil. They help to explain enigmatic discrepancies between measurement and modeling approaches of global reactive nitrogen emissions. As the emissions of biocrusts strongly depend on precipitation events, climate change affecting the distribution and frequency of precipitation may have a strong impact on terrestrial emissions of reactive nitrogen and related climate feedback effects. Because biocrusts also account for a large fraction of global terrestrial biological nitrogen fixation, their impacts should be further quantified and included in regional and global models of air chemistry, biogeochemistry, and climate.
Collapse
|
33
|
Lenhart K, Weber B, Elbert W, Steinkamp J, Clough T, Crutzen P, Pöschl U, Keppler F. Nitrous oxide and methane emissions from cryptogamic covers. GLOBAL CHANGE BIOLOGY 2015; 21:3889-900. [PMID: 26152454 DOI: 10.1111/gcb.12995] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 05/10/2015] [Indexed: 05/13/2023]
Abstract
Cryptogamic covers, which comprise some of the oldest forms of terrestrial life on Earth (Lenton & Huntingford, ), have recently been found to fix large amounts of nitrogen and carbon dioxide from the atmosphere (Elbert et al., ). Here we show that they are also greenhouse gas sources with large nitrous oxide (N2 O) and small methane (CH4 ) emissions. Whilst N2 O emission rates varied with temperature, humidity, and N deposition, an almost constant ratio with respect to respiratory CO2 emissions was observed for numerous lichens and bryophytes. We employed this ratio together with respiration data to calculate global and regional N2 O emissions. If our laboratory measurements are typical for lichens and bryophytes living on ground and plant surfaces and scaled on a global basis, we estimate a N2 O source strength of 0.32-0.59 Tg year(-1) for the global N2 O emissions from cryptogamic covers. Thus, our emission estimate might account for 4-9% of the global N2 O budget from natural terrestrial sources. In a wide range of arid and forested regions, cryptogamic covers appear to be the dominant source of N2 O. We suggest that greenhouse gas emissions associated with this source might increase in the course of global change due to higher temperatures and enhanced nitrogen deposition.
Collapse
Affiliation(s)
- Katharina Lenhart
- Max Planck Institute for Chemistry, Hahn-Meitner-Weg 1, Mainz, 55128, Germany
- Department of Plant Ecology, Justus-Liebig-University, Heinrich-Buff-Ring 26-32, Gießen, 35392, Germany
- Institute of Earth Sciences, University of Heidelberg, Im Neuenheimer Feld 234-236, Heidelberg, 69120, Germany
| | - Bettina Weber
- Max Planck Institute for Chemistry, Hahn-Meitner-Weg 1, Mainz, 55128, Germany
| | - Wolfgang Elbert
- Max Planck Institute for Chemistry, Hahn-Meitner-Weg 1, Mainz, 55128, Germany
| | - Jörg Steinkamp
- Senckenberg Biodiversity and Climate Research Centre, Senckenberganlage 25, Frankfurt am Main, 60325, Germany
| | - Tim Clough
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, 7647, New Zealand
| | - Paul Crutzen
- Max Planck Institute for Chemistry, Hahn-Meitner-Weg 1, Mainz, 55128, Germany
| | - Ulrich Pöschl
- Max Planck Institute for Chemistry, Hahn-Meitner-Weg 1, Mainz, 55128, Germany
| | - Frank Keppler
- Max Planck Institute for Chemistry, Hahn-Meitner-Weg 1, Mainz, 55128, Germany
- Institute of Earth Sciences, University of Heidelberg, Im Neuenheimer Feld 234-236, Heidelberg, 69120, Germany
| |
Collapse
|
34
|
Microbial regulation of terrestrial nitrous oxide formation: understanding the biological pathways for prediction of emission rates. FEMS Microbiol Rev 2015; 39:729-49. [DOI: 10.1093/femsre/fuv021] [Citation(s) in RCA: 392] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2015] [Indexed: 01/25/2023] Open
|
35
|
Makhalanyane TP, Valverde A, Gunnigle E, Frossard A, Ramond JB, Cowan DA. Microbial ecology of hot desert edaphic systems. FEMS Microbiol Rev 2015; 39:203-21. [DOI: 10.1093/femsre/fuu011] [Citation(s) in RCA: 223] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|