1
|
El Meouche I, Jain P, Jolly MK, Capp JP. Drug tolerance and persistence in bacteria, fungi and cancer cells: Role of non-genetic heterogeneity. Transl Oncol 2024; 49:102069. [PMID: 39121829 PMCID: PMC11364053 DOI: 10.1016/j.tranon.2024.102069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 07/17/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
A common feature of bacterial, fungal and cancer cell populations upon treatment is the presence of tolerant and persistent cells able to survive, and sometimes grow, even in the presence of usually inhibitory or lethal drug concentrations, driven by non-genetic differences among individual cells in a population. Here we review and compare data obtained on drug survival in bacteria, fungi and cancer cells to unravel common characteristics and cellular pathways, and to point their singularities. This comparative work also allows to cross-fertilize ideas across fields. We particularly focus on the role of gene expression variability in the emergence of cell-cell non-genetic heterogeneity because it represents a possible common basic molecular process at the origin of most persistence phenomena and could be monitored and tuned to help improve therapeutic interventions.
Collapse
Affiliation(s)
- Imane El Meouche
- Université Paris Cité, Université Sorbonne Paris Nord, INSERM, IAME, F-75018 Paris, France.
| | - Paras Jain
- Department of Bioengineering, Indian Institute of Science, Bangalore, India
| | - Mohit Kumar Jolly
- Department of Bioengineering, Indian Institute of Science, Bangalore, India
| | - Jean-Pascal Capp
- Toulouse Biotechnology Institute, INSA/University of Toulouse, CNRS, INRAE, Toulouse, France.
| |
Collapse
|
2
|
Naradasu D, Miran W, Okamoto A. Electrochemical Characterization of Two Gut Microbial Strains Cooperatively Promoting Multiple Sclerosis Pathogenesis. Microorganisms 2024; 12:257. [PMID: 38399661 PMCID: PMC10892914 DOI: 10.3390/microorganisms12020257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/13/2024] [Accepted: 01/16/2024] [Indexed: 02/25/2024] Open
Abstract
In this study, we explored the extracellular electron transfer (EET) capabilities of two bacterial strains, OTU0001 and OTU0002, which are demonstrated in biofilm formation in mouse gut and the induction of autoimmune diseases like multiple sclerosis. OTU0002 displayed significant electrogenic behaviour, producing microbial current on an indium tin-doped oxide electrode surface, particularly in the presence of glucose, with a current density of 60 nA/cm2. The presence of cell-surface redox substrate potentially mediating EET was revealed by the redox-based staining method and electrochemical voltammetry assay. However, medium swapping analyses and the addition of flavins, a model redox mediator, suggest that the current production is dominated by soluble endogenous redox substrates in OTU0002. Given redox substrates were detected at the cell surface, the secreted redox molecule may interact with the cellular surface of OTU0002. In contrast to OTU0002, OTU0001 did not exhibit notable electrochemical activity, lacking cell-surface redox molecules. Further, the mixture of the two strains did not increase the current production from OTU0001, suggesting that OTU0001 does not support the EET mechanism of OTU0002. The present work revealed the coexistence of EET and non-EET capable pathogens in multi-species biofilm.
Collapse
Affiliation(s)
- Divya Naradasu
- Oral Microbiology, Bristol Dental School, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol BS1 3NY, UK;
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan;
| | - Waheed Miran
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan;
- School of Chemical and Materials Engineering, National University of Sciences and Technology, Islamabad 44000, Pakistan
| | - Akihiro Okamoto
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan;
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, Tsukuba 305-0044, Ibaraki, Japan
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, North 13 West 8, Kita-ku, Sapporo 060-8628, Hokkaido, Japan
- Graduate School of Science and Engineering, College of Science and Engineering, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8573, Ibaraki, Japan
- Living Systems Materialogy (LiSM) Research Group, International Research Frontiers Initiative (IRFI), Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Kanagawa, Japan
| |
Collapse
|
3
|
Alcolombri U, Pioli R, Stocker R, Berry D. Single-cell stable isotope probing in microbial ecology. ISME COMMUNICATIONS 2022; 2:55. [PMID: 37938753 PMCID: PMC9723680 DOI: 10.1038/s43705-022-00142-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/10/2022] [Accepted: 06/09/2022] [Indexed: 05/30/2023]
Abstract
Environmental and host-associated microbiomes are typically diverse assemblages of organisms performing myriad activities and engaging in a network of interactions that play out in spatially structured contexts. As the sum of these activities and interactions give rise to overall microbiome function, with important consequences for environmental processes and human health, elucidating specific microbial activities within complex communities is a pressing challenge. Single-cell stable isotope probing (SC-SIP) encompasses multiple techniques that typically utilize Raman microspectroscopy or nanoscale secondary ion mass spectrometry (NanoSIMS) to enable spatially resolved tracking of isotope tracers in cells, cellular components, and metabolites. SC-SIP techniques are uniquely suited for illuminating single-cell activities in microbial communities and for testing hypotheses about cellular functions generated for example from meta-omics datasets. Here, we illustrate the insights enabled by SC-SIP techniques by reviewing selected applications in microbiology and offer a perspective on their potential for future research.
Collapse
Affiliation(s)
- Uria Alcolombri
- Institute of Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH Zurich, Zurich, Switzerland
| | - Roberto Pioli
- Institute of Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH Zurich, Zurich, Switzerland
| | - Roman Stocker
- Institute of Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH Zurich, Zurich, Switzerland.
| | - David Berry
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria.
| |
Collapse
|
4
|
Abstract
High-resolution imaging with secondary ion mass spectrometry (nanoSIMS) has become a standard method in systems biology and environmental biogeochemistry and is broadly used to decipher ecophysiological traits of environmental microorganisms, metabolic processes in plant and animal tissues, and cross-kingdom symbioses. When combined with stable isotope-labeling-an approach we refer to as nanoSIP-nanoSIMS imaging offers a distinctive means to quantify net assimilation rates and stoichiometry of individual cell-sized particles in both low- and high-complexity environments. While the majority of nanoSIP studies in environmental and microbial biology have focused on nitrogen and carbon metabolism (using 15N and 13C tracers), multiple advances have pushed the capabilities of this approach in the past decade. The development of a high-brightness oxygen ion source has enabled high-resolution metal analyses that are easier to perform, allowing quantification of metal distribution in cells and environmental particles. New preparation methods, tools for automated data extraction from large data sets, and analytical approaches that push the limits of sensitivity and spatial resolution have allowed for more robust characterization of populations ranging from marine archaea to fungi and viruses. NanoSIMS studies continue to be enhanced by correlation with orthogonal imaging and 'omics approaches; when linked to molecular visualization methods, such as in situ hybridization and antibody labeling, these techniques enable in situ function to be linked to microbial identity and gene expression. Here we present an updated description of the primary materials, methods, and calculations used for nanoSIP, with an emphasis on recent advances in nanoSIMS applications, key methodological steps, and potential pitfalls.
Collapse
Affiliation(s)
- Jennifer Pett-Ridge
- Lawrence Livermore National Lab, Physical and Life Science Directorate, Livermore, CA, USA.
| | - Peter K Weber
- Lawrence Livermore National Lab, Physical and Life Science Directorate, Livermore, CA, USA.
| |
Collapse
|
5
|
Nittami T, Batinovic S. Recent advances in understanding the ecology of the filamentous bacteria responsible for activated sludge bulking. Lett Appl Microbiol 2021; 75:759-775. [PMID: 34919734 DOI: 10.1111/lam.13634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/26/2021] [Accepted: 12/13/2021] [Indexed: 01/30/2023]
Abstract
Activated sludge bulking caused by filamentous bacteria is still a problem in wastewater treatment plants around the world. Bulking is a microbiological problem, and so its solution on species-specific basis is likely to be reached only after their ecology, physiology and metabolism is better understood. Culture-independent molecular methods have provided much useful information about this group of organisms, and in this review, the methods employed and the information they provide are critically assessed. Their application to understanding bulking caused by the most frequently seen filament in Japan, 'Ca. Kouleothrix', is used here as an example of how these techniques might be used to develop control strategies. Whole genome sequences are now available for some of filamentous bacteria responsible for bulking, and so it is possible to understand why these filaments might thrive in activated sludge plants, and provide clues as to how eventually they might be controlled specifically.
