1
|
Daniel-Ivad PG, Van Lanen S, Ryan KS. Structure of the Oxygen, Pyridoxal Phosphate-Dependent Capuramycin Biosynthetic Protein Cap15. Biochemistry 2023; 62:2611-2621. [PMID: 37556254 DOI: 10.1021/acs.biochem.3c00216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Pyridoxal phosphate-dependent enzymes able to use oxygen as a co-substrate have emerged in multiple protein families. Here, we use crystallography to solve the 2.40 Å resolution crystal structure of Cap15, a nucleoside biosynthetic enzyme that catalyzes the oxidative decarboxylation of glycyl uridine. Our structural study captures the internal aldimine, pinpointing the active site lysine as K230 and showing the site of phosphate binding. Our docking studies reveal how Cap15 is able to catalyze a stereoselective deprotonation reaction, and bioinformatic analysis reveals active site residues that distinguish Cap15 from the structurally related d-glucosaminate-6-phosphate ammonia lyase and l-seryl-tRNA(Sec) selenium transferase (SelA). Our work provides the structural basis for further mechanistic investigation of a unique biosynthetic enzyme and provides a blueprint for understanding how oxygen reactivity emerged in the SelA-like protein family.
Collapse
Affiliation(s)
- Phillip G Daniel-Ivad
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Steven Van Lanen
- Pharmaceutical Sciences Department, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Katherine S Ryan
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
2
|
Du Y, Thanapipatsiri A, Yokoyama K. Biosynthesis and Genome Mining Potentials of Nucleoside Natural Products. Chembiochem 2023; 24:e202300342. [PMID: 37357819 PMCID: PMC10530009 DOI: 10.1002/cbic.202300342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/20/2023] [Accepted: 06/22/2023] [Indexed: 06/27/2023]
Abstract
Nucleoside natural products show diverse biological activities and serve as leads for various application purposes, including human and veterinary medicine and agriculture. Studies in the past decade revealed that these nucleosides are biosynthesized through divergent mechanisms, in which early steps of the pathways can be classified into two types (C5' oxidation and C5' radical extension), while the structural diversity is created by downstream tailoring enzymes. Based on this biosynthetic logic, we investigated the genome mining discovery potentials of these nucleosides using the two enzymes representing the two types of C5' modifications: LipL-type α-ketoglutarate (α-KG) and Fe-dependent oxygenases and NikJ-type radical S-adenosyl-L-methionine (SAM) enzymes. The results suggest that this approach allows discovery of putative nucleoside biosynthetic gene clusters (BGCs) and the prediction of the core nucleoside structures. The results also revealed the distribution of these pathways in nature and implied the possibility of future genome mining discovery of novel nucleoside natural products.
Collapse
Affiliation(s)
- Yanan Du
- Department of Biochemistry, Duke University School of Medicine, 307 Research Drive, Durham, NC 27710, USA
| | - Anyarat Thanapipatsiri
- Department of Biochemistry, Duke University School of Medicine, 307 Research Drive, Durham, NC 27710, USA
| | - Kenichi Yokoyama
- Department of Biochemistry, Duke University School of Medicine, 307 Research Drive, Durham, NC 27710, USA
- Department of Chemistry, Duke University, 307 Research Drive, Durham, NC 27710, USA
| |
Collapse
|
3
|
McErlean M, Liu X, Cui Z, Gust B, Van Lanen SG. Identification and characterization of enzymes involved in the biosynthesis of pyrimidine nucleoside antibiotics. Nat Prod Rep 2021; 38:1362-1407. [PMID: 33404015 DOI: 10.1039/d0np00064g] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Covering: up to September 2020 Hundreds of nucleoside-based natural products have been isolated from various microorganisms, several of which have been utilized in agriculture as pesticides and herbicides, in medicine as therapeutics for cancer and infectious disease, and as molecular probes to study biological processes. Natural products consisting of structural modifications of each of the canonical nucleosides have been discovered, ranging from simple modifications such as single-step alkylations or acylations to highly elaborate modifications that dramatically alter the nucleoside scaffold and require multiple enzyme-catalyzed reactions. A vast amount of genomic information has been uncovered the past two decades, which has subsequently allowed the first opportunity to interrogate the chemically intriguing enzymatic transformations for the latter type of modifications. This review highlights (i) the discovery and potential applications of structurally complex pyrimidine nucleoside antibiotics for which genetic information is known, (ii) the established reactions that convert the canonical pyrimidine into a new nucleoside scaffold, and (iii) the important tailoring reactions that impart further structural complexity to these molecules.
Collapse
Affiliation(s)
- M McErlean
- Department of Pharmaceutical Science, College of Pharmacy, University of Kentucky, USA.
| | - X Liu
- Department of Pharmaceutical Science, College of Pharmacy, University of Kentucky, USA.
| | - Z Cui
- Department of Pharmaceutical Science, College of Pharmacy, University of Kentucky, USA.
| | - B Gust
- Pharmaceutical Institute, Department of Pharmaceutical Biology, University of Tübingen, Germany
| | - S G Van Lanen
- Department of Pharmaceutical Science, College of Pharmacy, University of Kentucky, USA.
| |
Collapse
|
4
|
Hoffarth ER, Rothchild KW, Ryan KS. Emergence of oxygen- and pyridoxal phosphate-dependent reactions. FEBS J 2020; 287:1403-1428. [PMID: 32142210 DOI: 10.1111/febs.15277] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 11/29/2019] [Accepted: 03/03/2020] [Indexed: 12/21/2022]
Abstract
Pyridoxal 5'-phosphate (PLP) is an organic cofactor employed by ~ 4% of enzymes. The structure of the PLP cofactor allows for the stabilization of carbanions through resonance. A small number of PLP-dependent enzymes employ molecular oxygen as a cosubstrate. Here, we review the biological roles and possible mechanisms of these enzymes, and we observe that these enzymes are found in multiple protein families, suggesting that reaction with oxygen might have emerged de novo in several protein families and thus could be directed to emerge again through laboratory evolution experiments.
