1
|
Martinez-Villegas L, Lado P, Klompen H, Wang S, Cummings C, Pesapane R, Short SM. The microbiota of Amblyomma americanum reflects known westward expansion. PLoS One 2024; 19:e0304959. [PMID: 38857239 PMCID: PMC11164389 DOI: 10.1371/journal.pone.0304959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 05/22/2024] [Indexed: 06/12/2024] Open
Abstract
Amblyomma americanum, a known vector of multiple tick-borne pathogens, has expanded its geographic distribution across the United States in the past decades. Tick microbiomes may play a role shaping their host's life history and vectorial capacity. Bacterial communities associated with A. americanum may reflect, or enable, geographic expansion and studying the microbiota will improve understanding of tick-borne disease ecology. We examined the microbiota structure of 189 adult ticks collected in four regions encompassing their historical and current geographic distribution. Both geographic region of origin and sex were significant predictors of alpha diversity. As in other tick models, within-sample diversity was low and uneven given the presence of dominant endosymbionts. Beta diversity analyses revealed that bacterial profiles of ticks of both sexes collected in the West were significantly different from those of the Historic range. Biomarkers were identified for all regions except the historical range. In addition, Bray-Curtis dissimilarities overall increased with distance between sites. Relative quantification of ecological processes showed that, for females and males, respectively, drift and dispersal limitation were the primary drivers of community assembly. Collectively, our findings highlight how microbiota structural variance discriminates the western-expanded populations of A. americanum ticks from the Historical range. Spatial autocorrelation, and particularly the detection of non-selective ecological processes, are indicative of geographic isolation. We also found that prevalence of Ehrlichia chaffeensis, E. ewingii, and Anaplasma phagocytophilum ranged from 3.40-5.11% and did not significantly differ by region. Rickettsia rickettsii was absent from our samples. Our conclusions demonstrate the value of synergistic analysis of biogeographic and microbial ecology data in investigating range expansion in A. americanum and potentially other tick vectors as well.
Collapse
Affiliation(s)
- Luis Martinez-Villegas
- Department of Entomology, The Ohio State University, Columbus, Ohio, United States of America
| | - Paula Lado
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, Ohio, United States of America
| | - Hans Klompen
- Department of Evolution, Ecology, and Organismal Biology and Museum of Biological Diversity, The Ohio State University, Columbus, Ohio, United States of America
| | - Selena Wang
- Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Caleb Cummings
- Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Risa Pesapane
- Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, United States of America
- School of Environment and Natural Resources, College of Food, Agricultural, and Environmental Sciences, The Ohio State University, Columbus, Ohio, United States of America
| | - Sarah M. Short
- Department of Entomology, The Ohio State University, Columbus, Ohio, United States of America
| |
Collapse
|
2
|
Valencia‐Agami SS, Cerqueda‐García D, Gamboa‐Muñoz AM, Aguirre‐Macedo ML, García‐Maldonado JQ. Structure and composition of microbial communities in the water column from Southern Gulf of Mexico and detection of putative hydrocarbon-degrading microorganisms. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13264. [PMID: 38692840 PMCID: PMC11062854 DOI: 10.1111/1758-2229.13264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 04/06/2024] [Indexed: 05/03/2024]
Abstract
This study assessed the bacterioplankton community and its relationship with environmental variables, including total petroleum hydrocarbon (TPH) concentration, in the Yucatan shelf area of the Southern Gulf of Mexico. Beta diversity analyses based on 16S rRNA sequences indicated variations in the bacterioplankton community structure among sampling sites. PERMANOVA indicated that these variations could be mainly related to changes in depth (5 to 180 m), dissolved oxygen concentration (2.06 to 5.93 mg L-1), and chlorophyll-a concentration (0.184 to 7.65 mg m3). Moreover, SIMPER and one-way ANOVA analyses showed that the shifts in the relative abundances of Synechococcus and Prochlorococcus were related to changes in microbial community composition and chlorophyll-a values. Despite the low TPH content measured in the studied sites (0.01 to 0.86 μL L-1), putative hydrocarbon-degrading bacteria such as Alteromonas, Acinetobacter, Balneola, Erythrobacter, Oleibacter, Roseibacillus, and the MWH-UniP1 aquatic group were detected. The relatively high copy number of the alkB gene detected in the water column by qPCR and the enrichment of hydrocarbon-degrading bacteria obtained during lab crude oil tests exhibited the potential of bacterioplankton communities from the Yucatan shelf to respond to potential hydrocarbon impacts in this important area of the Gulf Mexico.
Collapse
Affiliation(s)
- Sonia S. Valencia‐Agami
- Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de MéxicoMexico CityMexico
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Mérida, Departamento de Recursos del MarMeridaYucatánMexico
| | - Daniel Cerqueda‐García
- Clúster Científico y Tecnológico BioMimic®, Red de Manejo Biorracional de Plagas y VectoresInstituto de Ecología, AC–INECOLXalapaVeracruzMexico
| | - Abril M. Gamboa‐Muñoz
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Mérida, Departamento de Recursos del MarMeridaYucatánMexico
| | - M. Leopoldina Aguirre‐Macedo
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Mérida, Departamento de Recursos del MarMeridaYucatánMexico
| | - José Q. García‐Maldonado
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Mérida, Departamento de Recursos del MarMeridaYucatánMexico
| |
Collapse
|
3
|
Wang Y, Li W, Bao G, Bai M, Ye H. Differences in archaeal diversity and potential ecological functions between saline and hypersaline lakes on Qinghai-Tibet Plateau were driven by multiple environmental and non-environmental factors beyond the salinity. BMC Microbiol 2024; 24:153. [PMID: 38704527 PMCID: PMC11069230 DOI: 10.1186/s12866-024-03307-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/15/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND Saline lakes are home to various archaea that play special and crucial roles in the global biogeochemical cycle. The Qinghai-Tibet Plateau hosts a large number of lakes with diverse salinity ranging from 0.1 to over 400 g/L, harboring complex and diverse archaea. To the best of our knowledge, the formation mechanisms and potential ecological roles of archaea in Qinghai-Tibetan Plateau saline lakes remain largely unknown. RESULTS Using High-throughput Illumina sequencing, we uncovered the vastly distinct archaea communities between two typical saline lakes with significant salinity differences on the Qinghai Tibet Plateau (Qinghai saline lake and Chaka hypersaline lake) and suggested archaea played different important roles in methanogenesis-related and nitrate reduction-related functions of these two lakes, respectively. Rather than the individual effect of salinity, the composite effect of salinity with diverse environmental parameters (e.g., temperature, chlorophyll a, total nitrogen, and total phosphorus) dominated the explanation of the variations in archaeal community structure in different habitats. Based on the network analysis, we further found the correlations between dominant archaeal OTUs were tight but significantly different between the two habitats, implying that archaeal interactions may also largely determine the shape of archaeal communities. CONCLUSION The present study improved our understanding of the structure and function of archaea in different saline lakes on the Qinghai-Tibet Plateau and provided a new perspective on the mechanisms underlying shaping their communities.
Collapse
Affiliation(s)
- Yaqiong Wang
- School of Ecology, Environment and Resources, Qinghai Minzu University, Bayi Road, Xining, 810007, Qinghai, China
- Qinghai Provincial Key Laboratory of High-Value Utilization of Characteristic Economic Plants, Xining, 810007, China
- Qinghai Provincial Biotechnology and Analytical Test Key Laboratory, Xining, 810007, China
| | - Wenxin Li
- School of Ecology, Environment and Resources, Qinghai Minzu University, Bayi Road, Xining, 810007, Qinghai, China
| | - Guoyuan Bao
- School of Ecology, Environment and Resources, Qinghai Minzu University, Bayi Road, Xining, 810007, Qinghai, China
| | - Mohan Bai
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs / Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA / Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin, 300191, China.
| | - Huike Ye
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs / Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA / Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin, 300191, China.
| |
Collapse
|
4
|
Guider JT, Yoshimura KM, Block KR, Biddle JF, Shah Walter SR. Archaeal blooms and busts in an estuarine time series. Environ Microbiol 2024; 26:e16584. [PMID: 38372423 DOI: 10.1111/1462-2920.16584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 01/22/2024] [Indexed: 02/20/2024]
Abstract
Coastal bays, such as Delaware Bay, are highly productive, ecologically important transitions between rivers and the coastal ocean. They offer opportunities to investigate archaeal assemblages across seasons, with the exchange of water masses that occurs with tidal cycles, and in the context of variable organic matter quality. For a year-long estuarine, size-fractionated time series, we used amplicon sequencing, chemical measurements, and qPCR to follow archaeal groups through the seasons. We detected seasonally high abundances of Marine Group II archaea in summer months which correlate with indicators of phytoplankton production, although not phytoplankton biomass. Although previous studies have reported associations between Marine Group II archaea and particles, here they are almost entirely found in very small particles (0.22-0.7 μm), suggesting they are free-living cells. Populations of Nitrososphaeria did not vary with particle size or environmental conditions. Methanogens were significant fractions of archaeal sequences in large particles at low tide during winter months. Contrary to expectations, Nanoarchaeia were found predominantly in the free-living fraction despite the previous observation that they require an association with hosts. These results underscore the utility of time series studies in shallow, tidally mixed estuarine environments that capture variable conditions for understanding the ecology and biogeochemistry of planktic archaea.
Collapse
Affiliation(s)
- Justin T Guider
- School of Marine Science and Policy, University of Delaware, Lewes, Delaware, USA
| | - Kristin M Yoshimura
- Department of Biology, James Madison University, Harrisonburg, Virginia, USA
| | - Kaleigh R Block
- School of Marine Science and Policy, University of Delaware, Lewes, Delaware, USA
| | - Jennifer F Biddle
- School of Marine Science and Policy, University of Delaware, Lewes, Delaware, USA
| | - Sunita R Shah Walter
- School of Marine Science and Policy, University of Delaware, Lewes, Delaware, USA
| |
Collapse
|
5
|
Deutschmann IM, Delage E, Giner CR, Sebastián M, Poulain J, Arístegui J, Duarte CM, Acinas SG, Massana R, Gasol JM, Eveillard D, Chaffron S, Logares R. Disentangling microbial networks across pelagic zones in the tropical and subtropical global ocean. Nat Commun 2024; 15:126. [PMID: 38168083 PMCID: PMC10762198 DOI: 10.1038/s41467-023-44550-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024] Open
Abstract
Microbial interactions are vital in maintaining ocean ecosystem function, yet their dynamic nature and complexity remain largely unexplored. Here, we use association networks to investigate possible ecological interactions in the marine microbiome among archaea, bacteria, and picoeukaryotes throughout different depths and geographical regions of the tropical and subtropical global ocean. Our findings reveal that potential microbial interactions change with depth and geographical scale, exhibiting highly heterogeneous distributions. A few potential interactions were global, meaning they occurred across regions at the same depth, while 11-36% were regional within specific depths. The bathypelagic zone had the lowest proportion of global associations, and regional associations increased with depth. Moreover, we observed that most surface water associations do not persist in deeper ocean layers despite microbial vertical dispersal. Our work contributes to a deeper understanding of the tropical and subtropical global ocean interactome, which is essential for addressing the challenges posed by global change.