Collapse
Affiliation(s)
- T Nittami
- Division of Materials Science and Chemical Engineering, Faculty of Engineering, Yokohama National University, Yokohama, Japan
| | - S Batinovic
- Department of Physiology, Anatomy, and Microbiology, La Trobe University, Bundoora, Vic., Australia
| |
Collapse
|
6
|
Calabrese F, Stryhanyuk H, Moraru C, Schlömann M, Wick LY, Richnow HH, Musat F, Musat N. Metabolic history and metabolic fitness as drivers of anabolic heterogeneity in isogenic microbial populations. Environ Microbiol 2021; 23:6764-6776. [PMID: 34472201 DOI: 10.1111/1462-2920.15756] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 08/30/2021] [Accepted: 08/30/2021] [Indexed: 11/26/2022]
Abstract
Microbial populations often display different degrees of heterogeneity in their substrate assimilation, that is, anabolic heterogeneity. It has been shown that nutrient limitations are a relevant trigger for this behaviour. Here we explore the dynamics of anabolic heterogeneity under nutrient replete conditions. We applied time-resolved stable isotope probing and nanoscale secondary ion mass spectrometry to quantify substrate assimilation by individual cells of Pseudomonas putida, P. stutzeri and Thauera aromatica. Acetate and benzoate at different concentrations were used as substrates. Anabolic heterogeneity was quantified by the cumulative differentiation tendency index. We observed two major, opposing trends of anabolic heterogeneity over time. Most often, microbial populations started as highly heterogeneous, with heterogeneity decreasing by various degrees over time. The second, less frequently observed trend, saw microbial populations starting at low or very low heterogeneity, and remaining largely stable over time. We explain these trends as an interplay of metabolic history (e.g. former growth substrate or other nutrient limitations) and metabolic fitness (i.e. the fine-tuning of metabolic pathways to process a defined growth substrate). Our results offer a new viewpoint on the intra-population functional diversification often encountered in the environment, and suggests that some microbial populations may be intrinsically heterogeneous.
Collapse
Affiliation(s)
- Federica Calabrese
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Hryhoriy Stryhanyuk
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Cristina Moraru
- Institute for Chemistry and Biology of Marine Environment, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Michael Schlömann
- Department of Environmental Microbiology, Institute of Biosciences, TU-Bergakademie Freiberg, Germany
| | - Lukas Y Wick
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Hans H Richnow
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Florin Musat
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Niculina Musat
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| |
Collapse
|
7
|
Nierychlo M, Singleton CM, Petriglieri F, Thomsen L, Petersen JF, Peces M, Kondrotaite Z, Dueholm MS, Nielsen PH. Low Global Diversity of Candidatus Microthrix, a Troublesome Filamentous Organism in Full-Scale WWTPs. Front Microbiol 2021; 12:690251. [PMID: 34248915 PMCID: PMC8267870 DOI: 10.3389/fmicb.2021.690251] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 05/25/2021] [Indexed: 11/13/2022] Open
Abstract
Candidatus Microthrix is one of the most common bulking filamentous microorganisms found in activated sludge wastewater treatment plants (WWTPs) across the globe. One species, Ca. M. parvicella, is frequently observed, but global genus diversity, as well as important aspects of its ecology and physiology, are still unknown. Here, we use the MiDAS ecosystem-specific 16S rRNA gene database in combination with amplicon sequencing of Danish and global WWTPs to investigate Ca. Microthrix spp. diversity, distribution, and factors affecting their global presence. Only two species were abundant across the world confirming low diversity of the genus: the dominant Ca. M. parvicella and an unknown species typically present along with Ca. M. parvicella, although usually in lower abundances. Both species were mostly found in Europe at low-to-moderate temperatures and their growth was favored in municipal WWTPs with advanced process designs. As no isolate is available for the novel species, we propose the name "Candidatus Microthrix subdominans." Ten high-quality metagenome-assembled genomes recovered from Danish WWTPs, including 6 representing the novel Ca. M. subdominans, demonstrated high genetic similarity between the two species with a likely preference for lipids, a putative capability to reduce nitrate and nitrite, and the potential to store lipids and poly-P. Ca. M. subdominans had a potentially more versatile metabolism including additional sugar transporters, higher oxygen tolerance, and the potential to use carbon monoxide as energy source. Newly designed fluorescence in situ hybridization probes revealed similar filamentous morphology for both species. Raman microspectroscopy was used to quantify the in situ levels of intracellular poly-P. Despite the observed similarities in their physiology (both by genomes and in situ), the two species showed different seasonal dynamics in Danish WWTPs through a 13-years survey, possibly indicating occupation of slightly different niches. The genomic information provides the basis for future research into in situ gene expression and regulation, while the new FISH probes provide a useful tool for further characterization in situ. This study is an important step toward understanding the ecology of Ca. Microthrix in WWTPs, which may eventually lead to optimization of control strategies for its growth in this ecosystem.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Per H. Nielsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| |
Collapse
|
8
|
Eisenreich W, Rudel T, Heesemann J, Goebel W. Persistence of Intracellular Bacterial Pathogens-With a Focus on the Metabolic Perspective. Front Cell Infect Microbiol 2021; 10:615450. [PMID: 33520740 PMCID: PMC7841308 DOI: 10.3389/fcimb.2020.615450] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 11/30/2020] [Indexed: 12/19/2022] Open
Abstract
Persistence has evolved as a potent survival strategy to overcome adverse environmental conditions. This capability is common to almost all bacteria, including all human bacterial pathogens and likely connected to chronic infections caused by some of these pathogens. Although the majority of a bacterial cell population will be killed by the particular stressors, like antibiotics, oxygen and nitrogen radicals, nutrient starvation and others, a varying subpopulation (termed persisters) will withstand the stress situation and will be able to revive once the stress is removed. Several factors and pathways have been identified in the past that apparently favor the formation of persistence, such as various toxin/antitoxin modules or stringent response together with the alarmone (p)ppGpp. However, persistence can occur stochastically in few cells even of stress-free bacterial populations. Growth of these cells could then be induced by the stress conditions. In this review, we focus on the persister formation of human intracellular bacterial pathogens, some of which belong to the most successful persister producers but lack some or even all of the assumed persistence-triggering factors and pathways. We propose a mechanism for the persister formation of these bacterial pathogens which is based on their specific intracellular bipartite metabolism. We postulate that this mode of metabolism ultimately leads, under certain starvation conditions, to the stalling of DNA replication initiation which may be causative for the persister state.
Collapse
Affiliation(s)
- Wolfgang Eisenreich
- Department of Chemistry, Chair of Biochemistry, Technische Universität München, Garching, Germany
| | - Thomas Rudel
- Chair of Microbiology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Jürgen Heesemann
- Max von Pettenkofer-Institute, Ludwig Maximilian University of Munich, München, Germany
| | - Werner Goebel
- Max von Pettenkofer-Institute, Ludwig Maximilian University of Munich, München, Germany
| |
Collapse
|
9
|
Martínez Arbas S, Narayanasamy S, Herold M, Lebrun LA, Hoopmann MR, Li S, Lam TJ, Kunath BJ, Hicks ND, Liu CM, Price LB, Laczny CC, Gillece JD, Schupp JM, Keim PS, Moritz RL, Faust K, Tang H, Ye Y, Skupin A, May P, Muller EEL, Wilmes P. Roles of bacteriophages, plasmids and CRISPR immunity in microbial community dynamics revealed using time-series integrated meta-omics. Nat Microbiol 2021; 6:123-135. [PMID: 33139880 PMCID: PMC7752763 DOI: 10.1038/s41564-020-00794-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 09/11/2020] [Indexed: 02/07/2023]
Abstract
Viruses and plasmids (invasive mobile genetic elements (iMGEs)) have important roles in shaping microbial communities, but their dynamic interactions with CRISPR-based immunity remain unresolved. We analysed generation-resolved iMGE-host dynamics spanning one and a half years in a microbial consortium from a biological wastewater treatment plant using integrated meta-omics. We identified 31 bacterial metagenome-assembled genomes encoding complete CRISPR-Cas systems and their corresponding iMGEs. CRISPR-targeted plasmids outnumbered their bacteriophage counterparts by at least fivefold, highlighting the importance of CRISPR-mediated defence against plasmids. Linear modelling of our time-series data revealed that the variation in plasmid abundance over time explained more of the observed community dynamics than phages. Community-scale CRISPR-based plasmid-host and phage-host interaction networks revealed an increase in CRISPR-mediated interactions coinciding with a decrease in the dominant 'Candidatus Microthrix parvicella' population. Protospacers were enriched in sequences targeting genes involved in the transmission of iMGEs. Understanding the factors shaping the fitness of specific populations is necessary to devise control strategies for undesirable species and to predict or explain community-wide phenotypes.