Collapse
Affiliation(s)
- Elesha R Hoffarth
- Department of Chemistry, University of British Columbia, Vancouver, BC, Canada
| | | | - Katherine S Ryan
- Department of Chemistry, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
5
|
Ogawara H. Comparison of Antibiotic Resistance Mechanisms in Antibiotic-Producing and Pathogenic Bacteria. Molecules 2019; 24:E3430. [PMID: 31546630 PMCID: PMC6804068 DOI: 10.3390/molecules24193430] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/18/2019] [Accepted: 09/20/2019] [Indexed: 12/13/2022] Open
Abstract
Antibiotic resistance poses a tremendous threat to human health. To overcome this problem, it is essential to know the mechanism of antibiotic resistance in antibiotic-producing and pathogenic bacteria. This paper deals with this problem from four points of view. First, the antibiotic resistance genes in producers are discussed related to their biosynthesis. Most resistance genes are present within the biosynthetic gene clusters, but some genes such as paromomycin acetyltransferases are located far outside the gene cluster. Second, when the antibiotic resistance genes in pathogens are compared with those in the producers, resistance mechanisms have dependency on antibiotic classes, and, in addition, new types of resistance mechanisms such as Eis aminoglycoside acetyltransferase and self-sacrifice proteins in enediyne antibiotics emerge in pathogens. Third, the relationships of the resistance genes between producers and pathogens are reevaluated at their amino acid sequence as well as nucleotide sequence levels. Pathogenic bacteria possess other resistance mechanisms than those in antibiotic producers. In addition, resistance mechanisms are little different between early stage of antibiotic use and the present time, e.g., β-lactam resistance in Staphylococcus aureus. Lastly, guanine + cytosine (GC) barrier in gene transfer to pathogenic bacteria is considered. Now, the resistance genes constitute resistome composed of complicated mixture from divergent environments.
Collapse
Affiliation(s)
- Hiroshi Ogawara
- HO Bio Institute, 33-9, Yushima-2, Bunkyo-ku, Tokyo 113-0034, Japan.
- Department of Biochemistry, Meiji Pharmaceutical University, 522-1, Noshio-2, Kiyose, Tokyo 204-8588, Japan.
| |
Collapse
|
6
|
Computational identification of co-evolving multi-gene modules in microbial biosynthetic gene clusters. Commun Biol 2019; 2:83. [PMID: 30854475 PMCID: PMC6395733 DOI: 10.1038/s42003-019-0333-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 01/22/2019] [Indexed: 11/09/2022] Open
Abstract
The biosynthetic machinery responsible for the production of bacterial specialised metabolites is encoded by physically clustered group of genes called biosynthetic gene clusters (BGCs). The experimental characterisation of numerous BGCs has led to the elucidation of subclusters of genes within BGCs, jointly responsible for the same biosynthetic function in different genetic contexts. We developed an unsupervised statistical method able to successfully detect a large number of modules (putative functional subclusters) within an extensive set of predicted BGCs in a systematic and automated manner. Multiple already known subclusters were confirmed by our method, proving its efficiency and sensitivity. In addition, the resulting large collection of newly defined modules provides new insights into the prevalence and putative biosynthetic role of these modular genetic entities. The automated and unbiased identification of hundreds of co-evolving group of genes is an essential breakthrough for the discovery and biosynthetic engineering of high-value compounds.
Collapse
|
7
|
Biosynthetic and Synthetic Strategies for Assembling Capuramycin-Type Antituberculosis Antibiotics. Molecules 2019; 24:molecules24030433. [PMID: 30691073 PMCID: PMC6384614 DOI: 10.3390/molecules24030433] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 01/22/2019] [Accepted: 01/22/2019] [Indexed: 01/29/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) has recently surpassed HIV/AIDS as the leading cause of death by a single infectious agent. The standard therapeutic regimen against tuberculosis (TB) remains a long, expensive process involving a multidrug regimen, and the prominence of multidrug-resistant (MDR), extensively drug-resistant (XDR), and totally drug-resistant (TDR) strains continues to impede treatment success. An underexplored class of natural products—the capuramycin-type nucleoside antibiotics—have been shown to have potent anti-TB activity by inhibiting bacterial translocase I, a ubiquitous and essential enzyme that functions in peptidoglycan biosynthesis. The present review discusses current literature concerning the biosynthesis and chemical synthesis of capuramycin and analogs, seeking to highlight the potential of the capuramycin scaffold as a favorable anti-TB therapeutic that warrants further development.
Collapse
|
8
|
Ogawara H. Comparison of Strategies to Overcome Drug Resistance: Learning from Various Kingdoms. Molecules 2018; 23:E1476. [PMID: 29912169 PMCID: PMC6100412 DOI: 10.3390/molecules23061476] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/13/2018] [Accepted: 06/15/2018] [Indexed: 11/16/2022] Open
Abstract
Drug resistance, especially antibiotic resistance, is a growing threat to human health. To overcome this problem, it is significant to know precisely the mechanisms of drug resistance and/or self-resistance in various kingdoms, from bacteria through plants to animals, once more. This review compares the molecular mechanisms of the resistance against phycotoxins, toxins from marine and terrestrial animals, plants and fungi, and antibiotics. The results reveal that each kingdom possesses the characteristic features. The main mechanisms in each kingdom are transporters/efflux pumps in phycotoxins, mutation and modification of targets and sequestration in marine and terrestrial animal toxins, ABC transporters and sequestration in plant toxins, transporters in fungal toxins, and various or mixed mechanisms in antibiotics. Antibiotic producers in particular make tremendous efforts for avoiding suicide, and are more flexible and adaptable to the changes of environments. With these features in mind, potential alternative strategies to overcome these resistance problems are discussed. This paper will provide clues for solving the issues of drug resistance.
Collapse
Affiliation(s)
- Hiroshi Ogawara
- HO Bio Institute, Yushima-2, Bunkyo-ku, Tokyo 113-0034, Japan.