Collapse
Affiliation(s)
| | - Erwan Delage
- Nantes Université, CNRS UMR 6004, LS2N, F-44000, Nantes, France
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, Paris, France
| | | | | | - Julie Poulain
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Javier Arístegui
- Instituto de Oceanografía y Cambio Global, IOCAG, Universidad de Las Palmas de Gran Canaria, ULPGC, Gran Canaria, Spain
| | - Carlos M Duarte
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center (RSRC), Thuwal, Saudi Arabia
| | | | - Ramon Massana
- Institute of Marine Sciences (ICM), CSIC, Barcelona, Spain
| | - Josep M Gasol
- Institute of Marine Sciences (ICM), CSIC, Barcelona, Spain
| | - Damien Eveillard
- Nantes Université, CNRS UMR 6004, LS2N, F-44000, Nantes, France
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, Paris, France
| | - Samuel Chaffron
- Nantes Université, CNRS UMR 6004, LS2N, F-44000, Nantes, France
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, Paris, France
| | - Ramiro Logares
- Institute of Marine Sciences (ICM), CSIC, Barcelona, Spain.
| |
Collapse
|
6
|
Lu Y, Cheung S, Koh XP, Xia X, Jing H, Lee P, Kao SJ, Gan J, Dai M, Liu H. Active degradation-nitrification microbial assemblages in the hypoxic zone in a subtropical estuary. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166694. [PMID: 37660824 DOI: 10.1016/j.scitotenv.2023.166694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 08/06/2023] [Accepted: 08/28/2023] [Indexed: 09/05/2023]
Abstract
In 2017 summer, we observed widespread bottom hypoxia at the lower estuary of the Pearl River estuary (PRE). Our previous study noticed that AOA and bacteria were highly abundant and clustered within the hypoxia zone. Moreover, nitrification and respiration rates were also evidently higher in these hypoxic waters. These observations prompt us to investigate whether these two oxygen-consuming microorganisms have symbiotic relationships and whether specific groups consistently coexist and form ecological-meaningful associations. In this study, we use network analysis to investigate the presence and active communities (DNA-RNA) based on bacterial and AOA communities sequencing (inferred from the 16S rRNA and amoA gene, respectively) to gain more insight into ecological-meaningful associations. We observed a highly diverse and active bacterial community in the hypoxia zone. The RNA networks were more modulized than the corresponding DNA networks, indicating that the active communities were better parsed into functional microbial assemblages. The network topology revealed that Gammaproteobacteria, Bacteroidetes (Flavobacteriales), Alphaproteobacteria (Rhodobacterales and Rhodospirillales), Marinimicrobia, Cyanobacteria (Synechococcales), and AOA sublineages were module hubs and connectors, indicating that they were the keystone taxa of the microbial communities. The hub-subnetwork further showed robust co-occurrence between Gammaproteobacteria, Bacteroidetes (Flavobacteriales), Alphaproteobacteria (Rhodobacterales and Rhodospirillales), Marinimicrobia with AOA sublineages, and Nitrospinae (presumably NOB) reflecting the formation of Degradation-Nitrification (sequential oxidation of Organic matter degradation to ammonia, then nitrate) microbial assemblage in the hypoxia zone. The subnetworks revealed AOA ecotype-specific modularization and niche partitioning of different AOA sublineages. Interestingly, the recurring co-occurrence of nitrifiers assemblage in the RNA subnetworks (SCM1-like-II (AOA) and Nitrospinae OTUs (NOB) suggests an active interaction via nitrite exchange. The Degradation-Nitrification microbial assemblage may contribute substantially to the oxygen consumption in the hypoxia formation in PRE. Our results provide new insight into the functional microbial assemblages, which is worth further investigation on their ecological implication in estuarine waters.
Collapse
Affiliation(s)
- Yanhong Lu
- SZU-HKUST Joint PhD Program in Marine Environmental Science, Shenzhen University, Shenzhen, Guangdong; Department of Ocean Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong; Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong; Shenzhen Marine Development and Promotion Center, Shenzhen, Guangdong.
| | - Shunyan Cheung
- Institute of Marine Biology, National Taiwan Ocean University, Keelung, Taiwan
| | - Xiu Pei Koh
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Xiaomin Xia
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong
| | - Hongmei Jing
- CAS Key Laboratory for Experimental Study under Deep-sea Extreme Conditions, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan
| | - Puiyin Lee
- Department of Ocean Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Shuh-Ji Kao
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian
| | - Jianping Gan
- Department of Ocean Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Minhan Dai
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian
| | - Hongbin Liu
- Department of Ocean Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong; Hong Kong Branch of Southern Marine Science & Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Kowloon, Hong Kong.
| |
Collapse
|
7
|
Hu X, Huang Y, Gu G, Hu H, Yan H, Zhang H, Zhang R, Zhang D, Wang K. Distinct patterns of distribution, community assembly and cross-domain co-occurrence of planktonic archaea in four major estuaries of China. ENVIRONMENTAL MICROBIOME 2023; 18:75. [PMID: 37805516 PMCID: PMC10560434 DOI: 10.1186/s40793-023-00530-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/27/2023] [Indexed: 10/09/2023]
Abstract
BACKGROUND Archaea are key mediators of estuarine biogeochemical cycles, but comprehensive studies comparing archaeal communities among multiple estuaries with unified experimental protocols during the same sampling periods are scarce. Here, we investigated the distribution, community assembly, and cross-domain microbial co-occurrence of archaea in surface waters across four major estuaries (Yellow River, Yangtze River, Qiantang River, and Pearl River) of China cross climatic zones (~ 1,800 km) during the winter and summer cruises. RESULTS The relative abundance of archaea in the prokaryotic community and archaeal community composition varied with estuaries, seasons, and stations (reflecting local environmental changes such as salinity). Archaeal communities in four estuaries were overall predominated by ammonia-oxidizing archaea (AOA) (aka. Marine Group (MG) I; primarily Nitrosopumilus), while the genus Poseidonia of Poseidoniales (aka. MGII) was occasionally predominant in Pearl River estuary. The cross-estuary dispersal of archaea was largely limited and the assembly mechanism of archaea varied with estuaries in the winter cruise, while selection governed archaeal assembly in all estuaries in the summer cruise. Although the majority of archaea taxa in microbial networks were peripherals and/or connectors, extensive and distinct cross-domain associations of archaea with bacteria were found across the estuaries, with AOA as the most crucial archaeal group. Furthermore, the expanded associations of MGII taxa with heterotrophic bacteria were observed, speculatively indicating the endogenous demand for co-processing high amount and diversity of organic matters in the estuarine ecosystem highly impacted by terrestrial/anthropogenic input, which is worthy of further study. CONCLUSIONS Our results highlight the lack of common patterns in the dynamics of estuarine archaeal communities along the geographic gradient, expanding the understanding of roles of archaea in microbial networks of this highly dynamic ecosystem.
Collapse
Affiliation(s)
- Xuya Hu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Yujie Huang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Gaoke Gu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Hanjing Hu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Huizhen Yan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Huajun Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, China
- Collaborative Innovation Center for Zhejiang Marine High-Efficiency and Healthy Aquaculture, Ningbo, China
| | - Rui Zhang
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Demin Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, China
- Collaborative Innovation Center for Zhejiang Marine High-Efficiency and Healthy Aquaculture, Ningbo, China
| | - Kai Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo, China.
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, China.
- Collaborative Innovation Center for Zhejiang Marine High-Efficiency and Healthy Aquaculture, Ningbo, China.
| |
Collapse
|
8
|
Ai D, Chen L, Xie J, Cheng L, Zhang F, Luan Y, Li Y, Hou S, Sun F, Xia LC. Identifying local associations in biological time series: algorithms, statistical significance, and applications. Brief Bioinform 2023; 24:bbad390. [PMID: 37930023 DOI: 10.1093/bib/bbad390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/21/2023] [Accepted: 09/14/2023] [Indexed: 11/07/2023] Open
Abstract
Local associations refer to spatial-temporal correlations that emerge from the biological realm, such as time-dependent gene co-expression or seasonal interactions between microbes. One can reveal the intricate dynamics and inherent interactions of biological systems by examining the biological time series data for these associations. To accomplish this goal, local similarity analysis algorithms and statistical methods that facilitate the local alignment of time series and assess the significance of the resulting alignments have been developed. Although these algorithms were initially devised for gene expression analysis from microarrays, they have been adapted and accelerated for multi-omics next generation sequencing datasets, achieving high scientific impact. In this review, we present an overview of the historical developments and recent advances for local similarity analysis algorithms, their statistical properties, and real applications in analyzing biological time series data. The benchmark data and analysis scripts used in this review are freely available at http://github.com/labxscut/lsareview.
Collapse
Affiliation(s)
- Dongmei Ai
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Lulu Chen
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Jiemin Xie
- Department of Statistics and Financial Mathematics, School of Mathematics, South China University of Technology, Guangzhou 510641, China
| | - Longwei Cheng
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Fang Zhang
- Shenwan Hongyuan Securities Co. Ltd., Shanghai 200031, China
| | - Yihui Luan
- School of Mathematics, Shandong University, Jinan 250100, China
| | - Yang Li
- Department of Statistics and Financial Mathematics, School of Mathematics, South China University of Technology, Guangzhou 510641, China
| | - Shengwei Hou
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Fengzhu Sun
- Department of Quantitative and Computational Biology, University of Southern California, California, 90007, USA
| | - Li Charlie Xia
- Department of Statistics and Financial Mathematics, School of Mathematics, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
9
|
Sun J, Zhang A, Zhang Z, Liu Y, Zhou H, Cheng H, Chen Z, Li H, Zhang R, Wang Y. Distinct assembly processes and environmental adaptation of abundant and rare archaea in Arctic marine sediments. MARINE ENVIRONMENTAL RESEARCH 2023; 190:106082. [PMID: 37429213 DOI: 10.1016/j.marenvres.2023.106082] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 06/23/2023] [Accepted: 07/05/2023] [Indexed: 07/12/2023]
Abstract
Revealing the ecological processes and environmental adaptation of abundant and rare archaea is a central, but poorly understood, topic in ecology. Here, abundant and rare archaeal diversity, community assembly processes and co-occurrence patterns were comparatively analyzed in Arctic marine sediments. Our findings revealed that the rare taxa exhibited significantly higher diversity compared to the abundant taxa. Additionally, the abundant taxa displayed stronger environmental adaptation than the rare taxa. The co-occurrence network analysis demonstrated that the rare taxa developed more interspecies interactions and modules in response to environmental disturbance. Furthermore, the community assembly of abundant and rare taxa in sediments was primarily controlled by stochastic and deterministic processes, respectively. These findings provide valuable insights into the archaeal community assembly processes and significantly contribute to a deeper understanding of the environmental adaptability of abundant and rare taxa in Arctic marine sediments.
Collapse
Affiliation(s)
- Jianxing Sun
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, Hunan, PR China
| | - Aoqi Zhang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, Hunan, PR China
| | - Zhongxian Zhang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, Hunan, PR China
| | - Yang Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, Hunan, PR China
| | - Hongbo Zhou
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, Hunan, PR China; Key Laboratory of Biohydrometallurgy of Ministry of Education, Changsha, 410083, Hunan, PR China
| | - Haina Cheng
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, Hunan, PR China; Key Laboratory of Biohydrometallurgy of Ministry of Education, Changsha, 410083, Hunan, PR China
| | - Zhu Chen
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, Hunan, PR China; Key Laboratory of Biohydrometallurgy of Ministry of Education, Changsha, 410083, Hunan, PR China
| | - Hai Li
- Laboratory of Marine Biodiversity Research, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, Hunan, PR China
| | - Ran Zhang
- Laboratory of Marine Biodiversity Research, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, Hunan, PR China
| | - Yuguang Wang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, Hunan, PR China; Key Laboratory of Biohydrometallurgy of Ministry of Education, Changsha, 410083, Hunan, PR China.
| |
Collapse
|
10
|
Abreu CI, Dal Bello M, Bunse C, Pinhassi J, Gore J. Warmer temperatures favor slower-growing bacteria in natural marine communities. SCIENCE ADVANCES 2023; 9:eade8352. [PMID: 37163596 PMCID: PMC10171810 DOI: 10.1126/sciadv.ade8352] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Earth's life-sustaining oceans harbor diverse bacterial communities that display varying composition across time and space. While particular patterns of variation have been linked to a range of factors, unifying rules are lacking, preventing the prediction of future changes. Here, analyzing the distribution of fast- and slow-growing bacteria in ocean datasets spanning seasons, latitude, and depth, we show that higher seawater temperatures universally favor slower-growing taxa, in agreement with theoretical predictions of how temperature-dependent growth rates differentially modulate the impact of mortality on species abundances. Changes in bacterial community structure promoted by temperature are independent of variations in nutrients along spatial and temporal gradients. Our results help explain why slow growers dominate at the ocean surface, during summer, and near the tropics and provide a framework to understand how bacterial communities will change in a warmer world.
Collapse
Affiliation(s)
- Clare I Abreu
- Physics of Living Systems, Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Martina Dal Bello
- Physics of Living Systems, Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Carina Bunse
- Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Jarone Pinhassi
- Centre for Ecology and Evolution of Microbial Model Systems, Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - Jeff Gore
- Physics of Living Systems, Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
11
|
Deutschmann IM, Krabberød AK, Latorre F, Delage E, Marrasé C, Balagué V, Gasol JM, Massana R, Eveillard D, Chaffron S, Logares R. Disentangling temporal associations in marine microbial networks. MICROBIOME 2023; 11:83. [PMID: 37081491 PMCID: PMC10120119 DOI: 10.1186/s40168-023-01523-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 03/19/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND Microbial interactions are fundamental for Earth's ecosystem functioning and biogeochemical cycling. Nevertheless, they are challenging to identify and remain barely known. Omics-based censuses are helpful in predicting microbial interactions through the statistical inference of single (static) association networks. Yet, microbial interactions are dynamic and we have limited knowledge of how they change over time. Here, we investigate the dynamics of microbial associations in a 10-year marine time series in the Mediterranean Sea using an approach inferring a time-resolved (temporal) network from a single static network. RESULTS A single static network including microbial eukaryotes and bacteria was built using metabarcoding data derived from 120 monthly samples. For the decade, we aimed to identify persistent, seasonal, and temporary microbial associations by determining a temporal network that captures the interactome of each individual sample. We found that the temporal network appears to follow an annual cycle, collapsing, and reassembling when transiting between colder and warmer waters. We observed higher association repeatability in colder than in warmer months. Only 16 associations could be validated using observations reported in literature, underlining our knowledge gap in marine microbial ecological interactions. CONCLUSIONS Our results indicate that marine microbial associations follow recurrent temporal dynamics in temperate zones, which need to be accounted for to better understand the functioning of the ocean microbiome. The constructed marine temporal network may serve as a resource for testing season-specific microbial interaction hypotheses. The applied approach can be transferred to microbiome studies in other ecosystems. Video Abstract.