Collapse
Affiliation(s)
- Susana Martínez Arbas
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Shaman Narayanasamy
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Megeno S.A., Esch-sur-Alzette, Luxembourg
| | - Malte Herold
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Laura A Lebrun
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | | | - Sujun Li
- School of Informatics, Computing and Engineering, Indiana University, Bloomington, IN, USA
| | - Tony J Lam
- School of Informatics, Computing and Engineering, Indiana University, Bloomington, IN, USA
| | - Benoît J Kunath
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Nathan D Hicks
- TGen North, Flagstaff, AZ, USA
- Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Cindy M Liu
- TGen North, Flagstaff, AZ, USA
- Department of Environmental and Occupational Health, Miken Institute School of Public Health, George Washington University, Washington, DC, USA
| | - Lance B Price
- TGen North, Flagstaff, AZ, USA
- Department of Environmental and Occupational Health, Miken Institute School of Public Health, George Washington University, Washington, DC, USA
| | - Cedric C Laczny
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | | | | | - Paul S Keim
- TGen North, Flagstaff, AZ, USA
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
| | | | - Karoline Faust
- Laboratory of Molecular Bacteriology, KU Leuven, Leuven, Belgium
| | - Haixu Tang
- School of Informatics, Computing and Engineering, Indiana University, Bloomington, IN, USA
| | - Yuzhen Ye
- School of Informatics, Computing and Engineering, Indiana University, Bloomington, IN, USA
| | - Alexander Skupin
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Department of Neuroscience, University of California, La Jolla, CA, USA
| | - Patrick May
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Emilie E L Muller
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Department of Microbiology, Genomics and the Environment, UMR 7156 UNISTRA-CNRS, Université de Strasbourg, Strasbourg, France
| | - Paul Wilmes
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg.
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg.
| |
Collapse
|
10
|
Herold M, Martínez Arbas S, Narayanasamy S, Sheik AR, Kleine-Borgmann LAK, Lebrun LA, Kunath BJ, Roume H, Bessarab I, Williams RBH, Gillece JD, Schupp JM, Keim PS, Jäger C, Hoopmann MR, Moritz RL, Ye Y, Li S, Tang H, Heintz-Buschart A, May P, Muller EEL, Laczny CC, Wilmes P. Integration of time-series meta-omics data reveals how microbial ecosystems respond to disturbance. Nat Commun 2020; 11:5281. [PMID: 33077707 PMCID: PMC7572474 DOI: 10.1038/s41467-020-19006-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 09/16/2020] [Indexed: 12/31/2022] Open
Abstract
The development of reliable, mixed-culture biotechnological processes hinges on understanding how microbial ecosystems respond to disturbances. Here we reveal extensive phenotypic plasticity and niche complementarity in oleaginous microbial populations from a biological wastewater treatment plant. We perform meta-omics analyses (metagenomics, metatranscriptomics, metaproteomics and metabolomics) on in situ samples over 14 months at weekly intervals. Based on 1,364 de novo metagenome-assembled genomes, we uncover four distinct fundamental niche types. Throughout the time-series, we observe a major, transient shift in community structure, coinciding with substrate availability changes. Functional omics data reveals extensive variation in gene expression and substrate usage amongst community members. Ex situ bioreactor experiments confirm that responses occur within five hours of a pulse disturbance, demonstrating rapid adaptation by specific populations. Our results show that community resistance and resilience are a function of phenotypic plasticity and niche complementarity, and set the foundation for future ecological engineering efforts. Herold et al. present an integrated meta-omics framework to investigate how mixed microbial communities, such as oleaginous bacterial populations in biological wastewater treatment plants, respond with distinct adaptation strategies to disturbances. They show that community resistance and resilience are a function of phenotypic plasticity and niche complementarity.
Collapse
Affiliation(s)
- Malte Herold
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7 Avenue des Hauts-Fourneaux, 4362, Esch-sur-Alzette, Luxembourg, Luxembourg.,Epidemiology and Microbial Genomics, Laboratoire National de Santé, 1 rue Louis Rech, 3555, Dudelange, Luxembourg
| | - Susana Martínez Arbas
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7 Avenue des Hauts-Fourneaux, 4362, Esch-sur-Alzette, Luxembourg, Luxembourg
| | - Shaman Narayanasamy
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7 Avenue des Hauts-Fourneaux, 4362, Esch-sur-Alzette, Luxembourg, Luxembourg.,Megeno S.A., 6A Avenue des Hauts-Fourneaux, 4362, Esch-sur-Alzette, Luxembourg
| | - Abdul R Sheik
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7 Avenue des Hauts-Fourneaux, 4362, Esch-sur-Alzette, Luxembourg, Luxembourg
| | - Luise A K Kleine-Borgmann
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7 Avenue des Hauts-Fourneaux, 4362, Esch-sur-Alzette, Luxembourg, Luxembourg
| | - Laura A Lebrun
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7 Avenue des Hauts-Fourneaux, 4362, Esch-sur-Alzette, Luxembourg, Luxembourg
| | - Benoît J Kunath
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7 Avenue des Hauts-Fourneaux, 4362, Esch-sur-Alzette, Luxembourg, Luxembourg
| | - Hugo Roume
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7 Avenue des Hauts-Fourneaux, 4362, Esch-sur-Alzette, Luxembourg, Luxembourg.,MetaGenoPolis, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Université Paris-Saclay, Domaine de Vilvert, Bâtiment 325, 78350, Jouy-en-Josas, France
| | - Irina Bessarab
- Singapore Centre for Environmental Life Sciences Engineering, 60 Nanyang Dr, Singapore, 637551, Singapore
| | - Rohan B H Williams
- Singapore Centre for Environmental Life Sciences Engineering, 60 Nanyang Dr, Singapore, 637551, Singapore
| | - John D Gillece
- The Translational Genomics Research Institute, 3051 West Shamrell Boulevard, Flagstaff, AZ, 86001, USA
| | - James M Schupp
- The Translational Genomics Research Institute, 3051 West Shamrell Boulevard, Flagstaff, AZ, 86001, USA
| | - Paul S Keim
- The Translational Genomics Research Institute, 3051 West Shamrell Boulevard, Flagstaff, AZ, 86001, USA
| | - Christian Jäger
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7 Avenue des Hauts-Fourneaux, 4362, Esch-sur-Alzette, Luxembourg, Luxembourg
| | - Michael R Hoopmann
- Institute for Systems Biology, 401 Terry Avenue North, Seattle, WA, 98109, USA
| | - Robert L Moritz
- Institute for Systems Biology, 401 Terry Avenue North, Seattle, WA, 98109, USA
| | - Yuzhen Ye
- School of Informatics, Computing and Engineering, Indiana University, 700 N. Woodlawn Avenue, Bloomington, IN, 47405, USA
| | - Sujun Li
- School of Informatics, Computing and Engineering, Indiana University, 700 N. Woodlawn Avenue, Bloomington, IN, 47405, USA
| | - Haixu Tang
- School of Informatics, Computing and Engineering, Indiana University, 700 N. Woodlawn Avenue, Bloomington, IN, 47405, USA
| | - Anna Heintz-Buschart
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7 Avenue des Hauts-Fourneaux, 4362, Esch-sur-Alzette, Luxembourg, Luxembourg.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstr. 4, 04103, Leipzig, Germany.,Helmholtz Centre for Environmental Research GmbH - UFZ, Theodor-Lieser-Str. 4, 06120, Halle, Germany
| | - Patrick May
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7 Avenue des Hauts-Fourneaux, 4362, Esch-sur-Alzette, Luxembourg, Luxembourg
| | - Emilie E L Muller
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7 Avenue des Hauts-Fourneaux, 4362, Esch-sur-Alzette, Luxembourg, Luxembourg.,Equipe Adaptations et Interactions Microbiennes, UMR 7156 UNISTRA-CNRS, Université de Strasbourg, Strasbourg, France
| | - Cedric C Laczny
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7 Avenue des Hauts-Fourneaux, 4362, Esch-sur-Alzette, Luxembourg, Luxembourg
| | - Paul Wilmes
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7 Avenue des Hauts-Fourneaux, 4362, Esch-sur-Alzette, Luxembourg, Luxembourg. .,Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, 7 Avenue des Hauts-Fourneaux, L-4362, Esch-sur-Alzette, Luxembourg.