- Department of Biochemistry, Meiji Pharmaceutical University, Noshio-2, Kiyose, Tokyo 204-8588, Japan.
| |
Collapse
|
9
|
Pyridoxal-5'-phosphate as an oxygenase cofactor: Discovery of a carboxamide-forming, α-amino acid monooxygenase-decarboxylase. Proc Natl Acad Sci U S A 2018; 115:974-979. [PMID: 29343643 DOI: 10.1073/pnas.1718667115] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Capuramycins are antimycobacterial antibiotics that consist of a modified nucleoside named uridine-5'-carboxamide (CarU). Previous biochemical studies have revealed that CarU is derived from UMP, which is first converted to uridine-5'-aldehyde in a reaction catalyzed by the dioxygenase CapA and subsequently to 5'-C-glycyluridine (GlyU), an unusual β-hydroxy-α-amino acid, in a reaction catalyzed by the pyridoxal-5'-phosphate (PLP)-dependent transaldolase CapH. The remaining steps that are necessary to furnish CarU include decarboxylation, O atom insertion, and oxidation. We demonstrate that Cap15, which has sequence similarity to proteins annotated as bacterial, PLP-dependent l-seryl-tRNA(Sec) selenium transferases, is the sole catalyst responsible for complete conversion of GlyU to CarU. Using a complementary panel of in vitro assays, Cap15 is shown to be dependent upon substrates O2 and (5'S,6'R)-GlyU, the latter of which was unexpected given that (5'S,6'S)-GlyU is the isomeric product of the transaldolase CapH. The two products of Cap15 are identified as the carboxamide-containing CarU and CO2 While known enzymes that catalyze this type of chemistry, namely α-amino acid 2-monooxygenase, utilize flavin adenine dinucleotide as the redox cofactor, Cap15 remarkably requires only PLP. Furthermore, Cap15 does not produce hydrogen peroxide and is shown to directly incorporate a single O atom from O2 into the product CarU and thus is an authentic PLP-dependent monooxygenase. In addition to these unusual discoveries, Cap15 activity is revealed to be dependent upon the inclusion of phosphate. The biochemical characteristics along with initiatory mechanistic studies of Cap15 are reported, which has allowed us to assign Cap15 as a PLP-dependent (5'S,6'R)-GlyU:O2 monooxygenase-decarboxylase.
Collapse
|
10
|
Nature's combinatorial biosynthesis and recently engineered production of nucleoside antibiotics in Streptomyces. World J Microbiol Biotechnol 2017; 33:66. [PMID: 28260195 DOI: 10.1007/s11274-017-2233-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 02/22/2017] [Indexed: 10/20/2022]
Abstract
Modified nucleosides produced by Streptomyces and related actinomycetes are widely used in agriculture and medicine as antibacterial, antifungal, anticancer and antiviral agents. These specialized small-molecule metabolites are biosynthesized by complex enzymatic machineries encoded within gene clusters in the genome. The past decade has witnessed a burst of reports defining the key metabolic processes involved in the biosynthesis of several distinct families of nucleoside antibiotics. Furthermore, genome sequencing of various Streptomyces species has dramatically increased over recent years. Potential biosynthetic gene clusters for novel nucleoside antibiotics are now apparent by analysis of these genomes. Here we revisit strategies for production improvement of nucleoside antibiotics that have defined mechanisms of action, and are in clinical or agricultural use. We summarize the progress for genetically manipulating biosynthetic pathways for structural diversification of nucleoside antibiotics. Microorganism-based biosynthetic examples are provided and organized under genetic principles and metabolic engineering guidelines. We show perspectives on the future of combinatorial biosynthesis, and present a working model for discovery of novel nucleoside natural products in Streptomyces.
Collapse
|
11
|
Liu X, Jin Y, Cui Z, Nonaka K, Baba S, Funabashi M, Yang Z, Van Lanen SG. The Role of a Nonribosomal Peptide Synthetase in l-Lysine Lactamization During Capuramycin Biosynthesis. Chembiochem 2016; 17:804-10. [PMID: 26840634 PMCID: PMC4933962 DOI: 10.1002/cbic.201500701] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Indexed: 01/10/2023]
Abstract
Capuramycins are one of several known classes of natural products that contain an l-Lys-derived l-α-amino-ɛ-caprolactam (l-ACL) unit. The α-amino group of l-ACL in a capuramycin is linked to an unsaturated hexuronic acid component through an amide bond that was previously shown to originate by an ATP-independent enzymatic route. With the aid of a combined in vivo and in vitro approach, a predicted tridomain nonribosomal peptide synthetase CapU is functionally characterized here as the ATP-dependent amide-bond-forming catalyst responsible for the biosynthesis of the remaining amide bond present in l-ACL. The results are consistent with the adenylation domain of CapU as the essential catalytic component for l-Lys activation and thioesterification of the adjacent thiolation domain. However, in contrast to expectations, lactamization does not require any additional domains or proteins and is likely a nonenzymatic event. The results set the stage for examining whether a similar NRPS-mediated mechanism is employed in the biosynthesis of other l-ACL-containing natural products and, just as intriguingly, how spontaneous lactamization is avoided in the numerous NRPS-derived peptides that contain an unmodified l-Lys residue.
Collapse
Affiliation(s)
- Xiaodong Liu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, 40536, USA
| | - Yuanyuan Jin
- Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medicinal Sciences & Peking Union Medical College, Beijing, China
| | - Zheng Cui
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, 40536, USA
| | - Koichi Nonaka
- Biologics Technology Research Laboratories, Daiichi Sankyo, Co. Ltd., Gunma, 370-0503, Japan
| | - Satoshi Baba
- Biologics Technology Research Laboratories, Daiichi Sankyo, Co. Ltd., Gunma, 370-0503, Japan
| | - Masanori Funabashi
- Natural Product Research Group, Discovery Science and Technology Department, Daiichi Sankyo RD Novare Co. Ltd., Tokyo, 134-8630, Japan
| | - Zhaoyong Yang
- Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medicinal Sciences & Peking Union Medical College, Beijing, China
| | - Steven G Van Lanen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, 40536, USA.
| |
Collapse
|
12
|
Natural and engineered biosynthesis of nucleoside antibiotics in Actinomycetes. ACTA ACUST UNITED AC 2016; 43:401-17. [DOI: 10.1007/s10295-015-1636-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 05/15/2015] [Indexed: 12/18/2022]
Abstract
Abstract
Nucleoside antibiotics constitute an important family of microbial natural products bearing diverse bioactivities and unusual structural features. Their biosynthetic logics are unique with involvement of complex multi-enzymatic reactions leading to the intricate molecules from simple building blocks. Understanding how nature builds this family of antibiotics in post-genomic era sets the stage for rational enhancement of their production, and also paves the way for targeted persuasion of the cell factories to make artificial designer nucleoside drugs and leads via synthetic biology approaches. In this review, we discuss the recent progress and perspectives on the natural and engineered biosynthesis of nucleoside antibiotics.