Collapse
Affiliation(s)
- Ina Maria Deutschmann
- Institute of Marine Sciences (ICM), CSIC, Passeig Marítim de La Barceloneta, 37-49, 08003, Barcelona, Spain.
| | - Anders K Krabberød
- Department of Biosciences/Section for Genetics and Evolutionary Biology (EVOGENE), University of Oslo, p.b. 1066 Blindern, N-0316, Oslo, Norway
| | - Francisco Latorre
- Institute of Marine Sciences (ICM), CSIC, Passeig Marítim de La Barceloneta, 37-49, 08003, Barcelona, Spain
| | - Erwan Delage
- Nantes Université, École Centrale Nantes, CNRS, LS2N, UMR 6004, F-44000, Nantes, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, F-75016, Paris, France
| | - Cèlia Marrasé
- Institute of Marine Sciences (ICM), CSIC, Passeig Marítim de La Barceloneta, 37-49, 08003, Barcelona, Spain
| | - Vanessa Balagué
- Institute of Marine Sciences (ICM), CSIC, Passeig Marítim de La Barceloneta, 37-49, 08003, Barcelona, Spain
| | - Josep M Gasol
- Institute of Marine Sciences (ICM), CSIC, Passeig Marítim de La Barceloneta, 37-49, 08003, Barcelona, Spain
| | - Ramon Massana
- Institute of Marine Sciences (ICM), CSIC, Passeig Marítim de La Barceloneta, 37-49, 08003, Barcelona, Spain
| | - Damien Eveillard
- Nantes Université, École Centrale Nantes, CNRS, LS2N, UMR 6004, F-44000, Nantes, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, F-75016, Paris, France
| | - Samuel Chaffron
- Nantes Université, École Centrale Nantes, CNRS, LS2N, UMR 6004, F-44000, Nantes, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, F-75016, Paris, France
| | - Ramiro Logares
- Institute of Marine Sciences (ICM), CSIC, Passeig Marítim de La Barceloneta, 37-49, 08003, Barcelona, Spain.
| |
Collapse
|
12
|
Barak N, Fadeev E, Brekhman V, Aharonovich D, Lotan T, Sher D. Selecting 16S rRNA Primers for Microbiome Analysis in a Host-Microbe System: The Case of the Jellyfish Rhopilema nomadica. Microorganisms 2023; 11:microorganisms11040955. [PMID: 37110378 PMCID: PMC10144005 DOI: 10.3390/microorganisms11040955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/30/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023] Open
Abstract
Amplicon sequencing of the 16S rRNA gene is extensively used to characterize bacterial communities, including those living in association with eukaryotic hosts. Deciding which region of the 16S rRNA gene to analyze and selecting the appropriate PCR primers remains a major decision when initiating any new microbiome study. Based on a detailed literature survey of studies focusing on cnidarian microbiomes, we compared three commonly used primers targeting different hypervariable regions of the 16S rRNA gene, V1V2, V3V4, and V4V5, using the jellyfish Rhopilema nomadica as a model. Although all primers exhibit a similar pattern in bacterial community composition, the performance of the V3V4 primer set was superior to V1V2 and V4V5. The V1V2 primers misclassified bacteria from the Bacilli class and exhibited low classification resolution for Rickettsiales, which represent the second most abundant 16S rRNA gene sequence in all the primers. The V4V5 primer set detected almost the same community composition as the V3V4, but the ability of these primers to also amplify the eukaryotic 18S rRNA gene may hinder bacterial community observations. However, after overcoming the challenges possessed by each one of those primers, we found that all three of them show very similar bacterial community dynamics and compositions. Nevertheless, based on our results, we propose that the V3V4 primer set is potentially the most suitable for studying jellyfish-associated bacterial communities. Our results suggest that, at least for jellyfish samples, it may be feasible to directly compare microbial community estimates from different studies, each using different primers but otherwise similar experimental protocols. More generally, we recommend specifically testing different primers for each new organism or system as a prelude to large-scale 16S rRNA gene amplicon analyses, especially of previously unstudied host-microbe associations.
Collapse
Affiliation(s)
- Noga Barak
- Marine Biology Department, The Leon H. Charney School of Marine Sciences, University of Haifa, Haifa 3498838, Israel
| | - Eduard Fadeev
- Department of Functional and Evolutionary Ecology, University of Vienna, 1030 Vienna, Austria
| | - Vera Brekhman
- Marine Biology Department, The Leon H. Charney School of Marine Sciences, University of Haifa, Haifa 3498838, Israel
| | - Dikla Aharonovich
- Marine Biology Department, The Leon H. Charney School of Marine Sciences, University of Haifa, Haifa 3498838, Israel
| | - Tamar Lotan
- Marine Biology Department, The Leon H. Charney School of Marine Sciences, University of Haifa, Haifa 3498838, Israel
| | - Daniel Sher
- Marine Biology Department, The Leon H. Charney School of Marine Sciences, University of Haifa, Haifa 3498838, Israel
| |
Collapse
|
13
|
Parada AE, Mayali X, Weber PK, Wollard J, Santoro AE, Fuhrman JA, Pett-Ridge J, Dekas AE. Constraining the composition and quantity of organic matter used by abundant marine Thaumarchaeota. Environ Microbiol 2023; 25:689-704. [PMID: 36478085 DOI: 10.1111/1462-2920.16299] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/27/2022] [Indexed: 12/12/2022]
Abstract
Marine Group I (MGI) Thaumarchaeota were originally described as chemoautotrophic nitrifiers, but molecular and isotopic evidence suggests heterotrophic and/or mixotrophic capabilities. Here, we investigated the quantity and composition of organic matter assimilated by individual, uncultured MGI cells from the Pacific Ocean to constrain their potential for mixotrophy and heterotrophy. We observed that most MGI cells did not assimilate carbon from any organic substrate provided (glucose, pyruvate, oxaloacetate, protein, urea, and amino acids). The minority of MGI cells that did assimilate it did so exclusively from nitrogenous substrates (urea, 15% of MGI and amino acids, 36% of MGI), and only as an auxiliary carbon source (<20% of that subset's total cellular carbon was derived from those substrates). At the population level, MGI assimilation of organic carbon comprised just 0.5%-11% of total biomass carbon. We observed extensive assimilation of inorganic carbon and urea- and amino acid-derived nitrogen (equal to that from ammonium), consistent with metagenomic and metatranscriptomic analyses performed here and previously showing a widespread potential for MGI to perform autotrophy and transport and degrade organic nitrogen. Our results constrain the quantity and composition of organic matter used by MGI and suggest they use it primarily to meet nitrogen demands for anabolism and nitrification.
Collapse
Affiliation(s)
- Alma E Parada
- Department of Earth System Science, Stanford University, Stanford, California, USA
| | - Xavier Mayali
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California, USA
| | - Peter K Weber
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California, USA
| | - Jessica Wollard
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California, USA
| | - Alyson E Santoro
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, California, USA
| | - Jed A Fuhrman
- Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| | - Jennifer Pett-Ridge
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California, USA
| | - Anne E Dekas
- Department of Earth System Science, Stanford University, Stanford, California, USA
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California, USA
| |
Collapse
|
14
|
Jameson BD, Murdock SA, Ji Q, Stevens CJ, Grundle DS, Kim Juniper S. Network analysis of 16S rRNA sequences suggests microbial keystone taxa contribute to marine N 2O cycling. Commun Biol 2023; 6:212. [PMID: 36823449 PMCID: PMC9950131 DOI: 10.1038/s42003-023-04597-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 02/15/2023] [Indexed: 02/25/2023] Open
Abstract
The mechanisms by which large-scale microbial community function emerges from complex ecological interactions between individual taxa and functional groups remain obscure. We leveraged network analyses of 16S rRNA amplicon sequences obtained over a seven-month timeseries in seasonally anoxic Saanich Inlet (Vancouver Island, Canada) to investigate relationships between microbial community structure and water column N2O cycling. Taxa separately broadly into three discrete subnetworks with contrasting environmental distributions. Oxycline subnetworks were structured around keystone aerobic heterotrophs that correlated with nitrification rates and N2O supersaturations, linking N2O production and accumulation to taxa involved in organic matter remineralization. Keystone taxa implicated in anaerobic carbon, nitrogen, and sulfur cycling in anoxic environments clustered together in a low-oxygen subnetwork that correlated positively with nitrification N2O yields and N2O production from denitrification. Close coupling between N2O producers and consumers in the anoxic basin is indicated by strong correlations between the low-oxygen subnetwork, PICRUSt2-predicted nitrous oxide reductase (nosZ) gene abundances, and N2O undersaturation. This study implicates keystone taxa affiliated with common ODZ groups as a potential control on water column N2O cycling and provides a theoretical basis for further investigations into marine microbial interaction networks.
Collapse
Affiliation(s)
- Brett D Jameson
- School of Earth & Ocean Sciences, University of Victoria, P.O. Box 1700 Station CSC, Victoria, BC, V8W 2Y2, Canada.
| | - Sheryl A Murdock
- Department of Biology, University of Victoria, P.O. Box 1700 CSC, Victoria, BC, V8W 2Y2, Canada
- Bermuda Institute of Ocean Sciences, 17 Biological Station, St. George's, GE01, Bermuda
| | - Qixing Ji
- Bermuda Institute of Ocean Sciences, 17 Biological Station, St. George's, GE01, Bermuda
- Thrust of Earth, Ocean & Atmospheric Sciences, Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangzhou, Guangdong, 511400, China
| | - Catherine J Stevens
- School of Earth & Ocean Sciences, University of Victoria, P.O. Box 1700 Station CSC, Victoria, BC, V8W 2Y2, Canada
| | - Damian S Grundle
- Bermuda Institute of Ocean Sciences, 17 Biological Station, St. George's, GE01, Bermuda
- School of Ocean Futures & School of Earth & Space Exploration, Arizona State University, Tempe, AZ, 85287-7904, USA
| | - S Kim Juniper
- School of Earth & Ocean Sciences, University of Victoria, P.O. Box 1700 Station CSC, Victoria, BC, V8W 2Y2, Canada
- Department of Biology, University of Victoria, P.O. Box 1700 CSC, Victoria, BC, V8W 2Y2, Canada
- Ocean Networks Canada, 2474 Arbutus Road, Victoria, BC, V8N 1V8, Canada
| |
Collapse
|
15
|
Lu Y, Lv Y, Zhang Y, Liu Q, Xu X, Xiao X, Xu J. Metatranscriptomes reveal the diverse responses of Thaumarchaeota ecotypes to environmental variations in the northern slope of the South China Sea. Environ Microbiol 2023; 25:410-427. [PMID: 36448268 DOI: 10.1111/1462-2920.16289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 11/25/2022] [Indexed: 12/02/2022]
Abstract
Thaumarchaeota are among the most abundant prokaryotes in the ocean, playing important roles in carbon and nitrogen cycling. Marine Thaumarchaeota ecotypes exhibit depth-related diversification and seasonal changes. However, transcriptomic activities concerning niche partitioning among thaumarchaeal ecotypes remain unclear. Here, we examined the variations in the distribution and transcriptomic activity of marine Thaumarchaeota ecotypes. Three primary ecotypes were identified: a Nitrosopumilus-like clade; a Nitrosopelagicus-like water column A (WCA) clade, thriving in epipelagic water; and a water column B (WCB) clade, dominant in deep water. Depth-related partitioning of the three ecotypes and the seasonal variability of the WCA and WCB ecotypes were observed. Nutrient concentrations, chlorophyll α and salinity were the primary environmental factors. The relative abundance of the WCA ecotype and its transcript abundance of amoA gene were positively correlated with chlorophyll α and salinity, while the WCB ecotype was positively correlated with nitrate and phosphate. Based on high-quality metagenome-assembled genomes, transcriptomic analysis revealed that the three ecotypes exhibited various co-occurring expression patterns of the elemental cycling genes in the nitrogen, carbon, phosphorus, and sulfur cycles. Our results provide transcriptomic evidence of the niche differentiation of marine Thaumarchaeota ecotypes, highlighting the diverse roles of ecotypes and WCA subclades in biogeochemical cycles.