| |
Collapse
|
11
|
Jiang J, Wang Y, Guo F, Zhang X, Dong W, Zhang X, Zhang X, Zhang C, Cheng K, Li Y, Zhu G. Composting pig manure and sawdust with urease inhibitor: succession of nitrogen functional genes and bacterial community. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:36160-36171. [PMID: 32556988 DOI: 10.1007/s11356-020-09696-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 06/11/2020] [Indexed: 06/11/2023]
Abstract
Understanding the relationship between nitrogen (N) cycle and N transformation-related functional genes is crucial to reduce N loss during composting process. Urease inhibitor (UI) is widely used to reduce N loss in agriculture. However, the effects of UI on N transformation and related N functional genes during composting have not been well investigated. The goal of this study was to investigate the effects of a urease inhibitor (UI) on N functional genes and bacterial community succession during pig manure composting. Results showed that the addition of UI decreased the ammonium N content during the thermophilic stage and notably increased the total N and nitrite N contents of the final compost. The UI significantly decreased the abundances of amoA, nirS, nirK, and nosZ during the initial composting stage, while the opposite trend was observed at the maturation stage. Bacterial community richness and diversity were increased after the UI amendment, but the relative abundance of the phyla Firmicutes and Proteobacteria significantly decreased compared with control during the thermophilic stage. Redundancy analysis indicated that the evaluated environmental factors and bacterial community showed a cumulative 94.7% contribution to the total variation in N functional genes. In summary, UI addition is a recommended method for N conservation during composting, but the added forms of UI, such as delayed addition, combined with adsorbing materials, or microorganism inoculant, should be further evaluated.
Collapse
Affiliation(s)
- Jishao Jiang
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, 453007, Henan, People's Republic of China.
| | - Yang Wang
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, 453007, Henan, People's Republic of China
| | - Fengqi Guo
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, 453007, Henan, People's Republic of China
| | - Xiaofang Zhang
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, 453007, Henan, People's Republic of China
| | - Wei Dong
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, 453007, Henan, People's Republic of China
| | - Xindan Zhang
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, 453007, Henan, People's Republic of China
| | - Xin Zhang
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, 453007, Henan, People's Republic of China
| | - Chunyan Zhang
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, 453007, Henan, People's Republic of China
| | - Ke Cheng
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, 453007, Henan, People's Republic of China
| | - Yunbei Li
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, 453007, Henan, People's Republic of China
| | - Guifen Zhu
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, 453007, Henan, People's Republic of China.
| |
Collapse
|
12
|
Bacterial metabolic heterogeneity: origins and applications in engineering and infectious disease. Curr Opin Biotechnol 2020; 64:183-189. [PMID: 32574927 DOI: 10.1016/j.copbio.2020.04.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 01/22/2020] [Accepted: 04/20/2020] [Indexed: 02/03/2023]
Abstract
Bacteria within an isoclonal population display significant heterogeneity in metabolism, even under tightly controlled environmental conditions. Metabolic heterogeneity enables influential functions not possible or measurable at the ensemble scale. Several molecular and cellular mechanisms are likely to give rise to metabolic heterogeneity including molecular noise in metabolic enzyme expression, positive feedback loops, and asymmetric partitioning of cellular components during cell division. Dissection of the mechanistic origins of metabolic heterogeneity has been enabled by recent developments in single-cell analytical tools. Finally, we provide a discussion of recent studies examining the importance of metabolic heterogeneity in applied settings such as infectious disease and metabolic engineering.
Collapse
|
13
|
ZHANG S, MIRAN W, NARADASU D, GUO S, OKAMOTO A. A Human Pathogen Capnocytophaga Ochracea Exhibits Current Producing Capability. ELECTROCHEMISTRY 2020. [DOI: 10.5796/electrochemistry.20-00021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Shu ZHANG
- Interfacial Energy Conversion Group, National Institute for Materials Science
- Section of Infection and Immunity, Norris Comprehensive Cancer Center, University of Southern California
| | - Waheed MIRAN
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science
| | - Divya NARADASU
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science
- Department of Advanced Interdisciplinary Studies, RCAST, Graduate School of Engineering, The University of Tokyo
| | - Siyi GUO
- Interfacial Energy Conversion Group, National Institute for Materials Science
| | - Akihiro OKAMOTO
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science
- Center for Sensor and Actuator Material, National Institute for Materials Science
- Graduate School of Chemical Sciences and Engineering, Hokkaido University
| |
Collapse
|
14
|
Environmental drivers of metabolic heterogeneity in clonal microbial populations. Curr Opin Biotechnol 2020; 62:202-211. [DOI: 10.1016/j.copbio.2019.11.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/15/2019] [Accepted: 11/22/2019] [Indexed: 02/06/2023]
|
15
|
Fan NS, Qi R, Huang BC, Jin RC, Yang M. Factors influencing Candidatus Microthrix parvicella growth and specific filamentous bulking control: A review. CHEMOSPHERE 2020; 244:125371. [PMID: 31835053 DOI: 10.1016/j.chemosphere.2019.125371] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/19/2019] [Accepted: 11/13/2019] [Indexed: 06/10/2023]
Abstract
Candidatus Microthrix parvicella has been frequently detected as the dominant filamentous bacteria in bulking sludge and thus seriously affects the stable operation of activated sludge processes. The extremely low growth rate of Ca. M. parvicella and its sensitivity to environmental variations greatly limit the development of effective techniques to control filamentous bulking. Based on previous investigations, a variety of restrictive substrates, operating and culture conditions, environmental factors and other potential inhibitors have varying degrees of impact on the growth of this microorganism. This review systematically summarizes the key factors affecting Ca. M. parvicella growth with a focus on the influencing mechanism. Recent filamentous bulking control strategies are also critically reviewed and discussed. Additionally, research needs for the next few years are proposed with the aim of establishing effective and specific control strategies for filamentous sludge bulking.
Collapse
Affiliation(s)
- Nian-Si Fan
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Rong Qi
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Bao-Cheng Huang
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Ren-Cun Jin
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China.
| | - Min Yang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
16
|
Quality of Vermicompost and Microbial Community Diversity Affected by the Contrasting Temperature during Vermicomposting of Dewatered Sludge. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17051748. [PMID: 32156070 PMCID: PMC7084763 DOI: 10.3390/ijerph17051748] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 02/21/2020] [Accepted: 03/03/2020] [Indexed: 01/06/2023]
Abstract
This study aimed to investigate the effects of temperature on the quality of vermicompost and microbial profiles of dewatered sludge during vermicomposting. To do this, fresh sludge was separately vermicomposted with the earthworm Eisenia fetida under different temperature regimes, specifically, 15 °C, 20 °C, and 25 °C. The results showed that the growth rate of earthworms increased with temperature. Moreover, the lowest organic matter content along with the highest electrical conductivity, ammonia, and nitrate content in sludge were recorded for 25 °C indicating that increasing temperature significantly accelerated decomposition, mineralization, and nitrification. In addition, higher temperature significantly enhanced microbial activity in the first 30 days of vermicomposting, also exhibiting the fastest stabilization at 25 °C. High throughput sequencing results further revealed that the alpha diversity of the bacterial community was enhanced with increasing temperature resulting in distinct bacterial genera in each vermicompost. This study suggests that quality of vermicompost and dominant bacterial community are strongly influenced by the contrasting temperature during vermicomposting of sludge, with the optimal performance at 25 °C.