Collapse
|
13
|
Rodolis MT, Mihalyi A, Ducho C, Eitel K, Gust B, Goss RJM, Bugg TDH. Mechanism of action of the uridyl peptide antibiotics: an unexpected link to a protein-protein interaction site in translocase MraY. Chem Commun (Camb) 2015; 50:13023-5. [PMID: 25222373 DOI: 10.1039/c4cc06516f] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The pacidamycin and muraymycin uridyl peptide antibiotics show some structural resemblance to an Arg-Trp-x-x-Trp sequence motif for protein-protein interaction between bacteriophage ϕX174 protein E and E. coli translocase MraY. Members of the UPA class, and a synthetic uridine-peptide analogue, were found to show reduced levels of inhibition to F288L or E287A mutant MraY enzymes, implying that the UPAs interact at this extracellular site as part of the enzyme inhibition mechanism.
Collapse
Affiliation(s)
- Maria T Rodolis
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK.
| | | | | | | | | | | | | |
Collapse
|
14
|
Cai W, Goswami A, Yang Z, Liu X, Green KD, Barnard-Britson S, Baba S, Funabashi M, Nonaka K, Sunkara M, Morris AJ, Spork AP, Ducho C, Garneau-Tsodikova S, Thorson JS, Van Lanen SG. The Biosynthesis of Capuramycin-type Antibiotics: IDENTIFICATION OF THE A-102395 BIOSYNTHETIC GENE CLUSTER, MECHANISM OF SELF-RESISTANCE, AND FORMATION OF URIDINE-5'-CARBOXAMIDE. J Biol Chem 2015; 290:13710-24. [PMID: 25855790 DOI: 10.1074/jbc.m115.646414] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Indexed: 11/06/2022] Open
Abstract
A-500359s, A-503083s, and A-102395 are capuramycin-type nucleoside antibiotics that were discovered using a screen to identify inhibitors of bacterial translocase I, an essential enzyme in peptidoglycan cell wall biosynthesis. Like the parent capuramycin, A-500359s and A-503083s consist of three structural components: a uridine-5'-carboxamide (CarU), a rare unsaturated hexuronic acid, and an aminocaprolactam, the last of which is substituted by an unusual arylamine-containing polyamide in A-102395. The biosynthetic gene clusters for A-500359s and A-503083s have been reported, and two genes encoding a putative non-heme Fe(II)-dependent α-ketoglutarate:UMP dioxygenase and an l-Thr:uridine-5'-aldehyde transaldolase were uncovered, suggesting that C-C bond formation during assembly of the high carbon (C6) sugar backbone of CarU proceeds from the precursors UMP and l-Thr to form 5'-C-glycyluridine (C7) as a biosynthetic intermediate. Here, isotopic enrichment studies with the producer of A-503083s were used to indeed establish l-Thr as the direct source of the carboxamide of CarU. With this knowledge, the A-102395 gene cluster was subsequently cloned and characterized. A genetic system in the A-102395-producing strain was developed, permitting the inactivation of several genes, including those encoding the dioxygenase (cpr19) and transaldolase (cpr25), which abolished the production of A-102395, thus confirming their role in biosynthesis. Heterologous production of recombinant Cpr19 and CapK, the transaldolase homolog involved in A-503083 biosynthesis, confirmed their expected function. Finally, a phosphotransferase (Cpr17) conferring self-resistance was functionally characterized. The results provide the opportunity to use comparative genomics along with in vivo and in vitro approaches to probe the biosynthetic mechanism of these intriguing structures.
Collapse
Affiliation(s)
- Wenlong Cai
- From the Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40506
| | - Anwesha Goswami
- From the Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40506
| | - Zhaoyong Yang
- the Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 1000050, China
| | - Xiaodong Liu
- From the Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40506
| | - Keith D Green
- From the Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40506
| | - Sandra Barnard-Britson
- From the Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40506
| | - Satoshi Baba
- the New Modality Research Laboratories, R&D Division, Daiichi Sankyo Co., Ltd., Tokyo 103-8426, Japan
| | - Masanori Funabashi
- the Drug Discovery and Biomedical Technology Unit, Daiichi Sankyo RD Novare Co., Ltd., Tokyo, Japan
| | - Koichi Nonaka
- the Biologics Technology Research Laboratories, R&D Division, Daiichi Sankyo Co., Ltd., Tokyo 103-8426, Japan
| | - Manjula Sunkara
- the Division of Cardiovascular Medicine and Gill Heart Institute, College of Medicine, University of Kentucky, Lexington, Kentucky 40506, and
| | - Andrew J Morris
- the Division of Cardiovascular Medicine and Gill Heart Institute, College of Medicine, University of Kentucky, Lexington, Kentucky 40506, and
| | - Anatol P Spork
- the Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, 66123 Saarbrücken, Germany
| | - Christian Ducho
- the Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, 66123 Saarbrücken, Germany
| | - Sylvie Garneau-Tsodikova
- From the Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40506
| | - Jon S Thorson
- From the Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40506
| | - Steven G Van Lanen
- From the Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40506,
| |
Collapse
|
15
|
Niu G, Tan H. Nucleoside antibiotics: biosynthesis, regulation, and biotechnology. Trends Microbiol 2015; 23:110-9. [DOI: 10.1016/j.tim.2014.10.007] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 10/15/2014] [Accepted: 10/22/2014] [Indexed: 11/30/2022]
|
16
|
Goswami A, Van Lanen SG. Enzymatic strategies and biocatalysts for amide bond formation: tricks of the trade outside of the ribosome. MOLECULAR BIOSYSTEMS 2015; 11:338-53. [PMID: 25418915 PMCID: PMC4304603 DOI: 10.1039/c4mb00627e] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Amide bond-containing (ABC) biomolecules are some of the most intriguing and functionally significant natural products with unmatched utility in medicine, agriculture and biotechnology. The enzymatic formation of an amide bond is therefore a particularly interesting platform for engineering the synthesis of structurally diverse natural and unnatural ABC molecules for applications in drug discovery and molecular design. As such, efforts to unravel the mechanisms involved in carboxylate activation and substrate selection has led to the characterization of a number of structurally and functionally distinct protein families involved in amide bond synthesis. Unlike ribosomal synthesis and thio-templated synthesis using nonribosomal peptide synthetases, which couple the hydrolysis of phosphoanhydride bond(s) of ATP and proceed via an acyl-adenylate intermediate, here we discuss two mechanistically alternative strategies: ATP-dependent enzymes that generate acylphosphate intermediates and ATP-independent transacylation strategies. Several examples highlighting the function and synthetic utility of these amide bond-forming strategies are provided.