Collapse
Affiliation(s)
- Ye Lu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, China
| | - Yongxin Lv
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, China
| | - Yu Zhang
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, China
| | - Qian Liu
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
| | - Xuewei Xu
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
| | - Xiang Xiao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Jun Xu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
16
|
Herndl GJ, Bayer B, Baltar F, Reinthaler T. Prokaryotic Life in the Deep Ocean's Water Column. ANNUAL REVIEW OF MARINE SCIENCE 2023; 15:461-483. [PMID: 35834811 DOI: 10.1146/annurev-marine-032122-115655] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The oceanic waters below a depth of 200 m represent, in terms of volume, the largest habitat of the biosphere, harboring approximately 70% of the prokaryotic biomass in the oceanic water column. These waters are characterized by low temperature, increasing hydrostatic pressure, and decreasing organic matter supply with depth. Recent methodological advances in microbial oceanography have refined our view of the ecology of prokaryotes in the dark ocean. Here, we review the ecology of prokaryotes of the dark ocean, present data on the biomass distribution and heterotrophic and chemolithoautotrophic prokaryotic production in the major oceanic basins, and highlight the phylogenetic and functional diversity of this part of the ocean. We describe the connectivity of surface and deep-water prokaryotes and the molecular adaptations of piezophilic prokaryotes to high hydrostatic pressure. We also highlight knowledge gaps in the ecology of the dark ocean's prokaryotes and their role in the biogeochemical cycles in the largest habitat of the biosphere.
Collapse
Affiliation(s)
- Gerhard J Herndl
- Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria;
- Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research (NIOZ), Utrecht University, Den Burg, The Netherlands
| | - Barbara Bayer
- Department of Microbiology and Ecosystem Science, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Federico Baltar
- Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria;
| | - Thomas Reinthaler
- Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria;
| |
Collapse
|
17
|
Puigcorbé V, Ruiz-González C, Masqué P, Gasol JM. Impact of particle flux on the vertical distribution and diversity of size-fractionated prokaryotic communities in two East Antarctic polynyas. Front Microbiol 2023; 14:1078469. [PMID: 36910225 PMCID: PMC9995690 DOI: 10.3389/fmicb.2023.1078469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/27/2023] [Indexed: 02/25/2023] Open
Abstract
Antarctic polynyas are highly productive open water areas surrounded by ice where extensive phytoplankton blooms occur, but little is known about how these surface blooms influence carbon fluxes and prokaryotic communities from deeper waters. By sequencing the 16S rRNA gene, we explored the vertical connectivity of the prokaryotic assemblages associated with particles of three different sizes in two polynyas with different surface productivity, and we linked it to the magnitude of the particle export fluxes measured using thorium-234 (234Th) as particle tracer. Between the sunlit and the mesopelagic layers (700 m depth), we observed compositional changes in the prokaryotic communities associated with the three size-fractions, which were mostly dominated by Flavobacteriia, Alphaproteobacteria, and Gammaproteobacteria. Interestingly, the vertical differences between bacterial communities attached to the largest particles decreased with increasing 234Th export fluxes, indicating a more intense downward transport of surface prokaryotes in the most productive polynya. This was accompanied by a higher proportion of surface prokaryotic taxa detected in deep particle-attached microbial communities in the station with the highest 234Th export flux. Our results support recent studies evidencing links between surface productivity and deep prokaryotic communities and provide the first evidence of sinking particles acting as vectors of microbial diversity to depth in Antarctic polynyas, highlighting the direct influence of particle export in shaping the prokaryotic communities of mesopelagic waters.
Collapse
Affiliation(s)
- Viena Puigcorbé
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (ICM-CSIC), Barcelona, Catalunya, Spain.,Centre for Marine Ecosystems Research, School of Science, Edith Cowan University, Joondalup, WA, Australia
| | - Clara Ruiz-González
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (ICM-CSIC), Barcelona, Catalunya, Spain
| | - Pere Masqué
- Centre for Marine Ecosystems Research, School of Science, Edith Cowan University, Joondalup, WA, Australia.,International Atomic Energy Agency, City of Monaco, Monaco
| | - Josep M Gasol
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (ICM-CSIC), Barcelona, Catalunya, Spain
| |
Collapse
|
18
|
Garate L, Alonso‐Sáez L, Revilla M, Logares R, Lanzén A. Shared and contrasting associations in the dynamic nano- and picoplankton communities of two close but contrasting sites from the Bay of Biscay. Environ Microbiol 2022; 24:6052-6070. [PMID: 36054533 PMCID: PMC10087561 DOI: 10.1111/1462-2920.16153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/30/2022] [Indexed: 01/12/2023]
Abstract
Pico- and nanoplankton are key players in the marine ecosystems due to their implication in the biogeochemical cycles, nutrient recycling and the pelagic food webs. However, the specific dynamics and niches of most bacterial, archaeal and eukaryotic plankton remain unknown, as well as the interactions between them. Better characterization of these is critical for understanding and predicting ecosystem functioning under anthropogenic pressures. We used environmental DNA metabarcoding across a 6-year time series to explore the structure and seasonality of pico- and nanoplankton communities in two sites of the Bay of Biscay, one coastal and one offshore, and construct association networks to reveal potential keystone and connector taxa. Temporal trends in alpha diversity were similar between the two sites, and concurrent communities more similar than within the same site at different times. However, we found differences between the network topologies of the two sites, with both shared and site-specific keystones and connectors. For example, Micromonas, with lower abundance in the offshore site is a keystone here, indicating a stronger effect of associations such as resource competition. This study provides an example of how time series and association network analysis can reveal how similar communities may function differently despite being geographically close.
Collapse
Affiliation(s)
- Leire Garate
- AZTI, Marine ResearchBasque Research and Technology Alliance (BRTA)PasaiaSpain
| | - Laura Alonso‐Sáez
- AZTI, Marine ResearchBasque Research and Technology Alliance (BRTA)PasaiaSpain
| | - Marta Revilla
- AZTI, Marine ResearchBasque Research and Technology Alliance (BRTA)PasaiaSpain
| | - Ramiro Logares
- Institute of Marine Sciences (ICM)CSICBarcelonaCataloniaSpain
| | - Anders Lanzén
- AZTI, Marine ResearchBasque Research and Technology Alliance (BRTA)PasaiaSpain
- IKERBASQUEBasque Foundation for ScienceBilbaoBizkaiaSpain
| |
Collapse
|
19
|
Zhu D, Sethupathy S, Gao L, Nawaz MZ, Zhang W, Jiang J, Sun J. Microbial diversity and community structure in deep-sea sediments of South Indian Ocean. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:45793-45807. [PMID: 35152353 DOI: 10.1007/s11356-022-19157-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 02/05/2022] [Indexed: 06/14/2023]
Abstract
Microbial communities composed of bacteria, archaea and fungi play a pivotal role in driving the biogeochemical cycles in the marine ecosystem. Despite the vastness of the South Indian Ocean, only a few studies reported the simultaneous analysis of bacterial, archaeal and fungal diversity therein, particularly archaeal and fungal communities in deep-sea environments received less attention previously. In this study, microbial diversity, community composition and dynamics in microbial community structure in eight deep-sea sediment samples collected from different sites at varying depths of the South Indian Ocean were explored using Next-Generation Sequencing. In total, 21 bacterial phyla representing 541 OTUs were identified from the eight samples, where phylum Proteobacteria was found as the most abundant bacterial phylum in five out of eight samples. Firmicutes and Chloroflexi were the dominant phyla in the rest of the three samples. In the case of archaea, uncultured species belonging to the phyla Thaumarchaeota and Euryarchaeota were the abundant taxa in all the samples. Similarly, Ascomycota and Basidiomycota were the most abundant fungal phyla present therein. In all the eight samples studied here, about 10-58% and 19-26% OTUs in archaeal and fungal communities were mapped to unclassified taxa respectively, suggesting the lack of representation in databases. Co-occurrence network analysis further revealed that bacterial communities tend to be more dynamic than archaeal and fungal communities. This study provides interesting insights into the microbial diversity, community composition and dynamics in microbial community structure in the deep-sea sediments of the South Indian Ocean.
Collapse
Affiliation(s)
- Daochen Zhu
- School of the Environment and Safety Engineering, Biofuels Institute, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| | - Sivasamy Sethupathy
- School of the Environment and Safety Engineering, Biofuels Institute, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Lu Gao
- School of the Environment and Safety Engineering, Biofuels Institute, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Muhammad Zohaib Nawaz
- School of the Environment and Safety Engineering, Biofuels Institute, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Weimin Zhang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Jianxiong Jiang
- School of the Environment and Safety Engineering, Biofuels Institute, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Jianzhong Sun
- School of the Environment and Safety Engineering, Biofuels Institute, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| |
Collapse
|
20
|
Noell SE, Baptista MS, Smith E, McDonald IR, Lee CK, Stott MB, Amend JP, Cary SC. Unique Geothermal Chemistry Shapes Microbial Communities on Mt. Erebus, Antarctica. Front Microbiol 2022; 13:836943. [PMID: 35591982 PMCID: PMC9111169 DOI: 10.3389/fmicb.2022.836943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 04/18/2022] [Indexed: 11/13/2022] Open
Abstract
Mt. Erebus, Antarctica, is the world's southernmost active volcano and is unique in its isolation from other major active volcanic systems and its distinctive geothermal systems. Using 16S rRNA gene amplicon sequencing and physicochemical analyses, we compared samples collected at two contrasting high-temperature (50°C-65°C) sites on Mt. Erebus: Tramway Ridge, a weather-protected high biomass site, and Western Crater, an extremely exposed low biomass site. Samples were collected along three thermal gradients, one from Western Crater and two within Tramway Ridge, which allowed an examination of the heterogeneity present at Tramway Ridge. We found distinct soil compositions between the two sites, and to a lesser extent within Tramway Ridge, correlated with disparate microbial communities. Notably, pH, not temperature, showed the strongest correlation with these differences. The abundance profiles of several microbial groups were different between the two sites; class Nitrososphaeria amplicon sequence variants (ASVs) dominated the community profiles at Tramway Ridge, whereas Acidobacteriotal ASVs were only found at Western Crater. A co-occurrence network, paired with physicochemical analyses, allowed for finer scale analysis of parameters correlated with differential abundance profiles, with various parameters (total carbon, total nitrogen, soil moisture, soil conductivity, sulfur, phosphorous, and iron) showing significant correlations. ASVs assigned to Chloroflexi classes Ktedonobacteria and Chloroflexia were detected at both sites. Based on the known metabolic capabilities of previously studied members of these groups, we predict that chemolithotrophy is a common strategy in this system. These analyses highlight the importance of conducting broader-scale metagenomics and cultivation efforts at Mt. Erebus to better understand this unique environment.
Collapse
Affiliation(s)
- Stephen E Noell
- Te Aka Mātuatua-School of Science, Te Whare Wānanga o Waikato-University of Waikato, Hamilton, New Zealand.,International Centre for Terrestrial Antarctic Research, University of Waikato, Hamilton, New Zealand
| | - Mafalda S Baptista
- International Centre for Terrestrial Antarctic Research, University of Waikato, Hamilton, New Zealand.,Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Matosinhos, Portugal.,Faculty of Sciences, University of Porto, Porto, Portugal
| | - Emily Smith
- Te Aka Mātuatua-School of Science, Te Whare Wānanga o Waikato-University of Waikato, Hamilton, New Zealand.,International Centre for Terrestrial Antarctic Research, University of Waikato, Hamilton, New Zealand
| | - Ian R McDonald
- Te Aka Mātuatua-School of Science, Te Whare Wānanga o Waikato-University of Waikato, Hamilton, New Zealand.,International Centre for Terrestrial Antarctic Research, University of Waikato, Hamilton, New Zealand
| | - Charles K Lee
- Te Aka Mātuatua-School of Science, Te Whare Wānanga o Waikato-University of Waikato, Hamilton, New Zealand.,International Centre for Terrestrial Antarctic Research, University of Waikato, Hamilton, New Zealand
| | - Matthew B Stott
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Jan P Amend
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, United States.,Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States
| | - S Craig Cary
- Te Aka Mātuatua-School of Science, Te Whare Wānanga o Waikato-University of Waikato, Hamilton, New Zealand.,International Centre for Terrestrial Antarctic Research, University of Waikato, Hamilton, New Zealand
| |
Collapse
|
21
|
Yeh YC, Fuhrman JA. Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME COMMUNICATIONS 2022; 2:36. [PMID: 37938286 PMCID: PMC9723720 DOI: 10.1038/s43705-022-00121-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 06/18/2023]
Abstract
Community dynamics are central in microbial ecology, yet we lack studies comparing diversity patterns among marine protists and prokaryotes over depth and multiple years. Here, we characterized microbes at the San-Pedro Ocean Time series (2005-2018), using SSU rRNA gene sequencing from two size fractions (0.2-1 and 1-80 μm), with a universal primer set that amplifies from both prokaryotes and eukaryotes, allowing direct comparisons of diversity patterns in a single set of analyses. The 16S + 18S rRNA gene composition in the small size fraction was mostly prokaryotic (>92%) as expected, but the large size fraction unexpectedly contained 46-93% prokaryotic 16S rRNA genes. Prokaryotes and protists showed opposite vertical diversity patterns; prokaryotic diversity peaked at mid-depth, protistan diversity at the surface. Temporal beta-diversity patterns indicated prokaryote communities were much more stable than protists. Although the prokaryotic communities changed monthly, the average community stayed remarkably steady over 14 years, showing high resilience. Additionally, particle-associated prokaryotes were more diverse than smaller free-living ones, especially at deeper depths, contributed unexpectedly by abundant and diverse SAR11 clade II. Eukaryotic diversity was strongly correlated with the diversity of particle-associated prokaryotes but not free-living ones, reflecting that physical associations result in the strongest interactions, including symbioses, parasitism, and decomposer relationships.