Collapse
|
17
|
Division of labor and growth during electrical cooperation in multicellular cable bacteria. Proc Natl Acad Sci U S A 2020; 117:5478-5485. [PMID: 32094191 PMCID: PMC7071850 DOI: 10.1073/pnas.1916244117] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cable bacteria form centimeter-long, multicellular filaments whose energy metabolism involves cooperation among cells that separately perform oxidation of the electron donor and reduction of the electron acceptor. This cooperative division of labor is facilitated via long-range electrical currents that run from cell to cell along a network of conductive fibers. Here we show that biomass synthesis shows a surprising asymmetry along the filament: only the cells oxidizing the electron donor conserve energy for growth, while the other cells reduce electron acceptors without biosynthesis. Our study hence provides insights into the physiology of an unconventional chemolithotroph, which forms a multicellular electrically connected system with unique functional differentiation, integration, and coordination. Multicellularity is a key evolutionary innovation, leading to coordinated activity and resource sharing among cells, which generally occurs via the physical exchange of chemical compounds. However, filamentous cable bacteria display a unique metabolism in which redox transformations in distant cells are coupled via long-distance electron transport rather than an exchange of chemicals. This challenges our understanding of organismal functioning, as the link among electron transfer, metabolism, energy conservation, and filament growth in cable bacteria remains enigmatic. Here, we show that cells within individual filaments of cable bacteria display a remarkable dichotomy in biosynthesis that coincides with redox zonation. Nanoscale secondary ion mass spectrometry combined with 13C (bicarbonate and propionate) and 15N-ammonia isotope labeling reveals that cells performing sulfide oxidation in deeper anoxic horizons have a high assimilation rate, whereas cells performing oxygen reduction in the oxic zone show very little or no label uptake. Accordingly, oxygen reduction appears to merely function as a mechanism to quickly dispense of electrons with little to no energy conservation, while biosynthesis and growth are restricted to sulfide-respiring cells. Still, cells can immediately switch roles when redox conditions change, and show no differentiation, which suggests that the “community service” performed by the cells in the oxic zone is only temporary. Overall, our data reveal a division of labor and electrical cooperation among cells that has not been seen previously in multicellular organisms.
Collapse
|
18
|
Calabrese F, Voloshynovska I, Musat F, Thullner M, Schlömann M, Richnow HH, Lambrecht J, Müller S, Wick LY, Musat N, Stryhanyuk H. Quantitation and Comparison of Phenotypic Heterogeneity Among Single Cells of Monoclonal Microbial Populations. Front Microbiol 2019; 10:2814. [PMID: 31921014 PMCID: PMC6933826 DOI: 10.3389/fmicb.2019.02814] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 11/20/2019] [Indexed: 12/11/2022] Open
Abstract
Phenotypic heterogeneity within microbial populations arises even when the cells are exposed to putatively constant and homogeneous conditions. The outcome of this phenomenon can affect the whole function of the population, resulting in, for example, new "adapted" metabolic strategies and impacting its fitness at given environmental conditions. Accounting for phenotypic heterogeneity becomes thus necessary, due to its relevance in medical and applied microbiology as well as in environmental processes. Still, a comprehensive evaluation of this phenomenon requires a common and unique method of quantitation, which allows for the comparison between different studies carried out with different approaches. Consequently, in this study, two widely applicable indices for quantitation of heterogeneity were developed. The heterogeneity coefficient (HC) is valid when the population follows unimodal activity, while the differentiation tendency index (DTI) accounts for heterogeneity implying outbreak of subpopulations and multimodal activity. We demonstrated the applicability of HC and DTI for heterogeneity quantitation on stable isotope probing with nanoscale secondary ion mass spectrometry (SIP-nanoSIMS), flow cytometry, and optical microscopy datasets. The HC was found to provide a more accurate and precise measure of heterogeneity, being at the same time consistent with the coefficient of variation (CV) applied so far. The DTI is able to describe the differentiation in single-cell activity within monoclonal populations resolving subpopulations with low cell abundance, individual cells with similar phenotypic features (e.g., isotopic content close to natural abundance, as detected with nanoSIMS). The developed quantitation approach allows for a better understanding on the impact and the implications of phenotypic heterogeneity in environmental, medical and applied microbiology, microbial ecology, cell biology, and biotechnology.
Collapse
Affiliation(s)
- Federica Calabrese
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | | | - Florin Musat
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Martin Thullner
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Michael Schlömann
- Institute of Biosciences, TU-Bergakademie Freiberg, Freiberg, Germany
| | - Hans H. Richnow
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Johannes Lambrecht
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Susann Müller
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Lukas Y. Wick
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Niculina Musat
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Hryhoriy Stryhanyuk
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| |
Collapse
|
19
|
Muller EEL. Determining Microbial Niche Breadth in the Environment for Better Ecosystem Fate Predictions. mSystems 2019; 4:e00080-19. [PMID: 31186307 PMCID: PMC6584867 DOI: 10.1128/msystems.00080-19] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 04/13/2019] [Indexed: 11/20/2022] Open
Abstract
Integrated omics applied to microbial communities offers a great opportunity to analyze the niche breadths (i.e., resource and condition ranges usable by a species) of constituent populations, ranging from generalists, with a broad niche breadth, to specialists, with a narrow one. In this context, extracellular metabolomics measurements describe resource spaces available to microbial populations; dedicated analyses of metagenomics data serve to describe the fundamental niches of constituent populations, and functional meta-omics becomes a proxy to characterize the realized niches of populations and their variations though time or space. Thus, the combination of environmental omics and its thorough interpretation allows us to directly describe niche breadths of constituent populations of a microbial community, precisely and in situ This will greatly facilitate studies of the causes influencing ecosystem stability, resistance, and resilience, as well as generation of the necessary knowledge to model and predict the fate of any ecosystem in the current context of global change.
Collapse
Affiliation(s)
- Emilie E L Muller
- Equipe Adaptations et Interactions Microbiennes dans l'Environnement, Université de Strasbourg, UMR 7156 CNRS Génétique Moléculaire, Génomique, Microbiologie, Strasbourg, France
| |
Collapse
|
20
|
Fanesi A, Wagner H, Birarda G, Vaccari L, Wilhelm C. Quantitative macromolecular patterns in phytoplankton communities resolved at the taxonomical level by single-cell Synchrotron FTIR-spectroscopy. BMC PLANT BIOLOGY 2019; 19:142. [PMID: 30987593 PMCID: PMC6466684 DOI: 10.1186/s12870-019-1736-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 03/24/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Technical limitations regarding bulk analysis of phytoplankton biomass limit our comprehension of carbon fluxes in natural populations and, therefore, of carbon, nutrients and energy cycling in aquatic ecosystems. In this study, we took advantage of Synchrotron FTIR micro-spectroscopy and the partial least square regression (PLSr) algorithm to simultaneously quantify the protein, lipid and carbohydrate content at the single-cell level in a mock phytoplankton community (composed by a cyanobacterium, a green-alga and a diatom) grown at two temperatures (15 °C and 25 °C). RESULTS The PLSr models generated to quantify cell macromolecules presented high quality fit (R2 ≥ 0.90) and low error of prediction (RMSEP 2-6% of dry weight). The regression coefficients revealed that the prediction of each macromolecule was not exclusively dependent on spectral features corresponding to that compound, but rather on all major macromolecular pools, reflecting adjustments in the overall cell carbon balance. The single-cell analysis, studied by means of Kernel density estimators, showed that the modes of density distribution of macromolecules were different at 15 °C and 25 °C. However, a substantial proportion of cells was biochemically identical at the two temperatures because of population heterogeneity. CONCLUSIONS The spectroscopic approach presented in this study allows the quantification of macromolecules in single phytoplankton cells. This method showed that population heterogeneity most likely ensures a backup of non-acclimated cells that may rapidly exploit new favourable niches. This finding may have important consequences for the ecology of phytoplankton populations and shows that the "average cell" concept might substantially limit our comprehension of population dynamics and biogeochemical cycles in aquatic ecosystems.