Collapse
Affiliation(s)
- Anwesha Goswami
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 S. Limestone, Lexington, KY 40536, USA.
| | | |
Collapse
|
17
|
Characterization of biosynthetic genes of ascamycin/dealanylascamycin featuring a 5'-O-sulfonamide moiety in Streptomyces sp. JCM9888. PLoS One 2014; 9:e114722. [PMID: 25479601 PMCID: PMC4257720 DOI: 10.1371/journal.pone.0114722] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Accepted: 11/12/2014] [Indexed: 01/12/2023] Open
Abstract
Ascamycin (ACM) and dealanylascamycin (DACM) are nucleoside antibiotics elaborated by Streptomyces sp. JCM9888. The later shows broad spectrum inhibition activity to various gram-positive and gram-negative bacteria, eukaryotic Trypanosoma and is also toxic to mice, while ascamycin is active against very limited microorganisms, such as Xanthomonas. Both compounds share an unusual 5′-O-sulfonamide moiety which is attached to an adenosine nucleoside. In this paper, we first report on the 30 kb gene cluster (23 genes, acmA to acmW) involved in the biosynthesis of these two antibiotics and a biosynthetic assembly line was proposed. Of them, six genes (AcmABGKIW) are hypothetical genes involved in 5′-O-sulfonamide formation. Two flavin adenine dinucleotide (FAD)-dependent chlorinase genes acmX and acmY were characterized which are significantly remote from acmA-W and postulated to be required for adenine C2-halogenation. Notably gene disruption of acmE resulted in a mutant which could only produce dealanylascamycin but was blocked in its ability to biosynthesize ascamycin, revealing its key role of conversion of dealanylascamycin to ascamycin.
Collapse
|
18
|
Funabashi M, Baba S, Takatsu T, Kizuka M, Ohata Y, Tanaka M, Nonaka K, Spork AP, Ducho C, Chen WCL, Van Lanen SG. Structure-based gene targeting discovery of sphaerimicin, a bacterial translocase I inhibitor. Angew Chem Int Ed Engl 2013; 52:11607-11. [PMID: 24014169 PMCID: PMC3873198 DOI: 10.1002/anie.201305546] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Indexed: 12/27/2022]
Abstract
Rise and shine: Using a gene-targeting approach aimed at identifying potential L-threonine:uridine-5'-transaldolases that catalyze the formation of (5'S,6'S)-C-glycyluridine, a new bacterial translocase I inhibitor was discovered from an actinomycete following fermentation optimization.
Collapse
Affiliation(s)
- Masanori Funabashi
- Natural Product Research Group, Discovery Science and Technology Department, Drug Discovery and Biomedical Technology Unit, Daiichi Sankyo RD Novare Co., Ltd., Tokyo 134-8630 (Japan)
| | - Satoshi Baba
- New Modality Research Laboratories, R&D Division, Daiichi Sankyo Co., Ltd., Tokyo 140-8710 (Japan)
| | - Toshio Takatsu
- Analytical Chemistry Research Group, Center for Pharmaceutical and Biomedical Analysis, Daiichi Sankyo RD Novare Co., Ltd., Tokyo 134-8630 (Japan)
| | - Masaaki Kizuka
- Natural Product Research Group, Discovery Science and Technology Department, Drug Discovery and Biomedical Technology Unit, Daiichi Sankyo RD Novare Co., Ltd., Tokyo 134-8630 (Japan)
| | - Yasuo Ohata
- Analytical Chemistry Research Group, Center for Pharmaceutical and Biomedical Analysis, Daiichi Sankyo RD Novare Co., Ltd., Tokyo 134-8630 (Japan)
| | - Masahiro Tanaka
- Natural Product Research Group, Discovery Science and Technology Department, Drug Discovery and Biomedical Technology Unit, Daiichi Sankyo RD Novare Co., Ltd., Tokyo 134-8630 (Japan)
| | - Koichi Nonaka
- Biologics Technology Research Laboratories, R&D Division, Daiichi Sankyo Co., Ltd., Gunma 370-0503 (Japan)
| | - Anatol P Spork
- Department of Chemistry, University of Paderborn, Paderborn 33098 (Germany)
| | - Christian Ducho
- Department of Chemistry, University of Paderborn, Paderborn 33098 (Germany)
| | - Wei-Chen Leyla Chen
- Department of Pharmaceutical Sciences College of Pharmacy, University of Kentucky 789 S. Limestone Street, Lexington, KY 40536 (USA)
| | - Steven G Van Lanen
- Department of Pharmaceutical Sciences College of Pharmacy, University of Kentucky 789 S. Limestone Street, Lexington, KY 40536 (USA)
| |
Collapse
|
19
|
Funabashi M, Baba S, Takatsu T, Kizuka M, Ohata Y, Tanaka M, Nonaka K, Spork AP, Ducho C, Chen WCL, Van Lanen SG. Structure-Based Gene Targeting Discovery of Sphaerimicin, a Bacterial Translocase I Inhibitor. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201305546] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
20
|
Characterization of the amicetin biosynthesis gene cluster from Streptomyces vinaceusdrappus NRRL 2363 implicates two alternative strategies for amide bond formation. Appl Environ Microbiol 2012; 78:2393-401. [PMID: 22267658 DOI: 10.1128/aem.07185-11] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Amicetin, an antibacterial and antiviral agent, belongs to a group of disaccharide nucleoside antibiotics featuring an α-(1→4)-glycoside bond in the disaccharide moiety. In this study, the amicetin biosynthesis gene cluster was cloned from Streptomyces vinaceusdrappus NRRL 2363 and localized on a 37-kb contiguous DNA region. Heterologous expression of the amicetin biosynthesis gene cluster in Streptomyces lividans TK64 resulted in the production of amicetin and its analogues, thereby confirming the identity of the ami gene cluster. In silico sequence analysis revealed that 21 genes were putatively involved in amicetin biosynthesis, including 3 for regulation and transportation, 10 for disaccharide biosynthesis, and 8 for the formation of the amicetin skeleton by the linkage of cytosine, p-aminobenzoic acid (PABA), and the terminal (+)-α-methylserine moieties. The inactivation of the benzoate coenzyme A (benzoate-CoA) ligase gene amiL and the N-acetyltransferase gene amiF led to two mutants that accumulated the same two compounds, cytosamine and 4-acetamido-3-hydroxybenzoic acid. These data indicated that AmiF functioned as an amide synthethase to link cytosine and PABA. The inactivation of amiR, encoding an acyl-CoA-acyl carrier protein transacylase, resulted in the production of plicacetin and norplicacetin, indicating AmiR to be responsible for attachment of the terminal methylserine moiety to form another amide bond. These findings implicated two alternative strategies for amide bond formation in amicetin biosynthesis.