Collapse
Affiliation(s)
- Yi-Chun Yeh
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089-0371, USA
| | - Jed A Fuhrman
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089-0371, USA.
| |
Collapse
|
22
|
Sun X, Zhao J, Zhou X, Bei Q, Xia W, Zhao B, Zhang J, Jia Z. Salt tolerance-based niche differentiation of soil ammonia oxidizers. THE ISME JOURNAL 2022; 16:412-422. [PMID: 34389794 PMCID: PMC8776802 DOI: 10.1038/s41396-021-01079-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 07/20/2021] [Accepted: 07/26/2021] [Indexed: 02/03/2023]
Abstract
Ammonia oxidizers are key players in the global nitrogen cycle, yet little is known about their ecological performances and adaptation strategies for growth in saline terrestrial ecosystems. This study combined 13C-DNA stable-isotope probing (SIP) microcosms with amplicon and shotgun sequencing to reveal the composition and genomic adaptations of active ammonia oxidizers in a saline-sodic (solonetz) soil with high salinity and pH (20.9 cmolc exchangeable Na+ kg-1 soil and pH 9.64). Both ammonia-oxidizing archaea (AOA) and bacteria (AOB) exhibited strong nitrification activities, although AOB performed most of the ammonia oxidation observed in the solonetz soil and in the farmland soil converted from solonetz soil. Members of the Nitrosococcus, which are more often associated with aquatic habitats, were identified as the dominant ammonia oxidizers in the solonetz soil with the first direct labeling evidence, while members of the Nitrosospira were the dominant ammonia oxidizers in the farmland soil, which had much lower salinity and pH. Metagenomic analysis of "Candidatus Nitrosococcus sp. Sol14", a new species within the Nitrosococcus lineage, revealed multiple genomic adaptations predicted to facilitate osmotic and pH homeostasis in this extreme habitat, including direct Na+ extrusion/H+ import and the ability to increase intracellular osmotic pressure by accumulating compatible solutes. Comparative genomic analysis revealed that variation in salt-tolerance mechanisms was the primary driver for the niche differentiation of ammonia oxidizers in saline-sodic soils. These results demonstrate how ammonia oxidizers can adapt to saline-sodic soil with excessive Na+ content and provide new insights on the nitrogen cycle in extreme terrestrial ecosystems.
Collapse
Affiliation(s)
- Xiangxin Sun
- grid.9227.e0000000119573309State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, Jiangsu Province China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China
| | - Jun Zhao
- grid.15276.370000 0004 1936 8091Institute for Food and Agricultural Sciences (IFAS), Department of Microbiology & Cell Science, Fort Lauderdale Research and Education Center, University of Florida, Davie, FL USA
| | - Xue Zhou
- grid.257065.30000 0004 1760 3465College of Agricultural Science and Engineering, Hohai University, Nanjing, Jiangsu Province China
| | - Qicheng Bei
- grid.419554.80000 0004 0491 8361Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Weiwei Xia
- grid.260478.f0000 0000 9249 2313College of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, Jiangsu Province China
| | - Bingzi Zhao
- grid.9227.e0000000119573309State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, Jiangsu Province China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China
| | - Jiabao Zhang
- grid.9227.e0000000119573309State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, Jiangsu Province China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China
| | - Zhongjun Jia
- grid.9227.e0000000119573309State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, Jiangsu Province China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
23
|
Sow SLS, Brown MV, Clarke LJ, Bissett A, van de Kamp J, Trull TW, Raes EJ, Seymour JR, Bramucci AR, Ostrowski M, Boyd PW, Deagle BE, Pardo PC, Sloyan BM, Bodrossy L. Biogeography of Southern Ocean prokaryotes: a comparison of the Indian and Pacific sectors. Environ Microbiol 2022; 24:2449-2466. [PMID: 35049099 PMCID: PMC9303206 DOI: 10.1111/1462-2920.15906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 01/13/2022] [Indexed: 11/27/2022]
Abstract
We investigated the Southern Ocean (SO) prokaryote community structure via zero‐radius operational taxonomic unit (zOTU) libraries generated from 16S rRNA gene sequencing of 223 full water column profiles. Samples reveal the prokaryote diversity trend between discrete water masses across multiple depths and latitudes in Indian (71–99°E, summer) and Pacific (170–174°W, autumn‐winter) sectors of the SO. At higher taxonomic levels (phylum‐family) we observed water masses to harbour distinct communities across both sectors, but observed sectorial variations at lower taxonomic levels (genus‐zOTU) and relative abundance shifts for key taxa such as Flavobacteria, SAR324/Marinimicrobia, Nitrosopumilus and Nitrosopelagicus at both epi‐ and bathy‐abyssopelagic water masses. Common surface bacteria were abundant in several deep‐water masses and vice‐versa suggesting connectivity between surface and deep‐water microbial assemblages. Bacteria from same‐sector Antarctic Bottom Water samples showed patchy, high beta‐diversity which did not correlate well with measured environmental parameters or geographical distance. Unconventional depth distribution patterns were observed for key archaeal groups: Crenarchaeota was found across all depths in the water column and persistent high relative abundances of common epipelagic archaeon Nitrosopelagicus was observed in deep‐water masses. Our findings reveal substantial regional variability of SO prokaryote assemblages that we argue should be considered in wide‐scale SO ecosystem microbial modelling.
Collapse
Affiliation(s)
- Swan L S Sow
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, 7000, Australia.,Oceans and Atmosphere, Commonwealth Scientific and Industrial Research Organisation, Hobart, Tasmania, 7000, Australia
| | - Mark V Brown
- School of Environmental and Life Sciences, University of Newcastle, New South Wales, 2308, Australia
| | - Laurence J Clarke
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, 7000, Australia.,Australian Antarctic Division, Channel Highway, Kingston, Tasmania, 7050, Australia
| | - Andrew Bissett
- Oceans and Atmosphere, Commonwealth Scientific and Industrial Research Organisation, Hobart, Tasmania, 7000, Australia
| | - Jodie van de Kamp
- Oceans and Atmosphere, Commonwealth Scientific and Industrial Research Organisation, Hobart, Tasmania, 7000, Australia
| | - Thomas W Trull
- Oceans and Atmosphere, Commonwealth Scientific and Industrial Research Organisation, Hobart, Tasmania, 7000, Australia
| | - Eric J Raes
- Oceans and Atmosphere, Commonwealth Scientific and Industrial Research Organisation, Hobart, Tasmania, 7000, Australia
| | - Justin R Seymour
- Climate Change Cluster, University of Technology Sydney, New South Wales, 2007, Australia
| | - Anna R Bramucci
- Climate Change Cluster, University of Technology Sydney, New South Wales, 2007, Australia
| | - Martin Ostrowski
- Climate Change Cluster, University of Technology Sydney, New South Wales, 2007, Australia
| | - Philip W Boyd
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, 7000, Australia
| | - Bruce E Deagle
- Australian Antarctic Division, Channel Highway, Kingston, Tasmania, 7050, Australia.,National Collections & Marine Infrastructure, Commonwealth Scientific and Industrial Research Organisation, Hobart, Tasmania, 7000, Australia
| | - Paula C Pardo
- Oceans and Atmosphere, Commonwealth Scientific and Industrial Research Organisation, Hobart, Tasmania, 7000, Australia
| | - Bernadette M Sloyan
- Oceans and Atmosphere, Commonwealth Scientific and Industrial Research Organisation, Hobart, Tasmania, 7000, Australia
| | - Levente Bodrossy
- Oceans and Atmosphere, Commonwealth Scientific and Industrial Research Organisation, Hobart, Tasmania, 7000, Australia
| |
Collapse
|
24
|
Li F, Leu A, Poff K, Carlson LT, Ingalls AE, DeLong EF. Planktonic Archaeal Ether Lipid Origins in Surface Waters of the North Pacific Subtropical Gyre. Front Microbiol 2021; 12:610675. [PMID: 34589060 PMCID: PMC8473941 DOI: 10.3389/fmicb.2021.610675] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 08/23/2021] [Indexed: 01/04/2023] Open
Abstract
Thaumarchaeota and Thermoplasmatota are the most abundant planktonic archaea in the sea. Thaumarchaeota contain tetraether lipids as their major membrane lipids, but the lipid composition of uncultured planktonic Thermoplasmatota representatives remains unknown. To address this knowledge gap, we quantified archaeal cells and ether lipids in open ocean depth profiles (0–200 m) of the North Pacific Subtropical Gyre. Planktonic archaeal community structure and ether lipid composition in the water column partitioned into two separate clusters: one above the deep chlorophyll maximum, the other within and below it. In surface waters, Thermoplasmatota densities ranged from 2.11 × 106 to 6.02 × 106 cells/L, while Thaumarchaeota were undetectable. As previously reported for Thaumarchaeota, potential homologs of archaeal tetraether ring synthases were present in planktonic Thermoplasmatota metagenomes. Despite the absence of Thaumarchaeota in surface waters, measurable amounts of intact polar ether lipids were found there. Based on cell abundance estimates, these surface water archaeal ether lipids contributed only 1.21 × 10–9 ng lipid/Thermoplasmatota cell, about three orders of magnitude less than that reported for Thaumarchaeota cells. While these data indicate that even if some tetraether and diether lipids may be derived from Thermoplasmatota, they would only comprise a small fraction of Thermoplasmatota total biomass. Therefore, while both MGI Thaumarchaeota and MGII/III Thermoplasmatota are potential biological sources of archaeal GDGTs, the Thaumarchaeota appear to be the major contributors of archaeal tetraether lipids in planktonic marine habitats. These results extend and confirm previous reports of planktonic archaeal lipid sources, and further emphasize the need for Thermoplasmatota cultivation, to better characterize the membrane lipid constituents of marine planktonic Thermoplasmatota, and more precisely define the sources and patterns of archaeal tetraether lipid distributions in marine plankton.
Collapse
Affiliation(s)
- Fuyan Li
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, University of Hawai'i at Mânoa, Honolulu, HI, United States
| | - Andy Leu
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, University of Hawai'i at Mânoa, Honolulu, HI, United States
| | - Kirsten Poff
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, University of Hawai'i at Mânoa, Honolulu, HI, United States
| | - Laura T Carlson
- School of Oceanography, University of Washington, Seattle, WA, United States
| | - Anitra E Ingalls
- School of Oceanography, University of Washington, Seattle, WA, United States
| | - Edward F DeLong
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, University of Hawai'i at Mânoa, Honolulu, HI, United States
| |
Collapse
|
25
|
Mena C, Balbín R, Reglero P, Martín M, Santiago R, Sintes E. Dynamic prokaryotic communities in the dark western Mediterranean Sea. Sci Rep 2021; 11:17859. [PMID: 34504142 PMCID: PMC8429679 DOI: 10.1038/s41598-021-96992-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 08/17/2021] [Indexed: 02/07/2023] Open
Abstract
Dark ocean microbial dynamics are fundamental to understand ecosystem metabolism and ocean biogeochemical processes. Yet, the ecological response of deep ocean communities to environmental perturbations remains largely unknown. Temporal and spatial dynamics of the meso- and bathypelagic prokaryotic communities were assessed throughout a 2-year seasonal sampling across the western Mediterranean Sea. A common pattern of prokaryotic communities' depth stratification was observed across the different regions and throughout the seasons. However, sporadic and drastic alterations of the community composition and diversity occurred either at specific water masses or throughout the aphotic zone and at a basin scale. Environmental changes resulted in a major increase in the abundance of rare or low abundant phylotypes and a profound change of the community composition. Our study evidences the temporal dynamism of dark ocean prokaryotic communities, exhibiting long periods of stability but also drastic changes, with implications in community metabolism and carbon fluxes. Taken together, the results highlight the importance of monitoring the temporal patterns of dark ocean prokaryotic communities.