Collapse
Affiliation(s)
- Andrea Fanesi
- Department of Plant Physiology, Leipzig University, Institute of Biology, Johannisallee 21-23, 04103 Leipzig, Germany
| | - Heiko Wagner
- Department of Plant Physiology, Leipzig University, Institute of Biology, Johannisallee 21-23, 04103 Leipzig, Germany
| | - Giovanni Birarda
- Elettra - Sincrotrone Trieste, Synchrotron Infrared Source for Spectroscopy and Imaging – SISSI, 34149 Trieste, Basovizza Italy
| | - Lisa Vaccari
- Elettra - Sincrotrone Trieste, Synchrotron Infrared Source for Spectroscopy and Imaging – SISSI, 34149 Trieste, Basovizza Italy
| | - Christian Wilhelm
- Department of Plant Physiology, Leipzig University, Institute of Biology, Johannisallee 21-23, 04103 Leipzig, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
| |
Collapse
|
21
|
Coculturing Bacteria Leads to Reduced Phenotypic Heterogeneities. Appl Environ Microbiol 2019; 85:AEM.02814-18. [PMID: 30796063 DOI: 10.1128/aem.02814-18] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 02/11/2019] [Indexed: 01/12/2023] Open
Abstract
Isogenic bacterial populations are known to exhibit phenotypic heterogeneity at the single-cell level. Because of difficulties in assessing the phenotypic heterogeneity of a single taxon in a mixed community, the importance of this deeper level of organization remains relatively unknown for natural communities. In this study, we have used membrane-based microcosms that allow the probing of the phenotypic heterogeneity of a single taxon while interacting with a synthetic or natural community. Individual taxa were studied under axenic conditions, as members of a coculture with physical separation, and as a mixed culture. Phenotypic heterogeneity was assessed through both flow cytometry and Raman spectroscopy. Using this setup, we investigated the effect of microbial interactions on the individual phenotypic heterogeneities of two interacting drinking water isolates. Through flow cytometry we have demonstrated that interactions between these bacteria lead to a reduction of their individual phenotypic diversities and that this adjustment is conditional on the bacterial taxon. Single-cell Raman spectroscopy confirmed a taxon-dependent phenotypic shift due to the interaction. In conclusion, our data suggest that bacterial interactions may be a general driver of phenotypic heterogeneity in mixed microbial populations.IMPORTANCE Laboratory studies have shown the impact of phenotypic heterogeneity on the survival and functionality of isogenic populations. Because phenotypic heterogeneity plays an important role in pathogenicity and virulence, antibiotic resistance, biotechnological applications, and ecosystem properties, it is crucial to understand its influencing factors. An unanswered question is whether bacteria in mixed communities influence the phenotypic heterogeneity of their community partners. We found that coculturing bacteria leads to a reduction in their individual phenotypic heterogeneities, which led us to the hypothesis that the individual phenotypic diversity of a taxon is dependent on the community composition.
Collapse
|
22
|
Zacchetti B, Wösten HA, Claessen D. Multiscale heterogeneity in filamentous microbes. Biotechnol Adv 2018; 36:2138-2149. [DOI: 10.1016/j.biotechadv.2018.10.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 09/15/2018] [Accepted: 10/01/2018] [Indexed: 12/20/2022]
|
23
|
Zhang S, Merino N, Okamoto A, Gedalanga P. Interkingdom microbial consortia mechanisms to guide biotechnological applications. Microb Biotechnol 2018; 11:833-847. [PMID: 30014573 PMCID: PMC6116752 DOI: 10.1111/1751-7915.13300] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 06/19/2018] [Accepted: 06/21/2018] [Indexed: 01/01/2023] Open
Abstract
Microbial consortia are capable of surviving diverse conditions through the formation of synergistic population-level structures, such as stromatolites, microbial mats and biofilms. Biotechnological applications are poised to capitalize on these unique interactions. However, current artificial co-cultures constructed for societal benefits, including biosynthesis, agriculture and bioremediation, face many challenges to perform as well as natural consortia. Interkingdom microbial consortia tend to be more robust and have higher productivity compared with monocultures and intrakingdom consortia, but the control and design of these diverse artificial consortia have received limited attention. Further, feasible research techniques and instrumentation for comprehensive mechanistic insights have only recently been established for interkingdom microbial communities. Here, we review these recent advances in technology and our current understanding of microbial interaction mechanisms involved in sustaining or developing interkingdom consortia for biotechnological applications. Some of the interactions among members from different kingdoms follow similar mechanisms observed for intrakingdom microbial consortia. However, unique interactions in interkingdom consortia, including endosymbiosis or interkingdom-specific cell-cell interactions, provide improved mitigation to external stresses and inhibitory compounds. Furthermore, antagonistic interactions among interkingdom species can promote fitness, diversification and adaptation, along with the production of beneficial metabolites and enzymes for society. Lastly, we shed light on future research directions to develop study methods at the level of metabolites, genes and meta-omics. These potential research methods could lead to the control and utilization of highly diverse microbial communities.
Collapse
Affiliation(s)
- Shu Zhang
- Global Research Center for Environment and Energy based on Nanomaterials ScienceNational Institute for Material Science1‐1 NamikiTsukubaIbarakiJapan
- Department of Molecular Microbiology and ImmunologyNorris Comprehensive Cancer CenterUniversity of Southern California1441 Eastlake StreetLos AngelesCA90033USA
- Present address:
Section of Infection and ImmunityHerman Ostrow School of DentistryUniversity of Southern CaliforniaCA90089‐0641USA
| | - Nancy Merino
- Earth‐Life Science InstituteTokyo Institute of Technology, 2‐12‐1‐I7E‐323Ookayama, Meguro‐kuTokyo 152‐8550Japan
- Department of Earth SciencesUniversity of Southern California, 835 Bloom Walk, SHS 562Los AngelesCA 90089‐0740USA
| | - Akihiro Okamoto
- Global Research Center for Environment and Energy based on Nanomaterials ScienceNational Institute for Material Science1‐1 NamikiTsukubaIbarakiJapan
| | - Phillip Gedalanga
- Department of Health ScienceCalifornia State University Fullerton, 800 North State College BoulevardFullertonCA 92831‐3599USA
| |
Collapse
|
24
|
Smith A, Kaczmar A, Bamford RA, Smith C, Frustaci S, Kovacs-Simon A, O'Neill P, Moore K, Paszkiewicz K, Titball RW, Pagliara S. The Culture Environment Influences Both Gene Regulation and Phenotypic Heterogeneity in Escherichia coli. Front Microbiol 2018; 9:1739. [PMID: 30158905 PMCID: PMC6104134 DOI: 10.3389/fmicb.2018.01739] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 07/11/2018] [Indexed: 11/13/2022] Open
Abstract
Microorganisms shape the composition of the medium they are growing in, which in turn has profound consequences on the reprogramming of the population gene-expression profile. In this paper, we investigate the progressive changes in pH and sugar availability in the medium of a growing Escherichia coli (E. coli) culture. We show how these changes have an effect on both the cellular heterogeneity within the microbial community and the gene-expression profile of the microbial population. We measure the changes in gene-expression as E. coli moves from lag, to exponential, and finally into stationary phase. We found that pathways linked to the changes in the medium composition such as ribosomal, tricarboxylic acid cycle (TCA), transport, and metabolism pathways are strongly regulated during the different growth phases. In order to quantify the corresponding temporal changes in the population heterogeneity, we measure the fraction of E. coli persisters surviving different antibiotic treatments during the various phases of growth. We show that the composition of the medium in which β-lactams or quinolones, but not aminoglycosides, are dissolved strongly affects the measured phenotypic heterogeneity within the culture. Our findings contribute to a better understanding on how the composition of the culture medium influences both the reprogramming in the population gene-expression and the emergence of phenotypic variants.