Collapse
|
21
|
Yang Z, Unrine J, Nonaka K, Van Lanen SG. Fe(II)-dependent, uridine-5'-monophosphate α-ketoglutarate dioxygenases in the synthesis of 5'-modified nucleosides. Methods Enzymol 2012; 516:153-68. [PMID: 23034228 PMCID: PMC3831618 DOI: 10.1016/b978-0-12-394291-3.00031-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Several nucleoside antibiotics from various actinomycetes contain a high-carbon sugar nucleoside that is putatively derived via C-5'-modification of the canonical nucleoside. Two prominent examples are the 5'-C-carbamoyluridine- and 5'-C-glycyluridine-containing nucleosides, both families of which were discovered using screens aimed at finding inhibitors of bacterial translocase I involved in the assembly of the bacterial peptidoglycan cell wall. A shared open reading frame was identified whose gene product is similar to enzymes of the nonheme, Fe(II)-, and α-ketoglutarate-dependent dioxygenases. The enzyme LipL from the biosynthetic pathway for A-90289, a 5'-C-glycyluridine-containing nucleoside, was functionally characterized as an UMP:α-ketoglutarate dioxygenase, providing the enzymatic imperative for the generation of a nucleoside-5'-aldehdye that serves as a downstream substrate for an aldol or aldol-type reaction leading to the high-carbon sugar scaffold. The functional assignment of LipL and the homologous enzymes-including bioinformatic analysis, iron detection and quantification, and assay development for biochemical characterization-is presented herein.
Collapse
Affiliation(s)
- Zhaoyong Yang
- Key Laboratory of Biotechnology of Antibiotics, Ministry of Health, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Jason Unrine
- Department of Plant and Soil Sciences, College of Agriculture, University of Kentucky, Lexington, KY 40536, USA
| | - Koichi Nonaka
- Biopharmaceutical Research Group I, Biopharmaceutical Technology Research Laboratories, Pharmaceutical Technology Division, Daiichi Sankyo Co., Ltd., 2716-1, Kurakake, Akaiwa, Chiyoda-machi, Ohra-gun, Gunma 370-0503, Japan
| | - Steven G. Van Lanen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 S. Limestone, Lexington, KY 40536, USA
| |
Collapse
|
22
|
Walsh CT, Zhang W. Chemical logic and enzymatic machinery for biological assembly of peptidyl nucleoside antibiotics. ACS Chem Biol 2011; 6:1000-7. [PMID: 21851099 DOI: 10.1021/cb200284p] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Peptidyl nucleoside antibiotics are a group of natural products targeting MraY, a bacterial translocase involved in the lipid-linked cycle in peptidoglycan biosynthesis. In this Perspective, we explore how Nature builds complex peptidyl nucleoside antibiotics scaffolds from simple nucleoside and amino acid building blocks. We discuss the current stage of research on biosynthetic pathways for peptidyl nucleoside antibiotics, primarily focusing on chemical logic and enzymatic machinery for uridine transformation and coupling to peptides. We further survey the nonribosomal biosynthetic paradigm for a subgroup of uridyl peptide antibiotics represented by pacidamycins, concluded by diversification opportunities for antibiotic optimization.
Collapse
Affiliation(s)
- Christopher T. Walsh
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Wenjun Zhang
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| |
Collapse
|
23
|
Koryakina I, Neville J, Nonaka K, Van Lanen SG, Williams GJ. A High-Throughput Screen for Directed Evolution of the Natural Product Sulfotransferase LipB. ACTA ACUST UNITED AC 2011; 16:845-51. [DOI: 10.1177/1087057111413273] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In this article, the authors describe a colorimetric, high-throughput assay suitable for optimizing the activity of the recently discovered sulfotransferase LipB, by directed evolution. Crucially, LipB uses para-nitrophenol sulfate as donor in the sulfation of the nucleoside antibiotic liposidomycin B-I and other acceptor surrogates. Thus, using a robotic liquid-handling device, crude cell extracts were prepared from an Escherichia coli strain that overproduced LipB in wells of a microplate, and production of para-nitrophenol at 405 nm was monitored spectrophotometrically. Enzyme activity could be detected only in the presence of both LipB substrates and overexpressed LipB. The screen displays a suitable standard deviation for directed evolution and importantly is not limited to the natural desulfo-liposidomycin acceptor. The authors plan to use the screen to identify LipB variants with altered acceptor specificity and promiscuity for use in sulfation of natural products and other small-molecule therapeutics.