Collapse
Affiliation(s)
- Catalina Mena
- Instituto Español de Oceanografía, Centre Oceanogràfic de Les Balears, Ecosystem Oceanography Group (GRECO), Moll de Ponent s/n 07015, Palma, Spain.
- IFREMER - Centre Bretagne Z.I., Technopôle Brest-Iroise Pointe du Diable BP70, 29280Plouzané, France.
| | - Rosa Balbín
- Instituto Español de Oceanografía, Centre Oceanogràfic de Les Balears, Ecosystem Oceanography Group (GRECO), Moll de Ponent s/n 07015, Palma, Spain
| | - Patricia Reglero
- Instituto Español de Oceanografía, Centre Oceanogràfic de Les Balears, Ecosystem Oceanography Group (GRECO), Moll de Ponent s/n 07015, Palma, Spain
| | - Melissa Martín
- Instituto Español de Oceanografía, Centre Oceanogràfic de Les Balears, Ecosystem Oceanography Group (GRECO), Moll de Ponent s/n 07015, Palma, Spain
| | - Rocío Santiago
- Instituto Español de Oceanografía, Centre Oceanogràfic de Les Balears, Ecosystem Oceanography Group (GRECO), Moll de Ponent s/n 07015, Palma, Spain
| | - Eva Sintes
- Instituto Español de Oceanografía, Centre Oceanogràfic de Les Balears, Ecosystem Oceanography Group (GRECO), Moll de Ponent s/n 07015, Palma, Spain
| |
Collapse
|
26
|
Pereira O, Hochart C, Boeuf D, Auguet JC, Debroas D, Galand PE. Seasonality of archaeal proteorhodopsin and associated Marine Group IIb ecotypes (Ca. Poseidoniales) in the North Western Mediterranean Sea. THE ISME JOURNAL 2021; 15:1302-1316. [PMID: 33288859 PMCID: PMC8115670 DOI: 10.1038/s41396-020-00851-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 11/09/2020] [Accepted: 11/18/2020] [Indexed: 01/04/2023]
Abstract
The Archaea Marine Group II (MGII) is widespread in the world's ocean where it plays an important role in the carbon cycle. Despite recent discoveries on the group's metabolisms, the ecology of this newly proposed order (Candidatus Poseidoniales) remains poorly understood. Here we used a combination of time-series metagenome-assembled genomes (MAGs) and high-frequency 16S rRNA data from the NW Mediterranean Sea to test if the taxonomic diversity within the MGIIb family (Candidatus Thalassarchaeaceae) reflects the presence of different ecotypes. The MAGs' seasonality revealed a MGIIb family composed of different subclades that have distinct lifestyles and physiologies. The vitamin metabolisms were notably different between ecotypes with, in some, a possible link to sunlight's energy. Diverse archaeal proteorhodopsin variants, with unusual signature in key amino acid residues, had distinct seasonal patterns corresponding to changing day length. In addition, we show that in summer, archaea, as opposed to bacteria, disappeared completely from surface waters. Our results shed light on the diversity and the distribution of the euryarchaeotal proteorhodopsin, and highlight that MGIIb is a diverse ecological group. The work shows that time-series based studies of the taxonomy, seasonality, and metabolisms of marine prokaryotes is critical to uncover their diverse role in the ocean.
Collapse
Affiliation(s)
- Olivier Pereira
- Sorbonne Universités, CNRS, Laboratoire d'Ecogéochimie des Environnements Benthiques (LECOB), Observatoire Océanologique, Banyuls sur Mer, France
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Southern University of Science and Technology, Shenzhen, China
| | - Corentin Hochart
- Sorbonne Universités, CNRS, Laboratoire d'Ecogéochimie des Environnements Benthiques (LECOB), Observatoire Océanologique, Banyuls sur Mer, France
| | - Dominique Boeuf
- Daniel K. Inouye Center for Microbial Oceanography, Research and Education, School of Ocean and Earth Science and Technology, University of Hawai'i at Mānoa, Honolulu, HI, United States, Honolulu, HI, 96822, USA
| | - Jean Christophe Auguet
- MARBEC, Université de Montpellier, CNRS, Ifremer, IRD, Montpellier, France, Montpellier, France
| | - Didier Debroas
- Université Clermont Auvergne, CNRS, Laboratoire Microorganismes: Genome et Environnement, 63000, Clermont-Ferrand, France
| | - Pierre E Galand
- Sorbonne Universités, CNRS, Laboratoire d'Ecogéochimie des Environnements Benthiques (LECOB), Observatoire Océanologique, Banyuls sur Mer, France.
| |
Collapse
|
27
|
Lambert S, Lozano JC, Bouget FY, Galand PE. Seasonal marine microorganisms change neighbours under contrasting environmental conditions. Environ Microbiol 2021; 23:2592-2604. [PMID: 33760330 DOI: 10.1111/1462-2920.15482] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/12/2020] [Accepted: 03/23/2021] [Indexed: 01/04/2023]
Abstract
Marine picoplankton contribute to global carbon sequestration and nutrient recycling. These processes are directly related to the composition of communities, which in turn depends on microbial interactions and environmental forcing. Under regular seasonal cycles, marine communities show strong predictable patterns of annual re-occurrences, but little is known about the effect of environmental perturbation on their organization. The aim of our study was to investigate the co-occurrence patterns of planktonic picoeukaryote, bacteria and archaea under contrasting environmental conditions. The study was designed to have high sampling frequency that could match both the biological rhythm of marine microbes and the short time scale of extreme weather events. Our results show that microbial networks changed from year to year depending on conditions. In addition, individual taxa became less interconnected and changed neighbours, which revealed an unfaithful relationship between marine microorganisms. This unexpected pattern suggests possible switches between organisms that have similar specific functions, or hints at the presence of organisms that share similar environmental niches without interacting. Despite the observed annual changes, the time series showed re-occurring communities that appear to recover from perturbations. Changing co-occurrence patterns between marine microorganisms may allow the long-term stability of ecosystems exposed to contrasting meteorological events.
Collapse
Affiliation(s)
- Stefan Lambert
- Sorbonne Université, CNRS, Laboratoire d'Océanographie Microbienne (LOMIC), Observatoire Océanologique de Banyuls, Banyuls sur Mer, France
| | - Jean-Claude Lozano
- Sorbonne Université, CNRS, Laboratoire d'Océanographie Microbienne (LOMIC), Observatoire Océanologique de Banyuls, Banyuls sur Mer, France
| | - François-Yves Bouget
- Sorbonne Université, CNRS, Laboratoire d'Océanographie Microbienne (LOMIC), Observatoire Océanologique de Banyuls, Banyuls sur Mer, France
| | - Pierre E Galand
- Sorbonne Université, CNRS, Laboratoire d'Ecogéochimie des Environnements Benthiques (LECOB), Observatoire Océanologique de Banyuls, Banyuls sur Mer, France
| |
Collapse
|
28
|
Damashek J, Okotie-Oyekan AO, Gifford SM, Vorobev A, Moran MA, Hollibaugh JT. Transcriptional activity differentiates families of Marine Group II Euryarchaeota in the coastal ocean. ISME COMMUNICATIONS 2021; 1:5. [PMID: 37938231 PMCID: PMC9723583 DOI: 10.1038/s43705-021-00002-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/14/2021] [Accepted: 01/20/2021] [Indexed: 11/09/2023]
Abstract
Marine Group II Euryarchaeota (Candidatus Poseidoniales), abundant but yet-uncultivated members of marine microbial communities, are thought to be (photo)heterotrophs that metabolize dissolved organic matter (DOM), such as lipids and peptides. However, little is known about their transcriptional activity. We mapped reads from a metatranscriptomic time series collected at Sapelo Island (GA, USA) to metagenome-assembled genomes to determine the diversity of transcriptionally active Ca. Poseidoniales. Summer metatranscriptomes had the highest abundance of Ca. Poseidoniales transcripts, mostly from the O1 and O3 genera within Ca. Thalassarchaeaceae (MGIIb). In contrast, transcripts from fall and winter samples were predominantly from Ca. Poseidoniaceae (MGIIa). Genes encoding proteorhodopsin, membrane-bound pyrophosphatase, peptidase/proteases, and part of the ß-oxidation pathway were highly transcribed across abundant genera. Highly transcribed genes specific to Ca. Thalassarchaeaceae included xanthine/uracil permease and receptors for amino acid transporters. Enrichment of Ca. Thalassarchaeaceae transcript reads related to protein/peptide, nucleic acid, and amino acid transport and metabolism, as well as transcript depletion during dark incubations, provided further evidence of heterotrophic metabolism. Quantitative PCR analysis of South Atlantic Bight samples indicated consistently abundant Ca. Poseidoniales in nearshore and inshore waters. Together, our data suggest that Ca. Thalassarchaeaceae are important photoheterotrophs potentially linking DOM and nitrogen cycling in coastal waters.
Collapse
Affiliation(s)
- Julian Damashek
- Department of Marine Sciences, University of Georgia, Athens, GA, USA.
- Department of Biology, Utica College, Utica, NY, USA.
| | - Aimee Oyinlade Okotie-Oyekan
- Department of Marine Sciences, University of Georgia, Athens, GA, USA
- Environmental Studies Program, University of Oregon, Eugene, OR, USA
| | | | - Alexey Vorobev
- Department of Marine Sciences, University of Georgia, Athens, GA, USA
- INSERM U932, PSL University, Institut Curie, Paris, France
| | - Mary Ann Moran
- Department of Marine Sciences, University of Georgia, Athens, GA, USA
| | | |
Collapse
|
29
|
Biogeochemical Responses and Seasonal Dynamics of the Benthic Boundary Layer Microbial Communities during the El Niño 2015 in an Eastern Boundary Upwelling System. WATER 2021. [DOI: 10.3390/w13020180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The Eastern South Pacific coastal zone is characterized by seasonal and interannual variability, driven by upwelling and El Niño Southern Oscillation (ENSO), respectively. These oceanographical conditions influence microbial communities and their contribution to nutrient and greenhouse gases recycling, especially in bottom waters due to oxygenation. This article addresses the seasonal hydrographic and biogeochemical conditions in the water and sediments during El Niño 2015. Bottom water active microbial communities, including nitrifiers, were studied using amplicon sequencing of 16S rRNA (cDNA) and RT-qPCR, respectively. The results of the hydrographic analysis showed changes in the water column associated with the predominance of sub-Antarctic Waters characterized by warmed and low nutrients in the surface and more oxygenated conditions at the bottom in comparison with El Niño 2014. The organic matter quantity and quality decreased during fall and winter. The bottom water active microbial assemblages were dominated by archaea (Ca. Poseidoniales) and putative ammonia oxidizing archaea. Active bacteria affiliated to SAR11, Marinimicrobia and Nitrospina, and oxygen deficient realms (Desulfobacterales, SUP05 clade and anammox) suffered variations, possibly associated with oxygen and redox conditions in the benthic boundary layer. Nitrifying functional groups contributed significantly more during late fall and winter which was consistent with higher bottom water oxygenation. Relationships between apparent oxygen utilization nitrate and nitrous oxide in the water support the contribution of nitrification to this greenhouse gas distribution in the water. In general, our study suggests that seasonal oceanographic variability during an El Niño year influences the microbial community and thus remineralization potential, which supports the need to carry out longer time series to identify the relevance of seasonality under ENSO in Eastern Boundary Upwelling Systems (EBUS) areas.
Collapse
|
30
|
Hou D, Hong M, Wang K, Yan H, Wang Y, Dong P, Li D, Liu K, Zhou Z, Zhang D. Prokaryotic community succession and assembly on different types of microplastics in a mariculture cage. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115756. [PMID: 33162209 DOI: 10.1016/j.envpol.2020.115756] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/25/2020] [Accepted: 09/26/2020] [Indexed: 06/11/2023]
Abstract
Microplastics have emerged as a new anthropogenic substrate that can readily be colonized by microorganisms. Nevertheless, microbial community succession and assembly among different microplastics in nearshore mariculture cages remains poorly understood. Using an in situ incubation experiment, 16S rRNA gene amplicon sequencing, and the neutral model, we investigated the prokaryotic communities attached to polyethylene terephthalate (PET), polyethylene (PE), and polypropylene (PP) in a mariculture cage in Xiangshan Harbor, China. The α-diversities and compositions of microplastic-attached prokaryotic communities were significantly distinct from free-living and small particle-attached communities in the surrounding water but relatively similar to the large particle-attached communities. Although a distinct prokaryotic community was developed on each type of microplastic, the communities on PE and PP more closely resembled each other. Furthermore, the prokaryotic community dissimilarity among all media (microplastics and water fractions) tended to decrease over time. Hydrocarbon-degrading bacteria Alcanivorax preferentially colonized PE, and the genus Vibrio with opportunistically pathogenic members has the potential to colonize PET. Additionally, neutral processes dominated the prokaryotic community assembly on PE and PP, while selection was more responsible for the prokaryotic assembly on PET. The assembly of Planctomycetaceae and Thaumarchaeota Marine Group I taxa on three microplastics were mainly governed by selection and neutral processes, respectively. Our study provides further understanding of microplastic-associated microbial ecology in mariculture environments.