Collapse
Affiliation(s)
- Ashley Smith
- Living Systems Institute, University of Exeter, Exeter, United Kingdom.,Biosciences, University of Exeter, Exeter, United Kingdom
| | - Agnieszka Kaczmar
- Living Systems Institute, University of Exeter, Exeter, United Kingdom.,Biosciences, University of Exeter, Exeter, United Kingdom
| | - Rosemary A Bamford
- Living Systems Institute, University of Exeter, Exeter, United Kingdom.,Biosciences, University of Exeter, Exeter, United Kingdom
| | | | - Simona Frustaci
- Living Systems Institute, University of Exeter, Exeter, United Kingdom
| | | | - Paul O'Neill
- Biosciences, University of Exeter, Exeter, United Kingdom
| | - Karen Moore
- Biosciences, University of Exeter, Exeter, United Kingdom
| | | | | | - Stefano Pagliara
- Living Systems Institute, University of Exeter, Exeter, United Kingdom.,Biosciences, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
25
|
Zimmermann M, Escrig S, Lavik G, Kuypers MMM, Meibom A, Ackermann M, Schreiber F. Substrate and electron donor limitation induce phenotypic heterogeneity in different metabolic activities in a green sulphur bacterium. ENVIRONMENTAL MICROBIOLOGY REPORTS 2018; 10:179-183. [PMID: 29393582 DOI: 10.1111/1758-2229.12616] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 10/13/2017] [Accepted: 01/14/2018] [Indexed: 06/07/2023]
Abstract
Populations of genetically identical cells can display marked variation in phenotypic traits; such variation is termed phenotypic heterogeneity. Here, we investigate the effect of substrate and electron donor limitation on phenotypic heterogeneity in N2 and CO2 fixation in the green sulphur bacterium Chlorobium phaeobacteroides. We grew populations in chemostats and batch cultures and used stable isotope labelling combined with nanometer-scale secondary ion mass spectrometry (NanoSIMS) to quantify phenotypic heterogeneity. Experiments in H2 S (i.e. electron donor) limited chemostats show that varying levels of NH4+ limitation induce heterogeneity in N2 fixation. Comparison of phenotypic heterogeneity between chemostats and batch (unlimited for H2 S) populations indicates that electron donor limitation drives heterogeneity in N2 and CO2 fixation. Our results demonstrate that phenotypic heterogeneity in a certain metabolic activity can be driven by different modes of limitation and that heterogeneity can emerge in different metabolic processes upon the same mode of limitation. In conclusion, our data suggest that limitation is a general driver of phenotypic heterogeneity in microbial populations.
Collapse
Affiliation(s)
- M Zimmermann
- Department of Environmental Systems Science, ETH Zurich - Swiss Federal Institute of Technology, Zurich, Switzerland
- Department of Environmental Microbiology, Eawag - Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - S Escrig
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering (ENAC), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - G Lavik
- Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - M M M Kuypers
- Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - A Meibom
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering (ENAC), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Center for Advanced Surface Analysis, Institute of Earth Sciences, University of Lausanne, Lausanne, Switzerland
| | - M Ackermann
- Department of Environmental Systems Science, ETH Zurich - Swiss Federal Institute of Technology, Zurich, Switzerland
- Department of Environmental Microbiology, Eawag - Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - F Schreiber
- Department of Environmental Systems Science, ETH Zurich - Swiss Federal Institute of Technology, Zurich, Switzerland
- Department of Environmental Microbiology, Eawag - Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Division Biodeterioration and Reference Organisms, Department of Materials and Environment, Federal Institute for Materials Research and Testing (BAM), Berlin, Germany
| |
Collapse
|
26
|
Muller EE, Faust K, Widder S, Herold M, Martínez Arbas S, Wilmes P. Using metabolic networks to resolve ecological properties of microbiomes. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.coisb.2017.12.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
27
|
The emergence of metabolic heterogeneity and diverse growth responses in isogenic bacterial cells. ISME JOURNAL 2018; 12:1199-1209. [PMID: 29335635 DOI: 10.1038/s41396-017-0036-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 11/28/2017] [Accepted: 12/03/2017] [Indexed: 11/08/2022]
Abstract
Microorganisms adapt to frequent environmental changes through population diversification. Previous studies demonstrated phenotypic diversity in a clonal population and its important effects on microbial ecology. However, the dynamic changes of phenotypic composition have rarely been characterized. Also, cellular variations and environmental factors responsible for phenotypic diversity remain poorly understood. Here, we studied phenotypic diversity driven by metabolic heterogeneity. We characterized metabolic activities and growth kinetics of starved Escherichia coli cells subject to nutrient upshift at single-cell resolution. We observed three subpopulations with distinct metabolic activities and growth phenotypes. One subpopulation was metabolically active and immediately grew upon nutrient upshift. One subpopulation was metabolically inactive and non-viable. The other subpopulation was metabolically partially active, and did not grow upon nutrient upshift. The ratio of these subpopulations changed dynamically during starvation. A long-term observation of cells with partial metabolic activities indicated that their metabolism was later spontaneously restored, leading to growth recovery. Further investigations showed that oxidative stress can induce the emergence of a subpopulation with partial metabolic activities. Our findings reveal the emergence of metabolic heterogeneity and associated dynamic changes in phenotypic composition. In addition, the results shed new light on microbial dormancy, which has important implications in microbial ecology and biomedicine.
Collapse
|
28
|
Fan N, Qi R, Rossetti S, Tandoi V, Gao Y, Yang M. Factors affecting the growth of Microthrix parvicella: Batch tests using bulking sludge as seed sludge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 609:1192-1199. [PMID: 28787793 DOI: 10.1016/j.scitotenv.2017.07.261] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/29/2017] [Accepted: 07/29/2017] [Indexed: 06/07/2023]
Abstract
Sludge bulking caused by the overgrowth of filamentous bacteria, particularly Microthrix parvicella, is one of the challenges for the stable operation of municipal wastewater treatment plants (WWTPs). The driving forces for the development of sludge bulking, however, have not been well understood because of the extremely low growth rate of M. parvicella. In this study, batch experiments were performed using bulking sludge (sludge volume index (SVI), around 185mLg-1) from a full-scale WWTP as the seed sludge to investigate the influences of carbon source, anaerobic/aerobic alternation condition and temperature on the growth of M. parvicella. The qPCR results showed that the use of oleic acid as carbon source, anaerobic/aerobic alternation treatment and low temperature (13°C) were favorable conditions for maintaining the dominance of M. parvicella in the tested activated sludge. Under these conditions, the SVI values remained at comparatively high values of 170.5mLg-1, 162.5mLg-1 and 129.5mLg-1 after operation for approximately two months, and the relative abundances of M. parvicella were 36.7%, 9.74% and 34.07%, respectively, in comparison with the initial values of 33.04%, 29.29% and 54.66%. However, the relative abundances of M. parvicella decreased to 0.86-4.44%, 0.7% and 4.94%, respectively, under the conditions of other carbon sources, aerobic-only treatment and a temperature of 20°C. The FISH analysis gave a similar result. This study was performed with mixed sludge under controlled operating conditions, which provided a valuable information for the pure culture of M. parvicella and further investigations on its physiology and metabolism.
Collapse
Affiliation(s)
- Niansi Fan
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rong Qi
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Simona Rossetti
- CNR, Water Research Institute, Via Reno 1, 00198 Roma, Italy
| | - Valter Tandoi
- CNR, Water Research Institute, Via Reno 1, 00198 Roma, Italy
| | - Yingxin Gao
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Yang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
29
|
Nikolic N, Schreiber F, Dal Co A, Kiviet DJ, Bergmiller T, Littmann S, Kuypers MMM, Ackermann M. Cell-to-cell variation and specialization in sugar metabolism in clonal bacterial populations. PLoS Genet 2017; 13:e1007122. [PMID: 29253903 PMCID: PMC5773225 DOI: 10.1371/journal.pgen.1007122] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 01/18/2018] [Accepted: 11/22/2017] [Indexed: 12/05/2022] Open
Abstract
While we have good understanding of bacterial metabolism at the population level, we know little about the metabolic behavior of individual cells: do single cells in clonal populations sometimes specialize on different metabolic pathways? Such metabolic specialization could be driven by stochastic gene expression and could provide individual cells with growth benefits of specialization. We measured the degree of phenotypic specialization in two parallel metabolic pathways, the assimilation of glucose and arabinose. We grew Escherichia coli in chemostats, and used isotope-labeled sugars in combination with nanometer-scale secondary ion mass spectrometry and mathematical modeling to quantify sugar assimilation at the single-cell level. We found large variation in metabolic activities between single cells, both in absolute assimilation and in the degree to which individual cells specialize in the assimilation of different sugars. Analysis of transcriptional reporters indicated that this variation was at least partially based on cell-to-cell variation in gene expression. Metabolic differences between cells in clonal populations could potentially reduce metabolic incompatibilities between different pathways, and increase the rate at which parallel reactions can be performed. This study addresses a fundamental question in bacterial metabolism: do all individuals in a clonal population express the same metabolic functions, or do individuals specialize on different metabolic functions and assimilate different substrates? Reports about stochastic gene expression in bacterial populations raise the possibility that transcriptional differences between individuals translate into different metabolic behaviors, but the prevalence and magnitude of such effects is currently not known. Here, we quantified the assimilation of two isotope-labeled sugars by single Escherichia coli cells using nanometer-scale secondary ion mass spectrometry, an analytical approach seldom used in systems biology. By comparing sugar assimilation and gene expression dynamics, we were able to differentiate the metabolic profiles of individual cells. We observed a previously hidden level of cell-to-cell variation in metabolism: cells differed both in the total amount of sugar they assimilated, as well as with respect to which of the two sugars they preferentially assimilated. Intriguingly, a cell’s preference in sugar assimilation was only partially based on specialization in gene expression. Taken together, this study is a step towards understanding the magnitude and the relevance of metabolic differences between genetically identical cells.