Collapse
Affiliation(s)
- Irina Koryakina
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina
| | - Jessica Neville
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina
| | - Koichi Nonaka
- Biopharmaceutical Research Group I, Biopharmaceutical Technology Research Laboratories, Pharmaceutical Technology Division, Fukushima, Japan
| | - Steven G. Van Lanen
- College of Pharmacy, Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky
| | - Gavin J. Williams
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina
| |
Collapse
|
24
|
Yang Z, Chi X, Funabashi M, Baba S, Nonaka K, Pahari P, Unrine J, Jacobsen JM, Elliott GI, Rohr J, Van Lanen SG. Characterization of LipL as a non-heme, Fe(II)-dependent α-ketoglutarate:UMP dioxygenase that generates uridine-5'-aldehyde during A-90289 biosynthesis. J Biol Chem 2011; 286:7885-7892. [PMID: 21216959 DOI: 10.1074/jbc.m110.203562] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fe(II)- and α-ketoglutarate (α-KG)-dependent dioxygenases are a large and diverse superfamily of mononuclear, non-heme enzymes that perform a variety of oxidative transformations typically coupling oxidative decarboxylation of α-KG with hydroxylation of a prime substrate. The biosynthetic gene clusters for several nucleoside antibiotics that contain a modified uridine component, including the lipopeptidyl nucleoside A-90289 from Streptomyces sp. SANK 60405, have recently been reported, revealing a shared open reading frame with sequence similarity to proteins annotated as α-KG:taurine dioxygenases (TauD), a well characterized member of this dioxygenase superfamily. We now provide in vitro data to support the functional assignment of LipL, the putative TauD enzyme from the A-90289 gene cluster, as a non-heme, Fe(II)-dependent α-KG:UMP dioxygenase that produces uridine-5'-aldehyde to initiate the biosynthesis of the modified uridine component of A-90289. The activity of LipL is shown to be dependent on Fe(II), α-KG, and O(2), stimulated by ascorbic acid, and inhibited by several divalent metals. In the absence of the prime substrate UMP, LipL is able to catalyze oxidative decarboxylation of α-KG, although at a significantly reduced rate. The steady-state kinetic parameters using optimized conditions were determined to be K(m)(α-KG) = 7.5 μM, K(m)(UMP) = 14 μM, and k(cat) ≈ 80 min(-1). The discovery of this new activity not only sets the stage to explore the mechanism of LipL and related dioxygenases further but also has critical implications for delineating the biosynthetic pathway of several related nucleoside antibiotics.
Collapse
Affiliation(s)
- Zhaoyong Yang
- From the Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536
| | - Xiuling Chi
- From the Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536
| | - Masanori Funabashi
- Biopharmaceutical Research Group I, Biopharmaceutical Technology Research Laboratories, Pharmaceutical Technology Division, Daiichi Sankyo Co., Ltd., 389-4, Aza-ohtsurugi, Shimokawa, Izumi-machi, Iwaki-shi, Fukushima 971-8183, Japan, and
| | - Satoshi Baba
- Biopharmaceutical Research Group I, Biopharmaceutical Technology Research Laboratories, Pharmaceutical Technology Division, Daiichi Sankyo Co., Ltd., 389-4, Aza-ohtsurugi, Shimokawa, Izumi-machi, Iwaki-shi, Fukushima 971-8183, Japan, and
| | - Koichi Nonaka
- Biopharmaceutical Research Group I, Biopharmaceutical Technology Research Laboratories, Pharmaceutical Technology Division, Daiichi Sankyo Co., Ltd., 389-4, Aza-ohtsurugi, Shimokawa, Izumi-machi, Iwaki-shi, Fukushima 971-8183, Japan, and
| | - Pallab Pahari
- From the Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536
| | - Jason Unrine
- the Department of Plant and Soil Sciences, College of Agriculture, University of Kentucky, Lexington, Kentucky 40536
| | - Jesse M Jacobsen
- From the Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536
| | - Gregory I Elliott
- From the Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536
| | - Jürgen Rohr
- From the Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536
| | - Steven G Van Lanen
- From the Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536,.
| |
Collapse
|
25
|
Kaysser L, Tang X, Wemakor E, Sedding K, Hennig S, Siebenberg S, Gust B. Identification of a Napsamycin Biosynthesis Gene Cluster by Genome Mining. Chembiochem 2010; 12:477-87. [PMID: 21290549 DOI: 10.1002/cbic.201000460] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Indexed: 11/11/2022]
Affiliation(s)
- Leonard Kaysser
- Eberhard-Karls-Universität Tübingen, Pharmazeutische Biologie, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | | | | | | | | | | | | |
Collapse
|
26
|
Bogatcheva E, Dubuisson T, Protopopova M, Einck L, Nacy CA, Reddy VM. Chemical modification of capuramycins to enhance antibacterial activity. J Antimicrob Chemother 2010; 66:578-87. [PMID: 21186194 DOI: 10.1093/jac/dkq495] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES To extend capuramycin spectrum of activity beyond mycobacteria and improve intracellular drug activity. METHODS Three capuramycin analogues (SQ997, SQ922 and SQ641) were conjugated with different natural and unnatural amino acids or decanoic acid (DEC) through an ester bond at one or more available hydroxyl groups. In vitro activity of the modified compounds was determined against Mycobacterium spp. and representative Gram-positive and Gram-negative bacteria. Intracellular activity was evaluated in J774A.1 mouse macrophages infected with Mycobacterium tuberculosis (H37Rv). RESULTS Acylation of SQ997 and SQ641 with amino undecanoic acid (AUA) improved in vitro activity against most of the bacteria tested. Conjugation of SQ922 with DEC, but not AUA, improved its activity against Gram-positive bacteria. In the presence of efflux pump inhibitor phenylalanine arginine β-naphthyl amide, MICs of SQ997-AUA, SQ641-AUA and SQ922-DEC compounds improved even further against drug-susceptible and drug-resistant Staphylococcus aureus. In Gram-negative bacteria, EDTA-mediated permeabilization caused 4- to 16-fold enhancement of the activity of AUA-conjugated SQ997, SQ922 and SQ641. Conjugation of all three capuramycin analogues with AUA improved intracellular killing of H37Rv in murine macrophages. CONCLUSIONS Conjugation of capuramycin analogues with AUA or DEC enhanced in vitro activity, extended the spectrum of activity in Gram-positive bacteria and increased intracellular activity against H37Rv.