Collapse
Affiliation(s)
- Dandi Hou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Man Hong
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Kai Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; School of Marine Sciences, Ningbo University, Ningbo, 315211, China.
| | - Huizhen Yan
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Yanting Wang
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Pengsheng Dong
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Daoji Li
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200062, China
| | - Kai Liu
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200062, China
| | - Zhiqiang Zhou
- Xiangshan Fisheries Technology Extension Center, Ningbo, 315700, China
| | - Demin Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| |
Collapse
|
31
|
Seasonality in Spatial Turnover of Bacterioplankton Along an Ecological Gradient in the East China Sea: Biogeographic Patterns, Processes and Drivers. Microorganisms 2020; 8:microorganisms8101484. [PMID: 32992545 PMCID: PMC7600760 DOI: 10.3390/microorganisms8101484] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 09/18/2020] [Accepted: 09/18/2020] [Indexed: 11/16/2022] Open
Abstract
Seasonal succession in bacterioplankton is a common process in marine waters. However, seasonality in their spatial turnover is largely unknown. Here, we investigated spatial turnover of surface bacterioplankton along a nearshore-to-offshore gradient in the East China Sea across four seasons. Although seasonality overwhelmed spatial variability of bacterioplankton composition, we found significant spatial turnover of bacterioplankton along the gradient as well as overall seasonal consistency in biogeographic patterns (including distance-decay relationship and covariation of community composition with distance to shore) with subtle changes. Bacterioplankton assembly was consistently dominated by deterministic mechanisms across seasons, with changes in specific processes. We found overall seasonal consistency in abiotic factors (mainly salinity and nitrogen and phosphorus nutrients) shaping bacterioplankton composition, while phytoplankton showed a similar influence as abiotic factors only in spring. Although key taxa responsible for bacterioplankton spatial turnover showed certain season-specificity, seasonal switching between closely related taxa occurred within most dominant families. Moreover, many close relatives showed different responding patterns to the environmental gradients in different seasons, suggesting their differences in both seasonally climatic and spatially environmental preferences. Our results provide insights into seasonal consistency and variability in spatial turnover of bacterioplankton in terms of biogeographic patterns, ecological processes, and external and internal drivers.
Collapse
|
32
|
Dai J, Ye Q, Wu Y, Zhang M, Zhang J. Simulation of Enhanced Growth of Marine Group II Euryarchaeota From the Deep Chlorophyll Maximum of the Western Pacific Ocean: Implication for Upwelling Impact on Microbial Functions in the Photic Zone. Front Microbiol 2020; 11:571199. [PMID: 33013804 PMCID: PMC7516215 DOI: 10.3389/fmicb.2020.571199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 08/13/2020] [Indexed: 11/13/2022] Open
Abstract
Mesoscale eddies can have a strong impact on regional biogeochemistry and primary productivity. To investigate the effect of the upwelling of seawater by western Pacific eddies on the composition of the active planktonic marine archaeal community composition of the deep chlorophyll maximum (DCM) layer, mesoscale cold-core eddies were simulated in situ by mixing western Pacific DCM layer water with mesopelagic layer (400 m) water. Illumina sequencing of the 16S rRNA gene and 16S rRNA transcripts indicated that the specific heterotrophic Marine Group IIb (MGIIb) taxonomic group of the DCM layer was rapidly stimulated after receiving fresh substrate from 400 m water, which was dominated by uncultured autotrophic Marine Group I (MGI) archaea. Furthermore, niche differentiation of autotrophic ammonia-oxidizing archaea (MGI) was demonstrated by deep sequencing of 16S rRNA, amoA, and accA genes, respectively. Similar distribution patterns of active Marine Group III (MGIII) were observed in the DCM layer with or without vertical mixing, indicating that they are inclined to utilize the substrates already present in the DCM layer. These findings underscore the importance of mesoscale cyclonic eddies in stimulating microbial processes involved in the regional carbon cycle.
Collapse
Affiliation(s)
- Jinlong Dai
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, China
| | - Qi Ye
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, China
| | - Ying Wu
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, China
| | - Miao Zhang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, China
| | - Jing Zhang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, China
| |
Collapse
|
33
|
Sow SLS, Trull TW, Bodrossy L. Oceanographic Fronts Shape Phaeocystis Assemblages: A High-Resolution 18S rRNA Gene Survey From the Ice-Edge to the Equator of the South Pacific. Front Microbiol 2020; 11:1847. [PMID: 32849444 PMCID: PMC7424020 DOI: 10.3389/fmicb.2020.01847] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/15/2020] [Indexed: 01/01/2023] Open
Abstract
The cosmopolitan haptophyte Phaeocystis is recognized as a key contributor to marine biogeochemical cycling and important primary producer within polar marine environments. Yet, little is known about its solitary, non-colonial cell stages or its distribution during the colder, low-productivity seasons. We examined the biogeography of Phaeocystis along a high-resolution (0.5-degree latitudinal interval) transect from the Antarctic ice-edge to the equator of the South Pacific, in the austral autumn-winter. Using high-throughput 18S rRNA gene sequences with single nucleotide variable (zero-radius) operational taxonomic units (zOTUs) allowed us to explore the possibility of strain-level variation. From water samples within the upper water column, we show the presence of an abundant Phaeocystis assemblage that persisted during the colder months, contributing up to 9% of the microbial eukaryote community at high latitudes. The biogeography of Phaeocystis was strongly shaped by oceanographic boundaries, most prominently the polar and subantarctic fronts. Marked changes in dominant Phaeocystis antarctica zOTUs between different frontal zones support the concept that ecotypes may exist within the Phaeocystis assemblage. Our findings also show that the Phaeocystis assemblage did not abide by the classical latitudinal diversity gradient of increasing richness from the poles to the tropics; richness peaked at 30°S and declined to a minimum at 5°S. Another surprise was that P. globosa and P. cordata, previously thought to be restricted to the northern hemisphere, were detected at moderate abundances within the Southern Ocean. Our results emphasize the importance of oceanographic processes in shaping the biogeography of Phaeocystis and highlights the importance of genomics-based exploration of Phaeocystis, which have found the assemblage to be more complex than previously understood. The high winter relative abundance of the Phaeocystis assemblage suggests it could be involved in more complex ecological interactions during the less productive seasons, which should be considered in future studies to better understand the ecological role and strategies of this keystone species.
Collapse
Affiliation(s)
- Swan L S Sow
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS, Australia.,Oceans and Atmosphere, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Hobart, TAS, Australia
| | - Thomas W Trull
- Oceans and Atmosphere, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Hobart, TAS, Australia
| | - Levente Bodrossy
- Oceans and Atmosphere, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Hobart, TAS, Australia
| |
Collapse
|
34
|
Ruiz-González C, Mestre M, Estrada M, Sebastián M, Salazar G, Agustí S, Moreno-Ostos E, Reche I, Álvarez-Salgado XA, Morán XAG, Duarte CM, Sala MM, Gasol JM. Major imprint of surface plankton on deep ocean prokaryotic structure and activity. Mol Ecol 2020; 29:1820-1838. [PMID: 32323882 DOI: 10.1111/mec.15454] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 03/12/2020] [Accepted: 04/16/2020] [Indexed: 01/06/2023]
Abstract
Deep ocean microbial communities rely on the organic carbon produced in the sunlit ocean, yet it remains unknown whether surface processes determine the assembly and function of bathypelagic prokaryotes to a larger extent than deep-sea physicochemical conditions. Here, we explored whether variations in surface phytoplankton assemblages across Atlantic, Pacific and Indian ocean stations can explain structural changes in bathypelagic (ca. 4,000 m) free-living and particle-attached prokaryotic communities (characterized through 16S rRNA gene sequencing), as well as changes in prokaryotic activity and dissolved organic matter (DOM) quality. We show that the spatial structuring of prokaryotic communities in the bathypelagic strongly followed variations in the abundances of surface dinoflagellates and ciliates, as well as gradients in surface primary productivity, but were less influenced by bathypelagic physicochemical conditions. Amino acid-like DOM components in the bathypelagic reflected variations of those components in surface waters, and seemed to control bathypelagic prokaryotic activity. The imprint of surface conditions was more evident in bathypelagic than in shallower mesopelagic (200-1,000 m) communities, suggesting a direct connectivity through fast-sinking particles that escape mesopelagic transformations. Finally, we identified a pool of endemic deep-sea prokaryotic taxa (including potentially chemoautotrophic groups) that appear less connected to surface processes than those bathypelagic taxa with a widespread vertical distribution. Our results suggest that surface planktonic communities shape the spatial structure of the bathypelagic microbiome to a larger extent than the local physicochemical environment, likely through determining the nature of the sinking particles and the associated prokaryotes reaching bathypelagic waters.
Collapse
Affiliation(s)
| | - Mireia Mestre
- Institut de Ciències del Mar (ICM-CSIC), Barcelona, Spain.,Centro FONDAP de Investigación en Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Universidad Austral de Chile, Valdivia, Chile.,Centro de Investigación Oceanográfica COPAS Sur-Austral, Departamento de Oceanografía, Universidad de Concepción, Concepción, Chile
| | - Marta Estrada
- Institut de Ciències del Mar (ICM-CSIC), Barcelona, Spain
| | - Marta Sebastián
- Institut de Ciències del Mar (ICM-CSIC), Barcelona, Spain.,Instituto de Oceanografía y Cambio Global, IOCAG, Universidad de Las Palmas de Gran Canaria (ULPGC), Las Palmas, Spain
| | - Guillem Salazar
- Institut de Ciències del Mar (ICM-CSIC), Barcelona, Spain.,Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zurich, Zurich, Switzerland
| | - Susana Agustí
- Red Sea Research Center (RSRC), King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Enrique Moreno-Ostos
- Department of Ecology and Geology, Marine Ecology and Limnology Research Group, CEIMAR, University of Málaga, Málaga, Spain
| | - Isabel Reche
- Departamento de Ecología and Research Unit Modeling Nature (MNat), Universidad de Granada, Granada, Spain
| | | | - Xosé Anxelu G Morán
- Red Sea Research Center (RSRC), King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Carlos M Duarte
- Red Sea Research Center (RSRC), King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | | | - Josep M Gasol
- Institut de Ciències del Mar (ICM-CSIC), Barcelona, Spain.,Centre for Marine Ecosystems Research, School of Science, Edith Cowan University, Joondalup, WA, Australia
| |
Collapse
|
35
|
Dekas AE, Parada AE, Mayali X, Fuhrman JA, Wollard J, Weber PK, Pett-Ridge J. Characterizing Chemoautotrophy and Heterotrophy in Marine Archaea and Bacteria With Single-Cell Multi-isotope NanoSIP. Front Microbiol 2019; 10:2682. [PMID: 31920997 PMCID: PMC6927911 DOI: 10.3389/fmicb.2019.02682] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 11/05/2019] [Indexed: 11/28/2022] Open
Abstract
Characterizing and quantifying in situ metabolisms remains both a central goal and challenge for environmental microbiology. Here, we used a single-cell, multi-isotope approach to investigate the anabolic activity of marine microorganisms, with an emphasis on natural populations of Thaumarchaeota. After incubating coastal Pacific Ocean water with 13C-bicarbonate and 15N-amino acids, we used nanoscale secondary ion mass spectrometry (nanoSIMS) to isotopically screen 1,501 individual cells, and 16S rRNA amplicon sequencing to assess community composition. We established isotopic enrichment thresholds for activity and metabolic classification, and with these determined the percentage of anabolically active cells, the distribution of activity across the whole community, and the metabolic lifestyle—chemoautotrophic or heterotrophic—of each cell. Most cells (>90%) were anabolically active during the incubation, and 4–17% were chemoautotrophic. When we inhibited bacteria with antibiotics, the fraction of chemoautotrophic cells detected via nanoSIMS increased, suggesting archaea dominated chemoautotrophy. With fluorescence in situ hybridization coupled to nanoSIMS (FISH-nanoSIMS), we confirmed that most Thaumarchaeota were living chemoautotrophically, while bacteria were not. FISH-nanoSIMS analysis of cells incubated with dual-labeled (13C,15N-) amino acids revealed that most Thaumarchaeota cells assimilated amino-acid-derived nitrogen but not carbon, while bacteria assimilated both. This indicates that some Thaumarchaeota do not assimilate intact amino acids, suggesting intra-phylum heterogeneity in organic carbon utilization, and potentially their use of amino acids for nitrification. Together, our results demonstrate the utility of multi-isotope nanoSIMS analysis for high-throughput metabolic screening, and shed light on the activity and metabolism of uncultured marine archaea and bacteria.