Collapse
Affiliation(s)
- Nela Nikolic
- Institute of Biogeochemistry and Pollutant Dynamics, Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland
- Department of Environmental Microbiology, Eawag, Duebendorf, Switzerland
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
- * E-mail: (NN); (MA)
| | - Frank Schreiber
- Institute of Biogeochemistry and Pollutant Dynamics, Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland
- Department of Environmental Microbiology, Eawag, Duebendorf, Switzerland
- Division of Biodeterioration and Reference Organisms, Department of Materials and Environment, Federal Institute for Materials Research and Testing (BAM), Berlin, Germany
| | - Alma Dal Co
- Institute of Biogeochemistry and Pollutant Dynamics, Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland
- Department of Environmental Microbiology, Eawag, Duebendorf, Switzerland
| | - Daniel J. Kiviet
- Institute of Biogeochemistry and Pollutant Dynamics, Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland
- Department of Environmental Microbiology, Eawag, Duebendorf, Switzerland
| | - Tobias Bergmiller
- Institute of Biogeochemistry and Pollutant Dynamics, Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland
- Department of Environmental Microbiology, Eawag, Duebendorf, Switzerland
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| | - Sten Littmann
- Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Marcel M. M. Kuypers
- Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Martin Ackermann
- Institute of Biogeochemistry and Pollutant Dynamics, Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland
- Department of Environmental Microbiology, Eawag, Duebendorf, Switzerland
- * E-mail: (NN); (MA)
| |
Collapse
|
30
|
Abstract
Secondary ion mass spectrometry (SIMS) has become an increasingly utilized tool in biologically relevant studies. Of these, high lateral resolution methodologies using the NanoSIMS 50/50L have been especially powerful within many biological fields over the past decade. Here, the authors provide a review of this technology, sample preparation and analysis considerations, examples of recent biological studies, data analyses, and current outlooks. Specifically, the authors offer an overview of SIMS and development of the NanoSIMS. The authors describe the major experimental factors that should be considered prior to NanoSIMS analysis and then provide information on best practices for data analysis and image generation, which includes an in-depth discussion of appropriate colormaps. Additionally, the authors provide an open-source method for data representation that allows simultaneous visualization of secondary electron and ion information within a single image. Finally, the authors present a perspective on the future of this technology and where they think it will have the greatest impact in near future.
Collapse
|
31
|
Salman-Carvalho V, Fadeev E, Joye SB, Teske A. How Clonal Is Clonal? Genome Plasticity across Multicellular Segments of a "Candidatus Marithrix sp." Filament from Sulfidic, Briny Seafloor Sediments in the Gulf of Mexico. Front Microbiol 2016; 7:1173. [PMID: 27536274 PMCID: PMC4971068 DOI: 10.3389/fmicb.2016.01173] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 07/15/2016] [Indexed: 11/13/2022] Open
Abstract
“Candidatus Marithrix” is a recently described lineage within the group of large sulfur bacteria (Beggiatoaceae, Gammaproteobacteria). This genus of bacteria comprises vacuolated, attached-living filaments that inhabit the sediment surface around vent and seep sites in the marine environment. A single filament is ca. 100 μm in diameter, several millimeters long, and consists of hundreds of clonal cells, which are considered highly polyploid. Based on these characteristics, “Candidatus Marithrix” was used as a model organism for the assessment of genomic plasticity along segments of a single filament using next generation sequencing to possibly identify hotspots of microevolution. Using six consecutive segments of a single filament sampled from a mud volcano in the Gulf of Mexico, we recovered ca. 90% of the “Candidatus Marithrix” genome in each segment. There was a high level of genome conservation along the filament with average nucleotide identities between 99.98 and 100%. Different approaches to assemble all reads into a complete consensus genome could not fill the gaps. Each of the six segment datasets encoded merely a few hundred unique nucleotides and 5 or less unique genes—the residual content was redundant in all datasets. Besides the overall high genomic identity, we identified a similar number of single nucleotide polymorphisms (SNPs) between the clonal segments, which are comparable to numbers reported for other clonal organisms. An increase of SNPs with greater distance of filament segments was not observed. The polyploidy of the cells was apparent when analyzing the heterogeneity of reads within a segment. Here, a strong increase in single nucleotide variants, or “intrasegmental sequence heterogeneity” (ISH) events, was observed. These sites may represent hotspots for genome plasticity, and possibly microevolution, since two thirds of these variants were not co-localized across the genome copies of the multicellular filament.
Collapse
Affiliation(s)
- Verena Salman-Carvalho
- HGF MPG Joint Research Group for Deep-Sea Ecology and Technology, Max Planck Institute for Marine Microbiology Bremen, Germany
| | - Eduard Fadeev
- HGF MPG Joint Research Group for Deep-Sea Ecology and Technology, Max Planck Institute for Marine Microbiology Bremen, Germany
| | - Samantha B Joye
- Department of Marine Sciences, University of Georgia Athens, GA, USA
| | - Andreas Teske
- Department of Marine Sciences, University of North Carolina at Chapel Hill Chapel Hill, NC, USA
| |
Collapse
|
32
|
Yedra L, Eswara S, Dowsett D, Wirtz T. In-situ Isotopic Analysis at Nanoscale using Parallel Ion Electron Spectrometry: A Powerful New Paradigm for Correlative Microscopy. Sci Rep 2016; 6:28705. [PMID: 27350565 PMCID: PMC4923888 DOI: 10.1038/srep28705] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 06/06/2016] [Indexed: 01/20/2023] Open
Abstract
Isotopic analysis is of paramount importance across the entire gamut of scientific research. To advance the frontiers of knowledge, a technique for nanoscale isotopic analysis is indispensable. Secondary Ion Mass Spectrometry (SIMS) is a well-established technique for analyzing isotopes, but its spatial-resolution is fundamentally limited. Transmission Electron Microscopy (TEM) is a well-known method for high-resolution imaging down to the atomic scale. However, isotopic analysis in TEM is not possible. Here, we introduce a powerful new paradigm for in-situ correlative microscopy called the Parallel Ion Electron Spectrometry by synergizing SIMS with TEM. We demonstrate this technique by distinguishing lithium carbonate nanoparticles according to the isotopic label of lithium, viz. 6Li and 7Li and imaging them at high-resolution by TEM, adding a new dimension to correlative microscopy.
Collapse
Affiliation(s)
- Lluís Yedra
- Advanced Instrumentation for Ion Nano-Analytics (AINA), MRT Department, Luxembourg Institute of Science and Technology (LIST), 41 rue du Brill, 4422 Belvaux, Luxembourg
| | - Santhana Eswara
- Advanced Instrumentation for Ion Nano-Analytics (AINA), MRT Department, Luxembourg Institute of Science and Technology (LIST), 41 rue du Brill, 4422 Belvaux, Luxembourg
| | - David Dowsett
- Advanced Instrumentation for Ion Nano-Analytics (AINA), MRT Department, Luxembourg Institute of Science and Technology (LIST), 41 rue du Brill, 4422 Belvaux, Luxembourg
| | - Tom Wirtz
- Advanced Instrumentation for Ion Nano-Analytics (AINA), MRT Department, Luxembourg Institute of Science and Technology (LIST), 41 rue du Brill, 4422 Belvaux, Luxembourg
| |
Collapse
|