Collapse
Affiliation(s)
- Elena Bogatcheva
- Sequella, Inc., 9610 Medical Center Drive, Suite 200, Rockville, MD 20850, USA
| | | | | | | | | | | |
Collapse
|
27
|
Identification of the biosynthetic gene cluster for the pacidamycin group of peptidyl nucleoside antibiotics. Proc Natl Acad Sci U S A 2010; 107:16828-33. [PMID: 20826445 DOI: 10.1073/pnas.1011557107] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Pacidamycins are a family of uridyl tetra/pentapeptide antibiotics that act on the translocase MraY to block bacterial cell wall assembly. To elucidate the biosynthetic logic of pacidamcyins, a putative gene cluster was identified by 454 shotgun genome sequencing of the producer Streptomyces coeruleorubidus NRRL 18370. The 31-kb gene cluster encodes 22 proteins (PacA-V), including highly dissociated nonribosomal peptide synthetase (NRPS) modules and a variety of tailoring enzymes. Gene deletions confirmed that two NRPSs, PacP and PacO, are required for the biosynthesis of pacidamycins. Heterologous expression and in vitro assays of PacL, PacO, and PacP established reversible formation of m-Tyr-AMP, l-Ala-AMP, and diaminopropionyl-AMP, respectively, consistent with the amino acids found in pacidamycin scaffolds. The unusual Ala(4)-Phe(5) dipeptidyl ureido linkage was formed during in vitro assays containing purified PacL, PacJ, PacN, and PacO. Both the genetic and enzymatic studies validate identification of the biosynthetic genes for this subclass of uridyl peptide antibiotics and provide the basis for future mechanistic study of their biosynthesis.
Collapse
|
28
|
Funabashi M, Yang Z, Nonaka K, Hosobuchi M, Fujita Y, Shibata T, Chi X, Van Lanen SG. An ATP-independent strategy for amide bond formation in antibiotic biosynthesis. Nat Chem Biol 2010; 6:581-6. [PMID: 20562876 DOI: 10.1038/nchembio.393] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Accepted: 04/15/2010] [Indexed: 11/09/2022]
Abstract
A-503083 B, a capuramycin-type antibiotic, contains an L-aminocaprolactam and an unsaturated hexuronic acid that are linked via an amide bond. A putative class C beta-lactamase (CapW) was identified within the biosynthetic gene cluster that-in contrast to the expected beta-lactamase activity-catalyzed an amide-ester exchange reaction to eliminate the L-aminocaprolactam with concomitant generation of a small but significant amount of the glyceryl ester derivative of A-503083 B, suggesting a potential role for an ester intermediate in the biosynthesis of capuramycins. A carboxyl methyltransferase, CapS, was subsequently demonstrated to function as an S-adenosylmethionine-dependent carboxyl methyltransferase to form the methyl ester derivative of A-503083 B. In the presence of free L-aminocaprolactam, CapW efficiently converts the methyl ester to A-503083 B, thereby generating a new amide bond. This ATP-independent amide bond formation using methyl esterification followed by an ester-amide exchange reaction represents an alternative to known strategies of amide bond formation.
Collapse
Affiliation(s)
- Masanori Funabashi
- Bioengineering Research Group I, Process Technology Research Laboratories, Daiichi Sankyo Co., Ltd., Fukushima, Japan
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Yang Z, Funabashi M, Nonaka K, Hosobuchi M, Shibata T, Pahari P, Van Lanen SG. Functional and kinetic analysis of the phosphotransferase CapP conferring selective self-resistance to capuramycin antibiotics. J Biol Chem 2010; 285:12899-905. [PMID: 20202936 DOI: 10.1074/jbc.m110.104141] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Capuramycin-related compounds, including A-500359s and A-503083s, are nucleoside antibiotics that inhibit the enzyme bacterial translocase I involved in peptidoglycan cell wall biosynthesis. Within the biosynthetic gene cluster for the A-500359s exists a gene encoding a putative aminoglycoside 3-phosphotransferase that was previously demonstrated to be highly expressed during the production of A-500359s and confers selective resistance to capuramycins when expressed in heterologous hosts. A similar gene (capP) was identified within the biosynthetic gene cluster for the A-503083s, and CapP is now shown to similarly confer selective resistance to capuramycins. Recombinant CapP was produced and purified from Escherichia coli, and the function of CapP is established as an ATP-dependent capuramycin phosphotransferase that regio-specifically transfers the gamma-phosphate to the 3''-hydroxyl of the unsaturated hexuronic acid moiety of A-503083 B. Kinetic analysis with the three major A-503083 congeners suggests that CapP preferentially phosphorylates A-503083s containing an aminocaprolactam moiety attached to the hexuronic acid, and bi-substrate kinetic analysis was consistent with CapP employing a sequential kinetic mechanism similar to most known aminoglycoside 3-phosphotransferases. The purified CapP product lost its antibiotic activity against Mycobacterium smegmatis, and this loss in bioactivity is primarily due to a 272-fold increase in the IC(50) in the bacterial translocase I-catalyzed reaction. The results establish CapP-mediated phosphorylation as a mechanism of resistance to capuramycins and now set the stage to explore this strategy of resistance as a potential mechanism inherent to pathogens and provide the impetus for preparing second generation analogues as a preemptive strike to such resistance strategies.
Collapse
Affiliation(s)
- Zhaoyong Yang
- College of Pharmacy, Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky 40536, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Funabashi M, Baba S, Nonaka K, Hosobuchi M, Fujita Y, Shibata T, Van Lanen SG. The Biosynthesis of Liposidomycin-like A-90289 Antibiotics Featuring a New Type of Sulfotransferase. Chembiochem 2009; 11:184-90. [DOI: 10.1002/cbic.200900665] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
31
|
Winn M, Goss RJM, Kimura KI, Bugg TDH. Antimicrobial nucleoside antibiotics targeting cell wall assembly: recent advances in structure-function studies and nucleoside biosynthesis. Nat Prod Rep 2009; 27:279-304. [PMID: 20111805 DOI: 10.1039/b816215h] [Citation(s) in RCA: 221] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The quest for new antibiotics, especially those with activity against Gram-negative bacteria, is urgent; however, very few new antibiotics have been marketed in the last 40 years, with this limited number falling into only four new structural classes. Several nucleoside natural product antibiotics target bacterial translocase MraY, involved in the lipid-linked cycle of peptidoglycan biosynthesis, and fungal chitin synthase. Biosynthetic studies on the nikkomycin, caprazamycin and pacidamycin/mureidomycin families are also reviewed.
Collapse
Affiliation(s)
- Michael Winn
- School of Chemistry, University of East Anglia, Norwich, NR4 7TJ, UK
| | | | | | | |
Collapse
|