Collapse
Affiliation(s)
- Anne E Dekas
- Department of Earth System Science, Stanford University, Stanford, CA, United States.,Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Alma E Parada
- Department of Earth System Science, Stanford University, Stanford, CA, United States.,Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States
| | - Xavier Mayali
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Jed A Fuhrman
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States
| | - Jessica Wollard
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Peter K Weber
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Jennifer Pett-Ridge
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States
| |
Collapse
|
36
|
Pereira O, Hochart C, Auguet JC, Debroas D, Galand PE. Genomic ecology of Marine Group II, the most common marine planktonic Archaea across the surface ocean. Microbiologyopen 2019; 8:e00852. [PMID: 31264806 PMCID: PMC6741140 DOI: 10.1002/mbo3.852] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/08/2019] [Accepted: 04/08/2019] [Indexed: 01/22/2023] Open
Abstract
Planktonic Archaea have been detected in all the world's oceans and are found from surface waters to the deep sea. The two most common Archaea phyla are Thaumarchaeota and Euryarchaeota. Euryarchaeota are generally more common in surface waters, but very little is known about their ecology and their potential metabolisms. In this study, we explore the genomic ecology of the Marine Group II (MGII), the main marine planktonic Euryarchaeota, and test if it is composed of different ecologically relevant units. We re‐analyzed Tara Oceans metagenomes from the photic layer and the deep ocean by annotating sequences against a custom MGII database and by mapping gene co‐occurrences. Our data provide a global view of the distribution of Euryarchaeota, and more specifically of MGII subgroups, and reveal their association to a number of gene‐coding sequences. In particular, we show that MGII proteorhodopsins were detected in both the surface and the deep chlorophyll maximum layer and that different clusters of these light harvesting proteins were present. Our approach helped describing the set of genes found together with specific MGII subgroups. We could thus define genomic environments that could theoretically describe ecologically meaningful units and the ecological niche that they occupy.
Collapse
Affiliation(s)
- Olivier Pereira
- Sorbonne Université, CNRS, Laboratoire d'Ecogéochimie des Environnements Benthiques (LECOB), Observatoire Océanologique de Banyuls, Banyuls sur Mer, France
| | - Corentin Hochart
- Laboratoire Microorganismes: Génome et Environnement, UMR 6023, CNRS - Université Blaise Pascal, Aubière, France
| | - Jean Christophe Auguet
- Marine Biodiversity, Exploitation and Conservation (MARBEC), Université de Montpellier, CNRS, IFREMER, Montpellier, France
| | - Didier Debroas
- Laboratoire Microorganismes: Génome et Environnement, UMR 6023, CNRS - Université Blaise Pascal, Aubière, France
| | - Pierre E Galand
- Sorbonne Université, CNRS, Laboratoire d'Ecogéochimie des Environnements Benthiques (LECOB), Observatoire Océanologique de Banyuls, Banyuls sur Mer, France
| |
Collapse
|
37
|
Wang K, Hu H, Yan H, Hou D, Wang Y, Dong P, Zhang D. Archaeal biogeography and interactions with microbial community across complex subtropical coastal waters. Mol Ecol 2019; 28:3101-3118. [PMID: 30993759 DOI: 10.1111/mec.15105] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 04/03/2019] [Accepted: 04/10/2019] [Indexed: 01/21/2023]
Abstract
Marine Archaea are crucial in biogeochemical cycles, but their horizontal spatial variability, assembly processes, and microbial associations across complex coastal waters still lack characterizations at high coverage. Using a dense sampling strategy, we investigated horizontal variability in total archaeal, Thaumarchaeota Marine Group (MG) I, and Euryarchaeota MGII communities and associations of MGI/MGII with other microbes in surface waters with contrasting environmental characteristics across ~200 km by 16S rRNA gene amplicon sequencing. Total archaeal communities were extremely dominated by MGI and/or MGII (98.9% in average relative abundance). Niche partitioning between MGI and MGII or within each group was found across multiple environmental gradients. "Selection" was more important than "dispersal limitation" in governing biogeographic patterns of total archaeal, MGI, and MGII communities, and basic abiotic parameters (such as salinity) and inorganic/organic resources as a whole could be the main driver of "selection". While "homogenizing dispersal" also considerably governed their biogeography. MGI-Nitrospira assemblages were speculatively responsible for complete nitrification. MGI taxa commonly had negative correlations with members of Synechococcus but positive correlations with members of eukaryotic phytoplankton, suggesting that competition or synergy between MGI and phytoplankton depends on specific MGI-phytoplankton assemblages. MGII taxa showed common associations with presumed (photo)heterotrophs including members of SAR11, SAR86, SAR406, and Candidatus Actinomarina. This study sheds light on ecological processes and drivers shaping archaeal biogeography and many strong MGI/MGII-bacterial associations across complex subtropical coastal waters. Future efforts should be made on seasonality of archaeal biogeography and biological, environmental, or ecological mechanisms underlying these statistical microbial associations.
Collapse
Affiliation(s)
- Kai Wang
- School of Marine Sciences, Ningbo University, Ningbo, China.,Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo, China
| | - Hanjing Hu
- School of Marine Sciences, Ningbo University, Ningbo, China.,Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo, China
| | - Huizhen Yan
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Dandi Hou
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Yanting Wang
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Pengsheng Dong
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Demin Zhang
- School of Marine Sciences, Ningbo University, Ningbo, China.,Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo, China
| |
Collapse
|
38
|
Easson CG, Lopez JV. Depth-Dependent Environmental Drivers of Microbial Plankton Community Structure in the Northern Gulf of Mexico. Front Microbiol 2019; 9:3175. [PMID: 30662434 PMCID: PMC6328475 DOI: 10.3389/fmicb.2018.03175] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 12/07/2018] [Indexed: 02/01/2023] Open
Abstract
The Gulf of Mexico (GoM) is a dynamic marine ecosystem influenced by multiple natural and anthropogenic processes and inputs, such as the intrusion of warm oligotrophic water via the Loop Current, freshwater and nutrient input by the Mississippi River, and hydrocarbon inputs via natural seeps and industrial spills. Microbial plankton communities are important to pelagic food webs including in the GoM but understanding the drivers of the natural dynamics of these passively distributed microorganisms can be challenging in such a large and heterogeneous system. As part of the DEEPEND consortium, we applied high throughput 16S rRNA sequencing to investigate the spatial and temporal dynamics of pelagic microbial plankton related to several environmental conditions during two offshore cruises in 2015. Our results show dramatic community shifts across depths, especially between photic and aphotic zones. Though we only have two time points within a single year, observed temporal shifts in microbial plankton communities were restricted to the seasonally influenced epipelagic zone (0-200 m), and appear mainly driven by changes in temperature. Environmental selection in microbial plankton communities was depth-specific, with variables such as turbidity, salinity, and abundance of photosynthetic taxa strongly correlating with community structure in the epipelagic zone, while variables such as oxygen and specific nutrient concentrations were correlated with community structure at deeper depths.
Collapse
Affiliation(s)
- Cole G. Easson
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN, United States
| | - Jose V. Lopez
- Halmos College of Natural Sciences and Oceanography, Nova Southeastern University, Dania Beach, FL, United States
| |
Collapse
|
39
|
Differential co-occurrence relationships shaping ecotype diversification within Thaumarchaeota populations in the coastal ocean water column. ISME JOURNAL 2019; 13:1144-1158. [PMID: 30610232 DOI: 10.1038/s41396-018-0311-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 10/18/2018] [Accepted: 10/23/2018] [Indexed: 01/09/2023]
Abstract
Ecological factors contributing to depth-related diversification of marine Thaumarchaeota populations remain largely unresolved. To investigate the role of potential microbial associations in shaping thaumarchaeal ecotype diversification, we examined co-occurrence relationships in a community composition dataset (16S rRNA V4-V5 region) collected as part of a 2-year time series in coastal Monterey Bay. Ecotype groups previously defined based on functional gene diversity-water column A (WCA), water column B (WCB) and Nitrosopumilus-like clusters-were recovered in the thaumarchaeal 16S rRNA gene phylogeny. Networks systematically reflected depth-related patterns in the abundances of ecotype populations, suggesting thaumarchaeal ecotypes as keystone members of the microbial community below the euphotic zone. Differential environmental controls on the ecotype populations were further evident in subnetwork modules showing preferential co-occurrence of OTUs belonging to the same ecotype cluster. Correlated abundances of Thaumarchaeota and heterotrophic bacteria (e.g., Bacteroidetes, Marinimicrobia and Gammaproteobacteria) indicated potential reciprocal interactions via dissolved organic matter transformations. Notably, the networks recovered ecotype-specific associations between thaumarchaeal and Nitrospina OTUs. Even at depths where WCB-like Thaumarchaeota dominated, Nitrospina OTUs were found to preferentially co-occur with WCA-like and Nitrosopumilus-like thaumarchaeal OTUs, highlighting the need to investigate the ecological implications of the composition of nitrifier assemblages in marine waters.
Collapse
|
40
|
Abstract
Archaea are ubiquitous and abundant members of the marine plankton. Once thought of as rare organisms found in exotic extremes of temperature, pressure, or salinity, archaea are now known in nearly every marine environment. Though frequently referred to collectively, the planktonic archaea actually comprise four major phylogenetic groups, each with its own distinct physiology and ecology. Only one group-the marine Thaumarchaeota-has cultivated representatives, making marine archaea an attractive focus point for the latest developments in cultivation-independent molecular methods. Here, we review the ecology, physiology, and biogeochemical impact of the four archaeal groups using recent insights from cultures and large-scale environmental sequencing studies. We highlight key gaps in our knowledge about the ecological roles of marine archaea in carbon flow and food web interactions. We emphasize the incredible uncultivated diversity within each of the four groups, suggesting there is much more to be done.
Collapse
Affiliation(s)
- Alyson E Santoro
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, California 93106, USA;
| | | | | |
Collapse
|
41
|
Impact of DNA extraction method and targeted 16S-rRNA hypervariable region on oral microbiota profiling. Sci Rep 2018; 8:16321. [PMID: 30397210 PMCID: PMC6218491 DOI: 10.1038/s41598-018-34294-x] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 09/28/2018] [Indexed: 12/15/2022] Open
Abstract
Amplification and sequencing of 16S amplicons are widely used for profiling the structure of oral microbiota. However, it remains not clear whether and to what degree DNA extraction and targeted 16S rRNA hypervariable regions influence the analysis. Based on a mock community consisting of five oral bacterial species in equal abundance, we compared the 16S amplicon sequencing results on the Illumina MiSeq platform from six frequently employed DNA extraction procedures and three pairs of widely used 16S rRNA hypervariable primers targeting different 16S rRNA regions. Technical reproducibility of selected 16S regions was also assessed. DNA extraction method exerted considerable influence on the observed bacterial diversity while hypervariable regions had a relatively minor effect. Protocols with beads added to the enzyme-mediated DNA extraction reaction produced more accurate bacterial community structure than those without either beads or enzymes. Hypervariable regions targeting V3-V4 and V4-V5 seemed to produce more reproducible results than V1-V3. Neither sequencing batch nor change of operator affected the reproducibility of bacterial diversity profiles. Therefore, DNA extraction strategy and 16S rDNA hypervariable regions both influenced the results of oral microbiota biodiversity profiling, thus should be carefully considered in study design and data interpretation.
Collapse
|
42
|
Otwell AE, López García de Lomana A, Gibbons SM, Orellana MV, Baliga NS. Systems biology approaches towards predictive microbial ecology. Environ Microbiol 2018; 20:4197-4209. [DOI: 10.1111/1462-2920.14378] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 08/14/2018] [Indexed: 01/17/2023]
Affiliation(s)
| | | | - Sean M. Gibbons
- Institute for Systems Biology Seattle WA USA
- eScience Institute, University of Washington Seattle WA USA
- Molecular and Cellular Biology Program University of Washington Seattle WA USA
| | - Mónica V. Orellana
- Institute for Systems Biology Seattle WA USA
- Polar Science Center Applied Physics Lab, University of Washington Seattle WA
| | - Nitin S. Baliga
- Institute for Systems Biology Seattle WA USA
- Molecular and Cellular Biology Program University of Washington Seattle WA USA
- Departments of Biology and Microbiology University of Washington Seattle WA USA
- Lawrence Berkeley National Lab Berkeley CA USA
| |
Collapse
|